1
|
Roth M, Florez-Rueda AM, Paris M, Städler T. Wild tomato endosperm transcriptomes reveal common roles of genomic imprinting in both nuclear and cellular endosperm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:1084-1101. [PMID: 29953688 DOI: 10.1111/tpj.14012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/01/2018] [Accepted: 06/20/2018] [Indexed: 05/06/2023]
Abstract
Genomic imprinting is a conspicuous feature of the endosperm, a triploid tissue nurturing the embryo and synchronizing angiosperm seed development. An unknown subset of imprinted genes (IGs) is critical for successful seed development and should have highly conserved functions. Recent genome-wide studies have found limited conservation of IGs among distantly related species, but there is a paucity of data from closely related lineages. Moreover, most studies focused on model plants with nuclear endosperm development, and comparisons with properties of IGs in cellular-type endosperm development are lacking. Using laser-assisted microdissection, we characterized parent-specific expression in the cellular endosperm of three wild tomato lineages (Solanum section Lycopersicon). We identified 1025 candidate IGs and 167 with putative homologs previously identified as imprinted in distantly related taxa with nuclear-type endosperm. Forty-two maternally expressed genes (MEGs) and 17 paternally expressed genes (PEGs) exhibited conserved imprinting status across all three lineages, but differences in power to assess imprinted expression imply that the actual degree of conservation might be higher than that directly estimated (20.7% for PEGs and 10.4% for MEGs). Regardless, the level of shared imprinting status was higher for PEGs than for MEGs, indicating dissimilar evolutionary trajectories. Expression-level data suggest distinct epigenetic modulation of MEGs and PEGs, and gene ontology analyses revealed MEGs and PEGs to be enriched for different functions. Importantly, our data provide evidence that MEGs and PEGs interact in modulating both gene expression and the endosperm cell cycle, and uncovered conserved cellular functions of IGs uniting taxa with cellular- and nuclear-type endosperm.
Collapse
Affiliation(s)
- Morgane Roth
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Ana M Florez-Rueda
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Margot Paris
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Thomas Städler
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
2
|
Lonsdale Z, Lee K, Kiriakidu M, Amarasinghe H, Nathanael D, O’Connor CJ, Mallon EB. Allele specific expression and methylation in the bumblebee, Bombus terrestris. PeerJ 2017; 5:e3798. [PMID: 28929021 PMCID: PMC5600721 DOI: 10.7717/peerj.3798] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/21/2017] [Indexed: 12/29/2022] Open
Abstract
The social hymenoptera are emerging as models for epigenetics. DNA methylation, the addition of a methyl group, is a common epigenetic marker. In mammals and flowering plants methylation affects allele specific expression. There is contradictory evidence for the role of methylation on allele specific expression in social insects. The aim of this paper is to investigate allele specific expression and monoallelic methylation in the bumblebee, Bombus terrestris. We found nineteen genes that were both monoallelically methylated and monoallelically expressed in a single bee. Fourteen of these genes express the hypermethylated allele, while the other five express the hypomethylated allele. We also searched for allele specific expression in twenty-nine published RNA-seq libraries. We found 555 loci with allele-specific expression. We discuss our results with reference to the functional role of methylation in gene expression in insects and in the as yet unquantified role of genetic cis effects in insect allele specific methylation and expression.
Collapse
Affiliation(s)
- Zoë Lonsdale
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Kate Lee
- Bioinformatics and Biostatistics Support Hub (B/BASH), University of Leicester, Leicester, United Kingdom
| | - Maria Kiriakidu
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Harindra Amarasinghe
- Academic Unit of Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | - Despina Nathanael
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | | | - Eamonn B. Mallon
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
3
|
Investigating the Interplay between Sister Chromatid Cohesion and Homolog Pairing in Drosophila Nuclei. PLoS Genet 2016; 12:e1006169. [PMID: 27541002 PMCID: PMC4991795 DOI: 10.1371/journal.pgen.1006169] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/14/2016] [Indexed: 11/19/2022] Open
Abstract
Following DNA replication, sister chromatids must stay connected for the remainder of the cell cycle in order to ensure accurate segregation in the subsequent cell division. This important function involves an evolutionarily conserved protein complex known as cohesin; any loss of cohesin causes premature sister chromatid separation in mitosis. Here, we examined the role of cohesin in sister chromatid cohesion prior to mitosis, using fluorescence in situ hybridization (FISH) to assay the alignment of sister chromatids in interphase Drosophila cells. Surprisingly, we found that sister chromatid cohesion can be maintained in G2 with little to no cohesin. This capacity to maintain cohesion is widespread in Drosophila, unlike in other systems where a reduced dependence on cohesin for sister chromatid segregation has been observed only at specific chromosomal regions, such as the rDNA locus in budding yeast. Additionally, we show that condensin II antagonizes the alignment of sister chromatids in interphase, supporting a model wherein cohesin and condensin II oppose each other’s functions in the alignment of sister chromatids. Finally, because the maternal and paternal homologs are paired in the somatic cells of Drosophila, and because condensin II has been shown to antagonize this pairing, we consider the possibility that condensin II-regulated mechanisms for aligning homologous chromosomes may also contribute to sister chromatid cohesion. As cells grow, they replicate their DNA to give rise to two copies of each chromosome, known as sister chromatids, which separate from each other once the cell divides. To ensure that sister chromatids end up in different daughter cells, they are kept together from DNA replication until mitosis via a connection known as cohesion. A protein complex known as cohesin is essential for this process. Our work in Drosophila cells suggests that factors other than cohesin also contribute to sister chromatid cohesion in interphase. Additionally, we observed that the alignment of sister chromatids is regulated by condensin II, a protein complex involved in the compaction of chromosomes prior to division as well as the regulation of inter-chromosomal associations. These findings highlight that, in addition to their important individual functions, cohesin and condensin II proteins may interact to organize chromosomes over the course of the cell cycle. Finally, building on prior observations that condensin II is involved in the regulation of somatic homolog pairing in Drosophila, our work suggests that the mechanisms underlying homolog pairing may also contribute to sister chromatid cohesion.
Collapse
|
4
|
Michalak K, Maciak S, Kim YB, Santopietro G, Oh JH, Kang L, Garner HR, Michalak P. Nucleolar dominance and maternal control of 45S rDNA expression. Proc Biol Sci 2015; 282:20152201. [PMID: 26645200 PMCID: PMC4685780 DOI: 10.1098/rspb.2015.2201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/10/2015] [Indexed: 12/17/2022] Open
Abstract
Using a system of interspecies hybrids, trihybrids, and recombinants with varying proportions of genomes from three distinct Xenopus species, we provide evidence for de novo epigenetic silencing of paternal 45 S ribosomal ribonucleic acid (rRNA) genes and their species-dependent expression dominance that escapes transcriptional inactivation after homologous recombination. The same pattern of imprinting is maintained in the offspring from mothers being genetic males (ZZ) sex-reversed to females, indicating that maternal control of ribosomal deoxyribonucleic acid (rDNA) expression is not sex-chromosome linked. Nucleolar dominance (nucleolus underdevelopment) in Xenopus hybrids appears to be associated with a major non-Mendelian reduction in the number of 45 S rDNA gene copies rather than a specific pattern of their expression. The loss of rRNA gene copies in F1 hybrids was non-random with respect to the parental species, with the transcriptionally dominant variant preferentially removed from hybrid zygotes. This dramatic disruption in the structure and function of 45 S rDNA impacts transcriptome patterns of small nucleolar RNAs and messenger RNAs, with genes from the ribosome and oxidative stress pathways being among the most affected. Unorthodoxies of rDNA inheritance and expression may be interpreted as hallmarks of genetic conflicts between parental genomes, as well as defensive epigenetic mechanisms employed to restore genome integrity.
Collapse
Affiliation(s)
- Katarzyna Michalak
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Sebastian Maciak
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, USA Institute of Biology, University of Bialystok, PL-15-245, Poland
| | - Young Bun Kim
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Jung Hun Oh
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Lin Kang
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Harold R Garner
- The Edward Via College of Osteopathic Medicine, Blacksburg, VA 24060, USA
| | - Pawel Michalak
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
5
|
Spencer HG, Clark AG. Non-conflict theories for the evolution of genomic imprinting. Heredity (Edinb) 2014; 113:112-8. [PMID: 24398886 PMCID: PMC4105448 DOI: 10.1038/hdy.2013.129] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 01/09/2023] Open
Abstract
Theories focused on kinship and the genetic conflict it induces are widely considered to be the primary explanations for the evolution of genomic imprinting. However, there have appeared many competing ideas that do not involve kinship/conflict. These ideas are often overlooked because kinship/conflict is entrenched in the literature, especially outside evolutionary biology. Here we provide a critical overview of these non-conflict theories, providing an accessible perspective into this literature. We suggest that some of these alternative hypotheses may, in fact, provide tenable explanations of the evolution of imprinting for at least some loci.
Collapse
Affiliation(s)
- H G Spencer
- Allan Wilson Centre for Molecular Ecology & Evolution and Gravida: National Centre for Growth & Development, Department of Zoology, University of Otago, Dunedin, New Zealand
| | - A G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
6
|
Endogenously imprinted genes in Drosophila melanogaster. Mol Genet Genomics 2014; 289:653-73. [DOI: 10.1007/s00438-014-0840-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 03/04/2014] [Indexed: 12/21/2022]
|
7
|
Michalak P. Evidence for maternal imprinting of 45S ribosomal RNA genes in Xenopus hybrids. Dev Genes Evol 2014; 224:125-8. [PMID: 24477594 DOI: 10.1007/s00427-014-0464-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/17/2014] [Indexed: 12/22/2022]
Abstract
We discovered that gene clusters of 45S ribosomal RNA in Xenopus hybrid frogs are maternally imprinted, similar to X chromosome inactivation in marsupial females. Paternal expression was partly restored after chemical inhibition of histone deacetylation during larval stages. This provides a new spectacular example of epigenetic silencing and first evidence of genomic imprinting in amphibians.
Collapse
Affiliation(s)
- Pawel Michalak
- Virginia Bioinformatics Institute, Virginia Tech, Washington Street, MC 0477, Blacksburg, VA, 24061-0477, USA,
| |
Collapse
|
8
|
Abstract
Much of what we know about the role of epigenetics in the determination of phenotype has come from studies of inbred mice. Some unusual expression patterns arising from endogenous and transgenic murine alleles, such as the Agouti coat color alleles, have allowed the study of variegation, variable expressivity, transgenerational epigenetic inheritance, parent-of-origin effects, and position effects. These phenomena have taught us much about gene silencing and the probabilistic nature of epigenetic processes. Based on some of these alleles, large-scale mutagenesis screens have broadened our knowledge of epigenetic control by identifying and characterizing novel genes involved in these processes.
Collapse
Affiliation(s)
- Marnie Blewitt
- Walter and Eliza Hall Institute, Melbourne, 3052 Victoria, Australia
| | | |
Collapse
|
9
|
Stelzer Y, Ronen D, Bock C, Boyle P, Meissner A, Benvenisty N. Identification of novel imprinted differentially methylated regions by global analysis of human-parthenogenetic-induced pluripotent stem cells. Stem Cell Reports 2013; 1:79-89. [PMID: 24052944 PMCID: PMC3757747 DOI: 10.1016/j.stemcr.2013.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 11/16/2022] Open
Abstract
Parental imprinting is an epigenetic phenomenon by which genes are expressed in a monoallelic fashion, according to their parent of origin. DNA methylation is considered the hallmark mechanism regulating parental imprinting. To identify imprinted differentially methylated regions (DMRs), we compared the DNA methylation status between multiple normal and parthenogenetic human pluripotent stem cells (PSCs) by performing reduced representation bisulfite sequencing. Our analysis identified over 20 previously unknown imprinted DMRs in addition to the known DMRs. These include DMRs in loci associated with human disorders, and a class of intergenic DMRs that do not seem to be related to gene expression. Furthermore, the study showed some DMRs to be unstable, liable to differentiation or reprogramming. A comprehensive comparison between mouse and human DMRs identified almost half of the imprinted DMRs to be species specific. Taken together, our data map novel DMRs in the human genome, their evolutionary conservation, and relation to gene expression.
Collapse
Affiliation(s)
- Yonatan Stelzer
- Stem Cell Unit, Department of Genetics, Institute of Life Sciences, The Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|
10
|
Calaway JD, Domínguez JI, Hanson ME, Cambranis EC, Pardo-Manuel de Villena F, de la Casa-Esperon E. Intronic parent-of-origin dependent differential methylation at the Actn1 gene is conserved in rodents but is not associated with imprinted expression. PLoS One 2012; 7:e48936. [PMID: 23145029 PMCID: PMC3493592 DOI: 10.1371/journal.pone.0048936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/01/2012] [Indexed: 12/20/2022] Open
Abstract
Parent-of-origin differential DNA methylation has been associated with regulation of the preferential expression of paternal or maternal alleles of imprinted genes. Based on this association, recent studies have searched for parent-of-origin dependent differentially methylated regions in order to identify new imprinted genes in their vicinity. In a previous genome-wide analysis of mouse brain DNA methylation, we found a novel differentially methylated region in a CpG island located in the last intron of the alpha 1 Actinin (Actn1) gene. In this region, preferential methylation of the maternal allele was observed; however, there were no reports of imprinted expression of Actn1. Therefore, we have tested if differential methylation of this region is common to other tissues and species and affects the expression of Actn1. We have found that Actn1 differential methylation occurs in diverse mouse tissues. Moreover, it is also present in other murine rodents (rat), but not in the orthologous human region. In contrast, we have found no indication of an imprinted effect on gene expression of Actn1 in mice: expression is always biallelic regardless of sex, tissue type, developmental stage or isoform. Therefore, we have identified a novel parent-of-origin dependent differentially methylated region that has no apparent association with imprinted expression of the closest genes. Our findings sound a cautionary note to genome-wide searches on the use of differentially methylated regions for the identification of imprinted genes and suggest that parent-of-origin dependent differential methylation might be conserved for functions other that the control of imprinted expression.
Collapse
Affiliation(s)
- John D Calaway
- Curriculum in Genetics and Molecular Biology, Department of Genetics, Lineberger Comprehensive Cancer Center and Carolina Center for Genome Sciences of the University of North Carolina (UNC), Chapel Hill, NC, USA
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
DNA methylation mediates imprinted gene expression by passing an epigenomic state across generations and differentially marking specific regulatory regions on maternal and paternal alleles. Imprinting has been tied to the evolution of the placenta in mammals and defects of imprinting have been associated with human diseases. Although recent advances in genome sequencing have revolutionized the study of DNA methylation, existing methylome data remain largely untapped in the study of imprinting. We present a statistical model to describe allele-specific methylation (ASM) in data from high-throughput short-read bisulfite sequencing. Simulation results indicate technical specifications of existing methylome data, such as read length and coverage, are sufficient for full-genome ASM profiling based on our model. We used our model to analyze methylomes for a diverse set of human cell types, including cultured and uncultured differentiated cells, embryonic stem cells and induced pluripotent stem cells. Regions of ASM identified most consistently across methylomes are tightly connected with known imprinted genes and precisely delineate the boundaries of several known imprinting control regions. Predicted regions of ASM common to multiple cell types frequently mark noncoding RNA promoters and represent promising starting points for targeted validation. More generally, our model provides the analytical complement to cutting-edge experimental technologies for surveying ASM in specific cell types and across species.
Collapse
|
12
|
Epigenetic mechanisms of genomic imprinting: common themes in the regulation of imprinted regions in mammals, plants, and insects. GENETICS RESEARCH INTERNATIONAL 2012; 2012:585024. [PMID: 22567394 PMCID: PMC3335465 DOI: 10.1155/2012/585024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 09/26/2011] [Indexed: 01/08/2023]
Abstract
Genomic imprinting is a form of epigenetic inheritance whereby the regulation of a gene or chromosomal region is dependent on the sex of the transmitting parent. During gametogenesis, imprinted regions of DNA are differentially marked in accordance to the sex of the parent, resulting in parent-specific expression. While mice are the primary research model used to study genomic imprinting, imprinted regions have been described in a broad variety of organisms, including other mammals, plants, and insects. Each of these organisms employs multiple, interrelated, epigenetic mechanisms to maintain parent-specific expression. While imprinted genes and imprint control regions are often species and locus-specific, the same suites of epigenetic mechanisms are often used to achieve imprinted expression. This review examines some examples of the epigenetic mechanisms responsible for genomic imprinting in mammals, plants, and insects.
Collapse
|
13
|
Abstract
Chromosomes acquire different epigenetic marks during oogenesis and spermatogenesis. After fertilization, if retained and selected, these differences may result in imprinting effects. Rather than being an oddity, imprinting effects have been found in many sexually reproducing organisms. Interestingly, imprinting can result in disparate effects under different selective forces. At the same time, epigenetic mechanisms and selective pressures shared by sexually reproducing organisms could underlie common imprinting effects. Large-scale studies are revealing that parent-of-origin effects are more common than previously thought and supporting the important contribution of imprinting to many traits and diseases.
Collapse
|
14
|
O'Connell MJ, Loughran NB, Walsh TA, Donoghue MTA, Schmid KJ, Spillane C. A phylogenetic approach to test for evidence of parental conflict or gene duplications associated with protein-encoding imprinted orthologous genes in placental mammals. Mamm Genome 2010; 21:486-98. [PMID: 20931201 DOI: 10.1007/s00335-010-9283-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/01/2010] [Indexed: 12/21/2022]
Abstract
There are multiple theories on the evolution of genomic imprinting. We investigated whether the molecular evolution of true orthologs of known imprinted genes provides support for theories based on gene duplication or parental conflicts (where mediated by amino-acid changes). Our analysis of 34 orthologous genes demonstrates that the vast majority of mammalian imprinted genes have not undergone any subsequent significant gene duplication within placental species, suggesting that selection pressures against gene duplication events could be operating for imprinted loci. As antagonistic co-evolution between imprinted genes can regulate offspring growth, proteins mediating this interaction could be subject to rapid evolution via positive selection. Supporting this, we detect evidence of site specific positive selection for the imprinted genes OSBPL5 (and GNASXL), and detect lineage-specific positive selection for 14 imprinted genes where it is known that the gene is imprinted in a specific lineage, namely for: PLAGL1, IGF2, SLC22A18, OSBPL5, DCN, DLK1, RASGRF1, IGF2R, IMPACT, GRB10, NAPIL4, UBE3A, GATM and GABRG3. However, there is an overall lack of concordance between the known imprinting status of each gene (i.e. whether the gene is imprinted or biallelically expressed in a particular mammalian lineage) and positive selection. While only a small number of orthologs of imprinted loci display evidence of positive selection, we observe that the majority of orthologs of imprinted loci display high levels of micro-synteny conservation and have undergone very few cis- or trans-duplications in placental mammalian lineages.
Collapse
Affiliation(s)
- Mary J O'Connell
- Genetics and Biotechnology Lab, Department of Biochemistry and Biosciences Institute, University College Cork (UCC), Lee Maltings 2.10, Cork, Ireland.
| | | | | | | | | | | |
Collapse
|
15
|
MacDonald WA, Menon D, Bartlett NJ, Sperry GE, Rasheva V, Meller V, Lloyd VK. The Drosophila homolog of the mammalian imprint regulator, CTCF, maintains the maternal genomic imprint in Drosophila melanogaster. BMC Biol 2010; 8:105. [PMID: 20673338 PMCID: PMC2922095 DOI: 10.1186/1741-7007-8-105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 07/30/2010] [Indexed: 11/28/2022] Open
Abstract
Background CTCF is a versatile zinc finger DNA-binding protein that functions as a highly conserved epigenetic transcriptional regulator. CTCF is known to act as a chromosomal insulator, bind promoter regions, and facilitate long-range chromatin interactions. In mammals, CTCF is active in the regulatory regions of some genes that exhibit genomic imprinting, acting as insulator on only one parental allele to facilitate parent-specific expression. In Drosophila, CTCF acts as a chromatin insulator and is thought to be actively involved in the global organization of the genome. Results To determine whether CTCF regulates imprinting in Drosophila, we generated CTCF mutant alleles and assayed gene expression from the imprinted Dp(1;f)LJ9 mini-X chromosome in the presence of reduced CTCF expression. We observed disruption of the maternal imprint when CTCF levels were reduced, but no effect was observed on the paternal imprint. The effect was restricted to maintenance of the imprint and was specific for the Dp(1;f)LJ9 mini-X chromosome. Conclusions CTCF in Drosophila functions in maintaining parent-specific expression from an imprinted domain as it does in mammals. We propose that Drosophila CTCF maintains an insulator boundary on the maternal X chromosome, shielding genes from the imprint-induced silencing that occurs on the paternally inherited X chromosome. See commentary: http://www.biomedcentral.com/1741-7007/8/104
Collapse
|
16
|
Turan N, Katari S, Gerson LF, Chalian R, Foster MW, Gaughan JP, Coutifaris C, Sapienza C. Inter- and intra-individual variation in allele-specific DNA methylation and gene expression in children conceived using assisted reproductive technology. PLoS Genet 2010; 6:e1001033. [PMID: 20661447 PMCID: PMC2908687 DOI: 10.1371/journal.pgen.1001033] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 06/17/2010] [Indexed: 11/29/2022] Open
Abstract
Epidemiological studies have reported a higher incidence of rare disorders involving imprinted genes among children conceived using assisted reproductive technology (ART), suggesting that ART procedures may be disruptive to imprinted gene methylation patterns. We examined intra- and inter-individual variation in DNA methylation at the differentially methylated regions (DMRs) of the IGF2/H19 and IGF2R loci in a population of children conceived in vitro or in vivo. We found substantial variation in allele-specific methylation at both loci in both groups. Aberrant methylation of the maternal IGF2/H19 DMR was more common in the in vitro group, and the overall variance was also significantly greater in the in vitro group. We estimated the number of trophoblast stem cells in each group based on approximation of the variance of the binomial distribution of IGF2/H19 methylation ratios, as well as the distribution of X chromosome inactivation scores in placenta. Both of these independent measures indicated that placentas of the in vitro group were derived from fewer stem cells than the in vivo conceived group. Both IGF2 and H19 mRNAs were significantly lower in placenta from the in vitro group. Although average birth weight was lower in the in vitro group, we found no correlation between birth weight and IGF2 or IGF2R transcript levels or the ratio of IGF2/IGF2R transcript levels. Our results show that in vitro conception is associated with aberrant methylation patterns at the IGF2/H19 locus. However, very little of the inter- or intra-individual variation in H19 or IGF2 mRNA levels can be explained by differences in maternal DMR DNA methylation, in contrast to the expectations of current transcriptional imprinting models. Extraembryonic tissues of embryos cultured in vitro appear to be derived from fewer trophoblast stem cells. It is possible that this developmental difference has an effect on placental and fetal growth. We have screened a population of children conceived in vitro for epigenetic alterations at two loci that carry parent-of-origin specific methylation marks. We made the observation that epigenetic variability was greater in extraembryonic tissues than embryonic tissues in both groups, as has also been demonstrated in the mouse. The greater level of intra-individual variation in extraembryonic tissues of the in vitro group appears to result from these embryos having fewer trophoblast stem cells. We also made the unexpected observation that variability in parental origin-dependent epigenetic marking was poorly correlated with gene expression. In fact, there is such a high level of inter-individual variation in IGF2 transcript level that the presumed half-fold reduction in IGF2 mRNA accounted for by proper transcriptional imprinting versus complete loss of imprinting would account for less than 5% of the total population variance. Given this level of variability in the expression of an imprinted gene, the presumed operation of “parental conflict” as the selective force acting to maintain imprinted gene expression at the IGF2/H19 locus in the human should be revisited.
Collapse
Affiliation(s)
- Nahid Turan
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sunita Katari
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Leigh F. Gerson
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Raffi Chalian
- Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michael W. Foster
- Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - John P. Gaughan
- Biostatistics Consulting Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Christos Coutifaris
- Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Carmen Sapienza
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
17
|
Deng L, Zhang D, Richards E, Tang X, Fang J, Long F, Wang Y. Constructing an initial map of transmission distortion based on high density HapMap SNPs across the human autosomes. J Genet Genomics 2010; 36:703-9. [PMID: 20129397 DOI: 10.1016/s1673-8527(08)60163-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 11/12/2009] [Accepted: 11/24/2009] [Indexed: 11/19/2022]
Abstract
Transmission distortion (TD) is a significant departure from Mendelian predictions of genes or chromosomes to offspring. While many biological processes have been implicated, there is still much to be understood about TD in humans. Here we present our findings from a genome-wide scan for evidence of TD using haplotype data of 60 trio families from the International HapMap Project. Fisher's exact test was applied to assess the extent of TD in 629,958 SNPs across the autosomes. Based on the empirical distribution of P(Fisher) and further permutation tests, we identified 1,205 outlier loci and 224 candidate genes with TD. Using the PANTHER gene ontology database, we found 19 categories of biological processes with an enrichment of candidate genes. In particular, the "protein phosphorylation" category contained the largest number of candidates in both HapMap samples. Further analysis uncovered an intriguing non-synonymous change in PPP1R12B, a gene related to protein phosphorylation, which appears to influence the allele transmission from male parents in the YRI (Yoruba from Ibadan, Nigeria) population. Our findings also indicate an ethnicity-related property of TD signatures in HapMap samples and provide new clues for our understanding of TD in humans.
Collapse
|
18
|
Mosher RA. Maternal control of Pol IV-dependent siRNAs in Arabidopsis endosperm. THE NEW PHYTOLOGIST 2010; 186:358-364. [PMID: 20074090 DOI: 10.1111/j.1469-8137.2009.03144.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Small RNAs recently emerged as ubiquitous regulators of gene expression. However, the most abundant class of small RNAs in flowering plants is poorly understood. Known as Pol IV-dependent (p4-)siRNAs, these small RNAs are associated with transcriptional gene silencing, transposable elements and heterochromatin formation. Recent research demonstrates that they are initially expressed in the maternal gametophyte and uniparentally expressed from maternal chromosomes in developing endosperm. This unique expression pattern links p4-siRNAs to double fertilization, parental genome interactions and imprinted gene expression.
Collapse
Affiliation(s)
- Rebecca A Mosher
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
| |
Collapse
|
19
|
Kelly SA, Nehrenberg DL, Hua K, Gordon RR, Garland T, Pomp D. Parent-of-origin effects on voluntary exercise levels and body composition in mice. Physiol Genomics 2009; 40:111-20. [PMID: 19903762 DOI: 10.1152/physiolgenomics.00139.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite the health-related benefits of exercise, many people do not engage in enough activity to realize the rewards, and little is known regarding the genetic or environmental components that account for this individual variation. We created and phenotyped a large G(4) advanced intercross line originating from reciprocal crosses between mice with genetic propensity for increased voluntary exercise (HR line) and the inbred strain C57BL/6J. G(4) females (compared to males) ran significantly more when provided access to a running wheel and were smaller with a greater percentage of body fat pre- and postwheel access. Change in body composition resulting from a 6-day exposure to wheels varied between the sexes with females generally regulating energy balance more precisely in the presence of exercise. We observed parent-of-origin effects on most voluntary wheel running and body composition traits, which accounted for 3-13% of the total phenotypic variance pooled across sexes. G(4) individuals descended from progenitor (F(0)) crosses of HRfemale symbol and C57BL/6Jmale symbol ran greater distances, spent more time running, ran at higher maximum speeds/day, and had lower percent body fat and higher percent lean mass than mice descended from reciprocal progenitor crosses (C57BL/6Jfemale symbol x HRmale symbol). For some traits, significant interactions between parent of origin and sex were observed. We discuss these results in the context of sex dependent activity and weight loss patterns, the contribution of parent-of-origin effects to predisposition for voluntary exercise, and the genetic (i.e., X-linked or mtDNA variations), epigenetic (i.e., genomic imprinting), and environmental (i.e., in utero environment or maternal care) phenomena potentially modulating these effects.
Collapse
Affiliation(s)
- Scott A Kelly
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-7264, USA
| | | | | | | | | | | |
Collapse
|
20
|
Monoallelic expression and tissue specificity are associated with high crossover rates. Trends Genet 2009; 25:519-22. [PMID: 19850368 DOI: 10.1016/j.tig.2009.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 10/02/2009] [Accepted: 10/05/2009] [Indexed: 11/20/2022]
Abstract
What determines the recombination rate of a gene? Following the observation that, in humans, imprinted genes have unusually high recombination levels, we ask whether increased recombination is seen for other monoallelically expressed genes and, more generally, how transcriptional properties relate to recombination. We find that monoallelically expressed genes do have high crossover rates and discover a striking negative correlation between within-gene crossover rate and expression breadth. We hypothesise that these findings are possibly symptomatic of a more general, adverse relationship between recombination and transcription in the human genome.
Collapse
|
21
|
Santos PSC, Höhne J, Schlattmann P, König IR, Ziegler A, Uchanska-Ziegler B, Ziegler A. Assessment of transmission distortion on chromosome 6p in healthy individuals using tagSNPs. Eur J Hum Genet 2009; 17:1182-9. [PMID: 19259136 DOI: 10.1038/ejhg.2009.16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The best-documented example for transmission distortion (TD) to normal offspring are the t haplotypes on mouse chromosome 17. In healthy humans, TD has been described for whole chromosomes and for particular loci, but multiple comparisons have presented a statistical obstacle in wide-ranging analyses. Here we provide six high-resolution TD maps of the short arm of human chromosome 6 (Hsa6p), based on single-nucleotide polymorphism (SNP) data from 60 trio families belonging to two ethnicities that are available through the International HapMap Project. We tested all approximately 70,000 previously genotyped SNPs within Hsa6p by the transmission disequilibrium test. TagSNP selection followed by permutation testing was performed to adjust for multiple testing. A statistically significant evidence for TD was observed among male parents of European ancestry, due to strong and wide-ranging skewed segregation in a 730 kb long region containing the transcription factor-encoding genes SUPT3H and RUNX2, as well as the microRNA locus MIRN586. We also observed that this chromosomal segment coincides with pronounced linkage disequilibrium (LD), suggesting a relationship between TD and LD. The fact that TD may be taking place in samples not selected for a genetic disease implies that linkage studies must be assessed with particular caution in chromosomal segments with evidence of TD.
Collapse
|
22
|
Anaka M, Lynn A, McGinn P, Lloyd VK. Genomic imprinting in Drosophila has properties of both mammalian and insect imprinting. Dev Genes Evol 2009; 219:59-66. [PMID: 19031081 DOI: 10.1007/s00427-008-0267-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 10/29/2008] [Indexed: 11/30/2022]
Abstract
Genomic imprinting is a process that marks DNA, causing a change in gene or chromosome behavior, depending on the sex of the transmitting parent. In mammals, most examples of genomic imprinting affect the transcription of individual or small clusters of genes whereas in insects, genomic imprinting tends to silence entire chromosomes. This has been interpreted as evidence of independent evolutionary origins for imprinting. To investigate how these types of imprinting are related, we performed a phenotypic, molecular, and cytological analysis of an imprinted chromosome in Drosophila melanogaster. Analysis of this chromosome reveals that the imprint results in transcriptional silencing. Yet, the domain of transcriptional silencing is very large, extending at least 1.2 Mb and encompassing over 100 genes, and is associated with decreased somatic polytenization of the entire chromosome. We propose that repression of somatic replication in polytenized cells, as a secondary response to the imprint, acts to extend the size of the imprinted domain to an entire chromosome. Thus, imprinting in Drosophila has properties of both typical mammalian and insect imprinting which suggests that genomic imprinting in Drosophila and mammals is not fundamentally different; imprinting is manifest as transcriptional silencing of a few genes or silencing of an entire chromosome depending on secondary processes such as differences in gene density and polytenization.
Collapse
Affiliation(s)
- Matthew Anaka
- Department of Biology, Mt. Allison University, 63B York Street, Sackville, New Brunswick, Canada
| | | | | | | |
Collapse
|
23
|
Wen B, Wu H, Bjornsson H, Green RD, Irizarry R, Feinberg AP. Overlapping euchromatin/heterochromatin- associated marks are enriched in imprinted gene regions and predict allele-specific modification. Genome Res 2008; 18:1806-13. [PMID: 18849526 DOI: 10.1101/gr.067587.108] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Most genome-level analysis treats the two parental alleles equivalently, yet diploid genomes contain two parental genomes that are often epigenetically distinct. While single nucleotide polymorphisms (SNPs) can be used to distinguish these genomes, it would be useful to develop a generalized strategy for identifying candidate genes or regions showing allele-specific differences, independent of SNPs. We have explored this problem by looking for overlapping marks in the genome related to both euchromatin (histone H3 dimethyl lysine-4 [H3K4Me2]) and heterochromatin (DNA methylation [DNAm]). "Double hits" were defined by the intersection of H3K4Me2 and DNAm. For the top 5% of marks, defined by a sliding window, imprinted gene regions were enriched for double hits 5.4-fold. When the location information of CTCF binding sites were integrated, the "triple hits" were enriched 76-fold for known imprinted genes in the regions studied. The double hits in imprinted genes were found to occur usually at the site of alternative or antisense transcripts. In addition, four of four imprinted genes tested showing double hits also showed allele-specific methylation. We suggest that overlapping euchromatin/heterochromatin marks are common and are enriched for epigenetically distinct parental chromosome regions. Furthermore, we developed a novel approach to identifying allele-specific marks that is SNP independent, by fractionating using H3K4Me2 antibodies followed by DNA methylation analysis.
Collapse
Affiliation(s)
- Bo Wen
- Department of Medicine and Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
24
|
Wen B, Wu H, Bjornsson H, Green RD, Irizarry RA, Feinberg AP. Overlapping euchromatin/heterochromatin-associated marks are enriched in imprinted gene regions and predict allele-specific modification. Genome Res 2008. [DOI: 10.1101/gr.067587.107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Epigenetic processes in a tetraploid mammal. Mamm Genome 2008; 19:439-47. [PMID: 18758856 DOI: 10.1007/s00335-008-9131-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 07/01/2008] [Indexed: 10/21/2022]
Abstract
Polyploidy has played a most important role in speciation and evolution of plants and animals. It is thought that low frequency of polyploidy in mammals is due to a dosage imbalance that would interfere with proper development in mammalian polyploids. The first tetraploid mammal, Tympanoctomys barrerae (Octodontidae), appears to be an exception to this rule. In this study we investigated X chromosome inactivation (XCI) and genomic imprinting in T. barrerae, two epigenetic processes usually involved in dosage control in mammalian genomes. The imprinting status of the Peg1 gene was determined by Peg1 allelic expression studies. The inactive X chromosome was identified on interphase nuclei by immunofluorescence using specific antisera raised against Met3H3K27 and macroH2A1. Quantitative PCR was used to compare the Peg1/Dmd ratio in T. barrerae and in its most closely related diploid species, Octomys mimax. Our data demonstrate that parental-specific silencing of at least one gene and normal X chromosomal dosage mechanism are conserved in the tetraploid genome. We hypothesize a concerted action of genetic and epigenetic mechanisms during the process of functional diploidization of this tetraploid genome.
Collapse
|
26
|
Paigen K, Szatkiewicz JP, Sawyer K, Leahy N, Parvanov ED, Ng SHS, Graber JH, Broman KW, Petkov PM. The recombinational anatomy of a mouse chromosome. PLoS Genet 2008; 4:e1000119. [PMID: 18617997 PMCID: PMC2440539 DOI: 10.1371/journal.pgen.1000119] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 06/04/2008] [Indexed: 11/18/2022] Open
Abstract
Among mammals, genetic recombination occurs at highly delimited sites known as recombination hotspots. They are typically 1–2 kb long and vary as much as a 1,000-fold or more in recombination activity. Although much is known about the molecular details of the recombination process itself, the factors determining the location and relative activity of hotspots are poorly understood. To further our understanding, we have collected and mapped the locations of 5,472 crossover events along mouse Chromosome 1 arising in 6,028 meioses of male and female reciprocal F1 hybrids of C57BL/6J and CAST/EiJ mice. Crossovers were mapped to a minimum resolution of 225 kb, and those in the telomere-proximal 24.7 Mb were further mapped to resolve individual hotspots. Recombination rates were evolutionarily conserved on a regional scale, but not at the local level. There was a clear negative-exponential relationship between the relative activity and abundance of hotspot activity classes, such that a small number of the most active hotspots account for the majority of recombination. Females had 1.2× higher overall recombination than males did, although the sex ratio showed considerable regional variation. Locally, entirely sex-specific hotspots were rare. The initiation of recombination at the most active hotspot was regulated independently on the two parental chromatids, and analysis of reciprocal crosses indicated that parental imprinting has subtle effects on recombination rates. It appears that the regulation of mammalian recombination is a complex, dynamic process involving multiple factors reflecting species, sex, individual variation within species, and the properties of individual hotspots. In most eukaryotic organisms, recombination—the exchange of genetic information between homologous chromosomes—ensures the proper recognition and segregation of chromosomes during meiosis. Recombination events in mammals are not randomly positioned along the chromosomes but occur in preferential 1–2-kilobase sequences termed hotspots. Different species such as humans and mice do not share hotspots, although the same principles almost certainly regulate their placement in the genome. Hotspot positions and activities depend on genetic background and show sex-specific differences. In this study, we present a detailed analysis of recombination activity along the largest mouse chromosome, finding that recombination is regulated on multiple levels, including regional positioning relative to the chromosomal ends, local gene content, sex-specific mechanisms of hotspot recognition, and parental origin. Our results will contribute to further understanding of one of the most fundamental biological processes and are likely to cast light on several aspects of population genetics and evolutionary biology, as well as enhance our practical ability to define the genetic components of human disease.
Collapse
Affiliation(s)
- Kenneth Paigen
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Jin P. Szatkiewicz
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Kathryn Sawyer
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Nicole Leahy
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Emil D. Parvanov
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Siemon H. S. Ng
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Joel H. Graber
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Karl W. Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Petko M. Petkov
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| |
Collapse
|
27
|
Garnier O, Laouiellé-Duprat S, Spillane C. Genomic imprinting in plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 626:89-100. [PMID: 18372793 DOI: 10.1007/978-0-387-77576-0_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Olivier Garnier
- Genetics and Biotechnology Lab, Department of Biochemistry, Biosciences Institute, University College Cork, Ireland
| | | | | |
Collapse
|
28
|
Luedi PP, Dietrich FS, Weidman JR, Bosko JM, Jirtle RL, Hartemink AJ. Computational and experimental identification of novel human imprinted genes. Genes Dev 2007; 17:1723-30. [PMID: 18055845 PMCID: PMC2099581 DOI: 10.1101/gr.6584707] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Accepted: 08/31/2007] [Indexed: 01/19/2023]
Abstract
Imprinted genes are essential in embryonic development, and imprinting dysregulation contributes to human disease. We report two new human imprinted genes: KCNK9 is predominantly expressed in the brain, is a known oncogene, and may be involved in bipolar disorder and epilepsy, while DLGAP2 is a candidate bladder cancer tumor suppressor. Both genes lie on chromosome 8, not previously suspected to contain imprinted genes. We identified these genes, along with 154 others, based on the predictions of multiple classification algorithms using DNA sequence characteristics as features. Our findings demonstrate that DNA sequence characteristics, including recombination hot spots, are sufficient to accurately predict the imprinting status of individual genes in the human genome.
Collapse
Affiliation(s)
- Philippe P. Luedi
- Center for Bioinformatics and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Fred S. Dietrich
- Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Jennifer R. Weidman
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Jason M. Bosko
- Department of Computer Science, Duke University, Durham, North Carolina 27708, USA
| | - Randy L. Jirtle
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Alexander J. Hartemink
- Center for Bioinformatics and Computational Biology, Duke University, Durham, North Carolina 27708, USA
- Department of Computer Science, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
29
|
A novel sampling design to explore gene-longevity associations: the ECHA study. Eur J Hum Genet 2007; 16:236-42. [PMID: 17989723 DOI: 10.1038/sj.ejhg.5201950] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To investigate the genetic contribution to familial similarity in longevity, we set up a novel experimental design where cousin-pairs born from siblings who were concordant or discordant for the longevity trait were analyzed. To check this design, two chromosomal regions already known to encompass longevity-related genes were examined: 6p21.3 (genes TNFalpha, TNFbeta, HSP70.1) and 11p15.5 (genes SIRT3, HRAS1, IGF2, INS, TH). Population pools of 1.6, 2.3 and 2.0 million inhabitants were screened, respectively, in Denmark, France and Italy to identify families matching the design requirements. A total of 234 trios composed by one centenarian, his/her child and a child of his/her concordant or discordant sib were collected. By using population-specific allele frequencies, we reconstructed haplotype phase and estimated the likelihood of Identical By Descent (IBD) haplotype sharing in cousin-pairs born from concordant and discordant siblings. In addition, we analyzed haplotype transmission from centenarians to offspring, and a statistically significant Transmission Ratio Distortion (TRD) was observed for both chromosomal regions in the discordant families (P=0.007 for 6p21.3 and P=0.015 for 11p15.5). In concordant families, a marginally significant TRD was observed at 6p21.3 only (P=0.06). Although no significant difference emerged between the two groups of cousin-pairs, our study gave new insights on the hindrances to recruiting a suitable sample to obtain significant IBD data on longevity-related chromosomal regions. This will allow to dimension future sampling campaigns to study-genetic basis of human longevity.
Collapse
|
30
|
Labialle S, Yang L, Ruan X, Villemain A, Schmidt JV, Hernandez A, Wiltshire T, Cermakian N, Naumova AK. Coordinated diurnal regulation of genes from the Dlk1–Dio3 imprinted domain: implications for regulation of clusters of non-paralogous genes. Hum Mol Genet 2007; 17:15-26. [PMID: 17901046 DOI: 10.1093/hmg/ddm281] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The functioning of the genome is tightly related to its architecture. Therefore, understanding the relationship between different regulatory mechanisms and the organization of chromosomal domains is essential for understanding genome regulation. The majority of imprinted genes are assembled into clusters, share common regulatory elements, and, hence, represent an attractive model for studies of regulation of clusters of non-paralogous genes. Here, we investigated the relationship between genomic imprinting and diurnal regulation of genes from the imprinted domain of mouse chromosome 12. We compared gene expression patterns in C57BL/6 mice and congenic mice that carry the imprinted region from a Mus musculus molossinus strain MOLF/Ei. In the C57BL/6 mice, a putative enhancer/oscillator regulated the expression of only Mico1/Mico1os, whereas in the congenic mice its influence was spread onto Rtl1as, Dio3 and Dio3os, i.e. the distal part of the imprinted domain, resulting in coordinated diurnal variation in expression of five genes. Using additional congenic strains we determined that in C57BL/6 the effect of the putative enhancer/oscillator was attenuated by a linked dominant trans-acting factor located in the distal portion of chromosome 12. Our data demonstrate that (i) in adult organs, mRNA levels of several imprinted genes vary during the day, (ii) genetic variation may remove constraints on the influence of an enhancer and lead to spreading of its effect onto neighboring genes, thereby generating genotype-dependent expression patterns and (iii) different regulatory mechanisms within the same domain act independently and do not seem to interfere with each other.
Collapse
Affiliation(s)
- Stéphane Labialle
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The epigenetic events that occur during the development of the mammalian embryo are essential for correct gene expression and cell-lineage determination. Imprinted genes are expressed from only one parental allele due to differential epigenetic marks that are established during gametogenesis. Several theories have been proposed to explain the role that genomic imprinting has played over the course of mammalian evolution, but at present it is not clear if a single hypothesis can fully account for the diversity of roles that imprinted genes play. In this review, we discuss efforts to define the extent of imprinting in the mouse genome, and suggest that different imprinted loci may have been wrought by distinct evolutionary forces. We focus on a group of small imprinted domains, which consist of paternally expressed genes embedded within introns of multiexonic transcripts, to discuss the evolution of imprinting at these loci.
Collapse
|
32
|
Montgomery GW, Zhu G, Hottenga JJ, Duffy DL, Heath AC, Boomsma DI, Martin NG, Visscher PM. HLA and genomewide allele sharing in dizygotic twins. Am J Hum Genet 2006; 79:1052-8. [PMID: 17186463 PMCID: PMC1698703 DOI: 10.1086/510136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 10/05/2006] [Indexed: 11/03/2022] Open
Abstract
Gametic selection during fertilization or the effects of specific genotypes on the viability of embryos may cause a skewed transmission of chromosomes to surviving offspring. A recent analysis of transmission distortion in humans reported significant excess sharing among full siblings. Dizygotic (DZ) twin pairs are a special case of the simultaneous survival of two genotypes, and there have been reports of DZ pairs with excess allele sharing around the HLA locus, a candidate locus for embryo survival. We performed an allele-sharing study of 1,592 DZ twin pairs from two independent Australian cohorts, of which 1,561 pairs were informative for linkage on chromosome 6. We also analyzed allele sharing in 336 DZ twin pairs from The Netherlands. We found no evidence of excess allele sharing, either at the HLA locus or in the rest of the genome. In contrast, we found evidence of a small but significant (P=.003 for the Australian sample) genomewide deficit in the proportion of two alleles shared identical by descent among DZ twin pairs. We reconciled conflicting evidence in the literature for excess genomewide allele sharing by performing a simulation study that shows how undetected genotyping errors can lead to an apparent deficit or excess of allele sharing among sibling pairs, dependent on whether parental genotypes are known. Our results imply that gene-mapping studies based on affected sibling pairs that include DZ pairs will not suffer from false-positive results due to loci involved in embryo survival.
Collapse
Affiliation(s)
- Grant W Montgomery
- Molecular and Genetic Epidemiology Laboratories, Queensland Institute of Medical Research, Brisbane, QLD 4029, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Evans DM, Morris AP, Cardon LR, Sham PC. A note on the power to detect transmission distortion in parent-child trios via the transmission disequilibrium test. Behav Genet 2006; 36:947-50. [PMID: 16804748 DOI: 10.1007/s10519-006-9087-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 05/19/2006] [Indexed: 10/24/2022]
Abstract
Transmission distortion refers to deviation from the normal 50:50 transmission of alleles from parents to offspring. Identification of genomic regions which undergo distortion is necessary for the correct interpretation of linkage and association studies, since tests of linkage using affected relative pairs and family based tests of association will yield spurious results in the presence of transmission distortion. With the increasing availability of genome-wide high density SNP data (e.g. from the International HapMap project), identification of these loci is now a real possibility. Here we present an analytical formula which demonstrates that the power to detect transmission distortion is a simple function of the number of heterozygous parents in the sample and the level of distortion at the locus. Our results indicate that whilst it will be possible to identify loci undergoing major levels of distortion using tens or hundreds of trios, large sample sizes in the order of tens of thousands of trios will be necessary to detect minor levels of distortion with appreciable power. The corollary is that genome-wide searches are unlikely to identify loci where the level of distortion is small, although they may serve to identify interesting regions worthy of follow up.
Collapse
Affiliation(s)
- D M Evans
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| | | | | | | |
Collapse
|
34
|
Vincent Q, Alcaïs A, Alter A, Schurr E, Abel L. Quantifying Genomic Imprinting in the Presence of Linkage. Biometrics 2006; 62:1071-80. [PMID: 17156281 DOI: 10.1111/j.1541-0420.2006.00610.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genomic imprinting decreases the power of classical linkage analysis, in which paternal and maternal transmissions of marker alleles are equally weighted. Several methods have been proposed for taking genomic imprinting into account in the model-free linkage analysis of binary traits. However, none of these methods are suitable for the formal identification and quantification of genomic imprinting in the presence of linkage. In addition, the available methods are designed for use with pure sib-pairs, requiring artificial decomposition in cases of larger sibships, leading to a loss of power. We propose here the maximum likelihood binomial method adaptive for imprinting (MLB-I), which is a unified analytic framework giving rise to specific tests in sibships of any size for (i) linkage adaptive to imprinting, (ii) genomic imprinting in the presence of linkage, and (iii) partial versus complete genomic imprinting. In addition, we propose an original measure for quantifying genomic imprinting. We have derived and validated the distribution of the three tests under their respective null hypotheses for various genetic models, and have assessed the power of these tests in simulations. This method can readily be applied to genome-wide scanning, as illustrated here for leprosy sibships. Our approach provides a novel tool for dissecting genomic imprinting in model-free linkage analysis, and will be of considerable value for identifying and evaluating the contribution of imprinted genes to complex diseases.
Collapse
Affiliation(s)
- Quentin Vincent
- Laboratory of Human Genetics of Infectious Diseases, University of Paris René Descartes-INSERM U.550, Necker Medical School, Paris, 75015, France
| | | | | | | | | |
Collapse
|
35
|
Sandovici I, Kassovska-Bratinova S, Vaughan JE, Stewart R, Leppert M, Sapienza C. Human imprinted chromosomal regions are historical hot-spots of recombination. PLoS Genet 2006; 2:e101. [PMID: 16839189 PMCID: PMC1487178 DOI: 10.1371/journal.pgen.0020101] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 05/22/2006] [Indexed: 01/10/2023] Open
Abstract
Human recombination rates vary along the chromosomes as well as between the two sexes. There is growing evidence that epigenetic factors may have an important influence on recombination rates, as well as on crossover position. Using both public database analysis and wet-bench approaches, we revisited the relationship between increased rates of meiotic recombination and genome imprinting. We constructed metric linkage disequilibrium (LD) maps for all human chromosomal regions known to contain one or more imprinted genes. We show that imprinted regions contain significantly more LD units (LDU) and have significantly more haplotype blocks of smaller sizes than flanking nonimprinted regions. There is also an excess of hot-spots of recombination at imprinted regions, and this is likely to do with the presence of imprinted genes, per se. These findings indicate that imprinted chromosomal regions are historical “hot-spots” of recombination. We also demonstrate, by direct segregation analysis at the 11p15.5 imprinted region, that there is remarkable agreement between sites of meiotic recombination and steps in LD maps. Although the increase in LDU/Megabase at imprinted regions is not associated with any significant enrichment for any particular sequence class, major sequence determinants of recombination rates seem to differ between imprinted and control regions. Interestingly, fine-mapping of recombination events within the most male meiosis–specific recombination hot-spot of Chromosome 11p15.5 indicates that many events may occur within or directly adjacent to regions that are differentially methylated in somatic cells. Taken together, these findings support the involvement of a combination of specific DNA sequences and epigenetic factors as major determinants of hot-spots of recombination at imprinted chromosomal regions. Now that the finished reference sequence of the human genome is available, focus has shifted towards understanding fundamental aspects of its functions. Meiotic recombination between maternal and paternal chromosomes serves an important mechanistic and evolutionary role in the transmission of the genome. Although significant progress has been made towards fine-mapping meiotic recombination events along human chromosomes, the characterization of factors that influence the position and frequency of crossovers remains a challenge. These authors have used data generated by the International HapMap Project as well as experimental analysis of a collection of three-generation Centre d'Etude du Polymorphisme Humain (CEPH) families, to show that chromosomal regions containing imprinted genes (i.e., genes transcribed only from one allele in a parent-of-origin–specific manner) exhibit higher rates of meiotic recombination than nonimprinted chromosomal regions. This characteristic is common for all major human populations. The major sequence determinants of recombination rates are likely to be different at imprinted and nonimprinted regions. Moreover, epigenetic modifications associated with imprinted regions may play an important role in increasing the frequency of meiotic crossovers and determining their position. Taken together these results suggest that a complex series of factors control meiotic recombination in the human.
Collapse
Affiliation(s)
- Ionel Sandovici
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sacha Kassovska-Bratinova
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joe E Vaughan
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Rae Stewart
- College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Mark Leppert
- Eccles Institute of Human Genetics, and Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Carmen Sapienza
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Sandovici I, Kassovska-Bratinova S, Loredo-Osti JC, Leppert M, Suarez A, Stewart R, Bautista FD, Schiraldi M, Sapienza C. Interindividual variability and parent of origin DNA methylation differences at specific human Alu elements. Hum Mol Genet 2005; 14:2135-43. [PMID: 15972727 DOI: 10.1093/hmg/ddi218] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigated the CpG methylation of 19 specific members of Alu sub-families in human DNA isolated from whole blood, using an assay based on methylation-sensitive restriction endonuclease digestion of genomic DNA and 'hot-stop' polymerase chain reaction. We found significant interindividual variability in the level of methylation for specific Alu elements among the members of 48 three-generation families. Surprisingly, some of the elements also displayed quantitative parent of origin methylation differences; i.e. the mean level of methylation differed significantly when the insertions were transmitted through paternal versus maternal meiosis. Bisulfite sequence analysis of individual elements at such loci suggests, further, that maternal and paternal elements differ in the propensity of particular CpG sites to become unmethylated. Some individuals who exhibited high levels of methylation at specific Alu elements came from families in which more than one member also exhibited abnormal patterns of methylation at the differentially methylated regions of the IGF2/H19 or IGF2R loci, suggesting that there may be heritable differences between individuals in the fidelity with which allelic DNA methylation differences are established or maintained. Quantitative parental origin differences in methylation were identified only for Alu elements that lie in sub-telomeric or sub-centromeric bands of human chromosomes, whereas those assayed at intermediate positions did not exhibit any significant differences. The centromere/telomere restricted location of the methylation differences and the fact that none of these differences occur in regions of chromosomes known to contain transcriptionally imprinted genes suggest that maternal/paternal epigenetic modifications may play additional roles in processes other than transcriptional control.
Collapse
Affiliation(s)
- Ionel Sandovici
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Weber M, Hagège H, Aptel N, Brunel C, Cathala G, Forné T. Epigenetic regulation of mammalian imprinted genes: from primary to functional imprints. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 38:207-36. [PMID: 15881897 DOI: 10.1007/3-540-27310-7_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Parental genomic imprinting was discovered in mammals some 20 years ago. This phenomenon, crucial for normal development, rapidly became a key to understanding epigenetic regulation of mammalian gene expression. In this chapter we present a general overview of the field and describe in detail the 'imprinting cycle'. We provide selected examples that recapitulate our current knowledge of epigenetic regulation at imprinted loci. These epigenetic mechanisms lead to the stable repression of imprinted genes on one parental allele by interfering with 'formatting' for gene expression that usually occurs on expressed alleles. From this perspective, genomic imprinting remarkably illustrates the complexity of the epigenetic mechanisms involved in the control of gene expression in mammals.
Collapse
Affiliation(s)
- Michaël Weber
- Institut de Génétique Moléculaire de Montpellier, UMR5535 CNRS-UMII, IFR122, 34293 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
38
|
Buglia GL, Ferraro M. Germline cyst development and imprinting in male mealybug Planococcus citri. Chromosoma 2004; 113:284-94. [PMID: 15503092 DOI: 10.1007/s00412-004-0317-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 08/27/2004] [Accepted: 09/13/2004] [Indexed: 11/28/2022]
Abstract
In the epigenetic modifications involved in the phenomenon of imprinting, which is thought to take place during gametogenesis, one of the primary roles is exerted by histone tail modifications acting on chromatin structure. What is more, in insects like mealybugs, with a lecanoid chromosome system, imprinting is strictly related to sex determination. In many diverse species gametes originate in specific, highly evolutionarily conserved structures called germline cysts. The use of staining techniques specific for fusomal components like F-actin has allowed us to describe for the first time the morphogenesis of male germline cysts in the mealybug Planococcus citri. Antibodies to anti-methylated lysine 9 of histone H3 (MeLy9-H3) and anti-heterochromatin protein 1 (HP1) were used during cyst formation to investigate the involvement of these epigenetic modifications in the phenomenon of imprinting and their possible concerted action in sex determination in P. citri. These observations indicate: (i) a specific role for F-actin in the segregation, typical of the lecanoid chromosome system, of genomes of paternal origin; (ii) that the two vital gametes originating from a given meiosis, although carrying the same genome, differ in the levels of both MeLy9-H3 and HP1, one of them being more heavily labelled by both antibodies.
Collapse
Affiliation(s)
- Giovanni Luigi Buglia
- Department of Genetics and Molecular Biology, University of Rome La Sapienza, P. le A. Moro 5, 00185 Rome, Italy
| | | |
Collapse
|
39
|
Curley JP, Barton S, Surani A, Keverne EB. Coadaptation in mother and infant regulated by a paternally expressed imprinted gene. Proc Biol Sci 2004; 271:1303-9. [PMID: 15306355 PMCID: PMC1691726 DOI: 10.1098/rspb.2004.2725] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study investigates how a targeted mutation of a paternally expressed imprinted gene regulates multiple aspects of foetal and post-natal development including placental size, foetal growth, suckling and post-natal growth, weaning age and puberty onset. This same mutation in a mother impairs maternal reproductive success with reduced maternal care, reduced maternal food intake during pregnancy, and impaired milk let-down, which in turn reduces infant growth and delays weaning and onset of puberty. The significance of these coadaptive traits being synchronized in mother and offspring by the same paternally expressed imprinted gene ensures that offspring that have extracted 'good' maternal nurturing will themselves be both well provisioned and genetically predisposed towards 'good' mothering.
Collapse
Affiliation(s)
- James P Curley
- Sub-Department of Animal Behaviour, University of Cambridge, Madingley, Cambridge CB3 8AA, UK
| | | | | | | |
Collapse
|
40
|
Zöllner S, Wen X, Hanchard NA, Herbert MA, Ober C, Pritchard JK. Evidence for extensive transmission distortion in the human genome. Am J Hum Genet 2004; 74:62-72. [PMID: 14681832 PMCID: PMC1181913 DOI: 10.1086/381131] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2003] [Accepted: 10/17/2003] [Indexed: 11/03/2022] Open
Abstract
It is a basic principle of genetics that each chromosome is transmitted from parent to offspring with a probability that is given by Mendel's laws. However, several known biological processes lead to skewed transmission probabilities among surviving offspring and, therefore, to excess genetic sharing among relatives. Examples include in utero selection against deleterious mutations, meiotic drive, and maternal-fetal incompatibility. Although these processes affect our basic understanding of inheritance, little is known about their overall impact in humans or other mammals. In this study, we examined genome screen data from 148 nuclear families, collected without reference to phenotype, to look for departures from Mendelian transmission proportions. Using single-point and multipoint linkage analysis, we detected a modest but significant genomewide shift towards excess genetic sharing among siblings (average sharing of 50.43% for the autosomes; P=.009). Our calculations indicate that many loci with skewed transmission are required to produce a genomewide shift of this magnitude. Since transmission distortion loci are subject to strong selection, this raises interesting questions about the evolutionary forces that keep them polymorphic. Finally, our results also have implications for mapping disease genes and for the genetics of fertility.
Collapse
Affiliation(s)
- Sebastian Zöllner
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
41
|
Gorelick R, Bertram SM. Maintaining heritable variation via sex-limited temporally fluctuating selection: a phenotypic model accommodating non-Mendelian epigenetic effects. Theory Biosci 2003. [DOI: 10.1007/s12064-003-0061-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Abstract
Sexual reproduction results from the fusion of gametes in which the chromatin configuration of maternal and paternal chromosomes is distinct at fertilization. Although many of the differences are erased during successive cellular divisions and chromatin modifications, some are retained in both somatic and germline cells. These epigenetic modifications can confer different characteristics on maternal and paternal chromosomes and such differences can be selected during any process that has the ability to distinguish between homologues. The end result of these selective forces are parental origin effects, writ large. The range of effects observed, including transcriptional imprinting and effects on chromosome segregation and heterochromatization, reflects the diversity of selective forces in operation. However, a closer look at these effects suggests that parental origin-dependent differences in chromatin structure might be subject to some common forces and that these forces may explain many of the "nontranscriptional" parental origin effects observed in mammals.
Collapse
Affiliation(s)
- Elena de la Casa-Esperón
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| | | |
Collapse
|
43
|
Abstract
Despite significant effort, understanding of the molecular causes and mechanisms of bipolar disorder (BD) remains a major challenge. Numerous molecular genetic linkage and association studies have been conducted over the last two decades; however, the data are quite inconsistent or even controversial. This article develops an argument that molecular studies of BD would benefit significantly from adding an epigenetic (epiG) perspective. EpiG factors refer to modifications of DNA and chromatin that "orchestrate" the activity of the genome, including regulation of gene expression. EpiG mechanisms are consistent with various non-Mendelian features of BD such as the relatively high degree of discordance in monozygotic (MZ) twins, the critical age group for susceptibility to the disease, clinical differences in males and females, and fluctuation of the disease course, including interchanges of manic and depressive phases, among others. Apart from the phenomenological consistency, molecular epiG peculiarities may shed new light on the understanding of controversial molecular genetic findings. The relevance of epigenetics for the molecular studies of BD is demonstrated using the examples of genetic studies of BD on chromosome 11p and the X chromosome. A spectrum of epiG mechanisms such as genomic imprinting, tissue-specific effects, paramutagenesis, and epiG polymorphism, as well as epiG regulation of X chromosome inactivation, is introduced. All this serves the goal of demonstrating that epiG factors cannot be ignored anymore in complex phenotypes such as BD, and systematic large-scale epiG studies of BD have to be initiated.
Collapse
Affiliation(s)
- Arturas Petronis
- Center for Addiction and Mental Health, University of Toronto, Toornto, Canada.
| |
Collapse
|
44
|
GORELICK ROOT. Evolution of dioecy and sex chromosomes via methylation driving Muller's ratchet. Biol J Linn Soc Lond 2003. [DOI: 10.1046/j.1095-8312.2003.00244.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
45
|
Vacík T, Forejt J. Quantification of expression and methylation of the Igf2r imprinted gene in segmental trisomic mouse model. Genomics 2003; 82:261-8. [PMID: 12906851 DOI: 10.1016/s0888-7543(03)00118-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Insulin-like growth factor 2 receptor (Igf2r), a maternally expressed imprinted gene, is triplicated in Ts43H trisomic mice. To verify its expression in a trisomic mode, we examined the allele-specific transcripts and relative levels of Igf2r mRNA in trisomic and control mice. Igf2r was expressed from the maternal allele(s) and silenced on the paternal allele(s) in most tissues of maternally or paternally derived Ts43H mice. The triallelic expression was observed in adult brain and testis and in embryonic head, but the antisense transcript, Air, was strictly paternal, and methylation of region 2 was strictly maternal in all tissues. The Igf2r expression in maternally derived trisomics, with two active copies of the gene, did not exceed the average mRNA levels of euploid controls with monoallelic expression. Thus, an indication is presented for a dosage compensation mechanism of Igf2r in the trisomic context.
Collapse
Affiliation(s)
- Tomás Vacík
- Institute of Molecular Genetics and Center of Integrated Genomics, Academy of Sciences of the Czech Republic, Vídenská 1083,142 20 4, Prague, Czech Republic
| | | |
Collapse
|
46
|
Abstract
Genomic imprinting is traditionally defined as an epigenetic process leading to parental origin-dependent monoallelic expression of some genes. The current paradigm considers this unusual expression mode as the biological raison d être of imprinting. The present chapter proposes a critical review of our ideas about genomic imprinting in light of more recent investigatory progress. Many observations are difficult to explain on the basis of the current paradigm. Studies of allelic expression of many imprinted genes and other characteristics of chromatin domains containing clustered imprinted genes, such as replication and chromatin structure, revealed an unexpectedly complex situation that challenged the role of genomic imprinting as a mechanism of transcriptional regulation. The emerging picture is that parental imprinting is a feature of large chromatin domains with their own domain-wide characteristics. The primary biological function of imprinting may reside in the differential chromatin structure of the parental chromosomal regions and not in the monoallelic expression of some of the genes contained within them.
Collapse
Affiliation(s)
- Andras Paldi
- Institut Jacques Monod, CNRS, Ecole Pratique des Hautes Etudes, 75005 Paris, France
| |
Collapse
|
47
|
Preis JI, Downes M, Oates NA, Rasko JEJ, Whitelaw E. Sensitive flow cytometric analysis reveals a novel type of parent-of-origin effect in the mouse genome. Curr Biol 2003; 13:955-9. [PMID: 12781134 DOI: 10.1016/s0960-9822(03)00335-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The discovery of classic parental imprinting came, at least in part, from the analysis of transgene expression in mice. It was noticed that some transgenes were only expressed following paternal transmission and that others sometimes showed differential patterns of methylation depending on the parent of origin. Here, we present evidence of a novel and more subtle form of parental imprinting by taking advantage of the highly sensitive detection of murine transgene expression afforded by flow cytometry. We have produced nine lines of transgenic mice carrying a GFP reporter linked to the human alpha-globin promoter and enhancer elements, which direct expression to erythroid cells. A high proportion of transgenic lines, four of the nine, display significantly lower levels of expression following maternal transmission. Both the percentage of expressing cells and the mean fluorescence in expressing cells are between 10% and 30% lower following maternal transmission. These effects are reversible upon passage through the opposite germline. This finding raises the possibility that differences in the epigenetic state of the maternal and paternal chromosomes in adult somatic cells are more widespread than was previously thought.
Collapse
Affiliation(s)
- Jost I Preis
- School of Molecular and Microbial Biosciences, Building G08, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
48
|
Wilkins JF, Haig D. What good is genomic imprinting: the function of parent-specific gene expression. Nat Rev Genet 2003; 4:359-68. [PMID: 12728278 DOI: 10.1038/nrg1062] [Citation(s) in RCA: 318] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Parent-specific gene expression (genomic imprinting) is an evolutionary puzzle because it forgoes an important advantage of diploidy--protection against the effects of deleterious recessive mutations. Three hypotheses claim to have found a countervailing selective advantage of parent-specific expression. Imprinting is proposed to have evolved because it enhances evolvability in a changing environment, protects females against the ravages of invasive trophoblast, or because natural selection acts differently on genes of maternal and paternal origin in interactions among kin. The last hypothesis has received the most extensive theoretical development and seems the best supported by the properties of known imprinted genes. However, the hypothesis is yet to provide a compelling explanation for many examples of imprinting.
Collapse
Affiliation(s)
- Jon F Wilkins
- Society of Fellows, 7 Divinity Avenue, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
49
|
Abstract
Genomic imprinting in gametogenesis marks a subset of mammalian genes for parent-of-origin-dependent monoallelic expression in the offspring. Embryological and classical genetic experiments in mice that uncovered the existence of genomic imprinting nearly two decades ago produced abnormalities of growth or behavior, without severe developmental malformations. Since then, the identification and manipulation of individual imprinted genes has continued to suggest that the diverse products of these genes are largely devoted to controlling pre- and post-natal growth, as well as brain function and behavior. Here, we review this evidence, and link our discussion to a website (http://www.otago.ac.nz/IGC) containing a comprehensive database of imprinted genes. Ultimately, these data will answer the long-debated question of whether there is a coherent biological rationale for imprinting.
Collapse
Affiliation(s)
- Benjamin Tycko
- Institute for Cancer Genetics, Columbia University, New York, New York, USA.
| | | |
Collapse
|
50
|
Sapienza C. Imprinted gene expression, transplantation medicine, and the "other" human embryonic stem cell. Proc Natl Acad Sci U S A 2002; 99:10243-5. [PMID: 12149520 PMCID: PMC124897 DOI: 10.1073/pnas.172384299] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Carmen Sapienza
- Fels Institute for Cancer Research, Temple University School of Medicine, 3307 North Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|