1
|
Bhowmik P, Yan W, Hodgins C, Polley B, Warkentin T, Nickerson M, Ro DK, Marsolais F, Domoney C, Shariati-Ievari S, Aliani M. CRISPR/Cas9-mediated lipoxygenase gene-editing in yellow pea leads to major changes in fatty acid and flavor profiles. FRONTIERS IN PLANT SCIENCE 2023; 14:1246905. [PMID: 37810390 PMCID: PMC10552856 DOI: 10.3389/fpls.2023.1246905] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/23/2023] [Indexed: 10/10/2023]
Abstract
Introduction Although pulses are nutritious foods containing high amounts of protein, fiber and phytochemicals, their consumption and use in the food industry have been limited due to the formation of unappealing flavors/aromas described as beany, green, and grassy. Lipoxygenase (LOX) enzymes are prevalent among pulse seeds, and their activity can lead to the formation of specific volatile organic compounds (VOCs) from certain polyunsaturated fatty acids (PUFAs). As a widespread issue in legumes, including soybean, these VOCs have been linked to certain unappealing taste perception of foods containing processed pulse seeds. Methods To address this problem in pea and as proof of principle to promote the wider use of pulses, a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) construct was designed to create null alleles (knockouts) of PsLOX2 which had been implicated in the generation of VOCs in peas. Results and discussion Successful CRISPR/Cas9-mediated LOX gene editing of stable transgenic pea lines (TGP) was confirmed by DNA sequencing of the wild type (WT) and TGP pslox2 mutant lines. These lines were also assessed for LOX activity, PUFA levels, and VOCs. Compared to WT peas, the TGP lines showed a significant reduction (p < 0.05) in LOX activity and in the concentration of key VOCs, including hexanal, 2-hexenal, heptanal, (E)-2-heptenal, (E,E)-2,4-heptadienal, 1-octen-3-ol, octanal, (E)-2-octenal (E,E)-2,4-nonadienal and furan-2-pentyl. The content of two essential PUFAs, linoleic and α-linolenic acids, the known substrates of LOX in plants, was higher in TGP flours, indicating the efficacy of the CRISPR-mediated gene editing in minimizing their oxidation and the further modification of PUFAs and their products. The collection of VOCs from the headspace of ground pea seeds, using a portable eNose also distinguished the TGP and WT lines. Multiple regression analysis showed that LOX activity correlated with the two VOCs, heptanal and (E,E)-2,4-heptadienal in pea flours. Partial Least Squares Regression (PLS-R) plot for selected PUFAs, VOCs, and sensor responses in WT and TGP lines showed distinct clusters for WT and TGP lines. Together this data demonstrates the utility of CRISPR mediated mutagenesis of PsLOX2 to quickly improve aroma and fatty acid (FA) profiles of pea seeds of an elite Canadian variety.
Collapse
Affiliation(s)
- Pankaj Bhowmik
- Aquatic and Crop Resource Development Centre, National Research Council Canada, Saskatoon, SK, Canada
| | - Wei Yan
- Aquatic and Crop Resource Development Centre, National Research Council Canada, Saskatoon, SK, Canada
| | - Connor Hodgins
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Brittany Polley
- Aquatic and Crop Resource Development Centre, National Research Council Canada, Saskatoon, SK, Canada
| | - Tom Warkentin
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Frédéric Marsolais
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Claire Domoney
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Shiva Shariati-Ievari
- Division of Neurodegenerative Diseases (DND), St Boniface Hospital Research Center, Winnipeg, MB, Canada
| | - Michel Aliani
- Division of Neurodegenerative Diseases (DND), St Boniface Hospital Research Center, Winnipeg, MB, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Kaur R, Donoso T, Scheske C, Lefsrud M, Singh J. Highly Efficient and Reproducible Genetic Transformation in Pea for Targeted Trait Improvement. ACS AGRICULTURAL SCIENCE & TECHNOLOGY 2022; 2:780-787. [PMID: 35991689 PMCID: PMC9384215 DOI: 10.1021/acsagscitech.2c00084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A reproducible tissue culture protocol is required to establish an efficient genetic transformation system in highly recalcitrant pea genotypes. High-quality callus with superior regeneration ability was induced and regenerated on optimized media enriched with copper sulfate and cytokinins, 6-benzylaminopurine and indole-3-acetic acid. This successful regeneration effort led to the development of a highly efficient transformation system for five pea genotypes using immature and mature seeds. The new transformation protocol included the addition of elevated glucose and sucrose concentrations for cocultivation and inoculation media to improve callus induction and regeneration, thus resulting in consistent transformation frequencies. Using the Agrobacterium strain AGL1, a transformation frequency of up to 47% was obtained for the pea genotype Greenfeast, using either of two different selection marker genes, PAT or NPT, sourced from two different vectors. Sixty-two transgenic pea events were able to survive kanamycin and phosphinothricin selection. A total of 30 transgenic events for Greenfeast, 15 for CN 43016, 9 for snap pea, and 5 for CN 31237 are reported herein. Two additional transgenic events were recovered from particle gun bombardment experiments. Quantitative RT-PCR analysis confirmed the transgenic status of pea plants, indicating elevated expression of relevant genes cloned into the transformation constructs.
Collapse
Affiliation(s)
- Rajvinder Kaur
- Department
of Bioresource Engineering, McGill University, 21111 Rue Lakeshore, Sainte-Anne-de-Bellevue, Quebec, Montreal H9X 3V9, Canada
| | - Thomas Donoso
- Department
of Plant Science, McGill University, 21111 Rue Lakeshore, Sainte-Anne-de-Bellevue, Quebec, Montreal H9X 3V9, Canada
| | - Chelsea Scheske
- Department
of Bioresource Engineering, McGill University, 21111 Rue Lakeshore, Sainte-Anne-de-Bellevue, Quebec, Montreal H9X 3V9, Canada
| | - Mark Lefsrud
- Department
of Bioresource Engineering, McGill University, 21111 Rue Lakeshore, Sainte-Anne-de-Bellevue, Quebec, Montreal H9X 3V9, Canada
| | - Jaswinder Singh
- Department
of Plant Science, McGill University, 21111 Rue Lakeshore, Sainte-Anne-de-Bellevue, Quebec, Montreal H9X 3V9, Canada
| |
Collapse
|
3
|
Shekhar S, Rustagi A, Kumar D, Yusuf MA, Sarin NB, Lawrence K. Groundnut AhcAPX conferred abiotic stress tolerance in transgenic banana through modulation of the ascorbate-glutathione pathway. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1349-1366. [PMID: 31736539 PMCID: PMC6825100 DOI: 10.1007/s12298-019-00704-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/06/2019] [Accepted: 08/19/2019] [Indexed: 05/08/2023]
Abstract
A stress inducible cytosolic ascorbate peroxidase gene (AhcAPX) was ectopically expressed in banana (cv. Grand naine) plants to strengthen their antioxidant capacity. High level of AhcAPX gene transcripts and enzyme suggested constitutive and functional expression of candidate gene in transgenic (TR) plants. The tolerance level of in vitro and in vivo grown TR banana plantlets were assessed against salt and drought stress. The TR banana plants conferred tolerance against the abiotic stresses by maintaining a high redox state of ascorbate and glutathione, which correlated with lower accumulation of H2O2, O2 ⋅- and higher level of antioxidant enzyme (SOD, APX, CAT, GR, DHAR and MDHAR) activities. The efficacy of AhcAPX over-expression was also investigated in terms of different physiochemical attributes of TR and untransformed control plants, such as, proline content, membrane stability, electrolyte leakage and chlorophyll retention. The TR plants showed higher photochemical efficiency of PSII (Fv/Fm), and stomatal attributes under photosynthesis generated reactive oxygen species (ROS) stress. The outcome of present investigation suggest that ectopic expression of AhcAPX gene in banana enhances the tolerance to drought and salt stress by annulling the damage caused by ROS.
Collapse
Affiliation(s)
- Shashi Shekhar
- Department of Biochemistry and Biochemical Engineering, Jacob School of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture Technology and Sciences, Allahabad, 211007 India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Anjana Rustagi
- Department of Botany, Gargi College, University of Delhi, New Delhi, 110049 India
| | - Deepak Kumar
- Department of Botany, Central University of Jammu, Jammu, 180011 India
| | - Mohd. Aslam Yusuf
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh 226026 India
| | - Neera Bhalla Sarin
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Kapil Lawrence
- Department of Biochemistry and Biochemical Engineering, Jacob School of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture Technology and Sciences, Allahabad, 211007 India
| |
Collapse
|
4
|
Leppyanen IV, Kirienko AN, Dolgikh EA. Agrobacterium rhizogenes-mediated transformation of Pisum sativum L. roots as a tool for studying the mycorrhizal and root nodule symbioses. PeerJ 2019; 7:e6552. [PMID: 30863680 PMCID: PMC6408910 DOI: 10.7717/peerj.6552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/01/2019] [Indexed: 11/22/2022] Open
Abstract
In this study, we demonstrated the successful transformation of two pea (Pisum sativum L.) cultivars using Agrobacterium rhizogenes, whereby transgenic roots in the resulting composite plants showed expression of the gene encoding the green fluorescent protein. Subsequent to infection with A. rhizogenes, approximately 70%–80% of pea seedlings developed transgenic hairy roots. We found out that the transgenic roots can be efficiently nodulated by Rhizobium leguminosarum bv. viciae and infected by the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis. The morphology of nodules in the transgenic roots was found to be identical to that of nodules observed in wild-type roots, and we also observed the effective induction of markers typical of the symbiotic association with AM fungi. The convenient protocol for highly efficient A. rhizogenes-mediated transformation developed in this study would be a rapid and effective tool for investigating those genes involved in the development of the two types of symbioses found in pea plants.
Collapse
Affiliation(s)
- Irina V Leppyanen
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia
| | - Anna N Kirienko
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia
| | - Elena A Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia
| |
Collapse
|
5
|
Doshi KM, Loukanina NN, Polowick PL, Holbrook LA. Seed specific expression and analysis of recombinant human adenosine deaminase (hADA) in three host plant species. Transgenic Res 2016; 25:629-37. [PMID: 26994767 DOI: 10.1007/s11248-016-9951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/12/2016] [Indexed: 10/22/2022]
Abstract
The plant seed is a leading platform amongst plant-based storage systems for the production of recombinant proteins. In this study, we compared the activity of human adenosine deaminase (hADA) expressed in transgenic seeds of three different plant species: pea (Pisum sativum L.), Nicotiana benthamiana L. and tarwi (Lupinus mutabilis Sweet). All three species were transformed with the same expression vector containing the hADA gene driven by the seed-specific promoter LegA2 with an apoplast targeting pinII signal peptide. During the study, several independent transgenic lines were generated and screened from each plant species and only lines with a single copy of the gene of interest were used for hADA expression analysis. A stable transgenic canola line expressing the ADA protein, under the control of 35S constitutive promoter was used as both as a positive control and for comparative study with the seed specific promoter. Significant differences were detected in the expression of hADA. The highest activity of the hADA enzyme (Units/g seed) was reported in tarwi (4.26 U/g) followed by pea (3.23 U/g) and Nicotiana benthamiana (1.69 U/g). The expression of mouse ADA in canola was very low in both seed and leaf tissue compared to other host plants, confirming higher activity of seed specific promoter. Altogether, these results suggest that tarwi could be an excellent candidate for the production of valuable recombinant proteins.
Collapse
Affiliation(s)
- Ketan M Doshi
- Prairie Plant Systems, Inc., #1 Technology Road, Box 19A, RR#5, Saskatoon, SK, 7K 3J8, Canada.
| | - Natalia N Loukanina
- Prairie Plant Systems, Inc., #1 Technology Road, Box 19A, RR#5, Saskatoon, SK, 7K 3J8, Canada
| | - Patricia L Polowick
- National Research Council of Canada-Saskatoon, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Larry A Holbrook
- Prairie Plant Systems, Inc., #1 Technology Road, Box 19A, RR#5, Saskatoon, SK, 7K 3J8, Canada
| |
Collapse
|
6
|
Kimura M, Cutler S, Isobe S. A Novel Phenolic Compound, Chloroxynil, Improves Agrobacterium-Mediated Transient Transformation in Lotus japonicus. PLoS One 2015; 10:e0131626. [PMID: 26176780 PMCID: PMC4503419 DOI: 10.1371/journal.pone.0131626] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/04/2015] [Indexed: 12/29/2022] Open
Abstract
Agrobacterium-mediated transformation is a commonly used method for plant genetic engineering. However, the limitations of Agrobacterium host-plant interactions and the complexity of plant tissue culture often make the production of transgenic plants difficult. Transformation efficiency in many legume species, including soybean and the common bean, has been reported to be quite low. To improve the transformation procedure in legumes, we screened for chemicals that increase the transformation efficiency of Lotus japonicus, a model legume species. A Chemical library was screened and chemicals that increase in transient transformation efficiency of L. japonicus accession, Miyakojima MG-20 were identified. The transient transformation efficiency was quantified by reporter activity in which an intron-containing reporter gene produces the GUS protein only when the T-DNA is expressed in the plant nuclei. We identified a phenolic compound, chloroxynil, which increased the genetic transformation of L. japonicus by Agrobacterium tumefaciens strain EHA105. Characterization of the mode of chloroxynil action indicated that it enhanced Agrobacterium-mediated transformation through the activation of the Agrobacterium vir gene expression, similar to acetosyringone, a phenolic compound known to improve Agrobacterium-mediated transformation efficiency. Transient transformation efficiency of L. japonicus with 5 μM chloroxynil was 60- and 6- fold higher than that of the control and acetosyringone treatment, respectively. In addition, transgenic L. japonicus lines were successfully generated by 5 μM chloroxynil treatment.Furthermore, we show that chloroxynil improves L. japonicus transformation by Agrobacterium strain GV3101 and rice transformation. Our results demonstrate that chloroxynil significantly improves Agrobacterium tumefaciens-mediated transformation efficiency of various agriculturally important crops.
Collapse
Affiliation(s)
- Mitsuhiro Kimura
- Department of Frontier Research, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
- * E-mail:
| | - Sean Cutler
- Department of Botany and Plant Sciences, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Sachiko Isobe
- Department of Frontier Research, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| |
Collapse
|
7
|
Atif RM, Patat-Ochatt EM, Svabova L, Ondrej V, Klenoticova H, Jacas L, Griga M, Ochatt SJ. Gene Transfer in Legumes. PROGRESS IN BOTANY 2013. [DOI: 10.1007/978-3-642-30967-0_2] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
8
|
Mikschofsky H, Broer I. Feasibility of Pisum sativum as an expression system for pharmaceuticals. Transgenic Res 2012; 21:715-24. [PMID: 22057506 DOI: 10.1007/s11248-011-9573-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 10/20/2011] [Indexed: 12/15/2022]
Abstract
Based on its high protein content and excellent storage capacity, pea (Pisum sativum), as well as other plants, is considered to be a suitable production platform for protein-based pharmaceuticals. Its capacity to produce high proportions of active recombinant proteins (up to 2% total soluble protein corresponding to approximately 8 mg/g fresh weight) has been proven using pea-derived strong seed-specific promoters. The active antigens produced were also stable for more than 4 years. Pea can be used as a feed additive, up to a proportion of 30% to total feed, despite the presence of lectins. Thus, a low dosage of recombinant pea-based pharmaceuticals is non-hazardous. In addition, it is independent of N-fertilisation, has excellent biosafety characteristics and is accessible to gene transfer. Growth systems with a capacity for high yield are available for the greenhouse (5 t/ha) and, to a limited extent, also in the field (2.3 t/ha). The practicable establishment of pea seed banks allows a continuous production process. Although the use of a pea system is limited by complex transformation procedures, these advantages render pea a promising plant for the production of pharmaceuticals.
Collapse
Affiliation(s)
- Heike Mikschofsky
- Agrobiotechnology, University of Rostock, Justus-von-Liebig-Weg 8, 18059 Rostock, Germany.
| | | |
Collapse
|
9
|
Clemow SR, Clairmont L, Madsen LH, Guinel FC. Reproducible hairy root transformation and spot-inoculation methods to study root symbioses of pea. PLANT METHODS 2011; 7:46. [PMID: 22172023 PMCID: PMC3264533 DOI: 10.1186/1746-4811-7-46] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/15/2011] [Indexed: 05/04/2023]
Abstract
Pea has lagged behind other model legumes in the molecular study of nodulation and mycorrhizae-formation because of the difficulty to transform its roots and its poor growth on agar plates. Here we describe for pea 1) a transformation technique which permits the complementation of two known non-nodulating pea mutants, 2) a rhizobial inoculation method which allows the study of early cellular events giving rise to nodule primordia, and 3) a targeted fungal inoculation method which allows us to study short segments of mycorrhizal roots assured to be infected. These tools are certain to advance our knowledge of pea root symbioses.
Collapse
Affiliation(s)
- Scott R Clemow
- Department of Biology, Wilfrid Laurier University, 75 University Avenue W., Waterloo, N2L 3C5, Ontario, Canada
| | - Lindsey Clairmont
- Department of Biology, Wilfrid Laurier University, 75 University Avenue W., Waterloo, N2L 3C5, Ontario, Canada
| | - Lene H Madsen
- Department of Molecular Biology, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wields Vej 10, Aarhus C -8000 Denmark
| | - Frédérique C Guinel
- Department of Biology, Wilfrid Laurier University, 75 University Avenue W., Waterloo, N2L 3C5, Ontario, Canada
| |
Collapse
|
10
|
Padilla IMG, Burgos L. Aminoglycoside antibiotics: structure, functions and effects on in vitro plant culture and genetic transformation protocols. PLANT CELL REPORTS 2010; 29:1203-13. [PMID: 20644935 DOI: 10.1007/s00299-010-0900-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/06/2010] [Accepted: 07/06/2010] [Indexed: 05/12/2023]
Abstract
Plant transformation protocols generally involve the use of selectable marker genes for the screening of transgenic material. The bacterial gene nptII, coding for a neomycin phosphotransferase, and the hpt gene, coding for a hygromycin phosphotransferase, are frequently used. These enzymes detoxify aminoglycoside antibiotics by phosphorylation, thereby permitting cell growth in the presence of antibiotics. Nevertheless, the screening for transgenic regenerated shoots is often partial and difficult due to regeneration of escapes and chimeras. These difficulties can be caused, in part, by an incorrect assumption about the mode of action of antibiotics in bacterial and eukaryotic cells and in in vitro tissue culture. The information contained in this review could be useful to establish better selection strategies by taking into account factors such as explant complexity, transformation and selection protocols that allow better accessibility to cells of Agrobacterium and antibiotics, and faster regeneration methods that avoid collateral effects of antibiotics on recovered, putative transgenic shoots.
Collapse
Affiliation(s)
- I M G Padilla
- Grupo de Biotecnología de Frutales, Departamento de Mejora, CEBAS-CSIC, Campus Universitario de Espinardo, Apartado de correos 164, 30100, Murcia, Spain.
| | | |
Collapse
|
11
|
Mikschofsky H, Schirrmeier H, Keil GM, Lange B, Polowick PL, Keller W, Broer I. Pea-derived vaccines demonstrate high immunogenicity and protection in rabbits against rabbit haemorrhagic disease virus. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:537-49. [PMID: 19486322 DOI: 10.1111/j.1467-7652.2009.00422.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Vaccines against rabbit haemorrhagic disease virus (RHDV) are commercially produced in experimentally infected rabbits. A genetically engineered and manufactured version of the major structural protein of RHDV (VP60) is considered to be an alternative approach for vaccine production. Plants have the potential to become an excellent recombinant production system, but the low expression level and insufficient immunogenic potency of plant-derived VP60 still hamper its practical use. In this study, we analysed the expression of a novel multimeric VP60-based antigen in four different plant species, including Nicotiana tabacum L., Solanum tuberosum L., Brassica napus L. and Pisum sativum L. Significant differences were detected in the expression patterns of the novel fusion antigen cholera toxin B subunit (CTB)::VP60 (ctbvp60(SEKDEL)) at the mRNA and protein levels. Pentameric CTB::VP60 molecules were only detected in N. tabacum and P. sativum, and displayed equal levels of CTB, at approximately 0.01% of total soluble protein (TSP), and traces of detectable VP60. However, strong enhancement of the CTB protein content via self-fertilization was only observed in P. sativum, where it reached up to 0.7% of TSP. In rabbits, a strong decrease in the protective vaccine dose required from 48-400 microg potato-derived VP60 [Castanon, S., Marin, M.S., Martin-Alonso, J.M., Boga, J.A., Casais, R., Humara, J.M., Ordas, R.J. and Parra, F. (1999) Immunization with potato plants expressing VP60 protein protects against rabbit hemorrhagic disease virus. J. Virol. 73, 4452-4455; Castanon, S., Martin-Alonso, J.M., Marin, M.S., Boga, J.A., Alonso, P., Parra, F. and Ordas, R.J. (2002) The effect of the promoter on expression of VP60 gene from rabbit hemorrhagic disease virus in potato plants. Plant Sci. 162, 87-95] to 0.56-0.28 microg antigenic VP60 (measured with VP60 enzyme-linked immunosorbent assay) of crude CTB::VP60 pea extracts was demonstrated. Rabbits immunized with pea-derived CTB::VP60 showed anti-VP60-specific antibodies, similar to RikaVacc((R))-immunized rabbits, and survived RHDV challenge.
Collapse
Affiliation(s)
- Heike Mikschofsky
- Agrobiotechnologie, Universität Rostock, Justus-von-Liebig-Weg 8, 18059 Rostock, Germany.
| | | | | | | | | | | | | |
Collapse
|
12
|
Ivo NL, Nascimento CP, Vieira LS, Campos FAP, Aragão FJL. Biolistic-mediated genetic transformation of cowpea (Vigna unguiculata) and stable Mendelian inheritance of transgenes. PLANT CELL REPORTS 2008; 27:1475-83. [PMID: 18587583 DOI: 10.1007/s00299-008-0573-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 06/12/2008] [Indexed: 05/08/2023]
Abstract
We describe a novel system of exploiting the biolistic process to generate stable transgenic cowpea (Vigna unguiculata) plants. The system is based on combining the use of the herbicide imazapyr to select transformed meristematic cells after physical introduction of the mutated ahas gene (coding for a mutated acetohydroxyacid synthase, under control of the ahas 5' regulatory sequence) and a simple tissue culture protocol. The gus gene (under control of the act2 promoter) was used as a reporter gene. The transformation frequency (defined as the total number of putative transgenic plants divided by the total number of embryonic axes bombarded) was 0.90%. Southern analyses showed the presence of both ahas and gus expression cassettes in all primary transgenic plants, and demonstrated one to three integrated copies of the transgenes into the genome. The progenies (first and second generations) of all self-fertilized transgenic lines revealed the presence of the transgenes (gus and ahas) co-segregated in a Mendelian fashion. Western blot analysis revealed that the GUS protein expressed in the transgenic plants had the same mass and isoelectric point as the bacterial native protein. This is the first report of biolistic-mediated cowpea transformation in which fertile transgenic plants transferred the foreign genes to next generations following Mendelian laws.
Collapse
Affiliation(s)
- Nayche L Ivo
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, Asa Norte, Brasília, DF, 70770-200, Brazil
| | | | | | | | | |
Collapse
|
13
|
Potlakayala SD, Reed DW, Covello PS, Fobert PR. Systemic acquired resistance in canola is linked with pathogenesis-related gene expression and requires salicylic Acid. PHYTOPATHOLOGY 2007; 97:794-802. [PMID: 18943928 DOI: 10.1094/phyto-97-7-0794] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Systemic acquired resistance (SAR) is an induced defense response that confers long-lasting protection against a broad range of microbial pathogens. Here we show that treatment of Brassica napus plants with the SAR-inducing chemical benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) significantly enhanced resistance against virulent strains of the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Leptosphaeria maculans. Localized preinoculation of plants with an avirulent strain of P. syringae pv. maculicola also enhanced resistance to these pathogens but was not as effective as BTH treatment. Single applications of either SAR-inducing pretreatment were effective against P. syringae pv. maculicola, even when given more than 3 weeks prior to the secondary challenge. The pretreatments also led to the accumulation of pathogenesis-related (PR) genes, including BnPR-1 and BnPR-2, with higher levels of transcripts observed in the BTH-treatment material. B. napus plants expressing a bacterial salicylate hydroxylase transgene (NahG) that metabolizes salicylic acid to catechol were substantially compromised in SAR and accumulated reduced levels of PR gene transcripts when compared with untransformed controls. Thus, SAR in B. napus displays many of the hallmarks of classical SAR including long lasting and broad host range resistance, association with PR gene activation, and a requirement for salicylic acid.
Collapse
|
14
|
Richter A, Jacobsen HJ, de Kathen A, de Lorenzo G, Briviba K, Hain R, Ramsay G, Kiesecker H. Transgenic peas (Pisum sativum) expressing polygalacturonase inhibiting protein from raspberry (Rubus idaeus) and stilbene synthase from grape (Vitis vinifera). PLANT CELL REPORTS 2006; 25:1166-73. [PMID: 16802117 DOI: 10.1007/s00299-006-0172-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 04/12/2006] [Accepted: 05/02/2006] [Indexed: 05/10/2023]
Abstract
The pea (Pisum sativum L.) varieties Baroness (United Kingdome) and Baccara (France) were transformed via Agrobacterium tumefaciens-mediated gene transfer with pGPTV binary vectors containing the bar gene in combination with two different antifungal genes coding for polygalacturonase-inhibiting protein (PGIP) from raspberry (Rubus idaeus L.) driven by a double 35S promoter, or the stilbene synthase (Vst1) from grape (Vitis vinifera L.) driven by its own elicitor-inducible promoter. Transgenic lines were established and transgenes combined via conventional crossing. Resveratrol, produced by Vst1 transgenic plants, was detected using HPLC and the PGIP expression was determined in functional inhibition assays against fungal polygalacturonases. Stable inheritance of the antifungal genes in the transgenic plants was demonstrated.
Collapse
Affiliation(s)
- A Richter
- Department of Molecular Genetics, University of Hannover, Herrenhäuserstr 2, 30419, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Liu G, Holub EB, Alonso JM, Ecker JR, Fobert PR. An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:304-18. [PMID: 15634206 DOI: 10.1111/j.1365-313x.2004.02296.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Arabidopsis genome contains six NPR1-related genes. Given the pivotal role played by NPR1 in controlling salicylic acid (SA)-mediated gene expression and disease resistance, functional characterization of other family members appears to be justified. Reverse genetics was used to analyze the role of one NPR1-like gene, which we called NPR4. The NPR4 protein shares 36% identity with NPR1 and interacts with the same spectrum of TGA transcription factors in yeast two-hybrid assays. Plants with T-DNA insertions in NPR4 are more susceptible to the virulent bacterial pathogen Pseudomonas syringe pv. tomato DC3000. This phenotype is complemented by expression of the wild type NPR4 coding region. As determined by the parasite reproduction, the npr4-1 mutant is more susceptible to the fungal pathogen Erysiphe cichoracearum, but does not differ markedly from wild type in its interaction with virulent and avirulent strains of the oomycete Peronospora parasitica. In leaves of wild-type plants, NPR4 mRNA levels increase following pathogen challenge or SA treatment, and decrease rapidly following methyl jasmonic acid (MeJA) treatment. Transcripts of the pathogenesis-related (PR) genes PR-1, PR-2, and PR-5 are only marginally reduced in the npr4-1 mutant following pathogen challenge or SA treatment. This reduction of PR gene expression is more pronounced when leaves are challenged with the bacterial pathogen following SA treatment. Expression of the jasmonic acid-dependent pathway marker gene PDF1.2 is compromised in npr4-1 leaves following application of MeJA or a combination of SA and MeJA. These results indicate that NPR4 is required for basal defense against pathogens, and that it may be implicated in the cross-talk between the SA- and JA-dependent signaling pathways.
Collapse
Affiliation(s)
- Guosheng Liu
- National Research Council, Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | | | | | | | | |
Collapse
|
16
|
Tzitzikas EN, Bergervoet M, Raemakers K, Vincken JP, van Lammeren A, Visser RGF. Regeneration of pea (Pisum sativum L.) by a cyclic organogenic system. PLANT CELL REPORTS 2004; 23:453-60. [PMID: 15372196 DOI: 10.1007/s00299-004-0865-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 07/15/2004] [Accepted: 08/02/2004] [Indexed: 05/24/2023]
Abstract
In a five-step procedure, plants were regenerated from meristematic tissue initiated from nodal tissue in four pea cultivars ('Espace', 'Classic', 'Solara', and 'Puget'). In step 1, stem tissue with one node (1-cm size) was subcultured on medium containing thidiazuron. As a result multiple shoots were produced, appearing normal or swollen at their bases. The multiple shoots were subcultured in the same medium, resulting in the formation of a green hyperhydric tissue in the swollen bases of the multiple shoots, which is fully covered with small buds [bud-containing tissue (BCT)]. In step 2, BCT fragments were isolated and subcultured in the same medium and, as a result, they were able to reproduce themselves in a cyclic fashion. In step 3, subculture of BCT on medium supplemented with a combination of gibberelic acid, 6-benzyladenine and alpha-naphthalene acetic acid (NAA), resulted in the formation of shoots, which were rooted in step 4 on medium supplemented with 0.5 mg/l NAA, indole-3-acetic acid (IAA) or indole-3-butyric acid. In step 5, in vitro plants were transferred to the greenhouse for acclimatisation and further development. The four varieties tested were all able to produce meristematic tissue, suggesting that its production is genotype independent.
Collapse
Affiliation(s)
- Emmanouil N Tzitzikas
- Laboratory of Plant Breeding, The Graduate School Experimental Plant Sciences, Wageningen University, Binnenhaven 5, 6709 PD, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
17
|
Polowick PL, Baliski DS, Mahon JD. Agrobacterium tumefaciens-mediated transformation of chickpea (Cicer arietinum L.): gene integration, expression and inheritance. PLANT CELL REPORTS 2004; 23:485-91. [PMID: 15503035 DOI: 10.1007/s00299-004-0857-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 07/15/2004] [Accepted: 07/16/2004] [Indexed: 05/08/2023]
Abstract
A reproducible method of Agrobacterium-mediated transformation was developed for Cicer arietinum (chickpea). Initial explants consisted of longitudinal slices from embryonic axes of imbibed, mature seed. The plasmid contained a bi-functional fusion gene conferring both beta-glucuronidase and neomycin phosphotransferase activities, under the control of a 35S35SAMV promoter. Using a series of tissue culture media for co-cultivation, shoot initiation and rooting, we recovered transgenic plants from approximately 1.3% of the sliced embryo axes. The addition of a shoot elongation medium to the protocol improved the success rate to 3.1% but increased the time in tissue culture. Inheritance of the gus gene was followed through four generations, both through expression and Southern hybridization assays, and showed the expected Mendelian inheritance pattern.
Collapse
Affiliation(s)
- P L Polowick
- Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Pl., Saskatoon, SK, Canada, S7N 0W9.
| | | | | |
Collapse
|
18
|
Somers DA, Samac DA, Olhoft PM. Recent advances in legume transformation. PLANT PHYSIOLOGY 2003; 131:892-9. [PMID: 12644642 PMCID: PMC1540289 DOI: 10.1104/pp.102.017681] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- David A Somers
- Department of Agronomy and Plant Genetics, Plant Science Research Unit, University of Minnesota, St Paul, Minnesota 55108, USA.
| | | | | |
Collapse
|
19
|
|
20
|
Polowic PL, Vandenberg A, Mahon JD. Field assessment of outcrossing from transgenic pea (Pisum sativum L.) plants. Transgenic Res 2002; 11:515-9. [PMID: 12437082 DOI: 10.1023/a:1020368322335] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The frequency of outcrossing from a transgenic line of peas into three cultivars ('Carneval', 'Montana', 'Tipu') was studied in the field in 1997 and 1999. Two dominant traits, normal leaf form and a highly-expressed beta-glucuronidase (gusA) gene, were used as markers of pollen transfer. Because of heterogeneity in the commercial seed sources, leaf form alone was unreliable for assessing pollen migration into 'trap' plants. Of approximately 9000 offspring tested, only five plants scored positive for the presence of both markers. All five were located in 'trap' plots situated near the transgenic line. This represents a mean outcrossing rate of 0.07%.
Collapse
Affiliation(s)
- Patricia L Polowic
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan.
| | | | | |
Collapse
|