1
|
Kruk B, Milkiewicz M, Raszeja-Wyszomirska J, Milkiewicz P, Krawczyk M. A common variant in the hepatobiliary phospholipid transporter ABCB4 modulates liver injury in PBC but not in PSC: prospective analysis in 867 patients. Orphanet J Rare Dis 2022; 17:419. [PMID: 36397154 PMCID: PMC9670364 DOI: 10.1186/s13023-022-02565-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/30/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The ATP-binding cassette subfamily B member 4 (ABCB4) gene encodes the hepatic phospholipid transporter. Variants in the ABCB4 gene are associated with various cholestatic phenotypes, some of which progress to liver fibrosis and cirrhosis. The aim of our study was to investigate the role of the cholestasis-associated variant ABCB4 c.711A > T (p.I237I, rs2109505) in patients with primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). RESULTS Two cohorts of Polish patients took part in this study. The Szczecin cohort comprised 196 patients with PBC (174 females, 38% with cirrhosis) and 135 patients with PSC (39 females, 39% with cirrhosis). The Warsaw cohort consisted of 260 patients with PBC (241 females, 44% with cirrhosis) and 276 patients with PSC (97 females, 33% with cirrhosis). Two control cohorts-150 healthy blood donors and 318 patients without liver disease, were recruited in Szczecin and in Warsaw, respectively. The ABCB4 c.711A > T polymorphism was genotyped using TaqMan assay. In both PBC cohorts, carriers of the risk variant presented more frequently with cirrhosis (Szczecin: OR = 1.841, P = 0.025; Warsaw: OR = 1.528, P = 0.039). The risk allele was associated with increased serum AST, GGT and ALP (all P < 0.05) at inclusion. During the follow-up, patients in both cohorts significantly improved their laboratory results, independently of their ABCB4 c.711A > T genotype (P > 0.05). During 8 ± 4 years follow-up, a total of 22 patients in the Szczecin PBC group developed cirrhosis, and this risk was higher among carriers of the risk variant (OR = 5.65, P = 0.04). In contrast to PBC, we did not detect any association of ABCB4 c.711A > T with a liver phenotype in PSC cohorts. CONCLUSIONS The frequent pro-cholestatic variant ABCB4 c.711A > T modulates liver injury in PBC, but not in PSC. In particular, carriers of the major allele are at increased risk of progressive liver scarring.
Collapse
Affiliation(s)
- Beata Kruk
- grid.13339.3b0000000113287408Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Malgorzata Milkiewicz
- grid.107950.a0000 0001 1411 4349Department of Medical Biology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Joanna Raszeja-Wyszomirska
- grid.13339.3b0000000113287408Liver and Internal Medicine Unit, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Milkiewicz
- grid.13339.3b0000000113287408Liver and Internal Medicine Unit, Medical University of Warsaw, Warsaw, Poland ,grid.107950.a0000 0001 1411 4349Translational Medicine Group, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marcin Krawczyk
- grid.13339.3b0000000113287408Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland ,grid.411937.9Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
2
|
Dang S, Gao R, Zhang Y, Feng Y. In vitro regeneration and its histological characteristics of Dioscorea nipponica Makino. Sci Rep 2022; 12:18436. [PMID: 36319819 PMCID: PMC9626472 DOI: 10.1038/s41598-022-22986-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
Dioscorea nipponica Makino is an optimal candidate to develop the diosgenin industry in North China. Due to its increasing demand in the medicine industry, it is urgent to apply new biotechnological tools to foster breeds with desirable traits and enhanced secondary metabolite production. The production of useful metabolites by the in vitro cultured rhizomes can be explored successfully for utilization by various food and drug industries. In this study, we reported callus formation and plantlet regeneration of the medicinal plant D. nipponica. Explants of leaves, stem segments and rhizomes of aseptic seedlings were cultured on Murashige and Skoog (MS) medium containing various combinations of auxin and cytokinin to find the optimal PGRs of each type of explant for callus induction and shoot regeneration of D. nipponica. The paraffin section technique was also used to observe of the morphogenesis of callus and adventitious bud. Explants of seeds and rhizomes formed calli at high frequency in all lines we examined. However, the explant of leaves rarely formed callus. Three kinds of callus were detected during the induction phase. Here, we describe three types of callus (Callus I-III) with different structure characteristics. Greenish in color and a nodule-like protrusion surface (Callus type III) were arranged more closely of cells with less interstitial substance, cell differentiation ability stronger than other callus types. The optimum combination was the maximum shoot differentiation frequency of 90% in callus derived from seeds cultured on MS medium with 2.0 mg L-16-BA + 0.2 mg L-1NAA. The shoot differentiation frequency (88.57%) of rhizome-induced callus was obtained by the combination of MS medium supplemented with 3.0 mg L-16-BA + 2.0 mg L-1NAA. 1/2 MS medium plus 0.5 mg L-1NAA resulted in a higher root regeneration frequency of 86.70%. In vitro propagated plantlets with healthy roots were domesticated and transplanted into small plastic pots containing sterile soil rite under greenhouse conditions with 80% survivability. Bud differentiation is mostly of exogenous origin, mostly occurring on the near callus surface. Therefore, it may be surmised that in vitro morphogenesis of D. nipponica is mainly caused by indirect organogenesis (adventitious bud).
Collapse
Affiliation(s)
- Shangni Dang
- grid.412545.30000 0004 1798 1300College of Forestry, Shanxi Agricultural University, Taigu, Shanxi China
| | - Runmei Gao
- grid.412545.30000 0004 1798 1300College of Forestry, Shanxi Agricultural University, Taigu, Shanxi China
| | - Yuqing Zhang
- grid.412545.30000 0004 1798 1300College of Forestry, Shanxi Agricultural University, Taigu, Shanxi China
| | - Yumei Feng
- grid.412545.30000 0004 1798 1300College of Forestry, Shanxi Agricultural University, Taigu, Shanxi China
| |
Collapse
|
3
|
Wang D, Wang X. Diosgenin and Its Analogs: Potential Protective Agents Against Atherosclerosis. Drug Des Devel Ther 2022; 16:2305-2323. [PMID: 35875677 PMCID: PMC9304635 DOI: 10.2147/dddt.s368836] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/09/2022] [Indexed: 11/23/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the artery wall associated with lipid metabolism imbalance and maladaptive immune response, which mediates most cardiovascular events. First-line drugs such as statins and antiplatelet drug aspirin have shown good effects against atherosclerosis but may lead to certain side effects. Thus, the development of new, safer, and less toxic agents for atherosclerosis is urgently needed. Diosgenin and its analogs have gained importance for their efficacy against life-threatening diseases, including cardiovascular, endocrine, nervous system diseases, and cancer. Diosgenin and its analogs are widely found in the rhizomes of Dioscore, Solanum, and other species and share similar chemical structures and pharmacological effects. Recent data suggested diosgenin plays an anti-atherosclerosis role through its anti-inflammatory, antioxidant, plasma cholesterol-lowering, anti-proliferation, and anti-thrombotic effects. However, a review of the effects of diosgenin and its natural structure analogs on AS is still lacking. This review summarizes the effects of diosgenin and its analogs on vascular endothelial dysfunction, vascular smooth muscle cell (VSMC) proliferation, migration and calcification, lipid metabolism, and inflammation, and provides a new overview of its anti-atherosclerosis mechanism. Besides, the structures, sources, safety, pharmacokinetic characteristics, and biological availability are introduced to reveal the limitations and challenges of current studies, hoping to provide a theoretical basis for the clinical application of diosgenin and its analogs and provide a new idea for developing new agents for atherosclerosis.
Collapse
Affiliation(s)
- Dan Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, People’s Republic of China
| | - Xiaolong Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, People’s Republic of China
- Correspondence: Xiaolong Wang, Tel +86 13501991450, Fax +86 21 51322445, Email
| |
Collapse
|
4
|
Structures of ABCB4 provide insight into phosphatidylcholine translocation. Proc Natl Acad Sci U S A 2021; 118:2106702118. [PMID: 34385322 DOI: 10.1073/pnas.2106702118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ABCB4 is expressed in hepatocytes and translocates phosphatidylcholine into bile canaliculi. The mechanism of specific lipid recruitment from the canalicular membrane, which is essential to mitigate the cytotoxicity of bile salts, is poorly understood. We present cryogenic electron microscopy structures of human ABCB4 in three distinct functional conformations. An apo-inward structure reveals how phospholipid can be recruited from the inner leaflet of the membrane without flipping its orientation. An occluded structure reveals a single phospholipid molecule in a central cavity. Its choline moiety is stabilized by cation-π interactions with an essential tryptophan residue, rationalizing the specificity of ABCB4 for phosphatidylcholine. In an inhibitor-bound structure, a posaconazole molecule blocks phospholipids from reaching the central cavity. Using a proteoliposome-based translocation assay with fluorescently labeled phosphatidylcholine analogs, we recapitulated the substrate specificity of ABCB4 in vitro and confirmed the role of the key tryptophan residue. Our results provide a structural basis for understanding an essential translocation step in the generation of bile and its sensitivity to azole drugs.
Collapse
|
5
|
Prescher M, Smits SHJ, Schmitt L. Stimulation of ABCB4/MDR3 ATPase activity requires an intact phosphatidylcholine lipid. J Lipid Res 2020; 61:1605-1616. [PMID: 32917728 PMCID: PMC7707170 DOI: 10.1194/jlr.ra120000889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
ABCB4/MDR3 is located in the canalicular membrane of hepatocytes and translocates PC-lipids from the cytoplasmic to the extracellular leaflet. ABCB4 is an ATP-dependent transporter that reduces the harsh detergent effect of the bile salts by counteracting self-digestion. To do so, ABCB4 provides PC lipids for extraction into bile. PC lipids account for 40% of the entire pool of lipids in the canalicular membrane with an unknown distribution over both leaflets. Extracted PC lipids end up in so-called mixed micelles. Mixed micelles are composed of phospholipids, bile salts, and cholesterol. Ninety to ninety-five percent of the phospholipids are members of the PC family, but only a subset of mainly 16.0-18:1 PC and 16:0-18:2 PC variants are present. To elucidate whether ABCB4 is the key discriminator in this enrichment of specific PC lipids, we used in vitro studies to identify crucial determinants in substrate selection. We demonstrate that PC-lipid moieties alone are insufficient for stimulating ABCB4 ATPase activity, and that at least two acyl chains and the backbone itself are required for a productive interaction. The nature of the fatty acids, like length or saturation has a quantitative impact on the ATPase activity. Our data demonstrate a two-step enrichment and protective function of ABCB4 to mitigate the harsh detergent effect of the bile salts, because ABCB4 can translocate more than just the PC-lipid variants found in bile.
Collapse
Affiliation(s)
- Martin Prescher
- Institute of Biochemistry I, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry I, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry I, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
6
|
Prescher M, Kroll T, Schmitt L. ABCB4/MDR3 in health and disease – at the crossroads of biochemistry and medicine. Biol Chem 2019; 400:1245-1259. [DOI: 10.1515/hsz-2018-0441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Abstract
Several ABC transporters of the human liver are responsible for the secretion of bile salts, lipids and cholesterol. Their interplay protects the biliary tree from the harsh detergent activity of bile salts. Among these transporters, ABCB4 is essential for the translocation of phosphatidylcholine (PC) lipids from the inner to the outer leaflet of the canalicular membrane of hepatocytes. ABCB4 deficiency can result in altered PC to bile salt ratios, which led to intrahepatic cholestasis of pregnancy, low phospholipid associated cholelithiasis, drug induced liver injury or even progressive familial intrahepatic cholestasis type 3. Although PC lipids only account for 30–40% of the lipids in the canalicular membrane, 95% of all phospholipids in bile are PC lipids. We discuss this discrepancy in the light of PC synthesis and bile salts favoring certain lipids. Nevertheless, the in vivo extraction of PC lipids from the outer leaflet of the canalicular membrane by bile salts should be considered as a separate step in bile formation. Therefore, methods to characterize disease causing ABCB4 mutations should be considered carefully, but such an analysis represents a crucial point in understanding the currently unknown transport mechanism of this ABC transporter.
Collapse
|
7
|
Eckstein J, Holzhütter HG, Berndt N. The importance of membrane microdomains for bile salt-dependent biliary lipid secretion. J Cell Sci 2018; 131:jcs211524. [PMID: 29420298 PMCID: PMC5897720 DOI: 10.1242/jcs.211524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
Alternative models explaining the biliary lipid secretion at the canalicular membrane of hepatocytes exist: successive lipid extraction by preformed bile salt micelles, or budding of membrane fragments with formation of mixed micelles. To test the feasibility of the latter mechanism, we developed a mathematical model that describes the formation of lipid microdomains in the canalicular membrane. Bile salt monomers intercalate into the external hemileaflet of the canalicular membrane, to form a rim to liquid disordered domain patches that then pinch off to form nanometer-scale mixed micelles. Model simulations perfectly recapitulate the measured dependence of bile salt-dependent biliary lipid extraction rates upon modulation of the membrane cholesterol (lack or overexpression of the cholesterol transporter Abcg5-Abcg8) and phosphatidylcholine (lack of Mdr2, also known as Abcb4) content. The model reveals a strong dependence of the biliary secretion rate on the protein density of the membrane. Taken together, the proposed model is consistent with crucial experimental findings in the field and provides a consistent explanation of the central molecular processes involved in bile formation.
Collapse
Affiliation(s)
- Johannes Eckstein
- Charité - Universitätsmedizin Berlin, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany
| | - Hermann-Georg Holzhütter
- Charité - Universitätsmedizin Berlin, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany
| | - Nikolaus Berndt
- Charité - Universitätsmedizin Berlin, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
8
|
Ikeda Y, Morita SY, Terada T. Cholesterol attenuates cytoprotective effects of phosphatidylcholine against bile salts. Sci Rep 2017; 7:306. [PMID: 28331225 PMCID: PMC5428433 DOI: 10.1038/s41598-017-00476-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/27/2017] [Indexed: 01/03/2023] Open
Abstract
Bile salts have potent detergent properties and damaging effects on cell membranes, leading to liver injury. However, the molecular mechanisms for the protection of hepatocytes against bile salts are not fully understood. In this study, we demonstrated that the cytotoxicity of nine human major bile salts to HepG2 cells and primary human hepatocytes was prevented by phosphatidylcholine (PC). In contrast, cholesterol had no direct cytotoxic effects but suppressed the cytoprotective effects of PC. PC reduced the cell-association of bile salt, which was reversed by cholesterol. Light scattering measurements and gel filtration chromatography revealed that cholesterol within bile salt/PC dispersions decreased mixed micelles but increased vesicles, bile salt simple micelles and monomers. These results suggest that cholesterol attenuates the cytoprotective effects of PC against bile salts by facilitating the formation of bile salt simple micelles and monomers. Therefore, biliary PC and cholesterol may play different roles in the pathogenesis of bile salt-induced liver injury.
Collapse
Affiliation(s)
- Yoshito Ikeda
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga, 520-2192, Japan
| | - Shin-Ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga, 520-2192, Japan.
| | - Tomohiro Terada
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga, 520-2192, Japan
| |
Collapse
|
9
|
Ronda OAHO, van Dijk TH, Verkade HJ, Groen AK. Measurement of Intestinal and Peripheral Cholesterol Fluxes by a Dual-Tracer Balance Method. ACTA ACUST UNITED AC 2016; 6:408-434. [PMID: 27906461 DOI: 10.1002/cpmo.16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Long-term elevated plasma cholesterol levels put individuals at risk for developing atherosclerosis. Plasma cholesterol levels are determined by the balance between cholesterol input and output fluxes. Here we describe in detail the methodology to determine the different cholesterol fluxes in mice. The percentage of absorbed cholesterol is calculated from a stable isotope-based double-label method. Cholesterol synthesis is calculated from MIDA after 13 C-acetate enrichment. Cholesterol is removed from the body via the feces. The fecal excretion route is either biliary or non-biliary. The non-biliary route is dominated by trans-intestinal cholesterol efflux, or TICE. Biliary excretion of cholesterol is measured by collecting bile. Non-biliary excretion is calculated by computational modeling. In this article, we describe methods and procedures to measure and calculate dietary intake of cholesterol, fractional cholesterol absorption, fecal neutral sterol output, biliary cholesterol excretion, TICE, cholesterol synthesis, peripheral fluxes, and whole-body cholesterol balance. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Onne A H O Ronda
- Center for Liver, Digestive and Metabolic Diseases, Departments of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Theo H van Dijk
- Department of Laboratory Medicine, Center for Liver Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H J Verkade
- Center for Liver, Digestive and Metabolic Diseases, Departments of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Albert K Groen
- Department of Laboratory Medicine, Center for Liver Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Amsterdam Diabetes Center, Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Eckstein J, Berndt N, Holzhütter HG. Computer simulations suggest a key role of membranous nanodomains in biliary lipid secretion. PLoS Comput Biol 2015; 11:e1004033. [PMID: 25692493 PMCID: PMC4333117 DOI: 10.1371/journal.pcbi.1004033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 11/12/2014] [Indexed: 01/06/2023] Open
Abstract
The bile fluid contains various lipids that are secreted at the canalicular membrane of hepatocytes. As the secretion mechanism is still a matter of debate and a direct experimental observation of the secretion process is not possible so far, we used a mathematical model to simulate the extraction of the major bile lipids cholesterol, phosphatidylcholine and sphingomyelin from the outer leaflet of the canalicular membrane. Lipid diffusion was modeled as random movement on a triangular lattice governed by next-neighbor interaction energies. Phase separation in liquid-ordered and liquid-disordered domains was modeled by assigning two alternative ordering states to each lipid species and minimization of next-neighbor ordering energies. Parameterization of the model was performed such that experimentally determined diffusion rates and phases in ternary lipid mixtures of model membranes were correctly recapitulated. The model describes the spontaneous formation of nanodomains in the external leaflet of the canalicular membrane in a time window between 0.1 ms to 10 ms at varying lipid proportions. The extraction of lipid patches from the bile salt soluble nanodomain into the bile reproduced observed biliary phospholipid compositions for a physiologi-cal membrane composition. Comparing the outcome of model simulations with available experi-mental observations clearly favors the extraction of tiny membrane patches composed of about 100–400 lipids as the likely mechanism of biliary lipid secretion. Formation of the bile is one of the central functions of the liver. The bile fluid aids in the digestion of edible fats and removal of drugs and toxins from the body. The bile fluid is mainly composed of bile salts (BS), phosphatidylcholine (PC) and cholesterol (CH) in a fairly fixed proportion that prevents liver impairment by gallstone formation or cholestasis. During bile formation, BS are actively pumped out of the hepatocyte into the extracellular space where they extract PC and CH from the canalicular membrane. This extraction process bears the risk for the canalicular membrane to be destructed. Hence, only a certain fraction of the membrane should be accessible to the solubilizing activity of BS. We have developed a mathematical model that describes the temporal formation of CH-enriched ordered and PC-enriched disordered nanodomains in the canalicular membrane. Model simulations reveal that the disordered nanodomains exhibit a composition of PC and CH similar to that also found in the bile. From this finding and the good concordance of model simulations with experimental data we conclude that PC and CH are mainly secreted into the bile from the disordered nanodomain. Our work adds a new layer of physiological importance to the spontaneous formation of lipid domains in biological membranes.
Collapse
Affiliation(s)
- Johannes Eckstein
- Charité—University Medicine Berlin, Institute of Biochemistry, Berlin, Germany
| | - Nikolaus Berndt
- Charité—University Medicine Berlin, Institute of Biochemistry, Berlin, Germany
| | | |
Collapse
|
11
|
Wang T, Choi RCY, Li J, Bi CWC, Ran W, Chen X, Dong TTX, Bi K, Tsim KWK. Trillin, a steroidal saponin isolated from the rhizomes of Dioscorea nipponica, exerts protective effects against hyperlipidemia and oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:214-220. [PMID: 22100563 DOI: 10.1016/j.jep.2011.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 10/27/2011] [Accepted: 11/01/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL EVIDENCE Numerous efforts have been conducted in searching for effective agents against cardiovascular diseases, in particular from herbal medicines. The rhizome of Dioscorea nipponica (Dioscoreae Nipponicae Rhizoma) is a traditional Chinese herb being prescribed to improve the blood circulation. Here, we identified a steroidal saponin trillin from Dioscorea nipponica, which showed robust anti-hyperlipidemic effects. MATERIALS AND METHODS Rats were induced for hyperlipidemia and subjected to the drug treatment. The anti-hyperlipidemic effects of trillin were evaluated by different biochemical assays. RESULTS In hyperlipidemic rat model, fed with high-fat diet, the blood levels of cholesterol, triglyceride, low density lipoprotein (LDL) and high density lipoprotein (HDL) were increased. The intra-peritoneal administration of trillin into those rats significantly improved the bleeding and blood coagulation time, and in parallel the treatment restored the levels of cholesterol, glyceride, LDL and HDL back to the normal condition. In addition, the administration of trillin in rats exerted beneficial effects in improving the levels of lipid peroxidation and superoxide dismutase activity. CONCLUSION This was the first time to reveal the anti-hyperlipidemic and anti-oxidative effects of trillin. These results would be important in developing food supplements for health improvements and therapeutic drugs against hyperlipidemia and cardiovascular diseases in future.
Collapse
Affiliation(s)
- Tiejie Wang
- Shenzhen Municipal Institute for Drug Control, Shenzhen 518029, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Coy DJ, Wooton-Kee CR, Yan B, Sabeva N, Su K, Graf G, Vore M. ABCG5/ABCG8-independent biliary cholesterol excretion in lactating rats. Am J Physiol Gastrointest Liver Physiol 2010; 299:G228-35. [PMID: 20413720 PMCID: PMC2904104 DOI: 10.1152/ajpgi.00502.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 04/12/2010] [Indexed: 01/31/2023]
Abstract
Lactation is associated with increased expression of bile acid transporters and an increased size and hydrophobicity of the bile acid pool in rats. ATP-binding cassette (ABC) transporters multidrug resistance protein 2 (Mdr2), Abcb11 [bile salt export pump (Bsep)], and Abcg5/Abcg8 heterodimers are essential for the biliary secretion of phospholipids, bile acids, and cholesterol, respectively. We investigated the expression of these transporters and secretion of their substrates in female control and lactating Sprague Dawley rats and C57BL/6 mice. Expression of Abcg5/Abcg8 mRNA was decreased by 97 and 60% by midlactation in rats and mice, respectively; protein levels of Abcg8 were below detection limits in lactating rats. Mdr2 mRNA expression was decreased in lactating rats and mice by 47 and 59%, respectively. Despite these changes in transporter expression, basal concentrations of cholesterol and phospholipid in bile were unchanged in rats and mice, whereas increased Bsep mRNA expression in early lactation coincided with an increased basal biliary bile acid concentration in lactating mice. Following taurocholate infusion, coupling of phospholipid and taurocholate secretion in bile of lactating mice was significantly impaired relative to control mice, with no significant changes in maximal secretion of cholesterol or bile acids. In rats, taurocholate infusion revealed a significantly impaired coupling of cholesterol to taurocholate secretion in bile in lactating vs. control animals. These data reveal marked utilization of an Abcg5/Abcg8-independent mechanism for basal biliary cholesterol secretion in rats during lactation, but a dependence on Abcg5/g8 for maximal biliary cholesterol secretion.
Collapse
Affiliation(s)
- Donna J Coy
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Gadaleta RM, van Mil SWC, Oldenburg B, Siersema PD, Klomp LWJ, van Erpecum KJ. Bile acids and their nuclear receptor FXR: Relevance for hepatobiliary and gastrointestinal disease. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:683-92. [PMID: 20399894 DOI: 10.1016/j.bbalip.2010.04.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/03/2010] [Accepted: 04/09/2010] [Indexed: 12/15/2022]
Abstract
The nuclear receptor Farnesoid X Receptor (FXR) critically regulates nascent bile formation and bile acid enterohepatic circulation. Bile acids and FXR play a pivotal role in regulating hepatic inflammation and regeneration as well as in regulating extent of inflammatory responses, barrier function and prevention of bacterial translocation in the intestinal tract. Recent evidence suggests, that the bile acid-FXR interaction is involved in the pathophysiology of a wide range of diseases of the liver, biliary and gastrointestinal tract, such as cholestatic and inflammatory liver diseases and hepatocellular carcinoma, inflammatory bowel disease and inflammation-associated cancer of the colon and esophagus. In this review we discuss current knowledge of the role the bile acid-FXR interaction has in (patho)physiology of the liver, biliary and gastrointestinal tract, and proposed underlying mechanisms, based on in vitro data and experimental animal models. Given the availability of highly potent synthetic FXR agonists, we focus particularly on potential relevance for human disease.
Collapse
Affiliation(s)
- Raffaella M Gadaleta
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
14
|
Sabatini-Sáez I, Guerra-Velásquez M, Reyna-Villasmil E, Mejía-Montilla J, Reyna-Villasmil N, Torres-Cepeda D, Delgado-Delgado O, Santos-Bolívar J. Lípidos y lipoproteínas en pacientes menopáusicas tratadas con diosgenina. CLINICA E INVESTIGACION EN GINECOLOGIA Y OBSTETRICIA 2009. [DOI: 10.1016/j.gine.2008.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Folmer DE, Elferink RPJO, Paulusma CC. P4 ATPases - lipid flippases and their role in disease. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:628-35. [PMID: 19254779 DOI: 10.1016/j.bbalip.2009.02.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/12/2009] [Accepted: 02/12/2009] [Indexed: 12/11/2022]
Abstract
P4 ATPases (type 4 P-type ATPases) are multispan transmembrane proteins that have been implicated in phospholipid translocation from the exoplasmic to the cytoplasmic leaflet of biological membranes. Studies in Saccharomyces cerevisiae have indicated that P4 ATPases are important in vesicle biogenesis and are required for vesicular trafficking along several intracellular vesicular transport routes. Although little is known about mammalian P4 ATPases, some members of this subfamily appear to be associated with human disease or mouse pathophysiology. ATP8B1, a phosphatidylserine translocase, is the most extensively studied mammalian P4 ATPase. This protein is important for maintaining the detergent resistant properties of the apical membrane of the hepatocyte. Mutations in ATP8B1 give rise to severe liver disease. Furthermore, a role for Atp8b3 in mouse sperm cell capacitation has been suggested, whereas deficiency of Atp10a and Atp10d leads to insulin resistance and obesity in mice. Here we review the present status on the pathophysiological consequences of P4 ATPase deficiency.
Collapse
Affiliation(s)
- Dineke E Folmer
- AMC Liver Center, Academic Medical Center, University of Amsterdam, Meibergdreef 69-71, 1105BK Amsterdam, The Netherlands
| | | | | |
Collapse
|
16
|
A translational view on the biliary lipid secretory network. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:79-96. [DOI: 10.1016/j.bbalip.2007.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 11/28/2007] [Accepted: 12/13/2007] [Indexed: 01/26/2023]
|
17
|
Lemberg A, Schreier L, Romay S, Fernández MA, Rosello D, Gonzales S, Perazzo JC, Filinger EJ, Tomaro ML. Involvement of serum apolipoprotein AI and B100 and lecithin cholesterol acyl transferase in alcoholic cirrhotics. Ann Hepatol 2007; 6:227-232. [PMID: 18007552 DOI: 10.1016/s1665-2681(19)31903-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Lipoproteins are synthesized by the liver and secreted to plasma. Chronic alcoholic intoxication produces frequently cirrhosis and concomitantly alterations in liver metabolism. Thirty patients with alcoholic cirrhosis and 83 healthy controls were selected for this study. Apolipoprotein A1, B100, lecithin cholesterol acyltransferase, responsible for cholesterol esterification and seudocholinesterase enzyme activity not related to lipid metabolism, as a referent of proteins synthesized by the liver were analyzed. In 7 patients serum tiobarbituric acids, catalase, glutathione peroxidase were measured, as exponent of the presence of oxidative stress. Our results showed a significant decrease in lipoproteins, lecithin cholesterol acyltransferase and seudocholinesterase activities. An increase in serum tiobarbituric acids and a decrease in both antioxidant enzymes were found as well. In conclusion, alcohol cirrhotic liver decreases the production of liver proteins including those related to lipid metabolism, allowing the formation of steatosis and/or necrosis. Moreover oxidative stress participate possible as a major mechanism in liver damage.
Collapse
Affiliation(s)
- Abraham Lemberg
- Portal Hypertension Laboratory, School of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
van Erpecum KJ, Petruzzelli M, Groen AK, Moschetta A. Relevance of interactions between sphingomyelin and cholesterol in biliary and intestinal tract. EUR J LIPID SCI TECH 2007. [DOI: 10.1002/ejlt.200700046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Kosters A, Kunne C, Looije N, Patel SB, Oude Elferink RPJ, Groen AK. The mechanism of ABCG5/ABCG8 in biliary cholesterol secretion in mice. J Lipid Res 2006; 47:1959-66. [PMID: 16741293 PMCID: PMC1805467 DOI: 10.1194/jlr.m500511-jlr200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The main player in biliary cholesterol secretion is the heterodimeric transporter complex, ABCG5/ABCG8, the function of which is necessary for the majority of sterols secreted into bile. It is not clear whether the primary step in this process is flopping of cholesterol from the inner to the outer leaflet of the canalicular membrane, with desorption by mixed micelles, or decreasing of the activation energy required for cholesterol desorption from the outer membrane leaflet. In this study, we investigated these mechanisms by infusing Abcg8(+/+), Abcg8(+/-), and Abcg8(-/-) mice with hydrophilic and hydrophobic bile salts. In Abcg8(-/-) mice, this failed to substantially stimulate biliary cholesterol secretion. Infusion of the hydrophobic bile salt taurodeoxycholate also resulted in cholestasis, which was induced in Abcg8(-/-) mice at a much lower infusion rate compared with Abc8(-/-) and Abcg8(+/-) mice, suggesting a reduced cholesterol content in the outer leaflet of the canalicular membrane. Indeed, isolation of canalicular membranes revealed a reduction of 45% in cholesterol content under these conditions in Abcg8(-/-) mice. Our data support the model that ABCG5/ABCG8 primarily play a role in flopping cholesterol (and sterols) from the inner leaflet to the outer leaflet of the canalicular membrane.
Collapse
Affiliation(s)
- Astrid Kosters
- AMC Liver Center, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
20
|
Oude Elferink RPJ, Paulusma CC, Groen AK. Hepatocanalicular transport defects: pathophysiologic mechanisms of rare diseases. Gastroenterology 2006; 130:908-25. [PMID: 16530529 DOI: 10.1053/j.gastro.2005.08.052] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 09/20/2005] [Indexed: 12/31/2022]
Abstract
The apical membrane of the hepatocyte fulfils a unique function in the formation of primary bile. For all important biliary constituents a primary active transporter is present that extrudes or translocates its substrate toward the canalicular lumen. Most of these transporters are ATP-binding cassette (ABC) transporters. Two types of transporters can be recognized: those having endogenous metabolites as substrates (which could be referred to as "physiologic" transporters) and those involved in the elimination of drugs, toxins, and waste products. It should be emphasized that this distinction cannot be strictly made as some endogenous metabolites can be regarded as toxins as well. The importance of the canalicular transporters has been recognized by the pathologic consequence of their genetic defects. For each of the physiologic transporter genes an inherited disease has now been identified and most of these diseases have a quite serious clinical phenotype. Strikingly, complete defects in drug transporter function have not been recognized (yet) or only cause a mild phenotype. In this review we only briefly discuss the inherited defects in transporter function, and we focus on the pathophysiologic concepts that these diseases have generated.
Collapse
|
21
|
Kosters A, Frijters RJJM, Kunne C, Vink E, Schneiders MS, Schaap FG, Nibbering CP, Patel SB, Groen AK. Diosgenin-induced biliary cholesterol secretion in mice requires Abcg8. Hepatology 2005; 41:141-50. [PMID: 15619238 DOI: 10.1002/hep.20540] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The plant sterol diosgenin has been shown to stimulate biliary cholesterol secretion in mice without affecting the expression of the adenosine triphosphate-binding cassette transporter heterodimer Abcg5/g8. The aim of this study was to investigate the mechanism of diosgenin-induced cholesterol hypersecretion and to identify the genes involved. Surprisingly, despite its lack of effect on Abcg5/g8 expression in wild-type mice, diosgenin did not stimulate biliary cholesterol secretion in mice deficient for Abcg8. Analysis of the kinetics of cholesterol secretion suggested that diosgenin probably activates a step before Abcg5/g8. To identify potential diosgenin targets, gene expression profiling was performed in mice fed a diosgenin-supplemented diet. Diosgenin feeding increased hepatic expression of genes involved in cholesterol synthesis as well as genes encoding for several cytochrome P450s. No significant change in expression of known cholesterol transporters was found. Comparison with published expression-profiling data for Srebp2-overexpressing mice, another mouse model in which biliary cholesterol secretion is elevated, revealed a number of genes with unknown function that were upregulated in both diosgenin-fed mice and mice overexpressing Srebp2. In conclusion, we found that although Abcg8 is essential for most diosgenin-induced biliary cholesterol hypersecretion, diosgenin probably does not interact directly with Abcg5/Abcg8, but rather increases cholesterol delivery to the heterodimer. Supplementary material for this article can be found on the HEPATOLOGY website (http://interscience.wiley.com/jpages/0270-9139/suppmat/index.html).
Collapse
Affiliation(s)
- Astrid Kosters
- AMC Liver Center Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kamisako T, Ogawa H. Effects of pravastatin and bezafibrate on biliary lipid excretion and hepatic expression of Abcg5 and Abcg8 in the rat. J Gastroenterol Hepatol 2004; 19:879-83. [PMID: 15242490 DOI: 10.1111/j.1440-1746.2004.03377.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Multidrug resistance associated gene product 2 (Mdr2) is believed to have a significant role in biliary cholesterol and phospholipid secretions. Both pravastatin and bezafibrate resulted in Mdr2 induction, but increased cholesterol secretion was observed only in pravastatin treatment. To explore the mechanism, the hepatic expression of genes that are responsible for the metabolism of the lipids was studied. METHODS Rats were divided into three experimental groups: (i) the control group; (ii) the bezafibrate group, which was fed a diet containing 0.45% bezafibrate for 5 days; and (iii) the pravastatin group, which was fed a diet containing 0.1% pravastatin for 5 days. Serum, hepatic and biliary lipids were measured by colorimetric assays and hepatic mRNA related to lipid metabolism was studied by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS In the bezafibrate group biliary phospholipid secretion was increased although cholesterol secretion was not increased. In the pravastatin group, biliary cholesterol and phospholipid secretions were significantly increased. The biliary cholesterol/phospholipid ratio was decreased in the bezafibrate group, but the ratio did not change in the pravastatin group. Hepatic Mdr2, Abcg5 and Abcg8 mRNA expression was remarkably increased in the pravastatin group in comparison with the control group (184%, 264% and 247% of control value, respectively). In the bezafibrate group the hepatic gene expression of Mdr2 was increased (157% of control value), but there were no significant changes in hepatic Abcg5 and Abcg8 mRNA expression compared with the control group. CONCLUSIONS Compared with Mdr2, Abcg5 and Abcg8 seem to be more essential transporters for biliary secretion of cholesterol. Pravastatin upregulated Abcg5/Abcg8 while bezafibrate did not, which appears to explain the different effects of these compounds on biliary lipid secretion.
Collapse
Affiliation(s)
- Toshinori Kamisako
- Department of Hygiene, Kinki University School of Medicine, 377-2 Ohnohigashi, Osakasayama 589-8511, Japan.
| | | |
Collapse
|
23
|
Liu MJ, Wang Z, Ju Y, Zhou JB, Wang Y, Wong RNS. The Mitotic-Arresting and Apoptosis-Inducing Effects of Diosgenyl Saponins on Human Leukemia Cell Lines. Biol Pharm Bull 2004; 27:1059-65. [PMID: 15256740 DOI: 10.1248/bpb.27.1059] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diosgenyl saponins are the most abundant steroid saponins, and exert a large variety of biological functions. In a previous report, we showed that dioscin was able to induce cytotoxicity and apoptosis in human myeloblast leukemia HL-60 cells. This study further investigated the action mechanisms underlying this effect. The activation of caspase-9 and -3, but not caspase-8, together with the down-regulation of anti-apoptotic Bcl-2 protein, demonstrated that the apoptotic signaling triggered by dioscin was mediated through the intrinsic mitochondria-dependent pathway. We also investigated its anti-proliferative effect on human chronic myelogenous leukemia K562 cells. Flow cytometry analysis showed that dioscin treatment induced the accumulation of cells in the G(2)/M phase. Cytomorphology with DAPI and Wright-Giemsa staining demonstrated the enlargement of cell volume and multinucleation in the treated cells. Subsequent apoptosis was delineated with phosphatidylserine externalization and DNA hypodiploidy. Trillin was one of the hydrolysates of dioscin. We demonstrated that it could induce multinucleation in HL-60, K562 and human promyelocytic leukemia NB(4) cells, suggesting its extensive mitotic-arresting effects. As the diosgenyl sapogenin, diosgenin was also shown to be able to induce multinucleation and apoptosis in K562 cells in a similar manner to dioscin. These findings suggest that diosgenyl saponins have the properties to induce mitotic arrest and apoptosis, suggesting that they may be a new kind of antimitotic agent.
Collapse
Affiliation(s)
- Ming-Jie Liu
- Department of Biological Sciences and Biotechnology, Tsinghua University
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Kosters A, Frijters RJJM, Schaap FG, Vink E, Plösch T, Ottenhoff R, Jirsa M, De Cuyper IM, Kuipers F, Groen AK. Relation between hepatic expression of ATP-binding cassette transporters G5 and G8 and biliary cholesterol secretion in mice. J Hepatol 2003; 38:710-6. [PMID: 12763362 DOI: 10.1016/s0168-8278(03)00093-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND/AIM Mutations in genes encoding the ATP-binding cassette (ABC)-transporters ABCG5 and ABCG8 underlie sitosterolemia, which is characterized by elevated plasma levels of phytosterols due to increased intestinal absorption and impaired biliary secretion of sterols. The aim of our study was to correlate the expression levels of Abcg5 and Abcg8 to biliary cholesterol secretion in various (genetically-modified) mouse models. METHODS Bile was collected from genetically-modified mice fed a chow diet, or from mice fed either a chow diet, or chow supplemented with either 1% diosgenin, 0.1% simvastatin, or a synthetic liver X receptor agonist, for determination of biliary lipids. Livers and small intestines were harvested and expression levels of Abcg5, Abcg8 and Abcb4 were determined by real-time polymerase chain reaction. RESULTS Intestinal expression of Abcg5 and Abcg8 did not show much variation between the various models. In contrast, a linear correlation between hepatic expression levels of Abcg5 and Abcg8 and biliary cholesterol secretion rates was found. This relation was independent of Abcb4-mediated phospholipid secretion. However, in diosgenin-fed mice showing cholesterol hypersecretion, hepatic Abcg5 and Abcg8 expression levels remained unchanged. CONCLUSIONS Our results strongly support a role for Abcg5 and Abcg8 in regulation of biliary cholesterol secretion, but also indicate the existence of a largely independent route of cholesterol secretion.
Collapse
Affiliation(s)
- Astrid Kosters
- Department of Experimental Hepatology, AMC Liver Center, Academic Medical Center, Meibergdreef 69-71, Amsterdam 1105 BK, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nibbering CP, Frederik PM, van Berge-Henegouwen GP, van Veen HA, van Marle J, van Erpecum KJ. Different interactions of egg-yolk phosphatidylcholine and sphingomyelin with detergent bile salts. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1583:213-20. [PMID: 12117565 DOI: 10.1016/s1388-1981(02)00215-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To examine physical-chemical aspects of bile salt-phospholipid interactions that could contribute to preferential phosphatidylcholine (PC) secretion into bile, we have compared transitions between vesicles and micelles in model systems containing taurocholate (TC) and either egg-yolk PC (EYPC), egg-yolk sphingomyelin (EYSM), buttermilk SM (BMSM) or dipalmitoyl PC (DPPC). Phase transitions from micelles to vesicles were observed at 4-fold dilution of serially diluted EYPC/TC systems, but not earlier than at 16-fold dilution of SM/TC or DPPC/TC systems, indicating lower concentrations of the detergent required for micellization in the case of SM or DPPC. Cryo-transmission electron microscopy of phase transitions initiated by addition of TC to phospholipid vesicles revealed extremely long SM-containing intermediate structures, but shorter EYPC-containing intermediate structures. Again, larger amounts of bile salt were required to induce phase transitions in the case of EYPC compared to SM. Sizes of TC-phospholipid micelles increased progressively upon increasing phospholipid contents in the rank order: DPPC-TC<EYSM-TC<BMSM-TC<EYPC-TC, consistent with higher micellization concentrations in the case of EYPC. Micelles were also separated from vesicular phases in two-phase model systems composed with TC, both EYPC and EYSM and 0, 10, 20 or 30 mol% cholesterol, by ultracentrifugation and ultrafiltration of the supernatant. At increasing cholesterol contents, EYPC preferentially distributed into the micellar phase. In contrast, no preferential micellar EYPC distribution occurred in the absence of the sterol. These results indicate different structural arrangements of EYPC-TC micelles compared to SM-TC micelles and lower detergent concentrations required for micellization in the case of SM-containing vesicles.
Collapse
Affiliation(s)
- Catharina P Nibbering
- Department of Gastroenterology and Surgery, Gastrointestinal Research Unit, University Medical Center, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|