1
|
Fernandez-Luna L, Aguilar-Perez C, Grochowski CM, Mehaffey MG, Carvalho CMB, Gonzaga-Jauregui C. Genome-wide maps of highly-similar intrachromosomal repeats that can mediate ectopic recombination in three human genome assemblies. HGG ADVANCES 2025; 6:100396. [PMID: 39722459 PMCID: PMC11794170 DOI: 10.1016/j.xhgg.2024.100396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024] Open
Abstract
Repeated sequences spread throughout the genome play important roles in shaping the structure of chromosomes and facilitating the generation of new genomic variation through structural rearrangements. Several mechanisms of structural variation formation use shared nucleotide similarity between repeated sequences as substrate for ectopic recombination. We performed genome-wide analyses of direct and inverted intrachromosomal repeated sequence pairs with 200 bp or more and 80% or greater sequence identity in three human genome assemblies, GRCh37, GRCh38, and T2T-CHM13. Overall, the composition and distribution of direct and inverted repeated sequences identified was similar among the three assemblies involving 13%-15% of the haploid genome, with an increased, albeit not significant, number of repeated sequences in T2T-CHM13. Interestingly, the majority of repeated sequences are below 1 kb in length with a median of 84.2% identity, highlighting the potential relevance of smaller, less identical repeats, such as Alu-Alu pairs, for ectopic recombination. We cross-referenced the identified repeated sequences with protein-coding genes to identify those at risk for being involved in genomic rearrangements. Olfactory receptors and immune response genes were enriched among those impacted.
Collapse
Affiliation(s)
- Luis Fernandez-Luna
- International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Carlos Aguilar-Perez
- International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | | | | | | | - Claudia Gonzaga-Jauregui
- International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México; Pacific Northwest Research Institute, Seattle, WA, USA.
| |
Collapse
|
2
|
Bilgrav Saether K, Eisfeldt J, Bengtsson JD, Lun MY, Grochowski CM, Mahmoud M, Chao HT, Rosenfeld JA, Liu P, Ek M, Schuy J, Ameur A, Dai H, Hwang JP, Sedlazeck FJ, Bi W, Marom R, Wincent J, Nordgren A, Carvalho CMB, Lindstrand A. Leveraging the T2T assembly to resolve rare and pathogenic inversions in reference genome gaps. Genome Res 2024; 34:1785-1797. [PMID: 39486878 DOI: 10.1101/gr.279346.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/12/2024] [Indexed: 11/04/2024]
Abstract
Chromosomal inversions (INVs) are particularly challenging to detect due to their copy-number neutral state and association with repetitive regions. Inversions represent about 1/20 of all balanced structural chromosome aberrations and can lead to disease by gene disruption or altering regulatory regions of dosage-sensitive genes in cis Short-read genome sequencing (srGS) can only resolve ∼70% of cytogenetically visible inversions referred to clinical diagnostic laboratories, likely due to breakpoints in repetitive regions. Here, we study 12 inversions by long-read genome sequencing (lrGS) (n = 9) or srGS (n = 3) and resolve nine of them. In four cases, the inversion breakpoint region was missing from at least one of the human reference genomes (GRCh37, GRCh38, T2T-CHM13) and a reference agnostic analysis was needed. One of these cases, an INV9 mappable only in de novo assembled lrGS data using T2T-CHM13 disrupts EHMT1 consistent with a Mendelian diagnosis (Kleefstra syndrome 1; MIM#610253). Next, by pairwise comparison between T2T-CHM13, GRCh37, and GRCh38, as well as the chimpanzee and bonobo, we show that hundreds of megabases of sequence are missing from at least one human reference, highlighting that primate genomes contribute to genomic diversity. Aligning population genomic data to these regions indicated that these regions are variable between individuals. Our analysis emphasizes that T2T-CHM13 is necessary to maximize the value of lrGS for optimal inversion detection in clinical diagnostics. These results highlight the importance of leveraging diverse and comprehensive reference genomes to resolve unsolved molecular cases in rare diseases.
Collapse
Affiliation(s)
- Kristine Bilgrav Saether
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
- Science for Life Laboratory, Karolinska Insitutet, 171 65 Solna, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden;
- Science for Life Laboratory, Karolinska Insitutet, 171 65 Solna, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Jesse D Bengtsson
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | - Ming Yin Lun
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | - Christopher M Grochowski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Medhat Mahmoud
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Hsiao-Tuan Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Texas Children's Hospital, Houston, Texas 77030, USA
- Cain Pediatric Neurology Research Laboratories, Jan and Dan Duncan Neurological Research Institute, Houston, Texas 77030, USA
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, Texas 77024, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics Laboratory, Baylor College of Medicine, Houston, Texas 77021, USA
| | - Marlene Ek
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Jakob Schuy
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Adam Ameur
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics Laboratory, Baylor College of Medicine, Houston, Texas 77021, USA
| | - James Paul Hwang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Fritz J Sedlazeck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Computer Science, Rice University, Houston, Texas 77251, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics Laboratory, Baylor College of Medicine, Houston, Texas 77021, USA
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Texas Children's Hospital, Houston, Texas 77030, USA
| | - Josephine Wincent
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Department of Laboratory Medicine, University of Gothenburg, 413 45 Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | | | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden;
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
3
|
Kusch S, Frantzeskakis L, Lassen BD, Kümmel F, Pesch L, Barsoum M, Walden KD, Panstruga R. A fungal plant pathogen overcomes mlo-mediated broad-spectrum disease resistance by rapid gene loss. THE NEW PHYTOLOGIST 2024; 244:962-979. [PMID: 39155769 DOI: 10.1111/nph.20063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024]
Abstract
Hosts and pathogens typically engage in a coevolutionary arms race. This also applies to phytopathogenic powdery mildew fungi, which can rapidly overcome plant resistance and perform host jumps. Using experimental evolution, we show that the powdery mildew pathogen Blumeria hordei is capable of breaking the agriculturally important broad-spectrum resistance conditioned by barley loss-of-function mlo mutants. Partial mlo virulence of evolved B. hordei isolates is correlated with a distinctive pattern of adaptive mutations, including small-sized (c. 8-40 kb) deletions, of which one is linked to the de novo insertion of a transposable element. Occurrence of the mutations is associated with a transcriptional induction of effector protein-encoding genes that is absent in mlo-avirulent isolates on mlo mutant plants. The detected mutational spectrum comprises the same loci in at least two independently isolated mlo-virulent isolates, indicating convergent multigenic evolution. The mutational events emerged in part early (within the first five asexual generations) during experimental evolution, likely generating a founder population in which incipient mlo virulence was later stabilized by additional events. This work highlights the rapid dynamic genome evolution of an obligate biotrophic plant pathogen with a transposon-enriched genome.
Collapse
Affiliation(s)
- Stefan Kusch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Lamprinos Frantzeskakis
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Birthe D Lassen
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Florian Kümmel
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Lina Pesch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Mirna Barsoum
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Kim D Walden
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| |
Collapse
|
4
|
Fornezza S, Delvecchio VS, Harvey WT, Dishuck PC, Eichler EE, Giannuzzi G. AGAP duplicons associate with structural diversity at Chromosome 10q11.22. Genome Res 2024; 34:1487-1499. [PMID: 39322278 PMCID: PMC11534156 DOI: 10.1101/gr.279454.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
The 10q11.22 chromosomal region is a duplication-rich interval of the human genome and one of the last to be fully assembled. It carries copy number-variable genes associated with intellectual disability, bipolar disorder, and obesity. In this study, we characterized the structural diversity at this locus by analyzing 64 haploid assemblies produced by the Human Pangenome Reference Consortium. We identified 11 alternative haplotypes that differ in the copy number and/or orientation of large genomic segments, ranging from hundreds of kilobase pairs (kbp) to over one megabase pair (Mbp). We uncovered a 2.4 Mbp size difference between the shortest and longest haplotypes. Breakpoint analysis revealed that genomic instability results from nonallelic homologous recombination between segmental duplication (SD) pairs with varying similarity (94.4%-99.6%). Nonetheless, these pairs generally recombine at positions where their identity is higher (>99.6%). Recurrent inversions occur with different breakpoints within the same inverted SD pair. Inversion polymorphisms shuffle the entire SD arrangement, creating new predispositions to copy-number variations. The SD architecture is associated with a catarrhine-specific subgroup of the AGAP gene family, which likely triggered the accumulation of SDs at this locus over the past 25 million years of human evolution. Our results reveal extensive structural diversity and genomic instability at the 10q11.22 locus, and expand the general understanding of the mutational mechanisms behind SD-mediated rearrangements.
Collapse
Affiliation(s)
| | | | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Philip C Dishuck
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
5
|
Jamsandekar M, Ferreira MS, Pettersson ME, Farrell ED, Davis BW, Andersson L. The origin and maintenance of supergenes contributing to ecological adaptation in Atlantic herring. Nat Commun 2024; 15:9136. [PMID: 39443489 PMCID: PMC11499932 DOI: 10.1038/s41467-024-53079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Chromosomal inversions are associated with local adaptation in many species. However, questions regarding how they are formed, maintained and impact various other evolutionary processes remain elusive. Here, using a large genomic dataset of long-read and short-read sequencing, we ask these questions in one of the most abundant vertebrates on Earth, the Atlantic herring. This species has four megabase-sized inversions associated with ecological adaptation that correlate with water temperature. The S and N inversion alleles at these four loci dominate in the southern and northern parts, respectively, of the species distribution in the North Atlantic Ocean. By determining breakpoint coordinates of the four inversions and the structural variations surrounding them, we hypothesize that these inversions are formed by ectopic recombination between duplicated sequences immediately outside of the inversions. We show that these are old inversions (>1 MY), albeit formed after the split between the Atlantic herring and its sister species, the Pacific herring. There is evidence for extensive gene flux between inversion alleles at all four loci. The large Ne of herring combined with the common occurrence of opposite homozygotes across the species distribution has allowed effective purifying selection to prevent the accumulation of genetic load and repeats within the inversions.
Collapse
Affiliation(s)
- Minal Jamsandekar
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA
| | - Mafalda S Ferreira
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mats E Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Brian W Davis
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA
| | - Leif Andersson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA.
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
Urbancokova A, Hornofova T, Novak J, Salajkova SA, Stemberkova Hubackova S, Uvizl A, Buchtova T, Mistrik M, McStay B, Hodny Z, Bartek J, Vasicova P. Topological stress triggers persistent DNA lesions in ribosomal DNA with ensuing formation of PML-nucleolar compartment. eLife 2024; 12:RP91304. [PMID: 39388244 PMCID: PMC11466457 DOI: 10.7554/elife.91304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
PML, a multifunctional protein, is crucial for forming PML-nuclear bodies involved in stress responses. Under specific conditions, PML associates with nucleolar caps formed after RNA polymerase I (RNAPI) inhibition, leading to PML-nucleolar associations (PNAs). This study investigates PNAs-inducing stimuli by exposing cells to various genotoxic stresses. We found that the most potent inducers of PNAs introduced topological stress and inhibited RNAPI. Doxorubicin, the most effective compound, induced double-strand breaks (DSBs) in the rDNA locus. PNAs co-localized with damaged rDNA, segregating it from active nucleoli. Cleaving the rDNA locus with I-PpoI confirmed rDNA damage as a genuine stimulus for PNAs. Inhibition of ATM, ATR kinases, and RAD51 reduced I-PpoI-induced PNAs, highlighting the importance of ATM/ATR-dependent nucleolar cap formation and homologous recombination (HR) in their triggering. I-PpoI-induced PNAs co-localized with rDNA DSBs positive for RPA32-pS33 but deficient in RAD51, indicating resected DNA unable to complete HR repair. Our findings suggest that PNAs form in response to persistent rDNA damage within the nucleolar cap, highlighting the interplay between PML/PNAs and rDNA alterations due to topological stress, RNAPI inhibition, and rDNA DSBs destined for HR. Cells with persistent PNAs undergo senescence, suggesting PNAs help avoid rDNA instability, with implications for tumorigenesis and aging.
Collapse
Affiliation(s)
- Alexandra Urbancokova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Terezie Hornofova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Josef Novak
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Sarka Andrs Salajkova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Sona Stemberkova Hubackova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Alena Uvizl
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Tereza Buchtova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University OlomoucOlomoucCzech Republic
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University OlomoucOlomoucCzech Republic
| | - Brian McStay
- Centre for Chromosome Biology, College of Science and Engineering, University of GalwayGalwayIreland
| | - Zdenek Hodny
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jiri Bartek
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Genome Integrity Unit, Danish Cancer Society Research CenterCopenhagenDenmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska InstitutetStockholmSweden
| | - Pavla Vasicova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
7
|
Bolognini D, Halgren A, Lou RN, Raveane A, Rocha JL, Guarracino A, Soranzo N, Chin CS, Garrison E, Sudmant PH. Recurrent evolution and selection shape structural diversity at the amylase locus. Nature 2024; 634:617-625. [PMID: 39232174 PMCID: PMC11485256 DOI: 10.1038/s41586-024-07911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
The adoption of agriculture triggered a rapid shift towards starch-rich diets in human populations1. Amylase genes facilitate starch digestion, and increased amylase copy number has been observed in some modern human populations with high-starch intake2, although evidence of recent selection is lacking3,4. Here, using 94 long-read haplotype-resolved assemblies and short-read data from approximately 5,600 contemporary and ancient humans, we resolve the diversity and evolutionary history of structural variation at the amylase locus. We find that amylase genes have higher copy numbers in agricultural populations than in fishing, hunting and pastoral populations. We identify 28 distinct amylase structural architectures and demonstrate that nearly identical structures have arisen recurrently on different haplotype backgrounds throughout recent human history. AMY1 and AMY2A genes each underwent multiple duplication/deletion events with mutation rates up to more than 10,000-fold the single-nucleotide polymorphism mutation rate, whereas AMY2B gene duplications share a single origin. Using a pangenome-based approach, we infer structural haplotypes across thousands of humans identifying extensively duplicated haplotypes at higher frequency in modern agricultural populations. Leveraging 533 ancient human genomes, we find that duplication-containing haplotypes (with more gene copies than the ancestral haplotype) have rapidly increased in frequency over the past 12,000 years in West Eurasians, suggestive of positive selection. Together, our study highlights the potential effects of the agricultural revolution on human genomes and the importance of structural variation in human adaptation.
Collapse
Affiliation(s)
| | - Alma Halgren
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Runyang Nicolas Lou
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | | | - Joana L Rocha
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Andrea Guarracino
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nicole Soranzo
- Human Technopole, Milan, Italy
- Wellcome Sanger Institute, Hinxton, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge Biomedical Campus, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Chen-Shan Chin
- Foundation for Biological Data Science, Belmont, CA, USA
| | - Erik Garrison
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Peter H Sudmant
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA.
- Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
8
|
Pascarella G, Conner KN, Goff NJ, Carninci P, Olive AJ, Meek K. Compared to other NHEJ factors, DNA-PK protein and RNA levels are markedly increased in all higher primates, but not in prosimians or other mammals. DNA Repair (Amst) 2024; 142:103737. [PMID: 39128395 PMCID: PMC11515020 DOI: 10.1016/j.dnarep.2024.103737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
The DNA dependent protein kinase (DNA-PK) initiates non-homologous recombination (NHEJ), the predominate DNA double-strand break (DSBR) pathway in higher vertebrates. It has been known for decades that the enzymatic activity of DNA-PK [that requires its three component polypeptides, Ku70, Ku80 (that comprise the DNA-end binding Ku heterodimer), and the catalytic subunit (DNA-PKcs)] is present in humans at 10-50 times the level observed in other mammals. Here, we show that the high level of DNA-PKcs protein expression appears evolutionarily in mammals between prosimians and higher primates. Moreover, the RNAs encoding the three component polypeptides of DNA-PK are present at similarly high levels in hominids, new-, and old-world monkeys, but expression of these RNAs in prosimians is ∼5-50 fold less, analogous to the levels observed in other non-primate species. This is reminiscent of the appearance of Alu repeats in primate genomes -- abundant in higher primates, but present at much lower density in prosimians. Alu repeats are well-known for their capacity to promote non-allelic homologous recombination (NAHR) a process known to be inhibited by DNA-PK. Nanopore sequence analyses of cultured cells proficient or deficient in DNA-PK revealed an increase of inter-chromosomal translocations caused by NAHR. Although the high levels of DNA-PK in primates may have many functions, we posit that high levels of DNA-PK may function to restrain deleterious NAHR events between Alu elements.
Collapse
Affiliation(s)
| | - Kayla N Conner
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI 48824, USA
| | - Noah J Goff
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI 48824, USA; Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan; Human Technopole, Milan, Italy
| | - Andrew J Olive
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI 48824, USA
| | - Katheryn Meek
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI 48824, USA; Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
9
|
Pereira SSS, Pinto IP, Santos VCDP, Silva RC, Costa EOA, da Cruz AS, da Cruz AD, da Silva CC, Minasi LB. Analysis of parental origin of de novo pathogenic CNVs in patients with intellectual disability. Genet Mol Biol 2024; 47:e20230313. [PMID: 39136576 PMCID: PMC11320663 DOI: 10.1590/1678-4685-gmb-2023-0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/25/2024] [Indexed: 08/16/2024] Open
Abstract
Chromosomal Microarray Analysis (CMA) has increased the comprehension of the mechanisms of copy number variation (CNV) formation, classification of these rearrangements, type of recurrence, and its origin, and has also been a powerful approach to identifying CNVs in individuals with intellectual disability. The aim of this study was to establish the parental origin of de novo pathogenic CNV in a cohort of patients with intellectual disability from the public health system of Goiás-Brazil. CMA was done in 76 trios and we identified 15 de novo pathogenic CNVs in 12 patients with intellectual disability. In a total of 15 de novo pathogenic CNV, 60% were derived from the maternal germline and 40% from the paternal germline. CNV flanked by low copy repeats (LCR) were identified in 46.7% and most of them were of maternal origin. No significant association was observed between paternal age and the mutation rate of de novo CNVs. The presence of high-identity LCRs increases the occurrence of CNV formation mediated by non-allelic homologous recombination and the majority of paternal CNVs are non-recurrent. The mechanism of formation of these CNV may have been by microhomology-mediated break-induced replication or non-homologous end joining.
Collapse
Affiliation(s)
- Samara Socorro Silva Pereira
- Pontifícia Universidade Católica de Goiás, Escola de Ciências Médicas e da Vida, Programa de Pós-Graduação em Genética, Núcleo de Pesquisa Replicon, Goiânia, GO, Brazil
- Universidade Federal de Goiás, Programa de Pós-Graduação em Genética e Biologia Molecular, Goiânia, GO, Brazil
| | - Irene Plaza Pinto
- Pontifícia Universidade Católica de Goiás, Escola de Ciências Médicas e da Vida, Programa de Pós-Graduação em Genética, Núcleo de Pesquisa Replicon, Goiânia, GO, Brazil
| | - Victor Cortázio do Prado Santos
- Pontifícia Universidade Católica de Goiás, Escola de Ciências Médicas e da Vida, Programa de Pós-Graduação em Genética, Núcleo de Pesquisa Replicon, Goiânia, GO, Brazil
- Universidade Federal de Goiás, Programa de Pós-Graduação em Genética e Biologia Molecular, Goiânia, GO, Brazil
| | - Rafael Carneiro Silva
- Pontifícia Universidade Católica de Goiás, Escola de Ciências Médicas e da Vida, Programa de Pós-Graduação em Genética, Núcleo de Pesquisa Replicon, Goiânia, GO, Brazil
| | - Emília Oliveira Alves Costa
- Pontifícia Universidade Católica de Goiás, Escola de Ciências Médicas e da Vida, Programa de Pós-Graduação em Genética, Núcleo de Pesquisa Replicon, Goiânia, GO, Brazil
| | - Alex Silva da Cruz
- Pontifícia Universidade Católica de Goiás, Escola de Ciências Médicas e da Vida, Programa de Pós-Graduação em Genética, Núcleo de Pesquisa Replicon, Goiânia, GO, Brazil
| | - Aparecido Divino da Cruz
- Pontifícia Universidade Católica de Goiás, Escola de Ciências Médicas e da Vida, Programa de Pós-Graduação em Genética, Núcleo de Pesquisa Replicon, Goiânia, GO, Brazil
- Secretaria Estadual de Saúde de Goiás, Centro Estadual de Reabilitação e Readaptação Dr. Henrique Santillo, Goiânia, GO, Brazil
- Universidade Federal de Goiás, Programa de Pós-Graduação em Genética e Biologia Molecular, Goiânia, GO, Brazil
| | - Cláudio Carlos da Silva
- Pontifícia Universidade Católica de Goiás, Escola de Ciências Médicas e da Vida, Programa de Pós-Graduação em Genética, Núcleo de Pesquisa Replicon, Goiânia, GO, Brazil
- Secretaria Estadual de Saúde de Goiás, Centro Estadual de Reabilitação e Readaptação Dr. Henrique Santillo, Goiânia, GO, Brazil
| | - Lysa Bernardes Minasi
- Pontifícia Universidade Católica de Goiás, Escola de Ciências Médicas e da Vida, Programa de Pós-Graduação em Genética, Núcleo de Pesquisa Replicon, Goiânia, GO, Brazil
| |
Collapse
|
10
|
Hu Q, Espejo Valle-Inclán J, Dahiya R, Guyer A, Mazzagatti A, Maurais EG, Engel JL, Lu H, Davis AJ, Cortés-Ciriano I, Ly P. Non-homologous end joining shapes the genomic rearrangement landscape of chromothripsis from mitotic errors. Nat Commun 2024; 15:5611. [PMID: 38965240 PMCID: PMC11224358 DOI: 10.1038/s41467-024-49985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Mitotic errors generate micronuclei entrapping mis-segregated chromosomes, which are susceptible to catastrophic fragmentation through chromothripsis. The reassembly of fragmented chromosomes by error-prone DNA double-strand break (DSB) repair generates diverse genomic rearrangements associated with human diseases. How specific repair pathways recognize and process these lesions remains poorly understood. Here we use CRISPR/Cas9 to systematically inactivate distinct DSB repair pathways and interrogate the rearrangement landscape of fragmented chromosomes. Deletion of canonical non-homologous end joining (NHEJ) components substantially reduces complex rearrangements and shifts the rearrangement landscape toward simple alterations without the characteristic patterns of chromothripsis. Following reincorporation into the nucleus, fragmented chromosomes localize within sub-nuclear micronuclei bodies (MN bodies) and undergo ligation by NHEJ within a single cell cycle. In the absence of NHEJ, chromosome fragments are rarely engaged by alternative end-joining or recombination-based mechanisms, resulting in delayed repair kinetics, persistent 53BP1-labeled MN bodies, and cell cycle arrest. Thus, we provide evidence supporting NHEJ as the exclusive DSB repair pathway generating complex rearrangements from mitotic errors.
Collapse
Affiliation(s)
- Qing Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jose Espejo Valle-Inclán
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Rashmi Dahiya
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alison Guyer
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alice Mazzagatti
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth G Maurais
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Justin L Engel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huiming Lu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anthony J Davis
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Rothschild D, Susanto TT, Sui X, Spence JP, Rangan R, Genuth NR, Sinnott-Armstrong N, Wang X, Pritchard JK, Barna M. Diversity of ribosomes at the level of rRNA variation associated with human health and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.30.526360. [PMID: 36778251 PMCID: PMC9915487 DOI: 10.1101/2023.01.30.526360] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Ribosomal DNA and RNA (rDNA and rRNA) sequences are usually discarded from sequencing analyses. But with hundreds of copies of rDNA genes it is unknown whether they possess sequence variations that form different types of ribosomes that affect human physiology and disease. Here, we developed an algorithm for variant-calling between paralog genes (termed RGA) and compared rDNA variations found in short- and long-read sequencing data from the 1,000 Genomes Project (1KGP) and Genome In A Bottle (GIAB). We additionally developed a novel protocol for long-read sequencing full-length rRNA (RIBO-RT) from actively translating ribosomes. Our analyses identified hundreds of rDNA variants, most of which, surprisingly, are short insertion-deletions (indels) and dozens of highly abundant rRNA variants that are incorporated into translationally active ribosomes. To visualize variant ribosomes at the single cell level, we developed an in-situ rRNA sequencing method (SWITCH-seq) which revealed that variants are co-expressed within individual cells. Strikingly, by analyzing rDNA, we found that variants assemble into distinct ribosome subtypes. We discovered that these subtypes acquire different rRNA structures by successfully employing dimethyl sulfate (DMS) probing of full length rRNA. With this atlas we investigated rRNA variation changes across human tissues and cancer types. This revealed tissue-specific rRNA subtype expression in endoderm/ectoderm-derived tissues. In cancer, low abundant rRNA variants can become highly expressed, which suggests the presence of cancer-specific ribosomes. Together, this study identifies and comprehensively characterizes the diversity of ribosomes at the level of rRNA variants which is dominated by indel variants, their chromosomal location and unique structure as well as the association of ribosome variation with tissue-specific biology and cancer.
Collapse
|
12
|
Esquiaveto-Aun AM, de Mello MP, Guaragna MS, da Silva Lopes VLG, Francese-Santos AP, Dos Santos Cruz Piveta C, Mazolla TN, de Lemos-Marini SHV, Guerra-Junior G. X-linked congenital adrenal hypoplasia: Report of long clinical follow-up and description of a new complex variant in the NR0B1 gene. Am J Med Genet A 2024; 194:e63536. [PMID: 38243380 DOI: 10.1002/ajmg.a.63536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/21/2024]
Abstract
Adrenal hypoplasia congenita, attributed to NR0B1 pathogenic variants, accounts for more than 50% of the incidence of primary adrenal insufficiency in children. Although more than 250 different deleterious variations have been described, no genotype-phenotype correlation has been defined to date. We report a case of an adopted boy who reported the onset of an adrenal crisis at 2 weeks of age, requiring replacement therapy with mineralocorticoids and glucocorticoids for 4 months. For 3 years, he did well without treatment. At almost 4 years of age, the disorder was restarted. A long follow-up showed the evolution of hypogonadotropic hypogonadism. Molecular studies on NR0B1 revealed a novel and deleterious deletion-insertion-inversion-deletion complex rearrangement sorted in the 5'-3' direction, which is described as follows: (1) deletion of the intergenic region (between TASL and NR0B1 genes) and 5' region, (2) insertion of a sequence containing 37 bp at the junction of the intergenic region of the TASL gene and a part of exon 1 of the NR0B1 gene, (3) inversion of a part of exon 1, (4) deletion of the final portion of exon 1 and exon 2 and beginning of the 3'UTR region, (5) maintenance of part of the intergenic sequence (between genes MAGEB1 and NR0B1, telomeric sense), (6) large posterior deletion, in the same sense. The path to molecular diagnosis was challenging and involved several molecular biology techniques. Evaluating the breakpoints in our patient, we assumed that it was a nonrecurrent rearrangement that had not yet been described. It may involve a repair mechanism known as nonhomologous end-joining (NHEJ), which joins two ends of DNA in an imprecise manner, generating an "information scar," represented herein by the 37 bp insertion. In addition, the local Xp21 chromosome architecture with sequences capable of modifying the DNA structure could impact the formation of complex rearrangements.
Collapse
Affiliation(s)
- Adriana Mangue Esquiaveto-Aun
- Graduate Program in Child and Adolescent Health, Faculty of Medical Sciences (FCM), UNICAMP, Campinas, São Paulo, Brazil
| | - Maricilda Palandi de Mello
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mara Sanches Guaragna
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Vera Lúcia Gil da Silva Lopes
- Department of Translational Medicine, Medical Genetics and Genomic Medicine, Faculty of Medical Sciences (FCM), UNICAMP, Campinas, São Paulo, Brazil
| | - Ana Paula Francese-Santos
- Department of Translational Medicine, Medical Genetics and Genomic Medicine, Faculty of Medical Sciences (FCM), UNICAMP, Campinas, São Paulo, Brazil
| | - Cristiane Dos Santos Cruz Piveta
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Taís Nitsh Mazolla
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Sofia Helena Valente de Lemos-Marini
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Pediatrics, Faculty of Medical Sciences (FCM), UNICAMP, Campinas, São Paulo, Brazil
| | - Gil Guerra-Junior
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Pediatrics, Faculty of Medical Sciences (FCM), UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
13
|
Bilgrav Saether K, Eisfeldt J, Bengtsson J, Lun MY, Grochowski CM, Mahmoud M, Chao HT, Rosenfeld JA, Liu P, Schuy J, Ameur A, Hwang JP, Sedlazeck FJ, Bi W, Marom R, Nordgren A, Carvalho CMB, Lindstrand A. Mind the gap: the relevance of the genome reference to resolve rare and pathogenic inversions. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.22.24305780. [PMID: 38712270 PMCID: PMC11071548 DOI: 10.1101/2024.04.22.24305780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Both long-read genome sequencing (lrGS) and the recently published Telomere to Telomere (T2T) reference genome provide increased coverage and resolution across repetitive regions promising heightened structural variant detection and improved mapping. Inversions (INV), intrachromosomal segments which are rotated 180° and inserted back into the same chromosome, are a class of structural variants particularly challenging to detect due to their copy-number neutral state and association with repetitive regions. Inversions represent about 1/20 of all balanced structural chromosome aberrations and can lead to disease by gene disruption or altering regulatory regions of dosage sensitive genes in cis . Here we remapped the genome data from six individuals carrying unsolved cytogenetically detected inversions. An INV6 and INV10 were resolved using GRCh38 and T2T-CHM13. Finally, an INV9 required optical genome mapping, de novo assembly of lrGS data and T2T-CHM13. This inversion disrupted intron 25 of EHMT1, confirming a diagnosis of Kleefstra syndrome 1 (MIM#610253). These three inversions, only mappable in specific references, prompted us to investigate the presence and population frequencies of differential reference regions (DRRs) between T2T-CHM13, GRCh37, GRCh38, the chimpanzee and bonobo, and hundreds of megabases of DRRs were identified. Our results emphasize the significance of the chosen reference genome and the added benefits of lrGS and optical genome mapping in solving rearrangements in challenging regions of the genome. This is particularly important for inversions and may impact clinical diagnostics.
Collapse
|
14
|
Redaelli S, Grati FR, Tritto V, Giannuzzi G, Recalcati MP, Sala E, Villa N, Crosti F, Roversi G, Malvestiti F, Zanatta V, Repetti E, Rodeschini O, Valtorta C, Catusi I, Romitti L, Martinoli E, Conconi D, Dalprà L, Lavitrano M, Riva P, Bentivegna A. Olfactory receptor genes and chromosome 11 structural aberrations: Players or spectators? HGG ADVANCES 2024; 5:100261. [PMID: 38160254 PMCID: PMC10820794 DOI: 10.1016/j.xhgg.2023.100261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024] Open
Abstract
The largest multi-gene family in metazoans is the family of olfactory receptor (OR) genes. Human ORs are organized in clusters over most chromosomes and seem to include >0.1% the human genome. Because 369 out of 856 OR genes are mapped on chromosome 11 (HSA11), we sought to determine whether they mediate structural rearrangements involving this chromosome. To this aim, we analyzed 220 specimens collected during diagnostic procedures involving structural rearrangements of chromosome 11. A total of 222 chromosomal abnormalities were included, consisting of inversions, deletions, translocations, duplications, and one insertion, detected by conventional chromosome analysis and/or fluorescence in situ hybridization (FISH) and array comparative genomic hybridization (array-CGH). We verified by bioinformatics and statistical approaches the occurrence of breakpoints in cytobands with or without OR genes. We found that OR genes are not involved in chromosome 11 reciprocal translocations, suggesting that different DNA motifs and mechanisms based on homology or non-homology recombination can cause chromosome 11 structural alterations. We also considered the proximity between the chromosomal territories of chromosome 11 and its partner chromosomes involved in the translocations by using the deposited Hi-C data concerning the possible occurrence of chromosome interactions. Interestingly, most of the breakpoints are located in regions highly involved in chromosome interactions. Further studies should be carried out to confirm the potential role of chromosome territories' proximity in promoting genome structural variation, so fundamental in our understanding of the molecular basis of medical genetics and evolutionary genetics.
Collapse
Affiliation(s)
- Serena Redaelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Francesca Romana Grati
- R&D, Cytogenetics, Molecular Genetics and Medical Genetics Unit, Toma Advanced Biomedical Assays S.p.A. (ImpactLab), 21052 Busto Arsizio, Italy
| | - Viviana Tritto
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy
| | | | - Maria Paola Recalcati
- IRCCS Istituto Auxologico Italiano, Medical Cytogenetics Laboratory, 20095 Cusano Milanino, Italy
| | - Elena Sala
- UC Medical Genetics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Nicoletta Villa
- UC Medical Genetics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Francesca Crosti
- UC Medical Genetics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Gaia Roversi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; UC Medical Genetics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Francesca Malvestiti
- R&D, Cytogenetics, Molecular Genetics and Medical Genetics Unit, Toma Advanced Biomedical Assays S.p.A. (ImpactLab), 21052 Busto Arsizio, Italy
| | - Valentina Zanatta
- R&D, Cytogenetics, Molecular Genetics and Medical Genetics Unit, Toma Advanced Biomedical Assays S.p.A. (ImpactLab), 21052 Busto Arsizio, Italy
| | - Elena Repetti
- R&D, Cytogenetics, Molecular Genetics and Medical Genetics Unit, Toma Advanced Biomedical Assays S.p.A. (ImpactLab), 21052 Busto Arsizio, Italy
| | - Ornella Rodeschini
- IRCCS Istituto Auxologico Italiano, Medical Cytogenetics Laboratory, 20095 Cusano Milanino, Italy
| | - Chiara Valtorta
- IRCCS Istituto Auxologico Italiano, Medical Cytogenetics Laboratory, 20095 Cusano Milanino, Italy
| | - Ilaria Catusi
- IRCCS Istituto Auxologico Italiano, Medical Cytogenetics Laboratory, 20095 Cusano Milanino, Italy
| | - Lorenza Romitti
- Pathology and Cytogenetics Laboratory, Clinical Pathology Department, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20162 Milan, Italy
| | - Emanuela Martinoli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy
| | - Donatella Conconi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Leda Dalprà
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; UC Medical Genetics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Paola Riva
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy
| | - Angela Bentivegna
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy.
| |
Collapse
|
15
|
Kolbasin LN, Dubrovskaya TA, Salnikova GB, Solovieva EN, Donnikov MY, Illarionov RA, Glotov AS, Kovalenko LV, Belotserkovtseva LD. Family case of Potocki-Lupski syndrome. Mol Cytogenet 2024; 17:6. [PMID: 38519962 PMCID: PMC10960457 DOI: 10.1186/s13039-024-00673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/02/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Potocki-Lupski syndrome (PTLS, OMIM # 610883) is a rare genetic developmental disorder resulting from a partial heterozygous microduplication at chromosome 17p11.2. The condition is characterized by a wide variability of clinical expression, which can make its clinical and molecular diagnosis challenging. CASE PRESENTATION We report here a family (mother and her two children) diagnosed with PTLS. When examining children, neurological and psychological (neuropsychiatric) manifestations (speech delay, mild mental retardation), motor disorders, craniofacial dysmorphism (microcephaly, dolichocephaly, triangular face, wide bulging forehead, long chin, antimongoloid slant, "elfin" ears) were revealed. The suspected clinical diagnosis was confirmed by MLPA and CMA molecular genetic testing which revealed the presence of a segmental aneusomy; microduplication in the 17p11.2 region. CONCLUSIONS Children with PTLS can have a clinically recognizable and specific phenotype: craniofacial dysmorphism, motor and neurological manifestations, which may implicate a possible genetic disease to the attending physician. Moreover, each child with this syndrome is unique and may have a different clinical picture. The management of such patients requires a multidisciplinary team approach, including medical genetic counseling.
Collapse
Affiliation(s)
- L N Kolbasin
- Budgetary Institution of KHMAO-Yugra Surgut Regional Clinical Center for Maternity and Childhood Protection, Medical Genetic Counseling Service, Surgut, Russian Federation
| | - T A Dubrovskaya
- Budgetary Institution of KHMAO-Yugra "Kondinsky Regional Hospital", Mezhdurechensky Town, Russian Federation
| | - G B Salnikova
- Budgetary Institution of KHMAO-Yugra "Kondinsky Regional Hospital", Mezhdurechensky Town, Russian Federation
| | - E N Solovieva
- Budgetary Institution of KHMAO-Yugra "Kondinsky Regional Hospital", Mezhdurechensky Town, Russian Federation
| | - M Yu Donnikov
- Budgetary Institution of KHMAO-Yugra Surgut Regional Clinical Center for Maternity and Childhood Protection, Medical Genetic Counseling Service, Surgut, Russian Federation
- Budgetary Institution of Highest Education of KHMAO-Yugra "Surgut State University", Surgut, Russian Federation
| | - R A Illarionov
- D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034, St. Petersburg, Russian Federation.
| | - A S Glotov
- D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034, St. Petersburg, Russian Federation
| | - L V Kovalenko
- Budgetary Institution of Highest Education of KHMAO-Yugra "Surgut State University", Surgut, Russian Federation
| | - L D Belotserkovtseva
- Budgetary Institution of KHMAO-Yugra Surgut Regional Clinical Center for Maternity and Childhood Protection, Medical Genetic Counseling Service, Surgut, Russian Federation
| |
Collapse
|
16
|
Mazzonetto PC, Villela D, da Costa SS, Krepischi ACV, Milanezi F, Migliavacca MP, Pierry PM, Bonaldi A, Almeida LGD, De Souza CA, Kroll JE, Paula MG, Guarischi-Sousa R, Scapulatempo-Neto C, Rosenberg C. Low-pass whole genome sequencing is a reliable and cost-effective approach for copy number variant analysis in the clinical setting. Ann Hum Genet 2024; 88:113-125. [PMID: 37807935 DOI: 10.1111/ahg.12532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023]
Abstract
INTRODUCTION Next generation sequencing technology has greatly reduced the cost and time required for sequencing a genome. An approach that is rapidly being adopted as an alternative method for CNV analysis is the low-pass whole genome sequencing (LP-WGS). Here, we evaluated the performance of LP-WGS to detect copy number variants (CNVs) in clinical cytogenetics. MATERIALS AND METHODS DNA samples with known CNVs detected by chromosomal microarray analyses (CMA) were selected for comparison and used as positive controls; our panel included 44 DNA samples (12 prenatal and 32 postnatal), comprising a total of 55 chromosome imbalances. The selected cases were chosen to provide a wide range of clinically relevant CNVs, the vast majority being associated with intellectual disability or recognizable syndromes. The chromosome imbalances ranged in size from 75 kb to 90.3 Mb, including aneuploidies and two cases of mosaicism. RESULTS All CNVs were successfully detected by LP-WGS, showing a high level of consistency and robust performance of the sequencing method. Notably, the size of chromosome imbalances detected by CMA and LP-WGS were compatible between the two different platforms, which indicates that the resolution and sensitivity of the LP-WGS approach are at least similar to those provided by CMA. DISCUSSION Our data show the potential use of LP-WGS to detect CNVs in clinical diagnosis and confirm the method as an alternative for chromosome imbalances detection. The diagnostic effectiveness and feasibility of LP-WGS, in this technical validation study, were evidenced by a clinically representative dataset of CNVs that allowed a systematic assessment of the detection power and the accuracy of the sequencing approach. Further, since the software used in this study is commercially available, the method can easily be tested and implemented in a routine diagnostic setting.
Collapse
Affiliation(s)
- Patricia C Mazzonetto
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
- Diagnósticos da América S.A., DASA, São Paulo, Brazil
| | | | - Silvia Souza da Costa
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ana C V Krepischi
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | - Carla Rosenberg
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
- Diagnósticos da América S.A., DASA, São Paulo, Brazil
| |
Collapse
|
17
|
Minotti C, Graziani L, Sallicandro E, Digilio MC, Falasca R, Alesi V, Novelli G, Dentici ML, Loddo S, Novelli A. Case report: A new de novo 6q21q22.1 interstitial deletion case in a girl with cerebellar vermis hypoplasia and developmental delay and literature review. Front Genet 2024; 14:1315291. [PMID: 38380230 PMCID: PMC10877002 DOI: 10.3389/fgene.2023.1315291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/04/2023] [Indexed: 02/22/2024] Open
Abstract
Interstitial deletions involving 6q chromosomal region are rare. Less than 30 patients have been described to date, and fewer have been characterized by high-resolution techniques, such as chromosomal microarray. Deletions involving 6q21q22.1 region are associated with an extremely wide and heterogeneous clinical spectrum, thus genotype-phenotype correlation based on the size of the rearranged region and on the involved genes is complex, even among individuals with overlapping deletions. Here we describe the phenotypic and molecular characterization of a new 6q interstitial deletion in a girl with developmental delay, intellectual disability, cerebellar vermis hypoplasia, facial peculiar characteristics, ataxia and ocular abnormalities. Microarray analysis of the proposita revealed a 7.9 Mb interstitial de novo deletion at 6q21q22.1 chromosomal region, which spanned from nucleotides 108,337,770 to 116,279,453 (GRCh38/hg38). The present case, alongside with a systematic review of the literature, provides further evidence that could aid to the definition of the Smallest Region of Overlap and of the genomic traits that are associated with particular phenotypes, focusing on neurological findings and especially on cerebellar anomalies.
Collapse
Affiliation(s)
- Chiara Minotti
- Medical Genetics Unit, Translational Pediatrics and Clinical Genetics Research Area, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- Medical Genetics Section, Depepartment of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Ludovico Graziani
- Medical Genetics Unit, Translational Pediatrics and Clinical Genetics Research Area, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- Medical Genetics Section, Depepartment of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Ester Sallicandro
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Maria Cristina Digilio
- Medical Genetics Unit, Translational Pediatrics and Clinical Genetics Research Area, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Roberto Falasca
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Viola Alesi
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giuseppe Novelli
- Medical Genetics Section, Depepartment of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
- Medical Genetics Lab, Tor Vergata Hospital, Rome, Italy
| | - Maria Lisa Dentici
- Medical Genetics Unit, Translational Pediatrics and Clinical Genetics Research Area, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Sara Loddo
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
18
|
Fernandez-Luna L, Aguilar-Perez C, Grochowski CM, Mehaffey M, Carvalho CMB, Gonzaga-Jauregui C. Genome-wide maps of highly-similar intrachromosomal repeats that mediate ectopic recombination in three human genome assemblies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577884. [PMID: 38352399 PMCID: PMC10862806 DOI: 10.1101/2024.01.29.577884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Repeated sequences spread throughout the genome play important roles in shaping the structure of chromosomes and facilitating the generation of new genomic variation. Through a variety of mechanisms, repeats are involved in generating structural rearrangements such as deletions, duplications, inversions, and translocations, which can have the potential to impact human health. Despite their significance, repetitive regions including tandem repeats, transposable elements, segmental duplications, and low-copy repeats remain a challenge to characterize due to technological limitations inherent to many sequencing methodologies. We performed genome-wide analyses and comparisons of direct and inverted repeated sequences in the latest available human genome reference assemblies including GRCh37 and GRCh38 and the most recent telomere-to-telomere alternate assembly (T2T-CHM13). Overall, the composition and distribution of direct and inverted repeats identified remains similar among the three assemblies but we observed an increase in the number of repeated sequences detected in the T2T-CHM13 assembly versus the reference assemblies. As expected, there is an enrichment of repetitive regions in the short arms of acrocentric chromosomes, which had been previously unresolved in the human genome reference assemblies. We cross-referenced the identified repeats with protein-coding genes across the genome to identify those at risk for being involved in genomic disorders. We observed that certain gene categories, such as olfactory receptors and immune response genes, are enriched among those impacted by repeated sequences likely contributing to human diversity and adaptation. Through this analysis, we have produced a catalogue of direct and inversely oriented repeated sequences across the currently three most widely used human genome assemblies. Bioinformatic analyses of these repeats and their contribution to genome architecture can reveal regions that are most susceptible to genomic instability. Understanding how the architectural genomic features of repeat pairs such as their homology, size and distance can lead to complex genomic rearrangement formation can provide further insights into the molecular mechanisms leading to genomic disorders and genome evolution. Author summary This study focused on the characterization of intrachromosomal repeated sequences in the human genome that can play important roles in shaping chromosome structure and generating new genomic variation in three human genome assemblies. We observed an increase in the number of repeated sequence pairs detected in the most recent telomere-to-telomere alternate assembly (T2T-CHM13) compared to the reference assemblies (GRCh37 and GRCh38). We observed an enrichment of repeats in the T2T-CHM13 acrocentric chromosomes, which had been previously unresolved. Importantly, our study provides a catalogue of direct and inverted repeated sequences across three commonly used human genome assemblies, which can aid in the understanding of genomic architecture instability, evolution, and disorders. Our analyses provide insights into repetitive regions in the human genome that may contribute to complex genomic rearrangements.
Collapse
|
19
|
Xiao Y, Cheng D, Luo K, Li M, Tan Y, Lin G, Hu L. Evaluation of genetic risk of apparently balanced chromosomal rearrangement carriers by breakpoint characterization. J Assist Reprod Genet 2024; 41:147-159. [PMID: 37993578 PMCID: PMC10789712 DOI: 10.1007/s10815-023-02986-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023] Open
Abstract
PURPOSE To report genetic characteristics and associated risk of chromosomal breaks due to chromosomal rearrangements in large samples. METHODS MicroSeq, a technique that combines chromosome microdissection and next-generation sequencing, was used to identify chromosomal breakpoints. Long-range PCR and Sanger sequencing were used to precisely characterize 100 breakpoints in 50 ABCR carriers. RESULTS In addition to the recurrent regions of balanced rearrangement breaks in 8q24.13, 11q11.23, and 22q11.21 that had been documented, we have discovered a 10-Mb region of 12q24.13-q24.3 that could potentially be a sparse region of balanced rearrangement breaks. We found that 898 breakpoints caused gene disruption and a total of 188 breakpoints interrupted genes recorded in OMIM. The percentage of breakpoints that disrupted autosomal dominant genes recorded in OMIM was 25.53% (48/188). Fifty-four of the precisely characterized breakpoints had 1-8-bp microhomologous sequences. CONCLUSION Our findings provide a reference for the evaluation of the pathogenicity of mutations in related genes that cause protein truncation in clinical practice. According to the characteristics of breakpoints, non-homologous end joining and microhomology-mediated break-induced replication may be the main mechanism for ABCRs formation.
Collapse
Affiliation(s)
- Yanqin Xiao
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan, China
| | - Dehua Cheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410023, Hunan, China
| | - Keli Luo
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410023, Hunan, China
| | - Mengge Li
- National Engineering and Research Center of Human Stem Cells, Changsha, 410023, Hunan, China
- Hunan Guangxiu Hospital, Changsha, 410023, Hunan, China
| | - Yueqiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410023, Hunan, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410023, Hunan, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410023, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, 410008, Hunan, China
| | - Liang Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410023, Hunan, China.
- National Engineering and Research Center of Human Stem Cells, Changsha, 410023, Hunan, China.
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, 410008, Hunan, China.
| |
Collapse
|
20
|
Yun Y, Park SS, Lee S, Seok H, Park S, Lee SY. Expanding Genotype-Phenotype Correlation of CLCNKA and CLCNKB Variants Linked to Hearing Loss. Int J Mol Sci 2023; 24:17077. [PMID: 38069401 PMCID: PMC10707517 DOI: 10.3390/ijms242317077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The ClC-K channels CLCNKA and CLCNKB are crucial for the transepithelial transport processes required for sufficient urinary concentrations and sensory mechanoelectrical transduction in the cochlea. Loss-of-function alleles in these channels are associated with various clinical phenotypes, ranging from hypokalemic alkalosis to sensorineural hearing loss (SNHL) accompanied by severe renal conditions, i.e., Bartter's syndrome. Using a stepwise genetic approach encompassing whole-genome sequencing (WGS), we identified one family with compound heterozygous variants in the ClC-K channels, specifically a truncating variant in CLCNKA in trans with a contiguous deletion of CLCNKA and CLCNKB. Breakpoint PCR and Sanger sequencing elucidated the breakpoint junctions derived from WGS, and allele-specific droplet digital PCR confirmed one copy loss of the CLCNKA_CLCNKB contiguous deletion. The proband that harbors the CLCNKA_CLCNKB variants is characterized by SNHL without hypokalemic alkalosis and renal anomalies, suggesting a distinct phenotype in the ClC-K channels in whom SNHL predominantly occurs. These results expanded genotypes and phenotypes associated with ClC-K channels, including the disease entities associated with non-syndromic hearing loss. Repeated identification of deletions across various extents of CLCNKA_CLCNKB suggests a mutational hotspot allele, highlighting the need for an in-depth analysis of the CLCNKA_CLCNKB intergenic region, especially in undiagnosed SNHL patients with a single hit in CLCNKA.
Collapse
Affiliation(s)
- Yejin Yun
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sang Soo Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Soyoung Lee
- GENOME INSIGHT TECHNOLOGY Inc., Daejeon 34051, Republic of Korea (S.P.)
| | - Heeyoung Seok
- Department of Transdisciplinary Research and Collaboration, Genomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Seongyeol Park
- GENOME INSIGHT TECHNOLOGY Inc., Daejeon 34051, Republic of Korea (S.P.)
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| |
Collapse
|
21
|
Singh VK, Singh S, Nandhini PB, Bhatia AK, Dixit SP, Ganguly I. Comparative genomic diversity analysis of copy number variations (CNV) in indicine and taurine cattle thriving in Europe and Indian subcontinent. Anim Biotechnol 2023; 34:3483-3494. [PMID: 36592947 DOI: 10.1080/10495398.2022.2162910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Copy number variations (CNVs) include deletions, duplications, and insertions that are larger than 50 bp in size causing structural variation responsible for diversity, adaptation, and breed development. Indian cattle breeds are highly diverse from the taurine breeds. The pattern of CNVRs in 191 animals belonging to 39 cattle breeds (four Indicine and 35 Taurine) was studied based on Illumina 777K BovineHD chip data. The Indicine breeds revealed 2590 CNVs and 335 copy number variation regions (CNVRs) in autosomes. Out of the identified CNVs, 50 were found to be novel. Structure analysis revealed admixed nature of Siri. Neighbor joining tree from CNVR data showed that hot (Kankrej and Hallikar) and cold (Ladakhi and Siri) adapted cattle breeds clustered separately. CNVR of Indian and European breeds revealed that Balkan and Italian breeds of Podolian group are admixed with Indian cattle breeds corroborating indicine introgression (6.1-13.5%). CNVRs spanning the regions of olfactory receptors and immune system genes were identified. AMOVA revealed 9% variation among populations which is 2% greater than SNP based studies showing higher inclusion of variation by CNVR. Detailed analysis of CNVs/CNVRs in Indian cattle adapted to hot and cold climate, and their diversity among worldwide cattle is presented in this study.
Collapse
Affiliation(s)
- V K Singh
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - S Singh
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - P B Nandhini
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - A K Bhatia
- Animal Genetic Resources Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - S P Dixit
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - I Ganguly
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| |
Collapse
|
22
|
Qin S, Zeng J, Wang J, Ye M, Deng Q, Wang X, Zhang Z, Yi D, Wu Y, Li-Ling J. Delineation of an inverted tandem Xq23-26.3 duplication in a female featuring extremely short stature and mild mental deficiency. Mol Cytogenet 2023; 16:33. [PMID: 38031145 PMCID: PMC10685508 DOI: 10.1186/s13039-023-00663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Partial duplications involving the long arm of the X chromosome are associated with mental retardation, short stature, microcephaly, and a wide range of physical findings. Female carriers usually have no clinical phenotype. Occasionally, they may also have heterogeneous features due to non-random inactivation of the X chromosome. METHODS The peripheral blood sample was collected from the patient and subjected to a few genetic testing, including chromosomal karyotyping, Chromosomal microarray analysis (CMA), Optical genome mapping, short tandem repeat (STR) analysis for Determination of parental origin, and X chromosome inactivation (XCI) analysis. RESULTS We have identified a de novo Xq23-Xq26.3 duplication in an adult female featuring extremely short stature and mild mental deficiency. Chromosome analysis detected a duplication on Xq23-q26.3 with a size of approximately 20 Mb. The duplication region has encompassed a number of genes, among which ARHGEF6, PHF6, HPRT1 and SLC9A6 are associated with X-linked mental retardation. Further analysis suggested that the duplication has derived from her father, was of the inversion duplication type and involved various degrees of skewed X chromosome inactivation. CONCLUSION Correlation with her phenotypes might indicate new mechanisms by which the X chromosome may lead to short stature and mental retardation. Our findings thereby may shed more light on the phenotypic implication of functional disomy of X-chromosome genes.
Collapse
Affiliation(s)
- Shengfang Qin
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China.
| | - Jiuzhi Zeng
- West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Jin Wang
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Mengling Ye
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Qin Deng
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Xueyan Wang
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Zhuo Zhang
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Dangying Yi
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Yang Wu
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Jesse Li-Ling
- West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China.
| |
Collapse
|
23
|
Fistrek Prlic M, Huljev Frkovic S, Beck B, Tonkovic Durisevic I, Bulimbasic S, Coric M, Lamot L, Ivandic E, Vukovic Brinar I. Two sides of the same coin: a complex presentation of autosomal dominant tubulointerstitial kidney diseases: a literature review and case reports. Front Pediatr 2023; 11:1283325. [PMID: 38027261 PMCID: PMC10667683 DOI: 10.3389/fped.2023.1283325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Genetic kidney diseases are underdiagnosed; namely, from 7% to 40% of patients suffering from chronic kidney disease (CKD) can carry a pathogenic variant, depending on population characteristics. Hereditary tubulointerstitial kidney diseases, including autosomal dominant tubulointerstitial kidney diseases (ADTKD), are even more challenging to diagnose. ADTKD is a rare form of genetic kidney disease resulting from pathogenic variants in the MUC1, UMOD, HNF1B, REN, SEC61A1, and DNAJB11 genes. There is no typical clinical or histopathological sign of ADTKD, it is characterized by progressive CKD, an autosomal dominant inheritance pattern, and tubular atrophy with interstitial fibrosis on kidney biopsy. There is no significant proteinuria, and the urinary sediment is bland. The patients usually do not have severe arterial hypertension. There can be a history of early gout, especially when compared to the UMOD gene variants. Children can have enuresis due to a loss of renal concentration. On ultrasound, the kidneys can appear normal or small in size. Renal cysts are not pathognomonic for any of the named diseases. End-stage renal disease (ESRD) develops at the average age of 45, but this can be very variable. Family history that suggests autosomal dominant inheritance and CKD fulfilling the aforementioned characteristics of tubulointerstitial kidney disease should raise suspicion of ADTKD. In the setting of a negative family history for CKD, clinical suspicion should be raised based on clinical characteristics, including early onset of hyperuricemia or gout and compatible histology on the kidney biopsy. Contrary to the aforementioned characteristics of ADTKD, in the case of HNF1B-related disease, there is a more complex clinical presentation with extrarenal manifestations of the disease (diabetes mellitus, hypomagnesemia, neurologic and psychiatric disturbances, etc.). The diagnosis of ADTKD is based on a positive family history and a detection of the pathogenic variant in one of the genes in an affected individual. Aim The aim of our study is to present two case reports of ADTKD with different characteristics (slowly progressive CKD vs. complex clinical presentation with an extrarenal manifestation of the disease) with a literature review. Methods A 34-year-old patient with CKD and a positive family history of CKD in whom kidney biopsy showed nonspecific chronic changes, with only genetic analysis confirming the diagnosis of MUC1-related ADTKD. Our second case is of a 17-year-old patient with an unremarkable family history who was initially referred to genetic counseling due to cognitive and motor impairment with long-lasting epilepsy. Extensive workup revealed increased serum creatinine levels with no proteinuria and bland urinary sediment, along with hypomagnesemia. His genetic analysis revealed 17q12 deletion syndrome, causing the loss of one copy of the HNF1B gene, the AATF, and the LHX1 gene. Conclusion Autosomal dominant tubulointerstitial kidney diseases are challenging to diagnose due to a lack of typical clinical or histopathological signs as well as an uncharacteristic and versatile clinical presentation. Increased clinical awareness is crucial for the detection of these diseases.
Collapse
Affiliation(s)
- Margareta Fistrek Prlic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, Zagreb, Croatia
| | - Sanda Huljev Frkovic
- Department of Pediatrics, Division of Genetics and Metabolism, University Hospital Center Zagreb, Zagreb, Croatia
- University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Bodo Beck
- Institute of Human Genetics, University of Cologne, Cologne, Germany
| | - Ivana Tonkovic Durisevic
- Department of Laboratory Diagnostics, Division of Cytogenetics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Stela Bulimbasic
- University of Zagreb, School of Medicine, Zagreb, Croatia
- Department of Pathology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Marijana Coric
- University of Zagreb, School of Medicine, Zagreb, Croatia
- Department of Pathology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Lovro Lamot
- University of Zagreb, School of Medicine, Zagreb, Croatia
- Department of Pediatrics, Division of Nephrology, Dialysis and Transplantation, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ema Ivandic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ivana Vukovic Brinar
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, Zagreb, Croatia
- University of Zagreb, School of Medicine, Zagreb, Croatia
| |
Collapse
|
24
|
Paparella A, L’Abbate A, Palmisano D, Chirico G, Porubsky D, Catacchio CR, Ventura M, Eichler EE, Maggiolini FAM, Antonacci F. Structural Variation Evolution at the 15q11-q13 Disease-Associated Locus. Int J Mol Sci 2023; 24:15818. [PMID: 37958807 PMCID: PMC10648317 DOI: 10.3390/ijms242115818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The impact of segmental duplications on human evolution and disease is only just starting to unfold, thanks to advancements in sequencing technologies that allow for their discovery and precise genotyping. The 15q11-q13 locus is a hotspot of recurrent copy number variation associated with Prader-Willi/Angelman syndromes, developmental delay, autism, and epilepsy and is mediated by complex segmental duplications, many of which arose recently during evolution. To gain insight into the instability of this region, we characterized its architecture in human and nonhuman primates, reconstructing the evolutionary history of five different inversions that rearranged the region in different species primarily by accumulation of segmental duplications. Comparative analysis of human and nonhuman primate duplication structures suggests a human-specific gain of directly oriented duplications in the regions flanking the GOLGA cores and HERC segmental duplications, representing potential genomic drivers for the human-specific expansions. The increasing complexity of segmental duplication organization over the course of evolution underlies its association with human susceptibility to recurrent disease-associated rearrangements.
Collapse
Affiliation(s)
- Annalisa Paparella
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Alberto L’Abbate
- Institute of Biomembranes, Bioenergetics, and Molecular Biotechnology (IBIOM), 70125 Bari, Italy
| | - Donato Palmisano
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Gerardina Chirico
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Claudia R. Catacchio
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Mario Ventura
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute (HHMI), University of Washington, Seattle, WA 98195, USA
| | - Flavia A. M. Maggiolini
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA), 70010 Bari, Italy
| | - Francesca Antonacci
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy
| |
Collapse
|
25
|
Villa N, Redaelli S, Farina S, Conconi D, Sala EM, Crosti F, Mariani S, Colombo CM, Dalprà L, Lavitrano M, Bentivegna A, Roversi G. Genomic Complexity and Complex Chromosomal Rearrangements in Genetic Diagnosis: Two Illustrative Cases on Chromosome 7. Genes (Basel) 2023; 14:1700. [PMID: 37761840 PMCID: PMC10530880 DOI: 10.3390/genes14091700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Complex chromosomal rearrangements are rare events compatible with survival, consisting of an imbalance and/or position effect of one or more genes, that contribute to a range of clinical presentations. The investigation and diagnosis of these cases are often difficult. The interpretation of the pattern of pairing and segregation of these chromosomes during meiosis is important for the assessment of the risk and the type of imbalance in the offspring. Here, we investigated two unrelated pediatric carriers of complex rearrangements of chromosome 7. The first case was a 2-year-old girl with a severe phenotype. Conventional cytogenetics evidenced a duplication of part of the short arm of chromosome 7. By array-CGH analysis, we found a complex rearrangement with three discontinuous trisomy regions (7p22.1p21.3, 7p21.3, and 7p21.3p15.3). The second case was a newborn investigated for hypodevelopment and dimorphisms. The karyotype analysis promptly revealed a structurally altered chromosome 7. The array-CGH analysis identified an even more complex rearrangement consisting of a trisomic region at 7q11.23q22 and a tetrasomic region of 4.5 Mb spanning 7q21.3 to q22.1. The mother's karyotype examination revealed a complex rearrangement of chromosome 7: the 7q11.23q22 region was inserted in the short arm at 7p15.3. Finally, array-CGH analysis showed a trisomic region that corresponds to the tetrasomic region of the son. Our work proved that the integration of several technical solutions is often required to appropriately analyze complex chromosomal rearrangements in order to understand their implications and offer appropriate genetic counseling.
Collapse
Affiliation(s)
- Nicoletta Villa
- UC Medical Genetics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy (G.R.)
| | - Serena Redaelli
- School of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy
| | - Stefania Farina
- UC Medical Genetics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy (G.R.)
- School of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy
| | - Donatella Conconi
- School of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy
| | - Elena Maria Sala
- UC Medical Genetics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy (G.R.)
| | - Francesca Crosti
- UC Medical Genetics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy (G.R.)
| | - Silvana Mariani
- Department of Obstetrics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Carla Maria Colombo
- Neonatal Intensive Care Unit, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Leda Dalprà
- UC Medical Genetics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy (G.R.)
- School of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy
| | | | - Angela Bentivegna
- School of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy
| | - Gaia Roversi
- UC Medical Genetics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy (G.R.)
- School of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy
| |
Collapse
|
26
|
Purcell RH, Sefik E, Werner E, King AT, Mosley TJ, Merritt-Garza ME, Chopra P, McEachin ZT, Karne S, Raj N, Vaglio BJ, Sullivan D, Firestein BL, Tilahun K, Robinette MI, Warren ST, Wen Z, Faundez V, Sloan SA, Bassell GJ, Mulle JG. Cross-species analysis identifies mitochondrial dysregulation as a functional consequence of the schizophrenia-associated 3q29 deletion. SCIENCE ADVANCES 2023; 9:eadh0558. [PMID: 37585521 PMCID: PMC10431714 DOI: 10.1126/sciadv.adh0558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/12/2023] [Indexed: 08/18/2023]
Abstract
The 1.6-megabase deletion at chromosome 3q29 (3q29Del) is the strongest identified genetic risk factor for schizophrenia, but the effects of this variant on neurodevelopment are not well understood. We interrogated the developing neural transcriptome in two experimental model systems with complementary advantages: isogenic human cortical organoids and isocortex from the 3q29Del mouse model. We profiled transcriptomes from isogenic cortical organoids that were aged for 2 and 12 months, as well as perinatal mouse isocortex, all at single-cell resolution. Systematic pathway analysis implicated dysregulation of mitochondrial function and energy metabolism. These molecular signatures were supported by analysis of oxidative phosphorylation protein complex expression in mouse brain and assays of mitochondrial function in engineered cell lines, which revealed a lack of metabolic flexibility and a contribution of the 3q29 gene PAK2. Together, these data indicate that metabolic disruption is associated with 3q29Del and is conserved across species.
Collapse
Affiliation(s)
- Ryan H. Purcell
- Laboratory of Translational Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Esra Sefik
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Erica Werner
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexia T. King
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Trenell J. Mosley
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Pankaj Chopra
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Zachary T. McEachin
- Laboratory of Translational Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sridhar Karne
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nisha Raj
- Laboratory of Translational Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Brandon J. Vaglio
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Dylan Sullivan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Bonnie L. Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Kedamawit Tilahun
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Maxine I. Robinette
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Stephen T. Warren
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Zhexing Wen
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Victor Faundez
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven A. Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Gary J. Bassell
- Laboratory of Translational Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jennifer G. Mulle
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
27
|
Hu Q, Valle-Inclan JE, Dahiya R, Guyer A, Mazzagatti A, Maurais EG, Engel JL, Cortés-Ciriano I, Ly P. Non-homologous end joining shapes the genomic rearrangement landscape of chromothripsis from mitotic errors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552800. [PMID: 37609143 PMCID: PMC10441393 DOI: 10.1101/2023.08.10.552800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Errors in mitosis can generate micronuclei that entrap mis-segregated chromosomes, which are susceptible to catastrophic fragmentation through a process termed chromothripsis. The reassembly of fragmented chromosomes by error-prone DNA double-strand break (DSB) repair generates a spectrum of simple and complex genomic rearrangements that are associated with human cancers and disorders. How specific DSB repair pathways recognize and process these lesions remains poorly understood. Here we used CRISPR/Cas9 to systematically inactivate distinct DSB processing or repair pathways and interrogated the rearrangement landscape of fragmented chromosomes from micronuclei. Deletion of canonical non-homologous end joining (NHEJ) components, including DNA-PKcs, LIG4, and XLF, substantially reduced the formation of complex rearrangements and shifted the rearrangement landscape toward simple alterations without the characteristic patterns of cancer-associated chromothripsis. Following reincorporation into the nucleus, fragmented chromosomes localize within micronuclei bodies (MN bodies) and undergo successful ligation by NHEJ within a single cell cycle. In the absence of NHEJ, chromosome fragments were rarely engaged by polymerase theta-mediated alternative end-joining or recombination-based mechanisms, resulting in delayed repair kinetics and persistent 53BP1-labeled MN bodies in the interphase nucleus. Prolonged DNA damage signaling from unrepaired fragments ultimately triggered cell cycle arrest. Thus, we provide evidence supporting NHEJ as the exclusive DSB repair pathway generating complex rearrangements following chromothripsis from mitotic errors.
Collapse
Affiliation(s)
- Qing Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Jose Espejo Valle-Inclan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Rashmi Dahiya
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Alison Guyer
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Present address: Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Alice Mazzagatti
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Elizabeth G. Maurais
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Justin L. Engel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
28
|
Soto DC, Uribe-Salazar JM, Shew CJ, Sekar A, McGinty S, Dennis MY. Genomic structural variation: A complex but important driver of human evolution. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 181 Suppl 76:118-144. [PMID: 36794631 PMCID: PMC10329998 DOI: 10.1002/ajpa.24713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/21/2023] [Accepted: 02/05/2023] [Indexed: 02/17/2023]
Abstract
Structural variants (SVs)-including duplications, deletions, and inversions of DNA-can have significant genomic and functional impacts but are technically difficult to identify and assay compared with single-nucleotide variants. With the aid of new genomic technologies, it has become clear that SVs account for significant differences across and within species. This phenomenon is particularly well-documented for humans and other primates due to the wealth of sequence data available. In great apes, SVs affect a larger number of nucleotides than single-nucleotide variants, with many identified SVs exhibiting population and species specificity. In this review, we highlight the importance of SVs in human evolution by (1) how they have shaped great ape genomes resulting in sensitized regions associated with traits and diseases, (2) their impact on gene functions and regulation, which subsequently has played a role in natural selection, and (3) the role of gene duplications in human brain evolution. We further discuss how to incorporate SVs in research, including the strengths and limitations of various genomic approaches. Finally, we propose future considerations in integrating existing data and biospecimens with the ever-expanding SV compendium propelled by biotechnology advancements.
Collapse
Affiliation(s)
- Daniela C. Soto
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - José M. Uribe-Salazar
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Colin J. Shew
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Aarthi Sekar
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Sean McGinty
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Megan Y. Dennis
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| |
Collapse
|
29
|
Laufer VA, Glover TW, Wilson TE. Applications of advanced technologies for detecting genomic structural variation. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108475. [PMID: 37931775 PMCID: PMC10792551 DOI: 10.1016/j.mrrev.2023.108475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Chromosomal structural variation (SV) encompasses a heterogenous class of genetic variants that exerts strong influences on human health and disease. Despite their importance, many structural variants (SVs) have remained poorly characterized at even a basic level, a discrepancy predicated upon the technical limitations of prior genomic assays. However, recent advances in genomic technology can identify and localize SVs accurately, opening new questions regarding SV risk factors and their impacts in humans. Here, we first define and classify human SVs and their generative mechanisms, highlighting characteristics leveraged by various SV assays. We next examine the first-ever gapless assembly of the human genome and the technical process of assembling it, which required third-generation sequencing technologies to resolve structurally complex loci. The new portions of that "telomere-to-telomere" and subsequent pangenome assemblies highlight aspects of SV biology likely to develop in the near-term. We consider the strengths and limitations of the most promising new SV technologies and when they or longstanding approaches are best suited to meeting salient goals in the study of human SV in population-scale genomics research, clinical, and public health contexts. It is a watershed time in our understanding of human SV when new approaches are expected to fundamentally change genomic applications.
Collapse
Affiliation(s)
- Vincent A Laufer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Thomas W Glover
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Thomas E Wilson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
30
|
Chen B, Ge T, Jian M, Chen L, Fang Z, He Z, Huang C, An Y, Yin S, Xiong Y, Zhang J, Li R, Ye M, Li Y, Liu F, Ma W, Songyang Z. Transmembrane nuclease NUMEN/ENDOD1 regulates DNA repair pathway choice at the nuclear periphery. Nat Cell Biol 2023:10.1038/s41556-023-01165-1. [PMID: 37322289 DOI: 10.1038/s41556-023-01165-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
Proper repair of DNA damage lesions is essential to maintaining genome integrity and preventing the development of human diseases, including cancer. Increasing evidence suggests the importance of the nuclear envelope in the spatial regulation of DNA repair, although the mechanisms of such regulatory processes remain poorly defined. Through a genome-wide synthetic viability screen for PARP-inhibitor resistance using an inducible CRISPR-Cas9 platform and BRCA1-deficient breast cancer cells, we identified a transmembrane nuclease (renamed NUMEN) that could facilitate compartmentalized and non-homologous end joining-dependent repair of double-stranded DNA breaks at the nuclear periphery. Collectively, our data demonstrate that NUMEN generates short 5' overhangs through its endonuclease and 3'→5' exonuclease activities, promotes the repair of DNA lesions-including heterochromatic lamina-associated domain breaks as well as deprotected telomeres-and functions as a downstream effector of DNA-dependent protein kinase catalytic subunit. These findings underline the role of NUMEN as a key player in DNA repair pathway choice and genome-stability maintenance, and have implications for ongoing research into the development and treatment of genome instability disorders.
Collapse
Affiliation(s)
- Bohong Chen
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tianyu Ge
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Meiqi Jian
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Liutao Chen
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhengwen Fang
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zibin He
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chengjing Huang
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan An
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shanshan Yin
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Xiong
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - JingKai Zhang
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ruofei Li
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Miaoman Ye
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yubing Li
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenbing Ma
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
31
|
Purcell RH, Sefik E, Werner E, King AT, Mosley TJ, Merritt-Garza ME, Chopra P, McEachin ZT, Karne S, Raj N, Vaglio BJ, Sullivan D, Firestein BL, Tilahun K, Robinette MI, Warren ST, Wen Z, Faundez V, Sloan SA, Bassell GJ, Mulle JG. Cross-species transcriptomic analysis identifies mitochondrial dysregulation as a functional consequence of the schizophrenia-associated 3q29 deletion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525748. [PMID: 36747819 PMCID: PMC9901184 DOI: 10.1101/2023.01.27.525748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent advances in the genetics of schizophrenia (SCZ) have identified rare variants that confer high disease risk, including a 1.6 Mb deletion at chromosome 3q29 with a staggeringly large effect size (O.R. > 40). Understanding the impact of the 3q29 deletion (3q29Del) on the developing CNS may therefore lead to insights about the pathobiology of schizophrenia. To gain clues about the molecular and cellular perturbations caused by the 3q29 deletion, we interrogated transcriptomic effects in two experimental model systems with complementary advantages: isogenic human forebrain cortical organoids and isocortex from the 3q29Del mouse model. We first created isogenic lines by engineering the full 3q29Del into an induced pluripotent stem cell line from a neurotypical individual. We profiled transcriptomes from isogenic cortical organoids that were aged for 2 months and 12 months, as well as day p7 perinatal mouse isocortex, all at single cell resolution. Differential expression analysis by genotype in each cell-type cluster revealed that more than half of the differentially expressed genes identified in mouse cortex were also differentially expressed in human cortical organoids, and strong correlations were observed in mouse-human differential gene expression across most major cell-types. We systematically filtered differentially expressed genes to identify changes occurring in both model systems. Pathway analysis on this filtered gene set implicated dysregulation of mitochondrial function and energy metabolism, although the direction of the effect was dependent on developmental timepoint. Transcriptomic changes were validated at the protein level by analysis of oxidative phosphorylation protein complexes in mouse brain tissue. Assays of mitochondrial function in human heterologous cells further confirmed robust mitochondrial dysregulation in 3q29Del cells, and these effects are partially recapitulated by ablation of the 3q29Del gene PAK2 . Taken together these data indicate that metabolic disruption is associated with 3q29Del and is conserved across species. These results converge with data from other rare SCZ-associated variants as well as idiopathic schizophrenia, suggesting that mitochondrial dysfunction may be a significant but overlooked contributing factor to the development of psychotic disorders. This cross-species scRNA-seq analysis of the SCZ-associated 3q29 deletion reveals that this copy number variant may produce early and persistent changes in cellular metabolism that are relevant to human neurodevelopment.
Collapse
|
32
|
Zhang S, Wang J, Pei Y, Han J, Xiong X, Yan Y, Zhang J, Liu Y, Su F, Xu J, Wu Q. Diagnostic Value of Chromosomal Microarray Analysis for Fetal Congenital Heart Defects with Different Cardiac Phenotypes and Extracardiac Abnormalities. Diagnostics (Basel) 2023; 13:diagnostics13081493. [PMID: 37189594 DOI: 10.3390/diagnostics13081493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
(1) Background: The objective of this study was to investigate the diagnostic value of chromosomal microarray analysis (CMA) for congenital heart defects (CHDs) with different cardiac phenotypes and extracardiac abnormalities (ECAs) and to explore the pathogenic genetic factors of CHDs. (2) Methods: We collected fetuses diagnosed with CHDs by echocardiography at our hospital from January 2012 to December 2021. We analyzed the CMA results of 427 fetuses with CHDs. We then categorized the CHD into different groups according to two dimensions: different cardiac phenotypes and whether it was combined with ECAs. The correlation between the numerical chromosomal abnormalities (NCAs) and copy number variations (CNVs) with CHDs was analyzed. Statistical analyses, including Chi-square tests and t-tests, were performed on the data using IBM SPSS and GraphPad Prism. (3) Results: In general, CHDs with ECAs increased the detection rate for CA, especially the conotruncal defects. CHD combined with the thoracic and abdominal walls and skeletal, thymic and multiple ECAs, were more likely to exhibit CA. Among the CHD phenotypes, VSD and AVSD were associated with NCA, while DORV may be associated with NCA. The cardiac phenotypes associated with pCNVs were IAA (type A and B), RAA, TAPVC, CoA and TOF. In addition, IAA, B, RAA, PS, CoA and TOF were also associated with 22q11.2DS. The length distribution of the CNV was not significantly different between each CHD phenotype. We detected twelve CNV syndromes, of which six syndromes may be related to CHDs. The pregnancy outcome in this study suggests that termination of pregnancy with fetal VSD and vascular abnormality is more dependent on genetic diagnosis, whereas the outcome in other phenotypes of CHDs may be associated with other additional factors. (4) Conclusions: CMA examination for CHDs is still necessary. We should identify the existence of fetal ECAs and specific cardiac phenotypes, which are helpful for genetic counseling and prenatal diagnosis.
Collapse
Affiliation(s)
- Simin Zhang
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
- Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Jingjing Wang
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
- Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Yan Pei
- Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
- Department of Obstetric, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Jijing Han
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
- Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Xiaowei Xiong
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
- Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Yani Yan
- Department of Obstetric, Peking University People's Hospital, Beijing 100032, China
| | - Juan Zhang
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
- Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Yan Liu
- Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Fangfei Su
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing 100032, China
| | - Jinyu Xu
- Department of Ultrasound, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100026, China
| | - Qingqing Wu
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
- Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| |
Collapse
|
33
|
Dachs N, Upadhyay M, Hannemann E, Hauser A, Krebs S, Seichter D, Russ I, Gehrke LJ, Thaller G, Medugorac I. Quantitative trait locus for calving traits on Bos taurus autosome 18 in Holstein cattle is embedded in a complex genomic region. J Dairy Sci 2023; 106:1925-1941. [PMID: 36710189 DOI: 10.3168/jds.2021-21625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 10/10/2022] [Indexed: 01/31/2023]
Abstract
Although the quantitative trait locus (QTL) on chromosome 18 (BTA18) associated with paternal calving ease and stillbirth in Holstein Friesian cattle and its cross has been known for over 20 years, to our knowledge, the exact causal genetic sequence has yet escaped identification. The aim of this study was to re-examine the region of the published QTL on BTA18 and to investigate the possible reasons behind this elusiveness. For this purpose, we carried out a combined linkage disequilibrium and linkage analysis using genotyping data of 2,697 German Holstein Friesian (HF) animals and subsequent whole-genome sequencing (WGS) data analyses and genome assembly of HF samples. We confirmed the known QTL in the 95% confidence interval of 1.089 Mbp between 58.34 and 59.43 Mbp on BTA18. Additionally, these 4 SNPs in the near-perfect linkage disequilibrium with the QTL haplotype were identified: rs381577268 (on 57,816,137 bp, C/T), rs381878735 (on 59,574,329 bp, A/T), rs464221818 (on 59,329,176 bp, C/T), and rs472502785 (on 59,345,689 bp, T/C). Search for the causal mutation using short and long-read sequences, and methylation data of the BTA18 QTL region did not reveal any candidates though. The assembly showed problems in the region, as well as an abundance of segmental duplications within and around the region. Taking the QTL of BTA18 in Holstein cattle as an example, the data presented in this study comprehensively characterize the genomic features that could also be relevant for other such elusive QTL in various other cattle breeds and livestock species as well.
Collapse
Affiliation(s)
- Nina Dachs
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152 Martinsried, Germany; Tierzuchtforschung e.V. München, Senator-Gerauer-Str, 23, 85586 Poing, Germany
| | - Maulik Upadhyay
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152 Martinsried, Germany
| | - Elisabeth Hannemann
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152 Martinsried, Germany
| | - Andreas Hauser
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Doris Seichter
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str, 23, 85586 Poing, Germany
| | - Ingolf Russ
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str, 23, 85586 Poing, Germany
| | - Lilian Johanna Gehrke
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, Olshausenstraße 40, 24098 Kiel, Germany; Vereinigte Informationssysteme Tierhaltung w.V. (vit) Verden, Heinrich-Schröder-Weg 1, 27283 Verden (Aller), Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152 Martinsried, Germany.
| |
Collapse
|
34
|
Burssed B, Zamariolli M, Favilla BP, Meloni VA, Goloni-Bertollo EM, Bellucco FT, Melaragno MI. Fold-back mechanism originating inv-dup-del rearrangements in chromosomes 13 and 15. Chromosome Res 2023; 31:10. [PMID: 36826604 DOI: 10.1007/s10577-023-09720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023]
Abstract
Intrachromosomal rearrangements involve a single chromosome and can be formed by several proposed mechanisms. We reported two patients with intrachromosomal duplications and deletions, whose rearrangements and breakpoints were characterized through karyotyping, chromosomal microarray, fluorescence in situ hybridization, whole-genome sequencing, and Sanger sequencing. Inverted duplications associated with terminal deletions, known as inv-dup-del rearrangements, were found in 13q and 15q in these patients. The presence of microhomology at the junction points led to the proposal of the Fold-back mechanism for their formation. The use of different high-resolution techniques allowed for a better characterization of the rearrangements, with Sanger sequencing of the junction points being essential to infer the mechanisms of formation as it revealed microhomologies that were missed by the previous techniques. A karyotype-phenotype correlation was also performed for the characterized rearrangements.
Collapse
Affiliation(s)
- Bruna Burssed
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Malú Zamariolli
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Bianca Pereira Favilla
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vera Ayres Meloni
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Eny Maria Goloni-Bertollo
- Genetics and Molecular Biology Research Unit, Department of Molecular Biology, São José Do Rio Preto Medical School, São José Do Rio Preto, Brazil
| | - Fernanda Teixeira Bellucco
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Isabel Melaragno
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
35
|
Montalbano S, Sánchez XC, Vaez M, Helenius D, Werge T, Ingason A. Accurate and Effective Detection of Recurrent Copy Number Variants in Large SNP Genotype Datasets. Curr Protoc 2022; 2:e621. [PMID: 36469582 PMCID: PMC9729012 DOI: 10.1002/cpz1.621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Structural variations, including recurrent Copy Number Variants (CNVs) at specific genomic loci, have been found to be associated with increased risk of several diseases and syndromes. CNV carrier status can be determined in large collections of samples using SNP arrays and, more recently, sequencing data. Although there is some consensus among researchers about the essential steps required in such analysis (i.e., CNV calling, filtering of putative carriers, and visual validation using intensity data plots of the genomic region), standard methodologies and processes to control the quality and consistency of the results are lacking. Here, we present a comprehensive and user-friendly protocol that we have refined from our extensive research experience in the field. We cover every aspect of the analysis, from input data curation to final results. For each step, we highlight which parameters affect the analysis the most and how different settings may lead to different results. We provide a pipeline to run the complete analysis with effective (but customizable) pre-sets. We present software that we developed to better handle and filter putative CNV carriers and perform visual inspection to validate selected candidates. Finally, we describe methods to evaluate the critical sections and actions to counterbalance potential problems. The current implementation is focused on Illumina SNP array data. All the presented software is freely available and provided in a ready-to-use docker container. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: From raw intensity data files to CNV calls Basic Protocol 2: From CNV calls to validated CNV carriers. Basic Protocol 3: Quality control and quality assessment Basic Protocol 4: Install the necessary software.
Collapse
Affiliation(s)
- Simone Montalbano
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- These authors contributed equally to this work
| | - Xabier Calle Sánchez
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- These authors contributed equally to this work
| | - Morteza Vaez
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - Dorte Helenius
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Andrés Ingason
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
de Carvalho AFL, Alves ES, Pitanga PML, Ribeiro EM, Doriqui MJR, Toralles MBP, Topázio BA, dos Santos JF, de Lima RLLF, Kulikowski LD, Acosta AX. Identifying Genetic Etiology in Patients with Intellectual Disability: An Experience in Public Health Services in Northeastern Brazil. J Pediatr Genet 2022. [DOI: 10.1055/s-0042-1757888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AbstractIntellectual disability (ID) is considered a common neuropsychiatric disorder that affects up to 3% of the population. The etiologic origin of ID may be genetic, environmental, and multifactorial. Chromosomopathies are relatively common among the genetic causes of ID, especially in the most severe cases and those associated with dysmorphic features. Currently, the application of new molecular cytogenetics technologies has increasingly allowed the identification of microdeletions, microduplications, and unbalanced translocations as causes of ID. The objective of this study was to investigate the etiology of ID in patients admitted to a public hospital in Northeastern Brazil. In total, 119 patients with ID who had normal karyotypes and fragile X exams participated in this study. The patients were initially physically examined for microdeletion syndromes and then tested using fluorescence in situ hybridization (FISH), multiplex ligation-dependent probe amplification (MLPA), methylation-sensitive polymerase chain reaction (MS-PCR), and chromosome microarray analysis (CMA), according to clinical suspicion. Patients with no diagnoses after FISH, MLPA, and/or MS-PCR evaluations were subsequently tested by CMA. The rate of etiologic diagnoses of ID in the current study was 28%. FISH diagnosed 25 out of 79 tested (31%), MLPA diagnosed 26 out of 79 tested (32%), MS-PCR diagnosed 7 out of 20 tested (35%), and the single nucleotide polymorphism array diagnosed 6 out of 27 tested (22%). Although the CMA is the most complete and recommended tool for the diagnosis of microdeletions, microduplications, and unbalance translocations in patients with ID, FISH, MLPA, and MS-PCR testing can be used as the first tests for specific syndromes, as long as the patients are first physically screened clinically, especially in the public health networks system in Brazil, where resources are scarce.
Collapse
Affiliation(s)
| | - Esmeralda Santos Alves
- Laboratory of Human Genetics and Mutagenesis, Institute of Biology, Federal University Bahia (UFBA), Salvador, Bahia, Brazil
| | - Paula Monique Leite Pitanga
- Laboratory of Human Genetics and Mutagenesis, Institute of Biology, Federal University Bahia (UFBA), Salvador, Bahia, Brazil
| | - Erlane Marques Ribeiro
- Faculty of Medicine Estacio of Juazeiro Norte, Estacio-FMJ, Hospital Infantil Albert Sabin, Fortaleza, Ceará, Brazil
| | | | - Maria Betânia Pereira Toralles
- Medical School of Medicine, Medical Genetic Service – Edgard Santos Teaching Hospital/Federal University of Bahia, Salvador, Bahia, Brazil
| | - Bianca Arcaro Topázio
- Laboratory of Human Genetics and Mutagenesis, Institute of Biology, Federal University Bahia (UFBA), Salvador, Bahia, Brazil
| | - Jéssica Fernandes dos Santos
- Laboratory of Human Genetics and Mutagenesis, Institute of Biology, Federal University Bahia (UFBA), Salvador, Bahia, Brazil
| | | | | | - Angelina Xavier Acosta
- Medical School of Medicine, Medical Genetic Service – Edgard Santos Teaching Hospital/Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
37
|
Schuy J, Grochowski CM, Carvalho CMB, Lindstrand A. Complex genomic rearrangements: an underestimated cause of rare diseases. Trends Genet 2022; 38:1134-1146. [PMID: 35820967 PMCID: PMC9851044 DOI: 10.1016/j.tig.2022.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 01/24/2023]
Abstract
Complex genomic rearrangements (CGRs) are known contributors to disease but are often missed during routine genetic screening. Identifying CGRs requires (i) identifying copy number variants (CNVs) concurrently with inversions, (ii) phasing multiple breakpoint junctions incis, as well as (iii) detecting and resolving structural variants (SVs) within repeats. We demonstrate how combining cytogenetics and new sequencing methodologies is being successfully applied to gain insights into the genomic architecture of CGRs. In addition, we review CGR patterns and molecular features revealed by studying constitutional genomic disorders. These data offer invaluable lessons to individuals interested in investigating CGRs, evaluating their clinical relevance and frequency, as well as assessing their impact(s) on rare genetic diseases.
Collapse
Affiliation(s)
- Jakob Schuy
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Pacific Northwest Research Institute, Seattle, WA, USA
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
38
|
Haddock J, Domyan ET. A DNA Replication Mechanism Can Explain Structural Variation at the Pigeon Recessive Red Locus. Biomolecules 2022; 12:1509. [PMID: 36291717 PMCID: PMC9599118 DOI: 10.3390/biom12101509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 08/08/2023] Open
Abstract
For species to adapt to their environment, evolution must act upon genetic variation that is present in the population. Elucidating the molecular mechanisms that give rise to this variation is thus of crucial importance for understanding how organisms evolve. In addition to variation caused by point mutations, structural variation (deletions, duplications, inversions, translocations) is also an important source of variety. Mechanisms involving recombination, transposition and retrotransposition, and replication have been proposed for generating structural variation, and each are capable of explaining certain rearrangements. In this study, we conduct a detailed analysis of two partially overlapping rearrangements (e1 and e2 allele) in domestic rock pigeon (Columba livia) which are both associated with the recessive red phenotype. We find that a replicative mechanism is best able to explain the complex architecture of the e1 allele, and is also compatible with the simpler architecture of the e2 allele as well.
Collapse
Affiliation(s)
| | - Eric T. Domyan
- Department of Biology, Utah Valley University, Orem, UT 84058, USA
| |
Collapse
|
39
|
Belyaeva EO, Lebedev IN. Interloci CNV Interactions in Variability of the Phenotypes of Neurodevelopmental Disorders. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422100027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Khalaf G, Mattern C, Begou M, Boespflug-Tanguy O, Massaad C, Massaad-Massade L. Mutation of Proteolipid Protein 1 Gene: From Severe Hypomyelinating Leukodystrophy to Inherited Spastic Paraplegia. Biomedicines 2022; 10:1709. [PMID: 35885014 PMCID: PMC9313024 DOI: 10.3390/biomedicines10071709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 01/17/2023] Open
Abstract
Pelizaeus-Merzbacher Disease (PMD) is an inherited leukodystrophy affecting the central nervous system (CNS)-a rare disorder that especially concerns males. Its estimated prevalence is 1.45-1.9 per 100,000 individuals in the general population. Patients affected by PMD exhibit a drastic reduction or absence of myelin sheaths in the white matter areas of the CNS. The Proteolipid Protein 1 (PLP1) gene encodes a transmembrane proteolipid protein. PLP1 is the major protein of myelin, and it plays a key role in the compaction, stabilization, and maintenance of myelin sheaths. Its function is predominant in oligodendrocyte development and axonal survival. Mutations in the PLP1 gene cause the development of a wide continuum spectrum of leukopathies from the most severe form of PMD for whom patients exhibit severe CNS hypomyelination to the relatively mild late-onset type 2 spastic paraplegia, leading to the concept of PLP1-related disorders. The genetic diversity and the biochemical complexity, along with other aspects of PMD, are discussed to reveal the obstacles that hinder the development of treatments. This review aims to provide a clinical and mechanistic overview of this spectrum of rare diseases.
Collapse
Affiliation(s)
- Guy Khalaf
- U1195 Diseases and Hormones of the Nervous System, INSERM and Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France;
| | | | - Mélina Begou
- Neuro-Dol, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France;
| | - Odile Boespflug-Tanguy
- UMR 1141, INSERM, NeuroDiderot Université Paris Cité and APH-P, Neuropédiatrie, French Reference Center for Leukodystrophies, LEUKOFRANCE, Hôpital Robert Debré, 75019 Paris, France;
| | - Charbel Massaad
- UMRS 1124, INSERM, Université Paris Cité, 75006 Paris, France
| | - Liliane Massaad-Massade
- U1195 Diseases and Hormones of the Nervous System, INSERM and Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France;
| |
Collapse
|
41
|
Burssed B, Zamariolli M, Bellucco FT, Melaragno MI. Mechanisms of structural chromosomal rearrangement formation. Mol Cytogenet 2022; 15:23. [PMID: 35701783 PMCID: PMC9199198 DOI: 10.1186/s13039-022-00600-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/31/2022] [Indexed: 12/31/2022] Open
Abstract
Structural chromosomal rearrangements result from different mechanisms of formation, usually related to certain genomic architectural features that may lead to genetic instability. Most of these rearrangements arise from recombination, repair, or replication mechanisms that occur after a double-strand break or the stalling/breakage of a replication fork. Here, we review the mechanisms of formation of structural rearrangements, highlighting their main features and differences. The most important mechanisms of constitutional chromosomal alterations are discussed, including Non-Allelic Homologous Recombination (NAHR), Non-Homologous End-Joining (NHEJ), Fork Stalling and Template Switching (FoSTeS), and Microhomology-Mediated Break-Induced Replication (MMBIR). Their involvement in chromoanagenesis and in the formation of complex chromosomal rearrangements, inverted duplications associated with terminal deletions, and ring chromosomes is also outlined. We reinforce the importance of high-resolution analysis to determine the DNA sequence at, and near, their breakpoints in order to infer the mechanisms of formation of structural rearrangements and to reveal how cells respond to DNA damage and repair broken ends.
Collapse
Affiliation(s)
- Bruna Burssed
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Malú Zamariolli
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Fernanda Teixeira Bellucco
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Maria Isabel Melaragno
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
42
|
Duan X, Pan M, Fan S. Comprehensive evaluation of structural variant genotyping methods based on long-read sequencing data. BMC Genomics 2022; 23:324. [PMID: 35461238 PMCID: PMC9034514 DOI: 10.1186/s12864-022-08548-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/11/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Structural variants (SVs) play a crucial role in gene regulation, trait association, and disease in humans. SV genotyping has been extensively applied in genomics research and clinical diagnosis. Although a growing number of SV genotyping methods for long reads have been developed, a comprehensive performance assessment of these methods has yet to be done. RESULTS Based on one simulated and three real SV datasets, we performed an in-depth evaluation of five SV genotyping methods, including cuteSV, LRcaller, Sniffles, SVJedi, and VaPoR. The results show that for insertions and deletions, cuteSV and LRcaller have similar F1 scores (cuteSV, insertions: 0.69-0.90, deletions: 0.77-0.90 and LRcaller, insertions: 0.67-0.87, deletions: 0.74-0.91) and are superior to other methods. For duplications, inversions, and translocations, LRcaller yields the most accurate genotyping results (0.84, 0.68, and 0.47, respectively). When genotyping SVs located in tandem repeat region or with imprecise breakpoints, cuteSV (insertions and deletions) and LRcaller (duplications, inversions, and translocations) are better than other methods. In addition, we observed a decrease in F1 scores when the SV size increased. Finally, our analyses suggest that the F1 scores of these methods reach the point of diminishing returns at 20× depth of coverage. CONCLUSIONS We present an in-depth benchmark study of long-read SV genotyping methods. Our results highlight the advantages and disadvantages of each genotyping method, which provide practical guidance for optimal application selection and prospective directions for tool improvement.
Collapse
Affiliation(s)
- Xiaoke Duan
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200438 China
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Mingpei Pan
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200438 China
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Shaohua Fan
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200438 China
| |
Collapse
|
43
|
Genome-wide compound heterozygote analysis highlights DPY19L2 alleles in a non-consanguineous Spanish family with a complete form of globozoospermia. Reprod Biomed Online 2022; 45:332-340. [DOI: 10.1016/j.rbmo.2022.03.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022]
|
44
|
Redaelli S, Conconi D, Sala E, Villa N, Crosti F, Roversi G, Catusi I, Valtorta C, Recalcati MP, Dalprà L, Lavitrano M, Bentivegna A. Characterization of Chromosomal Breakpoints in 12 Cases with 8p Rearrangements Defines a Continuum of Fragility of the Region. Int J Mol Sci 2022; 23:ijms23063347. [PMID: 35328767 PMCID: PMC8954119 DOI: 10.3390/ijms23063347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/29/2022] Open
Abstract
Improvements in microarray-based comparative genomic hybridization technology have allowed for high-resolution detection of genome wide copy number alterations, leading to a better definition of rearrangements and supporting the study of pathogenesis mechanisms. In this study, we focused our attention on chromosome 8p. We report 12 cases of 8p rearrangements, analyzed by molecular karyotype, evidencing a continuum of fragility that involves the entire short arm. The breakpoints seem more concentrated in three intervals: one at the telomeric end, the others at 8p23.1, close to the beta-defensin gene cluster and olfactory receptor low-copy repeats. Hypothetical mechanisms for all cases are described. Our data extend the cohort of published patients with 8p aberrations and highlight the need to pay special attention to these sequences due to the risk of formation of new chromosomal aberrations with pathological effects.
Collapse
Affiliation(s)
- Serena Redaelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.R.); (G.R.); (L.D.); (M.L.)
| | - Donatella Conconi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.R.); (G.R.); (L.D.); (M.L.)
- Correspondence: (D.C.); (A.B.)
| | - Elena Sala
- Medical Genetics Laboratory, Clinical Pathology Department, S. Gerardo Hospital, 20900 Monza, Italy; (E.S.); (N.V.); (F.C.)
| | - Nicoletta Villa
- Medical Genetics Laboratory, Clinical Pathology Department, S. Gerardo Hospital, 20900 Monza, Italy; (E.S.); (N.V.); (F.C.)
| | - Francesca Crosti
- Medical Genetics Laboratory, Clinical Pathology Department, S. Gerardo Hospital, 20900 Monza, Italy; (E.S.); (N.V.); (F.C.)
| | - Gaia Roversi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.R.); (G.R.); (L.D.); (M.L.)
- Medical Genetics Laboratory, Clinical Pathology Department, S. Gerardo Hospital, 20900 Monza, Italy; (E.S.); (N.V.); (F.C.)
| | - Ilaria Catusi
- Medical Cytogenetics Laboratory, Istituto Auxologico Italiano IRCCS, 20095 Cusano Milanino, Italy; (I.C.); (C.V.); (M.P.R.)
| | - Chiara Valtorta
- Medical Cytogenetics Laboratory, Istituto Auxologico Italiano IRCCS, 20095 Cusano Milanino, Italy; (I.C.); (C.V.); (M.P.R.)
| | - Maria Paola Recalcati
- Medical Cytogenetics Laboratory, Istituto Auxologico Italiano IRCCS, 20095 Cusano Milanino, Italy; (I.C.); (C.V.); (M.P.R.)
| | - Leda Dalprà
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.R.); (G.R.); (L.D.); (M.L.)
- Medical Genetics Laboratory, Clinical Pathology Department, S. Gerardo Hospital, 20900 Monza, Italy; (E.S.); (N.V.); (F.C.)
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.R.); (G.R.); (L.D.); (M.L.)
| | - Angela Bentivegna
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.R.); (G.R.); (L.D.); (M.L.)
- Correspondence: (D.C.); (A.B.)
| |
Collapse
|
45
|
Chen X, Li Y, Huang Q, Lin X, Wang X, Wang Y, Liu Y, He Q, Liu Y, Wang T, Ji ZL, Li Q. Segmental duplication as potential biomarkers for non-invasive prenatal testing of aneuploidies. EBioMedicine 2021; 70:103535. [PMID: 34391089 PMCID: PMC8374395 DOI: 10.1016/j.ebiom.2021.103535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/12/2021] [Accepted: 07/26/2021] [Indexed: 11/06/2022] Open
Abstract
Background Segmental duplication (SD) regions are distinct targets for aneuploidy detection owing to the virtual elimination of amplification bias. The difficulty of searching SD sequences for assay design has hampered their applications. Methods We developed a computational program, ChAPDes, which integrates SD searching, refinement, and design of specific PCR primer/probe sets in a pipeline to remove most of the manual work. The generated primer/probe sets were first tested in a multiplex multicolour melting curve analysis for the detection of five common aneuploidies. The primer/probe sets were then tested in a digital PCR assay for the detection of trisomy 21. Finally, a digital PCR protocol was established to quantify maternal plasma DNA sequences for the non-invasive prenatal detection of fetal trisomy 21. Findings ChAPDes could output 21,772 candidate primer/probe sets for trisomy 13, 18, 21 and sex chromosome aneuploidies within 2 working days. Clinical evaluation of the multiplex multicolour melting curve analysis involving 463 fetal genomic DNA samples revealed a sensitivity of 100% and specificity of 99.64% in comparison with the reference methods. Using the established digital PCR protocol, we correctly identified two trisomy 21 fetuses and thirteen euploid foetuses from the maternal plasma samples. Interpretation The combination of ChAPDes with digital PCR detection could facilitate the use of SD as potential biomarkers for the non-invasive prenatal testing of fetal chromosomal aneuploidies.
Collapse
Affiliation(s)
- Xinwen Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, State Key Laboratory of Cellular Stress Biology, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yifan Li
- National Institute for Data Science in Health and Medicine, School of Informatics, Xiamen University, Xiamen, Fujian 361102, China
| | - Qiuying Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, State Key Laboratory of Cellular Stress Biology, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xingming Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, State Key Laboratory of Cellular Stress Biology, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xudong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, State Key Laboratory of Cellular Stress Biology, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yafang Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, State Key Laboratory of Cellular Stress Biology, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Ying Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, State Key Laboratory of Cellular Stress Biology, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qiushun He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, State Key Laboratory of Cellular Stress Biology, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yinghua Liu
- Centre for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, China
| | - Ting Wang
- Centre for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, China.
| | - Zhi-Liang Ji
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, State Key Laboratory of Cellular Stress Biology, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Qingge Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, State Key Laboratory of Cellular Stress Biology, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
46
|
Bhayana A, Bajaj SK, Misra RN, Kumaran SS. Clinicoradiological aspects of pontine tegmental cap dysplasia: Case report of a rare hindbrain malformation. Indian J Radiol Imaging 2021; 28:18-21. [PMID: 29692521 PMCID: PMC5894312 DOI: 10.4103/ijri.ijri_25_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Malformations involving the brainstem are very rare and present with a varied spectrum of clinical symptoms due to multiple cranial nerve palsies and pyramidal tract involvement. Of these, pontine tegmental cap dysplasia is a very unusual malformation, characterized by ventral pons hypoplasia and an ectopic dorsal band of tissue, projecting into the fourth ventricle, from dorsal pontine tegmentum. A 4-year-old male child, presenting with left facial nerve palsy, revealed hypoplastic ventral pons and an ectopic structure on magnetic resonance imaging (MRI). The ectopic structure was isointense to pons, arose from the left side of dorsal pontine tegmentum, at pontomedullary junction and protruded into the fourth ventricle, impinging upon the left seventh and eighth cranial nerves. Diffusion tensor imaging (DTI) depicted abnormal white matter tracts in ectopic tissue with absent transverse pontine fibres and abnormal middle and superior cerebellar peduncles. The typical MRI appearance, coupled with DTI, helped us reach an accurate diagnosis of pontine tegmental cap dysplasia, in a setting of neurological dysfunction.
Collapse
Affiliation(s)
- Aanchal Bhayana
- Department of Radiodiagnosis, Safdarjung Hospital and VM Medical College, New Delhi, India
| | - Sunil K Bajaj
- Department of Radiodiagnosis, Safdarjung Hospital and VM Medical College, New Delhi, India
| | - Ritu N Misra
- Department of Radiodiagnosis, Safdarjung Hospital and VM Medical College, New Delhi, India
| | - S Senthil Kumaran
- Department of Nuclear Medical Resonance, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
47
|
Abdullaev ET, Umarova IR, Arndt PF. Modelling segmental duplications in the human genome. BMC Genomics 2021; 22:496. [PMID: 34215180 PMCID: PMC8254307 DOI: 10.1186/s12864-021-07789-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 06/10/2021] [Indexed: 11/22/2022] Open
Abstract
Background Segmental duplications (SDs) are long DNA sequences that are repeated in a genome and have high sequence identity. In contrast to repetitive elements they are often unique and only sometimes have multiple copies in a genome. There are several well-studied mechanisms responsible for segmental duplications: non-allelic homologous recombination, non-homologous end joining and replication slippage. Such duplications play an important role in evolution, however, we do not have a full understanding of the dynamic properties of the duplication process. Results We study segmental duplications through a graph representation where nodes represent genomic regions and edges represent duplications between them. The resulting network (the SD network) is quite complex and has distinct features which allow us to make inference on the evolution of segmantal duplications. We come up with the network growth model that explains features of the SD network thus giving us insights on dynamics of segmental duplications in the human genome. Based on our analysis of genomes of other species the network growth model seems to be applicable for multiple mammalian genomes. Conclusions Our analysis suggests that duplication rates of genomic loci grow linearly with the number of copies of a duplicated region. Several scenarios explaining such a preferential duplication rates were suggested. Supplementary Information The online version contains supplementary material available at (10.1186/s12864-021-07789-7).
Collapse
Affiliation(s)
- Eldar T Abdullaev
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestraße 63/73, Berlin, 14195, Germany.
| | - Iren R Umarova
- Faculty of Computational Mathematics and Cybernetics, Moscow State University, Leninskiye Gory 1-52, Moscow, 119991, Russia
| | - Peter F Arndt
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestraße 63/73, Berlin, 14195, Germany
| |
Collapse
|
48
|
Study of complex structural variations of X-linked deafness-2 based on single-molecule sequencing. Biosci Rep 2021; 41:228372. [PMID: 33860785 PMCID: PMC8193640 DOI: 10.1042/bsr20203740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/21/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
X-linked deafness-2 (DFNX2) is cochlear incomplete partition type III (IP-III), one of inner ear malformations characterized by an abnormally wide opening in the bone separating the basal turn of the cochlea from the internal auditory canal, fixation of the stapes and cerebrospinal fluid (CSF) gusher upon stapedectomy or cochleostomy. The causative gene of DFNX2 was POU3F4. To investigate the genetic causes of DFNX2 and compare the efficiency of different sequencing methods, 12 unrelated patients were enrolled in the present study. Targeted next-generation sequencing (NGS) and long-read sequencing were used to analyze the genetic etiology of DFNX2. Six variants of POU3F4 were identified in this cohort by NGS. Three patients with a negative diagnosis based on NGS were enrolled in further long-read sequencing. Two of them were all found to carry structural variations (SVs) on chromosome X, consisting of an 870-kb deletion (DEL) at upstream of POU3F4 and an 8-Mb inversion (INV). The 870-kb DEL may have been due to non-homologous end joining (NHEJ), while non-allelic homologous recombination (NAHR) within a single chromatid may have accounted for the 8-Mb INV. Common POU3F4 mutations in DFNX2 included point mutations, small insertions and deletions (INDELs), and exon mutations, which can be detected by Sanger sequencing and NGS. Single-molecule long-read sequencing constitutes an additional and valuable method for accurate detection of pathogenic SVs in IP-III patients with negative NGS results.
Collapse
|
49
|
Gorkovskiy A, Verstrepen KJ. The Role of Structural Variation in Adaptation and Evolution of Yeast and Other Fungi. Genes (Basel) 2021; 12:699. [PMID: 34066718 PMCID: PMC8150848 DOI: 10.3390/genes12050699] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/12/2023] Open
Abstract
Mutations in DNA can be limited to one or a few nucleotides, or encompass larger deletions, insertions, duplications, inversions and translocations that span long stretches of DNA or even full chromosomes. These so-called structural variations (SVs) can alter the gene copy number, modify open reading frames, change regulatory sequences or chromatin structure and thus result in major phenotypic changes. As some of the best-known examples of SV are linked to severe genetic disorders, this type of mutation has traditionally been regarded as negative and of little importance for adaptive evolution. However, the advent of genomic technologies uncovered the ubiquity of SVs even in healthy organisms. Moreover, experimental evolution studies suggest that SV is an important driver of evolution and adaptation to new environments. Here, we provide an overview of the causes and consequences of SV and their role in adaptation, with specific emphasis on fungi since these have proven to be excellent models to study SV.
Collapse
Affiliation(s)
- Anton Gorkovskiy
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium;
- Laboratory for Systems Biology, VIB—KU Leuven Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Kevin J. Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium;
- Laboratory for Systems Biology, VIB—KU Leuven Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| |
Collapse
|
50
|
Dangles MT, Malan V, Dumas G, Romana S, Raoul O, Coste-Zeitoun D, Soufflet C, Vignolo-Diard P, Bahi-Buisson N, Barnérias C, Chemaly N, Desguerre I, Gitiaux C, Hully M, Bourgeois M, Guimier A, Rio M, Munnich A, Nabbout R, Kaminska A, Eisermann M. Electro-clinical features in epileptic children with chromosome 15q duplication syndrome. Clin Neurophysiol 2021; 132:1126-1137. [PMID: 33773177 DOI: 10.1016/j.clinph.2021.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/03/2021] [Accepted: 02/22/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We aimed to describe epilepsy and EEG patterns related to vigilance states and age, in chromosome15-long-arm-duplication-syndrome (dup15q) children with epilepsy, in both duplication types: interstitial (intdup15) and isodicentric (idic15). METHODS Clinical data and 70 EEGs of 12 patients (5 intdup15, 7 idic15), followed from 4.5 m.o to 17y4m (median follow-up 8y3m), were retrospectively reviewed. EEGs were analyzed visually and using power spectrum analysis. RESULTS Seventy video-EEGs were analyzed (1-16 per patient, median 6), follow-up lasting up to 8y10m (median 4y2m): 25 EEGs in intdup15 (8 m.o to 12y.o, median 4y6m) and 45 EEGs in idic15 (7 m.o to 12 y.o, median 15 m). Epilepsy: 6 West syndrome (WS) (2intdup15, 4idic15); 4 Lennox-Gastaut syndromes (LGS) (1 intdup15, 3 idic15), 2 evolving from WS; focal epilepsy (3 intdup15). In idic15, WS displayed additional myoclonic seizures (3), atypical (4) or no hypsarrhythmia (2) and posterior predominant spike and polyspike bursts (4). Beta-band rapid-rhythms (RR): present in 11 patients, power decreased during non-REM-sleep, localization shifted from diffuse to anterior, peak frequency increased with age. CONCLUSION WS with peculiar electro-clinical features and LGS, along with beta-band RR decreasing in non-REM-sleep and shifting from diffuse to anterior localization with age are recognizable features pointing towards dup15q diagnosis in children with autism spectrum disorder and developmental delay. SIGNIFICANCE This study describes electroclinical features in both interstitial and isodicentric duplications of chromosome 15q, in epileptic children, including some recent extensions regarding sleep features; and illustrates how the temporo-spatial organization of beta oscillations can be of significant help in directing towards dup15q diagnosis hypothesis.
Collapse
Affiliation(s)
- M-T Dangles
- Department of Clinical Neurophysiology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France; Centre de Référence des Epilepsies Rares CRéER, Department of Pediatric Neurology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France; Department of Pediatric Neurology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France; Université de Paris, Paris, France.
| | - V Malan
- Université de Paris, Paris, France; Department of Cytogenetics, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - G Dumas
- Department of Clinical Neurophysiology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France; Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris, France; Department of Psychiatry, Université de Montreal, CHU Sainte-Justine Hospital, Montreal, QC, Canada
| | - S Romana
- Université de Paris, Paris, France; Department of Cytogenetics, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - O Raoul
- Department of Cytogenetics, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - D Coste-Zeitoun
- Department of Clinical Neurophysiology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France; Centre de Référence des Epilepsies Rares CRéER, Department of Pediatric Neurology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - C Soufflet
- Department of Clinical Neurophysiology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - P Vignolo-Diard
- Department of Clinical Neurophysiology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - N Bahi-Buisson
- Department of Pediatric Neurology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France; Université de Paris, Paris, France
| | - C Barnérias
- Department of Pediatric Neurology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - N Chemaly
- Centre de Référence des Epilepsies Rares CRéER, Department of Pediatric Neurology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France; Department of Pediatric Neurology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - I Desguerre
- Department of Pediatric Neurology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France; Université de Paris, Paris, France
| | - C Gitiaux
- Department of Clinical Neurophysiology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France; Department of Pediatric Neurology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France; Université de Paris, Paris, France
| | - M Hully
- Department of Pediatric Neurology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - M Bourgeois
- Department of Pediatric Neurosurgery, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - A Guimier
- Department of Genetics, Necker-Enfants Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - M Rio
- Department of Genetics, Necker-Enfants Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - A Munnich
- Université de Paris, Paris, France; Department of Genetics, Necker-Enfants Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - R Nabbout
- Centre de Référence des Epilepsies Rares CRéER, Department of Pediatric Neurology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France; Department of Pediatric Neurology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France; Université de Paris, Paris, France
| | - A Kaminska
- Department of Clinical Neurophysiology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France; Université de Paris, Paris, France
| | - M Eisermann
- Department of Clinical Neurophysiology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France; Université de Paris, Paris, France
| |
Collapse
|