1
|
Shi X, Hannon NM, Bloom AJ. Carboxylation and Oxygenation Kinetics and Large Subunit (rbcL) DNA Sequences for Rubisco From Two Ecotypes of Plantago lanceolata L. That Are Native to Sites Differing in Atmospheric CO 2 Levels. PLANT, CELL & ENVIRONMENT 2025; 48:3159-3170. [PMID: 39718138 PMCID: PMC11963478 DOI: 10.1111/pce.15346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024]
Abstract
Rubisco, the most prevalent protein on Earth, catalysers both a reaction that initiates C3 carbon fixation, and a reaction that initiates photorespiration, which stimulates protein synthesis. Regulation of the balance between these reactions under atmospheric CO2 fluctuations remains poorly understood. We have hypothesised that vascular plants maintain organic carbon-to-nitrogen homoeostasis by adjusting the relative activities of magnesium and manganese in chloroplasts to balance carbon fixation and nitrate assimilation rates. The following examined the influence of magnesium and manganese on carboxylation and oxygenation for rubisco purified from two ecotypes of Plantago lanceolata L.: one adapted to the elevated CO2 atmospheres that occur near a natural CO2 spring and the other adapted to more typical CO2 atmospheres that occur nearby. The plastid DNA coding for the large unit of rubisco was similar in both ecotypes. The kinetics of rubiscos from the two ecotypes differed more when associated with manganese than magnesium. Specificity for CO2 over O2 (Sc/o) for rubisco from both ecotypes was higher when the enzymes were bound to magnesium than manganese. Differences in the responses of rubisco from P. lanceolata to the metals may account for the adaptation of this species to different CO2 environments.
Collapse
Affiliation(s)
- Xiaoxiao Shi
- Department of Plant SciencesUniversity of California at DavisDavisCaliforniaUSA
| | - Nathan M. Hannon
- Department of Plant SciencesUniversity of California at DavisDavisCaliforniaUSA
| | - Arnold J. Bloom
- Department of Plant SciencesUniversity of California at DavisDavisCaliforniaUSA
| |
Collapse
|
2
|
López ME, Roquis D, Becker C, Denoyes B, Bucher E. DNA methylation dynamics during stress response in woodland strawberry ( Fragaria vesca). HORTICULTURE RESEARCH 2022; 9:uhac174. [PMID: 36204205 PMCID: PMC9533225 DOI: 10.1093/hr/uhac174] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/27/2022] [Indexed: 05/29/2023]
Abstract
Environmental stresses can result in a wide range of physiological and molecular responses in plants. These responses can also impact epigenetic information in genomes, especially at the level of DNA methylation (5-methylcytosine). DNA methylation is the hallmark heritable epigenetic modification and plays a key role in silencing transposable elements (TEs). Although DNA methylation is an essential epigenetic mechanism, fundamental aspects of its contribution to stress responses and adaptation remain obscure. We investigated epigenome dynamics of wild strawberry (Fragaria vesca) in response to variable ecologically relevant environmental conditions at the DNA methylation level. F. vesca methylome responded with great plasticity to ecologically relevant abiotic and hormonal stresses. Thermal stress resulted in substantial genome-wide loss of DNA methylation. Notably, all tested stress conditions resulted in marked hot spots of differential DNA methylation near centromeric or pericentromeric regions, particularly in the non-symmetrical DNA methylation context. Additionally, we identified differentially methylated regions (DMRs) within promoter regions of transcription factor (TF) superfamilies involved in plant stress-response and assessed the effects of these changes on gene expression. These findings improve our understanding on stress-response at the epigenome level by highlighting the correlation between DNA methylation, TEs and gene expression regulation in plants subjected to a broad range of environmental stresses.
Collapse
Affiliation(s)
- María-Estefanía López
- Crop Genome Dynamics Group, Agroscope, 1260 Nyon, Switzerland
- Department of Botany and Plant Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - David Roquis
- Crop Genome Dynamics Group, Agroscope, 1260 Nyon, Switzerland
| | - Claude Becker
- LMU BioCenter, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Martinsried, Germany
| | - Béatrice Denoyes
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
| | | |
Collapse
|
3
|
Ali S, Zhang T, Lambing C, Wang W, Zhang P, Xie L, Wang J, Khan N, Zhang Q. Loss of chromatin remodeler DDM1 causes segregation distortion in Arabidopsis thaliana. PLANTA 2021; 254:107. [PMID: 34694462 DOI: 10.1007/s00425-021-03763-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
In ddm1 mutants, the DNA methylation is primarily affected in the heterochromatic region of the chromosomes, which is associated with the segregation distortion of SNPs in the F2 progenies. Segregation distortion (SD) is common in most genetic mapping experiments and a valuable resource to determine how gene loci induce deviation. Meiotic DNA crossing over and SD are under the control of several types of epigenetic modifications. DNA methylation is an important regulatory epigenetic modification that is inherited across generations. In the present study, we investigated the relationship between SD and DNA methylation. The ecotypes Col-0/C24 and chromatin remodeler mutants ddm1-10/Col and ddm1-15/C24 were reciprocally crossed to obtain F2 generations. A total of 300 plants for each reciprocally crossed plant in the F2 generations were subjected to next-generation sequencing to detect the single-nucleotide polymorphisms (SNPs) as DNA markers. All SNPs were analyzed using the Chi-square test method to determine their segregation ratio in F2 generations. Through the segregation ratio, whole-genome SNPs were classified into 16 classes. In class 10, the SNPs in the reciprocal crosses of wild type showed the expected Mendelian ratio of 1:2:1, while those in the reciprocal crosses of ddm1 mutants showed distortion. In contrast, all SNPs in class 16 displayed a normal 1:2:1 ratio, and class 1 showed SD, regardless of wild type or mutants, as assessed using CAPS (cleaved amplified polymorphic sequences) marker analysis to confirm the next-generation sequencing. In ddm1 mutants, the DNA methylation is highly reduced throughout the whole genome and more significantly in the heterochromatic regions of chromosomes. Our results showed that the ddm1 mutants exhibit low levels of DNA methylation, which facilitates the SD of SNPs primarily located in the heterochromatic region of chromosomes by reducing the heterozygous ratio. The present study will provide a strong base for future research focusing on the impact of DNA methylation on trait segregation and plant evolution.
Collapse
Affiliation(s)
- Shahid Ali
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Tianxu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | | | - Wanpeng Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Peng Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Linan Xie
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jiang Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Qingzhu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
4
|
Catoni M, Zabet NR. Analysis of Plant DNA Methylation Profiles Using R. Methods Mol Biol 2021; 2250:219-238. [PMID: 33900608 DOI: 10.1007/978-1-0716-1134-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
DNA methylation is a transgenerational stable epigenetic modification able to regulate gene expression and genome stability. The analysis of DNA methylation by genome-wide bisulfite sequencing become the main genomic approach to study epigenetics in many organisms; leading to standardization of the alignment and methylation call procedures. However, subsequent steps of the computational analysis should be tailored to the biological questions and the organisms used. Since most bioinformatics tools designed for epigenetic studies are built using mammalian models, they are potentially unsuitable for organisms with substantially different epigenetic regulation, such as plants. Therefore, in this chapter we propose a computational workflow for the analysis, visualization, and interpretation of data obtained from alignment of whole genome bisulfite sequencing of plant samples. Using almost exclusively the R working environment we will examine in depth how to tackle some plant-related issues during epigenetic analysis.
Collapse
Affiliation(s)
- Marco Catoni
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Nicolae Radu Zabet
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK.
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
| |
Collapse
|
5
|
Zhou R, Sanz-Jimenez P, Zhu XT, Feng JW, Shao L, Song JM, Chen LL. Analysis of Rice Transcriptome Reveals the LncRNA/CircRNA Regulation in Tissue Development. RICE (NEW YORK, N.Y.) 2021; 14:14. [PMID: 33507446 PMCID: PMC7843763 DOI: 10.1186/s12284-021-00455-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/08/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can play important roles in many biological processes. However, no study of the influence of epigenetics factors or the 3D structure of the genome in their regulation is available in plants. RESULTS In the current analysis, we identified a total of 15,122 lncRNAs and 7902 circRNAs in three tissues (root, leaf and panicle) in the rice varieties Minghui 63, Zhenshan 97 and their hybrid Shanyou 63. More than 73% of these lncRNAs and parental genes of circRNAs (P-circRNAs) are shared among Oryza sativa with high expression specificity. We found that, compared with protein-coding genes, the loci of these lncRNAs have higher methylation levels and the loci of circRNAs tend to locate in the middle of genes with high CG and CHG methylation. Meanwhile, the activated lncRNAs and P-circRNAs are mainly transcribed from demethylated regions containing CHH methylation. In addition, ~ 53% lncRNAs and ~ 15% P-circRNAs are associated with transposable elements (TEs), especially miniature inverted-repeat transposable elements and RC/Helitron. We didn't find correlation between the expression of lncRNAs and histone modifications; however, we found that the binding strength and interaction of RNAPII significantly affects lncRNA expression. Interestingly, P-circRNAs tend to combine active histone modifications. Finally, we found that lncRNAs and circRNAs acting as competing-endogenous RNAs have the potential to regulate the expression of genes, such as osa-156 l-5p (related to yield) and osa-miR444a-3p (related to N/P metabolism) confirmed through dual-luciferase reporter assays, with important roles in the growth and development of rice, laying a foundation for future rice breeding analyses. CONCLUSIONS In conclusion, our study comprehensively analyzed the important regulatory roles of lncRNA/circRNA in the tissue development of Indica rice from multiple perspectives.
Collapse
Affiliation(s)
- Run Zhou
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Pablo Sanz-Jimenez
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xi-Tong Zhu
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jia-Wu Feng
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lin Shao
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jia-Ming Song
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- College of Life Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China
| | - Ling-Ling Chen
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- College of Life Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|
6
|
Saban JM, Watson-Lazowski A, Chapman MA, Taylor G. The methylome is altered for plants in a high CO 2 world: Insights into the response of a wild plant population to multigenerational exposure to elevated atmospheric [CO 2 ]. GLOBAL CHANGE BIOLOGY 2020; 26:6474-6492. [PMID: 32902071 DOI: 10.1111/gcb.15249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Unravelling plant responses to rising atmospheric CO2 concentration ([CO2 ]) has largely focussed on plastic functional attributes to single generation [CO2 ] exposure. Quantifying the consequences of long-term, decadal multigenerational exposure to elevated [CO2 ] and the genetic changes that may underpin evolutionary mechanisms with [CO2 ] as a driver remain largely unexplored. Here, we investigated both plastic and evolutionary plant responses to elevated [CO2 ] by applying multi-omic technologies using populations of Plantago lanceolata L., grown in naturally high [CO2 ] for many generations in a CO2 spring. Seed from populations at the CO2 spring and an adjacent control site (ambient [CO2 ]) were grown in a common environment for one generation, and then offspring were grown in ambient or elevated [CO2 ] growth chambers. Low overall genetic differentiation between the CO2 spring and control site populations was found, with evidence of weak selection in exons. We identified evolutionary divergence in the DNA methylation profiles of populations derived from the spring relative to the control population, providing the first evidence that plant methylomes may respond to elevated [CO2 ] over multiple generations. In contrast, growth at elevated [CO2 ] for a single generation induced limited methylome remodelling (an order of magnitude fewer differential methylation events than observed between populations), although some of this appeared to be stably transgenerationally inherited. In all, 59 regions of the genome were identified where transcripts exhibiting differential expression (associated with single generation or long-term natural exposure to elevated [CO2 ]) co-located with sites of differential methylation or with single nucleotide polymorphisms exhibiting significant inter-population divergence. This included genes in pathways known to respond to elevated [CO2 ], such as nitrogen use efficiency and stomatal patterning. This study provides the first indication that DNA methylation may contribute to plant adaptation to future atmospheric [CO2 ] and identifies several areas of the genome that are targets for future study.
Collapse
Affiliation(s)
- Jasmine M Saban
- School of Biological Sciences, University of Southampton, Southampton, UK
| | | | - Mark A Chapman
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Gail Taylor
- School of Biological Sciences, University of Southampton, Southampton, UK
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| |
Collapse
|
7
|
Sugimoto H, Hirano M, Tanaka H, Tanaka T, Kitagawa-Yogo R, Muramoto N, Mitsukawa N. Plastid-targeted forms of restriction endonucleases enhance the plastid genome rearrangement rate and trigger the reorganization of its genomic architecture. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1042-1057. [PMID: 31925982 DOI: 10.1111/tpj.14687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/25/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Plant cells have acquired chloroplasts (plastids) with a unique genome (ptDNA), which developed during the evolution of endosymbiosis. The gene content and genome structure of ptDNAs in land plants are considerably stable, although those of algal ptDNAs are highly varied. Plant cells seem, therefore, to be intolerant of any structural or organizational changes in the ptDNA. Genome rearrangement functions as a driver of genomic evolutionary divergence. Here, we aimed to create various types of rearrangements in the ptDNA of Arabidopsis genomes using plastid-targeted forms of restriction endonucleases (pREs). Arabidopsis plants expressing each of the three specific pREs, i.e., pTaqI, pHinP1I, and pMseI, were generated; they showed the leaf variegation phenotypes associated with impaired chloroplast development. We confirmed that these pREs caused double-stranded breaks (DSB) at their recognition sites in ptDNAs. Genome-wide analysis of ptDNAs revealed that the transgenic lines exhibited a large number of rearrangements such as inversions and deletions/duplications, which were dominantly repaired by microhomology-mediated recombination and microhomology-mediated end-joining, and less by non-homologous end-joining. Notably, pHinP1I, which recognized a small number of sites in ptDNA, induced drastic structural changes, including regional copy number variations throughout ptDNAs. In contrast, the transient expression of either pTaqI or pMseI, whose recognition site numbers were relatively larger, resulted in small-scale changes at the whole genome level. These results indicated that DSB frequencies and their distribution are major determinants in shaping ptDNAs.
Collapse
Affiliation(s)
- Hiroki Sugimoto
- Genome Engineering Program, Strategic Research Division, Toyota Central R&D Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| | - Minoru Hirano
- Bio System Engineering Program, Strategic Research Division, Toyota Central R&D Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| | - Hidenori Tanaka
- Genome Engineering Program, Strategic Research Division, Toyota Central R&D Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| | - Tomoko Tanaka
- Genome Engineering Program, Strategic Research Division, Toyota Central R&D Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| | - Ritsuko Kitagawa-Yogo
- Genome Engineering Program, Strategic Research Division, Toyota Central R&D Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| | - Nobuhiko Muramoto
- Genome Engineering Program, Strategic Research Division, Toyota Central R&D Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| | - Norihiro Mitsukawa
- Genome Engineering Program, Strategic Research Division, Toyota Central R&D Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| |
Collapse
|
8
|
Abstract
While the model bacteria Escherichia coli and Bacillus subtilis harbor single chromosomes, which is known as monoploidy, some freshwater cyanobacteria contain multiple chromosome copies per cell throughout their cell cycle, which is known as polyploidy. In the model cyanobacteria Synechococcus elongatus PCC 7942 and Synechocystis sp. PCC 6803, chromosome copy number (ploidy) is regulated in response to growth phase and environmental factors. In S. elongatus 7942, chromosome replication is asynchronous both among cells and chromosomes. Comparative analysis of S. elongatus 7942 and S. sp. 6803 revealed a variety of DNA replication mechanisms. In this review, the current knowledge of ploidy and DNA replication mechanisms in cyanobacteria is summarized together with information on the features common with plant chloroplasts. It is worth noting that the occurrence of polyploidy and its regulation are correlated with certain cyanobacterial lifestyles and are shared between some cyanobacteria and chloroplasts. ABBREVIATIONS NGS: next-generation sequencing; Repli-seq: replication sequencing; BrdU: 5-bromo-2'-deoxyuridine; TK: thymidine kinase; GCSI: GC skew index; PET: photosynthetic electron transport; RET: respiration electron transport; Cyt b6f complex: cytochrome b6f complex; PQ: plastoquinone; PC: plastocyanin.
Collapse
Affiliation(s)
- Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| |
Collapse
|
9
|
Gardiner LJ. Understanding DNA Methylation Patterns in Wheat. Methods Mol Biol 2020; 2093:33-46. [PMID: 32088887 DOI: 10.1007/978-1-0716-0179-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The bread wheat genome is large (17 Gb), allohexaploid, and highly repetitive (80-90% of the genome), which makes genomic and epigenomic analyses expensive to conduct and a challenge to analyze. Here we provide an overview of recent bioinformatic and experimental methods that have been developed to understand DNA methylation patterns in the complex polyploid genome of wheat.
Collapse
|
10
|
Matyášek R, Krumpolcová A, Lunerová J, Mikulášková E, Rosselló JA, Kovařík A. Unique Epigenetic Features of Ribosomal RNA Genes (rDNA) in Early Diverging Plants (Bryophytes). FRONTIERS IN PLANT SCIENCE 2019; 10:1066. [PMID: 31543890 PMCID: PMC6739443 DOI: 10.3389/fpls.2019.01066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/06/2019] [Indexed: 05/03/2023]
Abstract
Introduction: In plants, the multicopy genes encoding ribosomal RNA (rDNA) typically exhibit heterochromatic features and high level of DNA methylation. Here, we explored rDNA methylation in early diverging land plants from Bryophyta (15 species, 14 families) and Marchantiophyta (4 species, 4 families). DNA methylation was investigated by methylation-sensitive Southern blot hybridization in all species. We also carried out whole genomic bisulfite sequencing in Polytrichum formosum (Polytrichaceae) and Dicranum scoparium (Dicranaceae) and used available model plant methyloms (Physcomitrella patents and Marchantia polymorpha) to determine rDNA unit-wide methylation patterns. Chromatin structure was analyzed using fluorescence in situ hybridization (FISH) and immunoprecipitation (CHIP) assays. Results: In contrast to seed plants, bryophyte rDNAs were efficiently digested with methylation-sensitive enzymes indicating no or low levels of CG and CHG methylation in these loci. The rDNA methylom analyses revealed variation between species ranging from negligible (<3%, P. formosum, P. patens) to moderate (7 and 17% in M. polymorpha and D. scoparium, respectively) methylation levels. There were no differences between coding and noncoding parts of rDNA units and between gametophyte and sporophyte tissues. However, major satellite repeat and transposable elements were heavily methylated in P. formosum and D. scoparium. In P. formosum rDNA, the euchromatic H3K4m3 and heterochromatic H3K9m2 histone marks were nearly balanced contrasting the angiosperms data where H3K9m2 typically dominates rDNA chromatin. In moss interphase nuclei, rDNA was localized at the nucleolar periphery and its condensation level was high. Conclusions: Unlike seed plants, the rRNA genes seem to escape global methylation machinery in bryophytes. Distinct epigenetic features may be related to rDNA expression and the physiology of these early diverging plants that exist in haploid state for most of their life cycles.
Collapse
Affiliation(s)
- Roman Matyášek
- Department of Molecular Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Alice Krumpolcová
- Department of Molecular Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Jana Lunerová
- Department of Molecular Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Eva Mikulášková
- Department of Botany and Zoology, Masaryk University, Brno, Czechia
| | - Josep A. Rosselló
- Jardín Botánico, ICBiBE-Unidad Asociada CSIC, Universidad de Valencia, Valencia, Spain
| | - Aleš Kovařík
- Department of Molecular Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
11
|
Varga S, Soulsbury CD. Arbuscular mycorrhizal fungi change host plant DNA methylation systemically. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:278-283. [PMID: 30253017 DOI: 10.1111/plb.12917] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
DNA methylation is an important epigenetic mechanism regulating gene expression in plants. DNA methylation has been shown to vary among species and also among plant tissues. However, no study has evaluated whether arbuscular mycorrhizal (AM) fungi affect DNA methylation levels in a tissue-specific manner. We investigated whether symbiosis with AM fungi affects DNA methylation in the host, focusing on different plant tissues (roots versus leaves) and across time. We carried out a 6-month pot experiment using Geranium robertianum in symbiosis with the AM fungus Funneliformis mosseae. Our results show that the pattern of total DNA methylation differed between leaves and roots and was related to when plants were harvested, confirming that DNA methylation is a process that occurs dynamically throughout an organism's lifetime. More importantly, the presence of AM fungus in roots of our experimental plants had a positive effect on total DNA methylation in both tissues. This study shows that colonisation by AM fungi can affect DNA methylation levels in their hosts and that plant DNA methylation varies in an age- and tissue-specific manner.
Collapse
Affiliation(s)
- S Varga
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, UK
| | - C D Soulsbury
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, UK
| |
Collapse
|
12
|
Gardiner LJ, Joynson R, Omony J, Rusholme-Pilcher R, Olohan L, Lang D, Bai C, Hawkesford M, Salt D, Spannagl M, Mayer KFX, Kenny J, Bevan M, Hall N, Hall A. Hidden variation in polyploid wheat drives local adaptation. Genome Res 2018; 28:1319-1332. [PMID: 30093548 PMCID: PMC6120627 DOI: 10.1101/gr.233551.117] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/16/2018] [Indexed: 12/20/2022]
Abstract
Wheat has been domesticated into a large number of agricultural environments and has the ability to adapt to diverse environments. To understand this process, we survey genotype, repeat content, and DNA methylation across a bread wheat landrace collection representing global genetic diversity. We identify independent variation in methylation, genotype, and transposon copy number. We show that these, so far unexploited, sources of variation have had a significant impact on the wheat genome and that ancestral methylation states become preferentially "hard coded" as single nucleotide polymorphisms (SNPs) via 5-methylcytosine deamination. These mechanisms also drive local adaption, impacting important traits such as heading date and salt tolerance. Methylation and transposon diversity could therefore be used alongside SNP-based markers for breeding.
Collapse
Affiliation(s)
| | - Ryan Joynson
- Earlham Institute, Norwich, NR4 7UZ, United Kingdom
| | - Jimmy Omony
- HelmholtzZentrum München, German Research Center for Environmental Health, Munich, 85764, Germany
| | | | - Lisa Olohan
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - Daniel Lang
- HelmholtzZentrum München, German Research Center for Environmental Health, Munich, 85764, Germany
| | - Caihong Bai
- Rothamsted Research, Harpenden, AL5 2JQ, United Kingdom
| | | | - David Salt
- University of Nottingham, Sutton Bonington Campus, Sutton Bonington, LE12 5RD, United Kingdom
| | - Manuel Spannagl
- HelmholtzZentrum München, German Research Center for Environmental Health, Munich, 85764, Germany
| | - Klaus F X Mayer
- HelmholtzZentrum München, German Research Center for Environmental Health, Munich, 85764, Germany.,Wissenschaftszentrum Weihenstephan (WZW), Technical University Munich, Freising, 85354, Germany
| | - John Kenny
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | | | - Neil Hall
- Earlham Institute, Norwich, NR4 7UZ, United Kingdom.,School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Anthony Hall
- Earlham Institute, Norwich, NR4 7UZ, United Kingdom.,School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| |
Collapse
|
13
|
Olohan L, Gardiner LJ, Lucaci A, Steuernagel B, Wulff B, Kenny J, Hall N, Hall A. A modified sequence capture approach allowing standard and methylation analyses of the same enriched genomic DNA sample. BMC Genomics 2018; 19:250. [PMID: 29653520 PMCID: PMC5899405 DOI: 10.1186/s12864-018-4640-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 04/03/2018] [Indexed: 01/01/2023] Open
Abstract
Background Bread wheat has a large complex genome that makes whole genome resequencing costly. Therefore, genome complexity reduction techniques such as sequence capture make re-sequencing cost effective. With a high-quality draft wheat genome now available it is possible to design capture probe sets and to use them to accurately genotype and anchor SNPs to the genome. Furthermore, in addition to genetic variation, epigenetic variation provides a source of natural variation contributing to changes in gene expression and phenotype that can be profiled at the base pair level using sequence capture coupled with bisulphite treatment. Here, we present a new 12 Mbp wheat capture probe set, that allows both the profiling of genotype and methylation from the same DNA sample. Furthermore, we present a method, based on Agilent SureSelect Methyl-Seq, that will use a single capture assay as a starting point to allow both DNA sequencing and methyl-seq. Results Our method uses a single capture assay that is sequentially split and used for both DNA sequencing and methyl-seq. The resultant genotype and epi-type data is highly comparable in terms of coverage and SNP/methylation site identification to that generated from separate captures for DNA sequencing and methyl-seq. Furthermore, by defining SNP frequencies in a diverse landrace from the Watkins collection we highlight the importance of having genotype data to prevent false positive methylation calls. Finally, we present the design of a new 12 Mbp wheat capture and demonstrate its successful application to re-sequence wheat. Conclusions We present a cost-effective method for performing both DNA sequencing and methyl-seq from a single capture reaction thus reducing reagent costs, sample preparation time and DNA requirements for these complementary analyses. Electronic supplementary material The online version of this article (10.1186/s12864-018-4640-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lisa Olohan
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK
| | | | - Anita Lucaci
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK
| | | | - Brande Wulff
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - John Kenny
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK
| | - Neil Hall
- Earlham Institute, Norwich research Park, Norwich, UK.,University of East Anglia, Norwich, UK
| | - Anthony Hall
- Earlham Institute, Norwich research Park, Norwich, UK. .,University of East Anglia, Norwich, UK.
| |
Collapse
|
14
|
Al Harrasi I, Al-Yahyai R, Yaish MW. Detection of Differential DNA Methylation Under Stress Conditions Using Bisulfite Sequence Analysis. Methods Mol Biol 2018; 1631:121-137. [PMID: 28735394 DOI: 10.1007/978-1-4939-7136-7_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
DNA methylation is the most important epigenetic change affecting gene expression in plants grown under normal as well as under stress conditions. Therefore, researchers study differential DNA methylation under distinct environmental conditions and their relationship with transcriptome abundance. Up to date, more than 25 methods and techniques are available to detect DNA methylation based on different principles. Bisulfite sequencing method is considered as a gold standard since it is able to distinguish 5-methylcytosine from cytosine using the bisulfite treatment. Therefore, it is useful for qualitative and semiquantitative measurement of DNA methylation. However, the reliability of data obtaining from this technique is mainly depending on the efficiency of bisulfite conversion and number of sequencing clones representing the target-converted sequence. Therefore, it is labor intensive and time-consuming. Revolution of next generation DNA sequencing (NGS) has allowed researches to combine conventional bisulfite sequencing methods with high-throughput Illumina sequencing in a technique called whole genome bisulfite sequencing (WGBS). This technique allows a single nucleotide resolution of 5-methylcytosine on a genome scale. WGBS technique workflow involves DNA fragmentation, processing through end blunting, terminal A(s) addition at 3' end and adaptor ligation, bisulfite treatment, PCR amplification, sequencing libraries and assembling, and finally alignment with the reference genome and data analysis. Despite the fact that WGBS is more reliable than the conventional clone-based bisulfite sequencing, it is costly, requires large amount of DNA and its output data is not easily handled.
Collapse
Affiliation(s)
- Ibtisam Al Harrasi
- Department of Biology, College of Science, Sultan Qaboos University, PO box 36, Muscat, Oman
| | - Rashid Al-Yahyai
- Department of Crop Science, College of Agriculture and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mahmoud W Yaish
- Department of Biology, College of Science, Sultan Qaboos University, PO box 36, Muscat, Oman.
| |
Collapse
|
15
|
Al-Harrasi I, Al-Yahyai R, Yaish MW. Differential DNA methylation and transcription profiles in date palm roots exposed to salinity. PLoS One 2018; 13:e0191492. [PMID: 29352281 PMCID: PMC5774813 DOI: 10.1371/journal.pone.0191492] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/05/2018] [Indexed: 12/31/2022] Open
Abstract
As a salt-adaptive plant, the date palm (Phoenix dactylifera L.) requires a suitable mechanism to adapt to the stress of saline soils. There is growing evidence that DNA methylation plays an important role in regulating gene expression in response to abiotic stresses, including salinity. Thus, the present study sought to examine the differential methylation status that occurs in the date palm genome when plants are exposed to salinity, and to identify salinity responsive genes that are regulated by DNA methylation. To achieve these, whole-genome bisulfite sequencing (WGBS) was employed and mRNA was sequenced from salinity-treated and untreated roots. The WGBS analysis included 324,987,795 and 317,056,091 total reads of the control and the salinity-treated samples, respectively. The analysis covered about 81% of the total genomic DNA with about 40% of mapping efficiency of the sequenced reads and an average read depth of 17-fold coverage per DNA strand, and with a bisulfite conversion rate of around 99%. The level of methylation within the differentially methylated regions (DMRs) was significantly (p < 0.05, FDR ≤ 0.05) increased in response to salinity specifically at the mCHG and mCHH sequence contexts. Consistently, the mass spectrometry and the enzyme-linked immunosorbent assay (ELISA) showed that there was a significant (p < 0.05) increase in the global DNA methylation in response to salinity. mRNA sequencing revealed the presence of 6,405 differentially regulated genes with a significant value (p < 0.001, FDR ≤ 0.05) in response to salinity. Integration of high-resolution methylome and transcriptome analyses revealed a negative correlation between mCG methylation located within the promoters and the gene expression, while a positive correlation was noticed between mCHG/mCHH methylation rations and gene expression specifically when plants grew under control conditions. Therefore, the methylome and transcriptome relationships vary based on the methylated sequence context, the methylated region within the gene, the protein-coding ability of the gene, and the salinity treatment. These results provide insights into interplay among DNA methylation and gene expression, and highlight the effect of salinity on the nature of this relationship, which may involve other genetic and epigenetic players under salt stress conditions. The results obtained from this project provide the first draft map of the differential methylome and transcriptome of date palm when exposed to an abiotic stress.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- DNA Methylation
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Epigenesis, Genetic
- Gene Expression Profiling
- Genes, Plant
- Molecular Sequence Annotation
- Phoeniceae/genetics
- Phoeniceae/growth & development
- Phoeniceae/metabolism
- Photosynthesis
- Plant Roots/genetics
- Plant Roots/growth & development
- Plant Roots/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Salinity
- Whole Genome Sequencing
Collapse
Affiliation(s)
- Ibtisam Al-Harrasi
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Rashid Al-Yahyai
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mahmoud W. Yaish
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
- * E-mail:
| |
Collapse
|
16
|
Song J, Zynda G, Beck S, Springer NM, Vaughn MW. Bisulfite Sequence Analyses Using CyVerse Discovery Environment: From Mapping to DMRs. ACTA ACUST UNITED AC 2016; 1:510-529. [DOI: 10.1002/cppb.20034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jawon Song
- Texas Advanced Computing Center, University of Texas at Austin Austin Texas
| | - Greg Zynda
- Texas Advanced Computing Center, University of Texas at Austin Austin Texas
| | - Samuel Beck
- Department of Molecular Biosciences, University of Texas at Austin Austin Texas
| | - Nathan M. Springer
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota Saint Paul Minnesota
| | - Matthew W. Vaughn
- Texas Advanced Computing Center, University of Texas at Austin Austin Texas
| |
Collapse
|
17
|
Matyášek R, Dobešová E, Húska D, Ježková I, Soltis PS, Soltis DE, Kovařík A. Interpopulation hybridization generates meiotically stable rDNA epigenetic variants in allotetraploid Tragopogon mirus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:362-377. [PMID: 26711705 DOI: 10.1111/tpj.13110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
Uniparental silencing of 35S rRNA genes (rDNA), known as nucleolar dominance (ND), is common in interspecific hybrids. Allotetraploid Tragopogon mirus composed of Tragopogon dubius (d) and Tragopogon porrifolius (p) genomes shows highly variable ND. To examine the molecular basis of such variation, we studied the genetic and epigenetic features of rDNA homeologs in several lines derived from recently and independently formed natural populations. Inbred lines derived from T. mirus with a dominant d-rDNA homeolog transmitted this expression pattern over generations, which may explain why it is prevalent among natural populations. In contrast, lines derived from the p-rDNA dominant progenitor were meiotically unstable, frequently switching to co-dominance. Interpopulation crosses between progenitors displaying reciprocal ND resulted in d-rDNA dominance, indicating immediate suppression of p-homeologs in F1 hybrids. Original p-rDNA dominance was not restored in later generations, even in those segregants that inherited the corresponding parental rDNA genotype, thus indicating the generation of additional p-rDNA and d-rDNA epigenetic variants. Despite preserved intergenic spacer (IGS) structure, they showed altered cytosine methylation and chromatin condensation patterns, and a correlation between expression, hypomethylation of RNA Pol I promoters and chromatin decondensation was apparent. Reversion of such epigenetic variants occurred rarely, resulting in co-dominance maintained in individuals with distinct genotypes. Generally, interpopulation crosses may generate epialleles that are not present in natural populations, underlying epigenetic dynamics in young allopolyploids. We hypothesize that highly expressed variants with distinct IGS features may induce heritable epigenetic reprogramming of the partner rDNA arrays, harmonizing the expression of thousands of genes in allopolyploids.
Collapse
Affiliation(s)
- Roman Matyášek
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
| | - Eva Dobešová
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
| | - Dalibor Húska
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
| | - Ivana Ježková
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
| | - Pamela S Soltis
- Florida Museum of National History, University of Florida, Gainesville, FL, 32611, USA
| | - Douglas E Soltis
- Florida Museum of National History, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Aleš Kovařík
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
| |
Collapse
|
18
|
Gardiner LJ, Quinton-Tulloch M, Olohan L, Price J, Hall N, Hall A. A genome-wide survey of DNA methylation in hexaploid wheat. Genome Biol 2015; 16:273. [PMID: 26653535 PMCID: PMC4674939 DOI: 10.1186/s13059-015-0838-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/17/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND DNA methylation is an important mechanism of epigenetic gene expression control that can be passed between generations. Here, we use sodium bisulfite treatment and targeted gene enrichment to study genome-wide methylation across the three sub-genomes of allohexaploid wheat. RESULTS While the majority of methylation is conserved across all three genomes we demonstrate that differential methylation exists between the sub-genomes in approximately equal proportions. We correlate sub-genome-specific promoter methylation with decreased expression levels and show that altered growing temperature has a small effect on methylation state, identifying a small but functionally relevant set of methylated genes. Finally, we demonstrate long-term methylation maintenance using a comparison between the D sub-genome of hexaploid wheat and its progenitor Aegilops tauschii. CONCLUSIONS We show that tri-genome methylation is highly conserved with the diploid wheat progenitor while sub-genome-specific methylation shows more variation.
Collapse
Affiliation(s)
- Laura-Jayne Gardiner
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK.
| | - Mark Quinton-Tulloch
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK.
| | - Lisa Olohan
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK.
| | - Jonathan Price
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK.
| | - Neil Hall
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK.
| | - Anthony Hall
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK.
| |
Collapse
|
19
|
How-Kit A, Daunay A, Mazaleyrat N, Busato F, Daviaud C, Teyssier E, Deleuze JF, Gallusci P, Tost J. Accurate CpG and non-CpG cytosine methylation analysis by high-throughput locus-specific pyrosequencing in plants. PLANT MOLECULAR BIOLOGY 2015; 88:471-485. [PMID: 26072424 DOI: 10.1007/s11103-015-0336-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/25/2015] [Indexed: 06/04/2023]
Abstract
Pyrosequencing permits accurate quantification of DNA methylation of specific regions where the proportions of the C/T polymorphism induced by sodium bisulfite treatment of DNA reflects the DNA methylation level. The commercially available high-throughput locus-specific pyrosequencing instruments allow for the simultaneous analysis of 96 samples, but restrict the DNA methylation analysis to CpG dinucleotide sites, which can be limiting in many biological systems. In contrast to mammals where DNA methylation occurs nearly exclusively on CpG dinucleotides, plants genomes harbor DNA methylation also in other sequence contexts including CHG and CHH motives, which cannot be evaluated by these pyrosequencing instruments due to software limitations. Here, we present a complete pipeline for accurate CpG and non-CpG cytosine methylation analysis at single base-resolution using high-throughput locus-specific pyrosequencing. The devised approach includes the design and validation of PCR amplification on bisulfite-treated DNA and pyrosequencing assays as well as the quantification of the methylation level at every cytosine from the raw peak intensities of the Pyrograms by two newly developed Visual Basic Applications. Our method presents accurate and reproducible results as exemplified by the cytosine methylation analysis of the promoter regions of two Tomato genes (NOR and CNR) encoding transcription regulators of fruit ripening during different stages of fruit development. Our results confirmed a significant and temporally coordinated loss of DNA methylation on specific cytosines during the early stages of fruit development in both promoters as previously shown by WGBS. The manuscript describes thus the first high-throughput locus-specific DNA methylation analysis in plants using pyrosequencing.
Collapse
Affiliation(s)
- Alexandre How-Kit
- Laboratory for Functional Genomics, Fondation Jean Dausset - CEPH, 75010, Paris, France,
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wu CS, Chaw SM. Evolutionary Stasis in Cycad Plastomes and the First Case of Plastome GC-Biased Gene Conversion. Genome Biol Evol 2015; 7:2000-9. [PMID: 26116919 PMCID: PMC4524490 DOI: 10.1093/gbe/evv125] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2015] [Indexed: 01/09/2023] Open
Abstract
In angiosperms, gene conversion has been known to reduce the mutational load of plastid genomes (the plastomes). Particularly, more frequent gene conversions in inverted repeat (IR) than in single copy (SC) regions result in contrasting substitution rates between these two regions. However, little has been known about the effect of gene conversion in the evolution of gymnosperm plastomes. Cycads (Cycadophyta) are the second largest gymnosperm group. Evolutionary study of their plastomes is limited to the basal cycad genus, Cycas. In this study, we addressed three questions. 1) Do the plastomes of other cycad genera evolve slowly as previously observed in the plastome of Cycas taitungensis? 2) Do substitution rates differ between their SC and IR regions? And 3) Does gene conversion occur in the cycad plastomes? If yes, is it AT-biased or GC-biased? Plastomes of eight species from other eight genera of cycads were sequenced. These plastomes are highly conserved in genome organization. Excluding ginkgo, cycad plastomes have significantly lower synonymous and nonsynonymous substitution rates than other gymnosperms, reflecting their evolutionary stasis in nucleotide mutations. In the IRs of cycad plastomes, the reduced substitution rates and GC-biased mutations are associated with a GC-biased gene conversion (gBGC) mechanism. Further investigations suggest that in cycads, gBGC is able to rectify plastome-wide mutations. Therefore, this study is the first to uncover the plastomic gBGC in seed plants. We also propose a gBGC model to interpret the dissimilar evolutionary patterns as well as the compositionally biased mutations in the SC and IR regions of cycad plastomes.
Collapse
Affiliation(s)
- Chung-Shien Wu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
21
|
Wang P, Xia H, Zhang Y, Zhao S, Zhao C, Hou L, Li C, Li A, Ma C, Wang X. Genome-wide high-resolution mapping of DNA methylation identifies epigenetic variation across embryo and endosperm in Maize (Zea may). BMC Genomics 2015; 16:21. [PMID: 25612809 PMCID: PMC4316406 DOI: 10.1186/s12864-014-1204-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/24/2014] [Indexed: 12/26/2022] Open
Abstract
Background Epigenetic modifications play important roles in plant and animal development. DNA methylation impacts the transposable element (TE) silencing, gene imprinting and expression regulation. Results Through a genome-wide analysis, DNA methylation peaks were characterized and mapped in maize embryo and endosperm genome, respectively. Distinct methylation level was observed across maize embryo and endosperm. The maize embryo genome contained more DNA methylation than endosperm. Totally, 985,478 CG islands (CGIs) were identified and most of them were unmethylated. More CGI shores were methylated than CGIs in maize suggested that DNA methylation level was not positively correlated with CpG density. The promoter sequence and transcriptional termination region (TTR) were more methylated than the gene body (intron and exon) region based on peak number and methylated depth. Result showed that 99% TEs were methylated in maize embryo, but a large portion of them (34.8%) were not methylated in endosperm. Maize embryo and endosperm exhibit distinct pattern/level of methylation. The most differentially methylated region between embryo and endosperm are CGI shores. Our results indicated that DNA methylation is associated with both gene silencing and gene activation in maize. Many genes involved in embryogenesis and seed development were found differentially methylated in embryo and endosperm. We found 41.5% imprinting genes were similarly methylated and 58.5% imprinting genes were differentially methylated between embryo and endosperm. Methylation level was associated with allelic silencing of only a small number of imprinting genes. The expression of maize DEMETER-like (DME-like) gene and MBD101 gene (MBD4 homolog) were higher in endosperm than in embryo. These two genes may be associated with distinct methylation levels across maize embryo and endosperm. Conclusions Through MeDIP-seq we systematically analyzed the methylomes of maize embryo and endosperm and results indicated that the global methylation status of embryo was more than that of the endosperm. Differences could be observed at the total number of methylation peaks, DMRs and specific methylated genes which were tightly associated with development of embryo and endosperm. Our results also revealed that many DNA methylation regions didn’t affect transcription of the corresponding genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-014-1204-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pengfei Wang
- Agricultural College, Anhui Agricultural University, Hefei, 230036, PR China. .,Bio-Tech Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, PR China.
| | - Han Xia
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, PR China.
| | - Ye Zhang
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, PR China.
| | - Shuzhen Zhao
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, PR China.
| | - Chuanzhi Zhao
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, PR China.
| | - Lei Hou
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, PR China.
| | - Changsheng Li
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, PR China.
| | - Aiqin Li
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, PR China.
| | - Chuanxi Ma
- Agricultural College, Anhui Agricultural University, Hefei, 230036, PR China.
| | - Xingjun Wang
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, PR China.
| |
Collapse
|
22
|
Silenced rRNA genes are activated and substitute for partially eliminated active homeologs in the recently formed allotetraploid, Tragopogon mirus (Asteraceae). Heredity (Edinb) 2014; 114:356-65. [PMID: 25537492 DOI: 10.1038/hdy.2014.111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 11/08/2022] Open
Abstract
To study the relationship between uniparental rDNA (encoding 18S, 5.8S and 26S ribosomal RNA) silencing (nucleolar dominance) and rRNA gene dosage, we studied a recently emerged (within the last 80 years) allotetraploid Tragopogon mirus (2n=24), formed from the diploid progenitors T. dubius (2n=12, D-genome donor) and T. porrifolius (2n=12, P-genome donor). Here, we used molecular, cytogenetic and genomic approaches to analyse rRNA gene activity in two sibling T. mirus plants (33A and 33B) with widely different rRNA gene dosages. Plant 33B had ~400 rRNA genes at the D-genome locus, which is typical for T. mirus, accounting for ~25% of total rDNA. We observed characteristic expression dominance of T. dubius-origin genes in all organs. Its sister plant 33A harboured a homozygous macrodeletion that reduced the number of T. dubius-origin genes to about 70 copies (~4% of total rDNA). It showed biparental rDNA expression in root, flower and callus, but not in leaf where D-genome rDNA dominance was maintained. There was upregulation of minor rDNA variants in some tissues. The RNA polymerase I promoters of reactivated T. porrifolius-origin rRNA genes showed reduced DNA methylation, mainly at symmetrical CG and CHG nucleotide motifs. We hypothesise that active, decondensed rDNA units are most likely to be deleted via recombination. The silenced homeologs could be used as a 'first reserve' to ameliorate mutational damage and contribute to evolutionary success of polyploids. Deletion and reactivation cycles may lead to bidirectional homogenisation of rRNA arrays in the long term.
Collapse
|
23
|
Su C, Wang C, He L, Yang C, Wang Y. Shotgun bisulfite sequencing of the Betula platyphylla genome reveals the tree's DNA methylation patterning. Int J Mol Sci 2014; 15:22874-86. [PMID: 25514241 PMCID: PMC4284743 DOI: 10.3390/ijms151222874] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 11/27/2014] [Accepted: 12/01/2014] [Indexed: 12/15/2022] Open
Abstract
DNA methylation plays a critical role in the regulation of gene expression. Most studies of DNA methylation have been performed in herbaceous plants, and little is known about the methylation patterns in tree genomes. In the present study, we generated a map of methylated cytosines at single base pair resolution for Betula platyphylla (white birch) by bisulfite sequencing combined with transcriptomics to analyze DNA methylation and its effects on gene expression. We obtained a detailed view of the function of DNA methylation sequence composition and distribution in the genome of B. platyphylla. There are 34,460 genes in the whole genome of birch, and 31,297 genes are methylated. Conservatively, we estimated that 14.29% of genomic cytosines are methylcytosines in birch. Among the methylation sites, the CHH context accounts for 48.86%, and is the largest proportion. Combined transcriptome and methylation analysis showed that the genes with moderate methylation levels had higher expression levels than genes with high and low methylation. In addition, methylated genes are highly enriched for the GO subcategories of binding activities, catalytic activities, cellular processes, response to stimulus and cell death, suggesting that methylation mediates these pathways in birch trees.
Collapse
Affiliation(s)
- Chang Su
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China.
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China.
| | - Lin He
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China.
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China.
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China.
| |
Collapse
|
24
|
Divergence of gene body DNA methylation and evolution of plant duplicate genes. PLoS One 2014; 9:e110357. [PMID: 25310342 PMCID: PMC4195714 DOI: 10.1371/journal.pone.0110357] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/22/2014] [Indexed: 01/24/2023] Open
Abstract
It has been shown that gene body DNA methylation is associated with gene expression. However, whether and how deviation of gene body DNA methylation between duplicate genes can influence their divergence remains largely unexplored. Here, we aim to elucidate the potential role of gene body DNA methylation in the fate of duplicate genes. We identified paralogous gene pairs from Arabidopsis and rice (Oryza sativa ssp. japonica) genomes and reprocessed their single-base resolution methylome data. We show that methylation in paralogous genes nonlinearly correlates with several gene properties including exon number/gene length, expression level and mutation rate. Further, we demonstrated that divergence of methylation level and pattern in paralogs indeed positively correlate with their sequence and expression divergences. This result held even after controlling for other confounding factors known to influence the divergence of paralogs. We observed that methylation level divergence might be more relevant to the expression divergence of paralogs than methylation pattern divergence. Finally, we explored the mechanisms that might give rise to the divergence of gene body methylation in paralogs. We found that exonic methylation divergence more closely correlates with expression divergence than intronic methylation divergence. We show that genomic environments (e.g., flanked by transposable elements and repetitive sequences) of paralogs generated by various duplication mechanisms are associated with the methylation divergence of paralogs. Overall, our results suggest that the changes in gene body DNA methylation could provide another avenue for duplicate genes to develop differential expression patterns and undergo different evolutionary fates in plant genomes.
Collapse
|
25
|
Osabe K, Clement JD, Bedon F, Pettolino FA, Ziolkowski L, Llewellyn DJ, Finnegan EJ, Wilson IW. Genetic and DNA methylation changes in cotton (Gossypium) genotypes and tissues. PLoS One 2014; 9:e86049. [PMID: 24465864 PMCID: PMC3896429 DOI: 10.1371/journal.pone.0086049] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 12/05/2013] [Indexed: 12/19/2022] Open
Abstract
In plants, epigenetic regulation is important in normal development and in modulating some agronomic traits. The potential contribution of DNA methylation mediated gene regulation to phenotypic diversity and development in cotton was investigated between cotton genotypes and various tissues. DNA methylation diversity, genetic diversity, and changes in methylation context were investigated using methylation-sensitive amplified polymorphism (MSAP) assays including a methylation insensitive enzyme (BsiSI), and the total DNA methylation level was measured by high-performance liquid chromatography (HPLC). DNA methylation diversity was greater than the genetic diversity in the selected cotton genotypes and significantly different levels of DNA methylation were identified between tissues, including fibre. The higher DNA methylation diversity (CHG methylation being more diverse than CG methylation) in cotton genotypes suggest epigenetic regulation may be important for cotton, and the change in DNA methylation between fibre and other tissues hints that some genes may be epigenetically regulated for fibre development. The novel approach using BsiSI allowed direct comparison between genetic and epigenetic diversity, and also measured CC methylation level that cannot be detected by conventional MSAP.
Collapse
|
26
|
Li P, Demirci F, Mahalingam G, Demirci C, Nakano M, Meyers BC. An integrated workflow for DNA methylation analysis. J Genet Genomics 2013; 40:249-60. [PMID: 23706300 DOI: 10.1016/j.jgg.2013.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/25/2013] [Accepted: 03/25/2013] [Indexed: 10/27/2022]
Abstract
The analysis of cytosine methylation provides a new way to assess and describe epigenetic regulation at a whole-genome level in many eukaryotes. DNA methylation has a demonstrated role in the genome stability and protection, regulation of gene expression and many other aspects of genome function and maintenance. BS-seq is a relatively unbiased method for profiling the DNA methylation, with a resolution capable of measuring methylation at individual cytosines. Here we describe, as an example, a workflow to handle DNA methylation analysis, from BS-seq library preparation to the data visualization. We describe some applications for the analysis and interpretation of these data. Our laboratory provides public access to plant DNA methylation data via visualization tools available at our "Next-Gen Sequence" websites (http://mpss.udel.edu), along with small RNA, RNA-seq and other data types.
Collapse
Affiliation(s)
- Pingchuan Li
- Department of Plant & Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | | | | | | | | | | |
Collapse
|
27
|
Li X, Zhu J, Hu F, Ge S, Ye M, Xiang H, Zhang G, Zheng X, Zhang H, Zhang S, Li Q, Luo R, Yu C, Yu J, Sun J, Zou X, Cao X, Xie X, Wang J, Wang W. Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression. BMC Genomics 2012; 13:300. [PMID: 22747568 PMCID: PMC3447678 DOI: 10.1186/1471-2164-13-300] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 05/29/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND DNA methylation plays important biological roles in plants and animals. To examine the rice genomic methylation landscape and assess its functional significance, we generated single-base resolution DNA methylome maps for Asian cultivated rice Oryza sativa ssp. japonica, indica and their wild relatives, Oryza rufipogon and Oryza nivara. RESULTS The overall methylation level of rice genomes is four times higher than that of Arabidopsis. Consistent with the results reported for Arabidopsis, methylation in promoters represses gene expression while gene-body methylation generally appears to be positively associated with gene expression. Interestingly, we discovered that methylation in gene transcriptional termination regions (TTRs) can significantly repress gene expression, and the effect is even stronger than that of promoter methylation. Through integrated analysis of genomic, DNA methylomic and transcriptomic differences between cultivated and wild rice, we found that primary DNA sequence divergence is the major determinant of methylational differences at the whole genome level, but DNA methylational difference alone can only account for limited gene expression variation between the cultivated and wild rice. Furthermore, we identified a number of genes with significant difference in methylation level between the wild and cultivated rice. CONCLUSIONS The single-base resolution methylomes of rice obtained in this study have not only broadened our understanding of the mechanism and function of DNA methylation in plant genomes, but also provided valuable data for future studies of rice epigenetics and the epigenetic differentiation between wild and cultivated rice.
Collapse
Affiliation(s)
- Xin Li
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rivarola M, Foster JT, Chan AP, Williams AL, Rice DW, Liu X, Melake-Berhan A, Huot Creasy H, Puiu D, Rosovitz MJ, Khouri HM, Beckstrom-Sternberg SM, Allan GJ, Keim P, Ravel J, Rabinowicz PD. Castor bean organelle genome sequencing and worldwide genetic diversity analysis. PLoS One 2011; 6:e21743. [PMID: 21750729 PMCID: PMC3131294 DOI: 10.1371/journal.pone.0021743] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 06/10/2011] [Indexed: 11/26/2022] Open
Abstract
Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and forensic tools, we carried out an extensive chloroplast sequence diversity analysis. Taking advantage of the recently published genome sequence of castor bean, we assembled the chloroplast and mitochondrion genomes extracting selected reads from the available whole genome shotgun reads. Using the chloroplast reference genome we used the methylation filtration technique to readily obtain draft genome sequences of 7 geographically and genetically diverse castor bean accessions. These sequence data were used to identify single nucleotide polymorphism markers and phylogenetic analysis resulted in the identification of two major clades that were not apparent in previous population genetic studies using genetic markers derived from nuclear DNA. Two distinct sub-clades could be defined within each major clade and large-scale genotyping of castor bean populations worldwide confirmed previously observed low levels of genetic diversity and showed a broad geographic distribution of each sub-clade.
Collapse
MESH Headings
- Base Sequence
- Ricinus communis/classification
- Ricinus communis/genetics
- Ricinus communis/growth & development
- DNA, Chloroplast/chemistry
- DNA, Chloroplast/genetics
- DNA, Circular/chemistry
- DNA, Circular/genetics
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Genetic Variation
- Genome, Chloroplast/genetics
- Genome, Mitochondrial/genetics
- Genome, Plant/genetics
- Molecular Sequence Data
- Phylogeny
- Polymorphism, Single Nucleotide
- Sequence Analysis, DNA
- Species Specificity
Collapse
Affiliation(s)
- Maximo Rivarola
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jeffrey T. Foster
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Agnes P. Chan
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Amber L. Williams
- Department of Biological Sciences, Environmental Genetics and Genomics Laboratory, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Danny W. Rice
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Xinyue Liu
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | | | - Heather Huot Creasy
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Daniela Puiu
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - M. J. Rosovitz
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Hoda M. Khouri
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Stephen M. Beckstrom-Sternberg
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, United States of America
- Pathogen Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Gerard J. Allan
- Department of Biological Sciences, Environmental Genetics and Genomics Laboratory, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Paul Keim
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Pablo D. Rabinowicz
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- J. Craig Venter Institute, Rockville, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
29
|
Crhák Khaitová L, Fojtová M, Křížová K, Lunerová J, Fulneček J, Depicker A, Kovařík A. Paramutation of tobacco transgenes by small RNA-mediated transcriptional gene silencing. Epigenetics 2011; 6:650-60. [PMID: 21521939 PMCID: PMC3121974 DOI: 10.4161/epi.6.5.15764] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 04/06/2011] [Indexed: 02/03/2023] Open
Abstract
It has been well established that trans-acting small RNAs guide promoter methylation leading to its inactivation and gene silencing at the transcriptional level (TGS). Here we addressed the question of the influence of the locus structure and epigenetic modifications of the target locus on its susceptibility for being paramutated by trans-acting small RNA molecules. Silencing was induced by crossing a 35S promoter silencer locus 271 with two different 35S-driven transgene loci, locus 2 containing a highly expressed single copy gene and locus 1 containing an inverted posttranscriptionally silenced (PTGS) repeat of this gene. Three generations of exposure to RNA signals from the 271 locus were required to complete silencing and methylation of the 35S promoter within locus 2. Segregating methylated locus 2 epialleles were obtained only from the third generation of hybrids, and this methylation was not correlated with silencing. Strikingly, only one generation was required for the PTGS locus 1 to acquire complete TGS and 35S promoter methylation. In this case, paramutated locus 1 epialleles bearing methylated and inactive 35S promoters segregated already from the first generation of hybrids. The results support the hypothesis that PTGS loci containing a palindrome structure and methylation in the coding region are more sensitive to paramutation by small RNAs and exhibit a strong tendency to formation of meiotically transmissible TGS epialleles. These features contrast with a non-methylated single copy transgenic locus that required several generations of contact with RNA silencing molecules to become imprinted in a stable epiallele.
Collapse
Affiliation(s)
- Lucie Crhák Khaitová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno, Czech Republic
| | - Miloslava Fojtová
- Department of Functional Genomics and Proteomics; Institute of Experimental Biology; Faculty of Science; Masaryk University; Brno, Czech Republic
| | - Kateřina Křížová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno, Czech Republic
| | - Jana Lunerová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno, Czech Republic
| | - Jaroslav Fulneček
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno, Czech Republic
| | - Anna Depicker
- Department of Plant Systems Biology; VIB; Department of Plant Biotechnology and Genetics; Ghent University; Ghent, Belgium
| | - Aleš Kovařík
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno, Czech Republic
| |
Collapse
|
30
|
Fulneček J, Matyášek R, Votruba I, Holý A, Křížová K, Kovařík A. Inhibition of SAH-hydrolase activity during seed germination leads to deregulation of flowering genes and altered flower morphology in tobacco. Mol Genet Genomics 2011; 285:225-36. [PMID: 21274566 DOI: 10.1007/s00438-011-0601-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 01/06/2011] [Indexed: 02/06/2023]
Abstract
Developmental processes are closely connected to certain states of epigenetic information which, among others, rely on methylation of chromatin. S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) are key cofactors of enzymes catalyzing DNA and histone methylation. To study the consequences of altered SAH/SAM levels on plant development we applied 9-(S)-(2,3-dihydroxypropyl)-adenine (DHPA), an inhibitor of SAH-hydrolase, on tobacco seeds during a short phase of germination period (6 days). The transient drug treatment induced: (1) dosage-dependent global DNA hypomethylation mitotically transmitted to adult plants; (2) pleiotropic developmental defects including decreased apical dominance, altered leaf and flower symmetry, flower whorl malformations and reduced fertility; (3) dramatic upregulation of floral organ identity genes NTDEF, NTGLO and NAG1 in leaves. We conclude that temporal SAH-hydrolase inhibition deregulated floral genes expression probably via chromatin methylation changes. The data further show that plants might be particularly sensitive to accurate setting of SAH/SAM levels during critical developmental periods.
Collapse
Affiliation(s)
- Jaroslav Fulneček
- Institute of Biophysics, Academy of Sciences of the Czech Republic, vvi, Kralovopolska 135, 612 65 Brno, Czech Republic.
| | | | | | | | | | | |
Collapse
|
31
|
Ahlert D, Stegemann S, Kahlau S, Ruf S, Bock R. Insensitivity of chloroplast gene expression to DNA methylation. Mol Genet Genomics 2009; 282:17-24. [PMID: 19290543 PMCID: PMC2695549 DOI: 10.1007/s00438-009-0440-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 02/26/2009] [Indexed: 11/30/2022]
Abstract
Presence and possible functions of DNA methylation in plastid genomes of higher plants have been highly controversial. While a number of studies presented evidence for the occurrence of both cytosine and adenine methylation in plastid genomes and proposed a role of cytosine methylation in the transcriptional regulation of plastid genes, several recent studies suggested that at least cytosine methylation may be absent from higher plant plastid genomes. To test if either adenine or cytosine methylation can play a regulatory role in plastid gene expression, we have introduced cyanobacterial genes for adenine and cytosine DNA methyltransferases (methylases) into the tobacco plastid genome by chloroplast transformation. Using DNA cleavage with methylation-sensitive and methylation-dependent restriction endonucleases, we show that the plastid genomes in the transplastomic plants are efficiently methylated. All transplastomic lines are phenotypically indistinguishable from wild-type plants and, moreover, show no alterations in plastid gene expression. Our data indicate that the expression of plastid genes is not sensitive to DNA methylation and, hence, suggest that DNA methylation is unlikely to be involved in the transcriptional regulation of plastid gene expression.
Collapse
Affiliation(s)
- Daniela Ahlert
- Institut für Biochemie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Hindenburgplatz 55, 48143 Münster, Germany
| | - Sandra Stegemann
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Sabine Kahlau
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
32
|
Jaffé B, Kovács K, Andras C, Bódi Z, Liu Z, Fray RG. Methylation of chloroplast DNA does not affect viability and maternal inheritance in tobacco and may provide a strategy towards transgene containment. PLANT CELL REPORTS 2008; 27:1377-84. [PMID: 18536921 PMCID: PMC2468316 DOI: 10.1007/s00299-008-0567-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 04/30/2008] [Accepted: 05/26/2008] [Indexed: 05/10/2023]
Abstract
We report the integration of a type II restriction-methylase, mFokI, into the tobacco chloroplast genome and we demonstrate that the introduced enzyme effectively directs the methylation of its target sequence in vivo and does not affect maternal inheritance. We further report the transformation of tobacco with an E. coli dcm methylase targeted to plastids and we demonstrate efficient cytosine methylation of the plastid genome. Both adenosine methylation of FokI sites and cytosine methylation of dcm sites appeared phenotypically neutral. The ability to tolerate such plastid genome methylation is a pre-requisite for a proposed plant transgene containment system. In such a system, a chloroplast located, maternally inherited restriction methylase would provide protection from a nuclear-encoded, plastid targeted restriction endonuclease. As plastids are not paternally inherited in most crop species, pollen from such plants would carry the endonuclease transgene but not the corresponding methylase; the consequence of this should be containment of all nuclear transgenes, as pollination will only be viable in crosses to the appropriate transplastomic maternal background.
Collapse
Affiliation(s)
- Benjamin Jaffé
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Katalin Kovács
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Calin Andras
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Zsuzsanna Bódi
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Zheng Liu
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Rupert G. Fray
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| |
Collapse
|
33
|
Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 2008; 133:523-36. [PMID: 18423832 PMCID: PMC2723732 DOI: 10.1016/j.cell.2008.03.029] [Citation(s) in RCA: 1759] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 03/20/2008] [Accepted: 03/27/2008] [Indexed: 12/21/2022]
Abstract
Deciphering the multiple layers of epigenetic regulation that control transcription is critical to understanding how plants develop and respond to their environment. Using sequencing-by-synthesis technology we directly sequenced the cytosine methylome (methylC-seq), transcriptome (mRNA-seq), and small RNA transcriptome (smRNA-seq) to generate highly integrated epigenome maps for wild-type Arabidopsis thaliana and mutants defective in DNA methyltransferase or demethylase activity. At single-base resolution we discovered extensive, previously undetected DNA methylation, identified the context and level of methylation at each site, and observed local sequence effects upon methylation state. Deep sequencing of smRNAs revealed a direct relationship between the location of smRNAs and DNA methylation, perturbation of smRNA biogenesis upon loss of CpG DNA methylation, and a tendency for smRNAs to direct strand-specific DNA methylation in regions of RNA-DNA homology. Finally, strand-specific mRNA-seq revealed altered transcript abundance of hundreds of genes, transposons, and unannotated intergenic transcripts upon modification of the DNA methylation state.
Collapse
Affiliation(s)
- Ryan Lister
- Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ronan C. O’Malley
- Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Julian Tonti-Filippini
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA 6009, Australia
| | - Brian D. Gregory
- Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Charles C. Berry
- Department of Family/Preventive Medicine, University of California, San Diego, CA 92093, USA
| | - A. Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA 6009, Australia
| | - Joseph R. Ecker
- Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
34
|
Zheng T, Ichiba T, Morton BR. Assessing substitution variation across sites in grass chloroplast DNA. J Mol Evol 2007; 64:605-13. [PMID: 17541677 DOI: 10.1007/s00239-006-0076-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 02/28/2007] [Indexed: 11/24/2022]
Abstract
We assess the similarity of base substitution processes, described by empirically derived 4 x 4 matrices, using chi-square homogeneity tests. Such significance analyses allow us to assess variation in sequence evolution across sites and we apply them to matrices derived from noncoding sites in different contexts in grass chloroplast DNA. We show that there is statistically significant variation in rates and patterns of mutation among noncoding sites in different contexts and then demonstrate a similar and significant influence of context on substitutions at fourfold degenerate sites of coding regions from grass chloroplast DNA. These results show that context has the same general effect on substitution bias in coding and noncoding DNA: the A+T content of flanking bases is correlated with rate of substitution, transition bias, and GC --> AT pressure, while the number of flanking pyrimidines on a single strand is correlated with a mutational bias, or skew, toward pyrimidines. Despite the similarity in general trends, however, when we compare coding and noncoding matrices we find that there is a statistically significant difference between them even when we control for context. Most noticeably, fourfold degenerate sites in coding sequences are undergoing substitution at a higher rate and there are also significant differences in the relationship between pyrimidines skew and the number of flanking pyrimidines. Possible reasons for the differences between coding and noncoding sites are discussed. Furthermore, our analysis illustrates a simple statistical way for comparing substitution processes across sites allowing us to better study variation in evolutionary processes across a genome.
Collapse
Affiliation(s)
- Tian Zheng
- Department of Statistics, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
35
|
Bogdanova VS. Inheritance of organelle DNA markers in a pea cross associated with nuclear-cytoplasmic incompatibility. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 114:333-9. [PMID: 17080258 DOI: 10.1007/s00122-006-0436-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 10/12/2006] [Indexed: 05/08/2023]
Abstract
An unusual biparental mode of plastid inheritance was found in pea, in a cross associated with nuclear-cytoplasmic incompatibility manifested as deficiency of chlorophyll pigmentation. Plastid DNA marker trnK and mitochondrial DNA marker cox1 were analyzed in F1 progeny that received cytoplasm from an accession of a wild subspecies Pisum sativum ssp. elatius. Plants with sectors of green tissue on leaves and seed cotyledons with green patches on an otherwise chlorotic background were found to carry paternally inherited plastid DNA, suggesting that photosynthetic function was affected by nuclear-cytoplasmic conflict and required proliferation of paternally inherited plastids for normal performance. The paternally inherited plastid DNA marker was also observed in the roots. The presence of the paternal marker in cotyledons, roots and leaves was independent of each other. Inheritance of the mitochondrial DNA marker cox1 appeared to be of the maternal type.
Collapse
Affiliation(s)
- Vera S Bogdanova
- Institute of Cytology and Genetics, Acad. Lavrentiev ave. 10, Novosibirsk, 630090, Russia.
| |
Collapse
|
36
|
Bock R. Structure, function, and inheritance of plastid genomes. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0223] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Khakhlova O, Bock R. Elimination of deleterious mutations in plastid genomes by gene conversion. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:85-94. [PMID: 16553897 DOI: 10.1111/j.1365-313x.2006.02673.x] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Asexual reproduction is believed to be detrimental, mainly because of the accumulation of deleterious mutations over time, a hypothesis known as Muller's ratchet. In seed plants, most asexually reproducing genetic systems are polyploid, with apomictic species (plants forming seeds without fertilization) as well as plastids and mitochondria providing prominent examples. Whether or not polyploidy helps asexual genetic systems to escape Muller's ratchet is unknown. Gene conversion, particularly when slightly biased, represents a potential mechanism that could allow asexual genetic systems to reduce their mutation load in a genome copy number-dependent manner. However, direct experimental evidence for the operation of gene conversion between genome molecules to correct mutations is largely lacking. Here we describe an experimental system based on transgenic tobacco chloroplasts that allows us to analyze gene conversion events in higher plant plastid genomes. We provide evidence for gene conversion acting as a highly efficient mechanism by which the polyploid plastid genetic system can correct deleterious mutations and make one good genome out of two bad ones. Our finding that gene conversion can be biased may provide a molecular link between asexual reproduction, high genome copy numbers and low mutation rates.
Collapse
Affiliation(s)
- Olga Khakhlova
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | | |
Collapse
|
38
|
Wang Y, Tang X, Cheng Z, Mueller L, Giovannoni J, Tanksley SD. Euchromatin and pericentromeric heterochromatin: comparative composition in the tomato genome. Genetics 2006; 172:2529-40. [PMID: 16489216 PMCID: PMC1456407 DOI: 10.1534/genetics.106.055772] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 02/06/2006] [Indexed: 01/13/2023] Open
Abstract
Eleven sequenced BACs were annotated and localized via FISH to tomato pachytene chromosomes providing the first global insights into the compositional differences of euchromatin and pericentromeric heterochromatin in this model dicot species. The results indicate that tomato euchromatin has a gene density (6.7 kb/gene) similar to that of Arabidopsis and rice. Thus, while the euchromatin comprises only 25% of the tomato nuclear DNA, it is sufficient to account for approximately 90% of the estimated 38,000 nontransposon genes that compose the tomato genome. Moreover, euchromatic BACs were largely devoid of transposons or other repetitive elements. In contrast, BACs assigned to the pericentromeric heterochromatin had a gene density 10-100 times lower than that of the euchromatin and are heavily populated by retrotransposons preferential to the heterochromatin-the most abundant transposons belonging to the Jinling Ty3/gypsy-like retrotransposon family. Jinling elements are highly methylated and rarely transcribed. Nonetheless, they have spread throughout the pericentromeric heterochromatin in tomato and wild tomato species fairly recently-well after tomato diverged from potato and other related solanaceous species. The implications of these findings on evolution and on sequencing the genomes of tomato and other solanaceous species are discussed.
Collapse
Affiliation(s)
- Ying Wang
- Department of Plant Breeding and Genetics, U.S. Department of Agriculture--Agricultural Research Service, Plant, Soil, and Nutrition Lab, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
DNA in plants is highly methylated, containing 5-methylcytosine (m5C) and N6-methyladenine (m6A); m5C is located mainly in symmetrical CG and CNG sequences but it may occur also in other non-symmetrical contexts. m6A but not m5C was found in plant mitochondrial DNA. DNA methylation in plants is species-, tissue-, organelle- and age-specific. It is controlled by phytohormones and changes on seed germination, flowering and under the influence of various pathogens (viral, bacterial, fungal). DNA methylation controls plant growth and development, with particular involvement in regulation of gene expression and DNA replication. DNA replication is accompanied by the appearance of under-methylated, newly formed DNA strands including Okazaki fragments; asymmetry of strand DNA methylation disappears until the end of the cell cycle. A model for regulation of DNA replication by methylation is suggested. Cytosine DNA methylation in plants is more rich and diverse compared with animals. It is carried out by the families of specific enzymes that belong to at least three classes of DNA methyltransferases. Open reading frames (ORF) for adenine DNA methyltransferases are found in plant and animal genomes, and a first eukaryotic (plant) adenine DNA methyltransferase (wadmtase) is described; the enzyme seems to be involved in regulation of the mitochondria replication. Like in animals, DNA methylation in plants is closely associated with histone modifications and it affects binding of specific proteins to DNA and formation of respective transcription complexes in chromatin. The same gene (DRM2) in Arabidopsis thaliana is methylated both at cytosine and adenine residues; thus, at least two different, and probably interdependent, systems of DNA modification are present in plants. Plants seem to have a restriction-modification (R-M) system. RNA-directed DNA methylation has been observed in plants; it involves de novo methylation of almost all cytosine residues in a region of siRNA-DNA sequence identity; therefore, it is mainly associated with CNG and non-symmetrical methylations (rare in animals) in coding and promoter regions of silenced genes. Cytoplasmic viral RNA can affect methylation of homologous nuclear sequences and it maybe one of the feedback mechanisms between the cytoplasm and the nucleus to control gene expression.
Collapse
Affiliation(s)
- B F Vanyushin
- Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Russia.
| |
Collapse
|