1
|
Ren Q, Zhang F, Xu H. Proliferation Cycle Causes Age Dependent Mitochondrial Deficiencies and Contributes to the Aging of Stem Cells. Genes (Basel) 2017; 8:genes8120397. [PMID: 29257059 PMCID: PMC5748715 DOI: 10.3390/genes8120397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/17/2017] [Accepted: 12/14/2017] [Indexed: 12/15/2022] Open
Abstract
In addition to chronological aging, stem cells are also subject to proliferative aging during the adult life span. However, the consequences of proliferative cycle and their contributions to stem cells aging have not been well investigated. Using Drosophila female germ line stem cells as a model, we found that the replication cycle leads to the age dependent decline of female fecundity, and is a major factor causing developmental abnormalities in the progeny of old females. The proliferative aging does not cause telomere shortening, but causes an accumulation of mitochondrial DNA (mtDNA) mutations or rearrangements at the control region. We propose that damaging mutations on mtDNA caused by accumulation of proliferation cycles in aged stem cells may disrupt mitochondrial respiration chain and impair mtDNA replication and represent a conserved mechanism underlying stem cell aging.
Collapse
Affiliation(s)
- Qiuting Ren
- Laboratory of Molecular Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Fan Zhang
- Laboratory of Molecular Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Hong Xu
- Laboratory of Molecular Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Brass EP, Wang H, Hiatt WR. Multiple skeletal muscle mitochondrial DNA deletions in patients with unilateral peripheral arterial disease. Vasc Med 2016. [DOI: 10.1177/1358836x0000500405] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Peripheral arterial disease (PAD) is associated with metabolic derangements and accumulation of the common 4977 bp mitochondrial DNA (mtDNA) deletion mutation. The current study was undertaken to test the hypothesis that PAD is associated with multiple mtDNA deletions. Gastrocnemius biopsies were obtained from nine patients with unilateral PAD. DNA extracted from the biopsies was analyzed for mtDNA deletions using a primer- shift PCR strategy. Multiple primers and strict, prospective criteria were used to identify deletions. PAD was associated with multiple mtDNA deletions (average of 8.2 distinct deletions in muscle from the hemodynamically affected limb). mtDNA injury was present in both the worse- and less-affected limbs of the unilateral PAD patients, and the estimated degree of mtDNA injury was strongly correlated in the two limbs on an intra-subject basis. The 4977 bp deletion was frequently identified, but was not always the deletion of highest frequency in individual samples. The estimated relative frequency of the 4977 bp deletion was correlated with the overall mtDNA injury in the biopsies. In summary, PAD is associated with mtDNA injury as reflected by multiple deletion mutations. As the mutations are not limited to the ischemic limb in unilateral patients, they are unlikely to contribute to the pathophysiology of claudication.
Collapse
Affiliation(s)
- Eric P Brass
- Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Hong Wang
- Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - William R Hiatt
- Section of Vascular Medicine, Division of Geriatrics, University of Colorado Health Sciences Center and the Colorado Prevention Center, Denver, CO, USA
| |
Collapse
|
3
|
Chen Y, Liu C, Parker WD, Chen H, Beach TG, Liu X, Serrano GE, Lu Y, Huang J, Yang K, Wang C. Mitochondrial DNA Rearrangement Spectrum in Brain Tissue of Alzheimer's Disease: Analysis of 13 Cases. PLoS One 2016; 11:e0154582. [PMID: 27299301 PMCID: PMC4907522 DOI: 10.1371/journal.pone.0154582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 04/17/2016] [Indexed: 11/18/2022] Open
Abstract
Background Mitochondrial dysfunction may play a central role in the pathologic process of Alzheimer’s disease (AD), but there is still a scarcity of data that directly links the pathology of AD with the alteration of mitochondrial DNA. This study aimed to provide a comprehensive assessment of mtDNA rearrangement events in AD brain tissue. Patients and Methods Postmortem frozen human brain cerebral cortex samples were obtained from the Banner Sun Health Research Institute Brain and Body Donation Program, Sun City, AZ. Mitochondria were isolated and direct sequence by using MiSeq®, and analyzed by relative software. Results Three types of mitochondrial DNA (mtDNA) rearrangements have been seen in post mortem human brain tissue from patients with AD and age matched control. These observed rearrangements include a deletion, F-type rearrangement, and R-type rearrangement. We detected a high level of mtDNA rearrangement in brain tissue from cognitively normal subjects, as well as the patients with Alzheimer's disease (AD). The rate of rearrangements was calculated by dividing the number of positive rearrangements by the coverage depth. The rearrangement rate was significantly higher in AD brain tissue than in control brain tissue (17.9%versus 6.7%; p = 0.0052). Of specific types of rearrangement, deletions were markedly increased in AD (9.2% versus 2.3%; p = 0.0005). Conclusions Our data showed that failure of mitochondrial DNA in AD brain might be important etiology of AD pathology.
Collapse
Affiliation(s)
- Yucai Chen
- Neurology Department, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- Pediatric Department, University of Illinois at Chicago, Peoria, United States of America
- * E-mail: ;
| | - Changsheng Liu
- SoftGenetics LLC, State College, United States of America
| | - William Davis Parker
- Pediatric Department, University of Illinois at Chicago, Peoria, United States of America
| | - Hongyi Chen
- Pediatric Department, University of Illinois at Chicago, Peoria, United States of America
| | - Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, United States of America
| | - Xinhua Liu
- SoftGenetics LLC, State College, United States of America
| | - Geidy E. Serrano
- Banner Sun Health Research Institute, Sun City, United States of America
| | - Yanfen Lu
- Neurology Department, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Huang
- Neurology Department, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kunfang Yang
- Neurology Department, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chunmei Wang
- Neurology Department, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
|
5
|
Yu-Wai-Man P, Griffiths PG, Gorman GS, Lourenco CM, Wright AF, Auer-Grumbach M, Toscano A, Musumeci O, Valentino ML, Caporali L, Lamperti C, Tallaksen CM, Duffey P, Miller J, Whittaker RG, Baker MR, Jackson MJ, Clarke MP, Dhillon B, Czermin B, Stewart JD, Hudson G, Reynier P, Bonneau D, Marques W, Lenaers G, McFarland R, Taylor RW, Turnbull DM, Votruba M, Zeviani M, Carelli V, Bindoff LA, Horvath R, Amati-Bonneau P, Chinnery PF. Multi-system neurological disease is common in patients with OPA1 mutations. ACTA ACUST UNITED AC 2010; 133:771-86. [PMID: 20157015 PMCID: PMC2842512 DOI: 10.1093/brain/awq007] [Citation(s) in RCA: 327] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Additional neurological features have recently been described in seven families transmitting pathogenic mutations in OPA1, the most common cause of autosomal dominant optic atrophy. However, the frequency of these syndromal 'dominant optic atrophy plus' variants and the extent of neurological involvement have not been established. In this large multi-centre study of 104 patients from 45 independent families, including 60 new cases, we show that extra-ocular neurological complications are common in OPA1 disease, and affect up to 20% of all mutational carriers. Bilateral sensorineural deafness beginning in late childhood and early adulthood was a prominent manifestation, followed by a combination of ataxia, myopathy, peripheral neuropathy and progressive external ophthalmoplegia from the third decade of life onwards. We also identified novel clinical presentations with spastic paraparesis mimicking hereditary spastic paraplegia, and a multiple sclerosis-like illness. In contrast to initial reports, multi-system neurological disease was associated with all mutational subtypes, although there was an increased risk with missense mutations [odds ratio = 3.06, 95% confidence interval = 1.44-6.49; P = 0.0027], and mutations located within the guanosine triphosphate-ase region (odds ratio = 2.29, 95% confidence interval = 1.08-4.82; P = 0.0271). Histochemical and molecular characterization of skeletal muscle biopsies revealed the presence of cytochrome c oxidase-deficient fibres and multiple mitochondrial DNA deletions in the majority of patients harbouring OPA1 mutations, even in those with isolated optic nerve involvement. However, the cytochrome c oxidase-deficient load was over four times higher in the dominant optic atrophy + group compared to the pure optic neuropathy group, implicating a causal role for these secondary mitochondrial DNA defects in disease pathophysiology. Individuals with dominant optic atrophy plus phenotypes also had significantly worse visual outcomes, and careful surveillance is therefore mandatory to optimize the detection and management of neurological disability in a group of patients who already have significant visual impairment.
Collapse
Affiliation(s)
- P Yu-Wai-Man
- Mitochondrial Research Group, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Yu-Wai-Man P, Davies VJ, Piechota MJ, Cree LM, Votruba M, Chinnery PF. Secondary mtDNA defects do not cause optic nerve dysfunction in a mouse model of dominant optic atrophy. Invest Ophthalmol Vis Sci 2009; 50:4561-6. [PMID: 19443720 PMCID: PMC4034167 DOI: 10.1167/iovs.09-3634] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The majority of patients with autosomal dominant optic atrophy (DOA) harbor pathogenic OPA1 mutations and certain missense mutations, mostly within the GTPase domain, have recently been shown to cause multiple mitochondrial DNA (mtDNA) deletions in skeletal muscle. This raises the possibility that the optic neuropathy could be the result of secondary mtDNA defects accumulating within retinal ganglion cells (RGCs). To explore this hypothesis, the authors looked for evidence of mitochondrial dysfunction in a mouse model of DOA and documented the visual and neurologic progression in aging mutant mice. METHODS Visual function was assessed with a rotating optokinetic (OKN) drum at ages 13 and 18 months and neurologic phenotyping was performed using the primary SHIRPA screen at age 13 months, comparing mutant Opa1(+/)(-) mice with wild-type C57Bl/6 mice. The presence of cytochrome c oxidase (COX) deficiency and multiple mtDNA deletions was investigated in gastrocnemius muscle and eye specimens harvested from 2- and 11-month-old Opa1(+/+) and Opa1(+/)(-) mice. RESULTS At age 13 months, Opa1(+/)(-) mice had a statistically significant reduction in OKN responses compared to C57Bl/6 controls with both 2 degrees and 8 degrees gratings (P < 0.001). At age 18 months, the difference between the two groups was significant for the 8 degrees grating (P = 0.003) but not for the 2 degrees grating (P = 0.082). Opa1(+/)(-) mice did not exhibit any significant neuromuscular deficits and no COX deficient areas or secondary mtDNA deletions were identified in skeletal muscle or the RGC layer. There was also no evidence of significant mtDNA depletion or proliferation in skeletal muscle from Opa1(+/)(-) mice. CONCLUSIONS COX deficiency and mtDNA abnormalities do not contribute to optic nerve dysfunction in pure DOA.
Collapse
MESH Headings
- Adenosine Triphosphatases/metabolism
- Animals
- Cytochrome-c Oxidase Deficiency/genetics
- DNA, Mitochondrial/genetics
- Disease Models, Animal
- Electron Transport Complex IV/metabolism
- GTP Phosphohydrolases/genetics
- Gene Deletion
- Mice
- Mice, Inbred C57BL
- Mitochondria, Muscle/metabolism
- Mitochondrial Diseases/genetics
- Mitochondrial Diseases/metabolism
- Mitochondrial Diseases/pathology
- Muscle, Skeletal/enzymology
- Mutation, Missense
- Nystagmus, Optokinetic
- Optic Atrophy, Autosomal Dominant/genetics
- Optic Atrophy, Autosomal Dominant/metabolism
- Optic Atrophy, Autosomal Dominant/pathology
- Retinal Ganglion Cells/enzymology
- Retinal Ganglion Cells/pathology
- Succinate Dehydrogenase/metabolism
- Vision Disorders/genetics
Collapse
Affiliation(s)
- Patrick Yu-Wai-Man
- Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | | | | | | | | | | |
Collapse
|
7
|
Tońska K, Sołyga A, Bartnik E. Mitochondria and aging: innocent bystanders or guilty parties? J Appl Genet 2009; 50:55-62. [PMID: 19193984 DOI: 10.1007/bf03195653] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There are many theories of aging and a number of them encompass the role of mitochondria in this process. Mitochondrial DNA mutations and deletions have been shown to accumulate in many tissues in mammals during aging. However, there is little evidence that these mutations could affect the functioning of aging tissues.
Collapse
Affiliation(s)
- K Tońska
- Department of Genetics and Biotechnology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | | | | |
Collapse
|
8
|
Rand DM, Fry A, Sheldahl L. Nuclear-mitochondrial epistasis and drosophila aging: introgression of Drosophila simulans mtDNA modifies longevity in D. melanogaster nuclear backgrounds. Genetics 2005; 172:329-41. [PMID: 16219776 PMCID: PMC1456161 DOI: 10.1534/genetics.105.046698] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Under the mitochondrial theory of aging, physiological decline with age results from the accumulated cellular damage produced by reactive oxygen species generated during electron transport in the mitochondrion. A large body of literature has documented age-specific declines in mitochondrial function that are consistent with this theory, but relatively few studies have been able to distinguish cause from consequence in the association between mitochondrial function and aging. Since mitochondrial function is jointly encoded by mitochondrial (mtDNA) and nuclear genes, the mitochondrial genetics of aging should be controlled by variation in (1) mtDNA, (2) nuclear genes, or (3) nuclear-mtDNA interactions. The goal of this study was to assess the relative contributions of these factors in causing variation in Drosophila longevity. We compared strains of flies carrying mtDNAs with varying levels of divergence: two strains from Zimbabwe (<20 bp substitutions between mtDNAs), strains from Crete and the United States (approximately 20-40 bp substitutions between mtDNAs), and introgression strains of Drosophila melanogaster carrying mtDNA from Drosophila simulans in a D. melanogaster Oregon-R chromosomal background (>500 silent and 80 amino acid substitutions between these mtDNAs). Longevity was studied in reciprocal cross genotypes between pairs of these strains to test for cytoplasmic (mtDNA) factors affecting aging. The intrapopulation crosses between Zimbabwe strains show no difference in longevity between mtDNAs; the interpopulation crosses between Crete and the United States show subtle but significant differences in longevity; and the interspecific introgression lines showed very significant differences between mtDNAs. However, the genotypes carrying the D. simulans mtDNA were not consistently short-lived, as might be predicted from the disruption of nuclear-mitochondrial coadaptation. Rather, the interspecific mtDNA strains showed a wide range of variation that flanked the longevities seen between intraspecific mtDNAs, resulting in very significant nuclear x mtDNA epistatic interaction effects. These results suggest that even "defective" mtDNA haplotypes could extend longevity in different nuclear allelic backgrounds, which could account for the variable effects attributable to mtDNA haplogroups in human aging.
Collapse
Affiliation(s)
- David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912, USA.
| | | | | |
Collapse
|
9
|
de Magalhães JP. Open-minded scepticism: inferring the causal mechanisms of human ageing from genetic perturbations. Ageing Res Rev 2005; 4:1-22. [PMID: 15619467 DOI: 10.1016/j.arr.2004.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 05/16/2004] [Accepted: 05/19/2004] [Indexed: 01/01/2023]
Abstract
Given the myriad of age-related changes and the many proposed mechanistic theories of ageing, a major problem in gerontology is distinguishing causes from effects. This review aims to identify and evaluate those mechanisms which have gathered experimental support in favour of seeing them as a cause rather than an effect of ageing. Recent results related to energy metabolism and ageing, the free radical and the DNA damage theories of ageing are reviewed and their predictions evaluated through a systems biology rationale. Crucial in this approach are genetic manipulations in animal models that enable researchers to discriminate causes from effects of ageing and focus on the causal structure of human ageing. Based on a system-level interpretation, the GH/IGF-1 axis appears the most likely explanation for caloric restriction and a possible causal mechanism of human ageing. Although much work remains to fully understand the human ageing process, there is little evidence that free radicals are a causal factor in mammalian ageing, though they may be involved in signalling pathways related to ageing. On the other hand, studying how the DNA machinery affects ageing appears a promising avenue for disclosing the human ageing process.
Collapse
Affiliation(s)
- João Pedro de Magalhães
- Department of Biology, University of Namur (FUNDP), Research Unit on Cellular Biology (URBC), Rue de Bruxelles 61, B-5000 Namur, Belgium.
| |
Collapse
|
10
|
Rötig A. [mtDNA mutator mice: an ageing model]. Med Sci (Paris) 2004; 20:847. [PMID: 15461955 DOI: 10.1051/medsci/20042010847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Rafique R, Schapira AHV, Coper JM. Mitochondrial respiratory chain dysfunction in ageing; influence of vitamin E deficiency. Free Radic Res 2004; 38:157-65. [PMID: 15104209 DOI: 10.1080/10715760310001643311] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The causes and consequences of ageing are likely to be complex and involve the interaction of many processes. It has been proposed that the decline in mitochondrial function caused by the accumulation of oxidatively damaged molecules plays a significant role in the ageing process. In agreement with previous reports we have shown that the activities of NADH CoQ1 reductase and cytochrome oxidase declined with increasing age in both rat liver and gastrocnemius muscle mitochondria. However, only in the liver were the changes in lipid peroxidation and membrane fluidity suggestive of an age-related increase in oxidative stress. After 12 weeks on a vitamin E deficient diet, vitamin E levels were undetectable in both gastrocnemius muscle and liver. In skeletal muscle, this was associated with a statistically significant increase in lipid peroxidation, a decrease in cytochrome oxidase activity after 48 weeks, and an exacerbation in the age-related rate of decline of NADH CoQ1 reductase activity. This was consistent with the suggestion that an imbalance between free radical generation and antioxidant defence may contribute to the mitochondrial dysfunction with age. In contrast to this, vitamin E deficiency in the liver caused a significant increase in mitochondrial respiratory chain activities with increasing age despite evidence of increased lipid peroxidation. Comparison of other features in these samples suggested vitamin E deficiency; did not have a significant impact upon mtDNA translation; induced a compensatory increase in glutathione levels in muscle, which was less marked in the liver, but probably most interestingly caused a significant decrease in the mitochondrial membrane fluidity in muscle but not in liver mitochondria. These data suggest that while increased lipid peroxidation exacerbated the age-related decline in muscle respiratory chain function this relationship was not observed in liver. Consequently other factors are likely to be contributing to the age-related decline in mitochondrial function and specific stimuli may influence or even reverse these age-related effects as observed with vitamin E deficiency in the liver.
Collapse
Affiliation(s)
- R Rafique
- University Department of Clinical Neuroscience, Royal Free & University College Medical School, London NW3 2PF, UK
| | | | | |
Collapse
|
12
|
Nádasi EA, Melegh B, Seress L, Kosztolányi G. Mitochondrial DNA4977 deletion in brain of newborns died after intensive care. ACTA BIOLOGICA HUNGARICA 2004; 54:253-62. [PMID: 14711030 DOI: 10.1556/abiol.54.2003.3-4.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mitochondrial DNA (mtDNA) deletion affecting 4977 base pairs (mtDNA4977), the most common mtDNA mutation in humans, was analysed in brain specimens (frontal, temporal, and cerebellar cortices, caudate nucleus, thalamus, and hippocampus) and in other tissues (blood clot, liver, kidney, heart, and muscle) taken at autopsy of deceased neonates. mtDNA4977 deletion determined by polymerase chain reaction (PCR) could be demonstrated in each neonatal sample, however, quantity of mtDNA4977 deletion was less in the newborn samples than in those of the elderlies. Results obtained suggest that contrary to certain data mtDNA4977 deletion can be present in neonates. The mtDNA4977 deletion could be generated by perinatal hypoxia or temporary oxygen oversaturations during the intensive care of the neonates, as the mtDNA is sensitive to oxidative damage. In combination with other factors an additional causative role of mtDNA4977 deletion reported here cannot be ruled out in development of cerebral palsy or mental retardation of unknown origin often seen in neonates underwent neonatal intensive care procedures.
Collapse
Affiliation(s)
- Edit A Nádasi
- Department of Medical Genetics and Child Development, Medical Center, University of Pécs, Pécs, Hungary
| | | | | | | |
Collapse
|
13
|
Dufour E, Larsson NG. Understanding aging: revealing order out of chaos. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1658:122-32. [PMID: 15282183 DOI: 10.1016/j.bbabio.2004.04.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 04/26/2004] [Accepted: 04/27/2004] [Indexed: 11/23/2022]
Abstract
Aging is often described as an extremely complex process affecting all of the vital parameters of an individual. In this article, we review how understanding of aging evolved from the first analyses of population survival to the identification of the molecular mechanisms regulating life span. Abundant evidence implicates mitochondria in aging and we focus on the three main components of the mitochondrial theory of aging: (1) increased reactive oxygen species (ROS) production, (2) mitochondrial DNA (mtDNA) damage accumulation, and (3) progressive respiratory chain dysfunction. Experimental evidence shows a relationship between respiratory chain dysfunction, ROS damage, and aging in most of the model organisms. However, involvement of the mtDNA mutations in the aging process is still debated. We recently created a mutant mouse strain with increased levels of somatic mtDNA mutations causing a progressive respiratory chain deficiency and premature aging. These mice demonstrate the fundamental importance of the accumulation of mtDNA alterations in aging. We present here an integrative model where aging is provoked by a single primary event leading to a variety of effects and secondary causes.
Collapse
Affiliation(s)
- Eric Dufour
- Department of Medical Nutrition, Karolinska Institutet, Novum, Karolinska University Hospital, S-141 86 Stockholm, Sweden
| | | |
Collapse
|
14
|
Toescu EC, Verkhratsky A. Neuronal ageing from an intraneuronal perspective: roles of endoplasmic reticulum and mitochondria. Cell Calcium 2003; 34:311-23. [PMID: 12909078 DOI: 10.1016/s0143-4160(03)00142-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The nature of brain ageing and the age-dependent decline in cognitive functions remains poorly understood. Physiological brain ageing is characterised by mild mental dysfunctions, whereas age-dependent neurodegeneration, as illustrated by Alzheimer disease (AD), results rapidly in severe dementia. These two states of the aged brain, the physiological and the pathological, are fundamentally different as the latter stems from significant neuronal loss, whereas the former develops without significant neuronal demise. In this paper, we review the changes in neuronal Ca(2+) homeostasis that occur during brain ageing, and conclude that normal, physiological ageing is characterised mainly by a decrease of neuronal homeostatic reserve, defined as the capacity to respond effectively to functional and metabolic stressors, but does not reach the trigger required to induce neuronal death. In contrast, during neurodegenerative states, Ca(2+) homeostasis is affected early during the pathological process and result in significant neuronal demise. We also review recent evidence suggesting that the endoplasmic reticulum (ER) might play an important role in controlling the balance between healthy and pathological neuronal ageing.
Collapse
Affiliation(s)
- Emil C Toescu
- Department of Physiology, The University of Birmingham, B15 2TT Edgbaston, UK.
| | | |
Collapse
|
15
|
Rasmussen UF, Krustrup P, Kjaer M, Rasmussen HN. Experimental evidence against the mitochondrial theory of aging. A study of isolated human skeletal muscle mitochondria. Exp Gerontol 2003; 38:877-86. [PMID: 12915209 DOI: 10.1016/s0531-5565(03)00092-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The mitochondrial theory of aging was tested with optimised preparation techniques. Mitochondria were isolated from approximately 90 mg quadriceps muscle from healthy humans at age 70+ and 20+. The content of mitochondrial protein was approximately 10 mg g(-1) muscle and the yields were approximately 40%. The mitochondrial integrity was high as judged from the respiratory control and P/O ratios. No general membrane alterations or changes in the cytochrome contents were observed. BSA decreased the non-phosphorylating rates of respiration equally in both age groups. Thirteen different enzyme activities were assayed and normalised to protein content and citrate synthase activity. Most of the critical levels for detection of declines were <10%. In the 70+ group, the activity for fatty acid oxidation was decreased by approximately 20%. Two inherently low activities associated with oxidation of sarcoplasmic NADH were also decreased, probably related to the age change of fibre types. The remaining activities measured, e.g. those of pyruvate dehydrogenase, tricarboxylic acid cycle, respiratory chain, and ATP synthesis, were not observed to be lowered. Thus, the central bioenergetic systems appeared unaltered with age. The obvious discord with reported age declines of human skeletal muscle mitochondrial function is discussed. It is concluded that the present results are incompatible with the mitochondrial theory of aging.
Collapse
Affiliation(s)
- Ulla F Rasmussen
- Department of Biochemistry, August Krogh Institute, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
16
|
Nakada K, Ono T, Hayashi JI. A novel defense system of mitochondria in mice and human subjects for preventing expression of mitochondrial dysfunction by pathogenic mutant mtDNAs. Mitochondrion 2002; 2:59-70. [PMID: 16120309 DOI: 10.1016/s1567-7249(02)00007-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2001] [Revised: 01/25/2002] [Accepted: 01/28/2002] [Indexed: 11/16/2022]
Abstract
Recently, we generated mtDNA-based disease mice (mito mice) by introduction of respiration-deficient mitochondria possessing pathogenic mutant mtDNA with a 4696 bp deletion (deltamtDNA4696) from somatic cells into mouse zygotes. Mito mice and cytochrome c oxidase (COX) electronmicrographs, that could identify the respiration enzyme activity at individual mitochondrial levels, enabled precise investigation of the pathogenesis of deltamtDNA4696. All the observations represented unambiguous evidence for the presence of extensive and continuous exchange of genetic contents between mitochondria. Thus, the inter-mitochondrial interaction could correspond to a very unique and effective defense system of the highly oxidative organelles for preventing mice and human subjects from expressing mitochondrial dysfunction caused by mtDNA lesions, which have been continuously created by oxidative stresses during aging. Here, we would like to propose a new hypothesis on mitochondrial biogenesis, 'the interaction theory of mammalian mitochondria': mitochondria exchange genetic contents, and thus lose individuality and function as a single dynamic cellular unit.
Collapse
Affiliation(s)
- Kazuto Nakada
- Institute of Biological Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | | | | |
Collapse
|
17
|
He L, Chinnery PF, Durham SE, Blakely EL, Wardell TM, Borthwick GM, Taylor RW, Turnbull DM. Detection and quantification of mitochondrial DNA deletions in individual cells by real-time PCR. Nucleic Acids Res 2002; 30:e68. [PMID: 12136116 PMCID: PMC135769 DOI: 10.1093/nar/gnf067] [Citation(s) in RCA: 245] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2002] [Revised: 05/20/2002] [Accepted: 05/20/2002] [Indexed: 11/13/2022] Open
Abstract
Defects of mitochondrial DNA (mtDNA) are an important cause of disease and play a role in the ageing process. There are multiple copies of the mitochondrial genome in a single cell. In many patients with acquired or inherited mtDNA mutations, there exists a mixture of mutated and wild type genomes (termed heteroplasmy) within individual cells. As a biochemical and clinical defect is only observed when there are high levels of mutated mtDNA, a crucial investigation is to determine the level of heteroplasmic mutations within tissues and individual cells. We have developed an assay to determine the relative amount of deleted mtDNA using real-time fluorescence PCR. This assay detects the vast majority of deleted molecules, thus eliminating the need to develop specific probes. We have demonstrated an excellent correlation with other techniques (Southern blotting and three- primer competitive PCR), and have shown this technique to be sensitive to quantify the level of deleted mtDNA molecules in individual cells. Finally, we have used this assay to investigate patients with mitochondrial disease and shown in individual skeletal muscle fibres that there exist different patterns of abnormalities between patients with single or multiple mtDNA deletions. We believe that this technique has significant advantages over other methods to quantify deleted mtDNA and, employed alongside our method to sequence the mitochondrial genome from single cells, will further our understanding of the role of mtDNA mutations in human disease and ageing.
Collapse
Affiliation(s)
- Langping He
- Department of Neurology, The Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Spiropoulos J, Chinnery PF, Turnbull DM. Pathogenic mitochondrial DNA mutations and human reproduction. HUM FERTIL 2002; 2:133-137. [PMID: 11844341 DOI: 10.1080/1464727992000198511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- John Spiropoulos
- Department of Reproductive Medicine, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK
| | | | | |
Collapse
|
19
|
Nagley P, Zhang C, Lim ML, Merhi M, Needham BE, Khalil Z. Mitochondrial DNA deletions parallel age-linked decline in rat sensory nerve function. Neurobiol Aging 2001; 22:635-43. [PMID: 11445264 DOI: 10.1016/s0197-4580(01)00228-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In rats, the function of sensory nerves in the hind limb declines significantly with age. Normally aging rats and rats treated neonatally with capsaicin were studied here. Quantification of vascular response and substance P in young (3 months) and old (24 months) rats showed additive effects of age and capsaicin treatment. The levels in dorsal root ganglion of a particular deletion in mitochondrial DNA (mtDNA(4834)) were about 300-fold higher in old compared to young rats. Capsaicin treatment had no significant effect on mtDNA(4834) abundance. Dorsal root ganglia of old (but not young) rats were found to contain a spectrum of multiple deletions. The abundance of mtDNA(4834) in dorsal root ganglia from individual rats correlated strongly with their decline in vascular function, even where vascular responses were systematically depressed due to prior capsaicin treatment. One possibility is that mitochondrial DNA mutations directly lead to functional decline at mitochondrial and tissue levels. Alternatively, loss of mitochondrial DNA integrity and physiological decline may be consequences of the same factor, such as oxidative stress.
Collapse
Affiliation(s)
- P Nagley
- Department of Biochemistry and Molecular Biology, Monash University, 3800, Clayton, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
20
|
Ono T, Isobe K, Nakada K, Hayashi JI. Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nat Genet 2001; 28:272-5. [PMID: 11431699 DOI: 10.1038/90116] [Citation(s) in RCA: 321] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Extensive complementation between fused mitochondria is indicated by recombination of 'parental' mitochondrial (mt) DNA (ref. 1,2) of yeast and plant cells. It has been difficult, however, to demonstrate the occurrence of complementation between fused mitochondria in mammalian species through the presence of recombinant mtDNA molecules, because sequence of mtDNA throughout an individual tends to be uniform owing to its strictly maternal inheritance. We isolated two types of respiration-deficient cell lines, with pathogenic mutations in mitochondrial tRNAIle or tRNALeu(UUR) genes from patients with mitochondrial diseases. The coexistence of their mitochondria within hybrids restored their normal morphology and respiratory enzyme activity by 10-14 days after fusion, indicating the presence of an extensive and continuous exchange of genetic contents between the mitochondria. This complementation between fused mitochondria may represent a defence of highly oxidative organelles against mitochondrial dysfunction caused by the accumulation of mtDNA lesions with age.
Collapse
Affiliation(s)
- T Ono
- Institute of Biological Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | |
Collapse
|
21
|
Pesce V, Cormio A, Fracasso F, Vecchiet J, Felzani G, Lezza AM, Cantatore P, Gadaleta MN. Age-related mitochondrial genotypic and phenotypic alterations in human skeletal muscle. Free Radic Biol Med 2001; 30:1223-33. [PMID: 11368920 DOI: 10.1016/s0891-5849(01)00517-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To have a clearer picture of how mitochondrial damages are associated to aging, a comprehensive study of phenotypic and genotypic alterations was carried out, analyzing with histochemical and molecular biology techniques the same skeletal muscle specimens of a large number of healthy subjects from 13 to 92 years old. Histochemical data showed that ragged red fibers (RRF) appear at about 40 years of age and are mostly cytochrome c oxidase (COX)-positive, whereas they are almost all COX-negative thereafter. Molecular analyses showed that the 4977 bp deletion of mitochondrial DNA (mtDNA(4977)) and the 7436 bp deletion of mtDNA (mtDNA(7436)) are already present in individuals younger than 40 years of age, but their occurrence does not change with age. After 40 years of age the number of mtDNA deleted species, as revealed by Long Extension PCR (LX-PCR), increases, the 10422 bp deletion of mtDNA (mtDNA(10422)) appears, although with a very low frequency of occurrence, and mtDNA content is more than doubled. Furthermore, mtDNA(4977) level directly correlates with that of COX-negative fibers in the same analyzed subjects. These data clearly show that, after 40 years of age, the phenotypic and genotypic mitochondrial alterations here studied appear in human skeletal muscle and that they are closely related.
Collapse
Affiliation(s)
- V Pesce
- Department of Biochemistry and Molecular Biology, University of Bari and Center for the Study of Mitochondria and Energetic Metabolism, Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- L A Tully
- Biotechnology Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8311, Gaithersburg, MD 20899-8311, USA
| | | |
Collapse
|
23
|
Kopsidas G, Kovalenko SA, Islam MM, Gingold EB, Linnane AW. Preferential amplification is minimised in long-PCR systems. Mutat Res 2000; 456:83-8. [PMID: 11087899 DOI: 10.1016/s0027-5107(00)00126-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The advent of long PCR (XL-PCR) has proven to be a major advance in PCR technology and is currently being utilised to investigate numerous biological systems. The analysis of mixed DNA populations is a particularly useful application for XL-PCR. For example, XL-PCR has been used to investigate the occurrence of heterogeneous mitochondrial DNA (mtDNA) rearrangement mutations. With XL-PCR it became possible to amplify the entire length of the mtDNA chromosome and detect any mtDNA deletion or insertion mutations based on a measurable change in overall sequence length. In the present communication, XL-PCR and conventional short-length PCR were used to amplify mitochondrial DNA sequences from several human vastus lateralis skeletal muscle samples. The experiments demonstrated that there was minimal preferential amplification of shorter DNA sequences with XL-PCR and was significantly less than the preferential amplification of shorter sequences observed with conventional PCR. Also, XL-PCR amplification of the complete mtDNA sequence from control DNA containing a single mtDNA template (leucocyte extracts) showed that the generation of PCR artefacts was not a predisposed failing of the system but was dependant on the standard rules that govern the set up and optimisation of any PCR reaction. In optimised systems, XL-PCR artefacts were not generated and a single PCR product was always recovered.
Collapse
Affiliation(s)
- G Kopsidas
- Centre for Molecular Biology and Medicine, Epworth Medical Centre, 185-187 Hoddle Street, Richmond, Vic. 3121, Australia.
| | | | | | | | | |
Collapse
|
24
|
Chinnery PF, Turnbull DM. Mitochondrial DNA mutations in the pathogenesis of human disease. MOLECULAR MEDICINE TODAY 2000; 6:425-32. [PMID: 11074368 DOI: 10.1016/s1357-4310(00)01805-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The coding sequence for the human mitochondrial genome (mtDNA) was published in 1981. Within a decade, the first pathogenic mtDNA mutations were described in humans with sporadic and maternally inherited disease. The last ten years has seen a profusion of reports describing new pathogenic mutations associated with a diverse range of clinical phenotypes. Although we have seen great advances in our understanding of the molecular mechanisms involved in the pathogenesis of mtDNA disease, we are only just beginning to tackle some of the more difficult questions. In this review we describe recent advances in our understanding of mtDNA disease and highlight ways that this knowledge might lead to novel therapies in the future.
Collapse
Affiliation(s)
- P F Chinnery
- The Medical School, The University of Newcastle upon Tyne, NE2 4HH, Newcastle upon Tyne, UK
| | | |
Collapse
|
25
|
Barja G. The flux of free radical attack through mitochondrial DNA is related to aging rate. AGING (MILAN, ITALY) 2000; 12:342-55. [PMID: 11126520 DOI: 10.1007/bf03339859] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Aging is a progressive and universal process originated endogenously which manifests best in post-mitotic cells. Available data indicate that the relation between oxidative stress and aging is due to the presence of low rates of mitochondrial free radical production and low degrees of fatty acid unsaturation of cellular membranes in the post-mitotic tissues of long-lived animals in relation to those of short-lived ones. Recent research shows that long-lived animals also have lower steady-state levels of oxidative damage in the mitochondrial DNA (mtDNA) of post-mitotic cells than short-lived species. This study shows that the flux of free radical attack to mtDNA is higher in short- than in long-lived animals, and proposes that this is a main determinant of the rate of accumulation of mtDNA mutations, and thus the rate of aging. This implies that aging has been slowed evolutionarily by mechanisms that decrease the generation of endogenous damage rather than try to intercept damaging agents, or to repair the damage already inflicted. The first kind of mechanisms are more efficient and less energetically expensive. Free radicals of mitochondrial origin, oxidative damage to DNA, evolution of aging rate, and possibilities and consequences of their future modification are also discussed.
Collapse
Affiliation(s)
- G Barja
- Department of Animal Biology-II, Faculty of Biology, Complutense University, Madrid, Spain
| |
Collapse
|
26
|
Ray AJ, Turner R, Nikaido O, Rees JL, Birch-Machin MA. The spectrum of mitochondrial DNA deletions is a ubiquitous marker of ultraviolet radiation exposure in human skin. J Invest Dermatol 2000; 115:674-9. [PMID: 10998142 DOI: 10.1046/j.1523-1747.2000.00092.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We and colleagues have suggested that deletions of mitochondrial DNA may be useful as a biomarker of ultraviolet radiation exposure in skin. In this study using a southwestern approach involving monoclonal antibodies against thymine dimers we provide direct evidence for the presence of ultraviolet-induced damage in mitochondrial DNA purified from any nuclear DNA contamination. Previous studies have been limited, as they have focused on the frequency of a single mitochondrial DNA deletion. Therefore we have addressed the question of the spectrum of mitochondrial DNA deletions in skin and whether this can be used as an index of overall DNA damage. We have used a long polymerase chain reaction technique to determine the mitochondrial DNA deletion spectrum of almost the entire mitochondrial genome in 71 split skin samples in relation to sun exposure. There was a significant increase in the number of deletions with increasing ultraviolet exposure in the epidermis (Kruskal-Wallis test, p = 0.0015) but not the dermis (p = 0.6376). The findings in the epidermis are not confounded by any age-dependent increases in mitochondrial DNA deletions also detected by the long polymerase chain reaction technique. The large spectrum of deletions identified in our study highlights the ubiquitous nature and the high mutational load of mitochondrial DNA associated with ultraviolet exposure and chronologic aging. Compared with the detection of single deletions using competitive polymerase chain reaction, we show that long polymerase chain reaction is a sensitive technique and may therefore provide a more comprehensive, although not quantitative, index of overall mitochondrial DNA damage in skin.
Collapse
Affiliation(s)
- A J Ray
- Department of Dermatology, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
27
|
Abstract
Mitochondrial DNA (mtDNA) mutations underlie many rare diseases and might also contribute to human ageing. Gene therapy is a tempting future possibility for intervening in mitochondriopathies. Expression of the 13 mtDNA-encoded proteins from nuclear transgenes (allotopic expression) might be the most effective gene-therapy strategy. Its only confirmed difficulty is the extreme hydrophobicity of these proteins, which prevents their import into mitochondria from the cytosol. Inteins (self-splicing 'protein introns') might offer a solution to this problem: their insertion into such transgenes could greatly reduce the encoded proteins' hydrophobicity, enabling import, with post-import excision restoring the natural amino acid sequence.
Collapse
Affiliation(s)
- A D de Grey
- Department of Genetics, University of Cambridge, Cambridge, UK CB2 3EH.
| |
Collapse
|
28
|
de Benedictis G, Carrieri G, Varcasia O, Bonafè M, Franceschi C. Inherited variability of the mitochondrial genome and successful aging in humans. Ann N Y Acad Sci 2000; 908:208-18. [PMID: 10911960 DOI: 10.1111/j.1749-6632.2000.tb06648.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Increasing data indicate that polymorphic variants of nuclear loci can affect rate and quality of aging in humans. However, the mitochondrial genome is another good candidate, because of the central role played by mitochondrial genes in oxidative phosphorylation (OXPHOS) and cell metabolism. A characteristic of the mitochondrial genome (mtDNA) is the high level of interindividual variability that ensues from high mutation rate and unilinear inheritance. Related groups of germline/inherited mtDNA polymorphisms (haplogroups) have been identified as continent-specific sets of stable/ancient/associated restriction fragment length polymorphisms in the mtDNA coding region, representing markers capable of exactly depicting the mtDNA pool of a specific population. The hypothesis can be put forward that mtDNA variants included in a haplogroup may have similar OXPHOS efficiency and therefore act as genetic factors predisposing to individual successful or unsuccessful aging. This idea can be explored by sampling groups of individuals of different ages from a well-defined population and comparing the pools of mtDNA haplogroups between samples. The results obtained by screening mtDNA haplogroups in about 800 Italians of different ages, including more than 200 centenarians, agree with the hypothesis that the inherited variability of the mitochondrial genome is associated with the chance of successful aging and longevity in humans.
Collapse
|
29
|
Dufour E, Boulay J, Rincheval V, Sainsard-Chanet A. A causal link between respiration and senescence in Podospora anserina. Proc Natl Acad Sci U S A 2000; 97:4138-43. [PMID: 10759557 PMCID: PMC18174 DOI: 10.1073/pnas.070501997] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Senescence, a progressive degenerative process leading to age-related increase in mortality, is found in most eukaryotes. However, the molecular events underlying aging remain largely unknown. Understanding how longevity is regulated is a fundamental problem. Here we demonstrate that the respiratory function is a key factor that contributes to shortening lifespan of the filamentous fungus Podospora anserina. In this organism, senescence is systematically associated with mitochondrial DNA instabilities. We show that inactivation of the nuclear COX5 gene encoding subunit V of the cytochrome c oxidase complex leads to the exclusive use of the alternative respiratory pathway and to a decrease in production of reactive oxygen species. This inactivation results in a striking increase of longevity associated with stabilization of the mitochondrial chromosome. Moreover, accumulation of several senescence-specific mitochondrial DNA molecules is prevented in this nuclear mutant. These findings provide direct evidence of a causal link between mitochondrial metabolism and longevity in Podospora anserina.
Collapse
Affiliation(s)
- E Dufour
- Centre de Génétique Moléculaire-Centre National de la Recherche Scientifique, 91198 Gif sur Yvette Cedex, France
| | | | | | | |
Collapse
|
30
|
Barja G, Herrero A. Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J 2000; 14:312-8. [PMID: 10657987 DOI: 10.1096/fasebj.14.2.312] [Citation(s) in RCA: 347] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
DNA damage is considered of paramount importance in aging. Among causes of this damage, free radical attack, particularly from mitochondrial origin, is receiving special attention. If oxidative damage to DNA is involved in aging, long-lived animals (which age slowly) should show lower levels of markers of this kind of damage than short-lived ones. However, this possibility has not heretofore been investigated. In this study, steady-state levels of 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG) referred to deoxyguanosine (dG) were measured by high performance liquid chromatography (HPLC) in the mitochondrial (mtDNA) and nuclear (nDNA) DNA from the heart of eight and the brain of six mammalian species ranging in maximum life span (MLSP) from 3.5 to 46 years. Exactly the same digestion of DNA to deoxynucleosides and HPLC protocols was used for mtDNA and nDNA. Significantly higher (three- to ninefold) 8-oxodG/dG values were found in mtDNA than in nDNA in all the species studied in both tissues. 8-oxodG/dG in nDNA did not correlate with MLSP across species either in the heart (r=-0.68; P<0.06) or brain (r = 0.53; P<0.27). However, 8-oxodG/dG in mtDNA was inversely correlated with MLSP both in heart (r=-0.92; P<0.001) and brain (r=-0.88; P<0.016) tissues following the power function y = a(.)x(b), where y is 8-oxodG/dG and x is the MLSP. This agrees with the consistent observation that mitochondrial free radical generation is also lower in long-lived than in short-lived species. The results obtained agree with the notion that oxygen radicals of mitochondrial origin oxidatively damage mtDNA in a way related to the aging rate of each species.-Barja, G., Herrero, A. Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals.
Collapse
Affiliation(s)
- G Barja
- Department of Animal Biology-II (Animal Physiology), Faculty of Biology, Complutense University, Madrid 28040, Spain
| | | |
Collapse
|
31
|
Kwong LK, Sohal RS. Age-related changes in activities of mitochondrial electron transport complexes in various tissues of the mouse. Arch Biochem Biophys 2000; 373:16-22. [PMID: 10620319 DOI: 10.1006/abbi.1999.1495] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of the present study was to examine the role of mitochondria in the aging process by determining whether the activities of various electron transport chain oxidoreductases are deleteriously affected during aging and whether the hypothesized age-related alterations in different tissues follow a common pattern. Activities of respiratory complexes I, II, III, and IV were measured in mitochondria isolated from brain, heart, skeletal muscle, liver, and kidney of young (3.5 months), adult (12-14 months), and old (28-30 months) C57BL/6 mice. Activities of some individual complexes were decreased in old animals, but no common pattern can be discerned among various tissues. In general, activities of the complexes were more adversely affected in tissues such as brain, heart, and skeletal muscle, whose parenchyma is composed of postmitotic cells, than those in the liver and kidney, which are composed of slowly dividing cells. The main feature of age-related potentially dysfunctional alterations in tissues was the development of a shift in activity ratios among different complexes, such that it would tend to hinder the ability of mitochondria to effectively transfer electrons down the respiratory chain and thus adversely affect oxidative phosphorylation and/or autooxidizability of the respiratory components.
Collapse
Affiliation(s)
- L K Kwong
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas, 75275, USA
| | | |
Collapse
|
32
|
de GREY AUBREYD. Noncorrelation Between Maximum Life Span and Antioxidant Enzyme Levels Among Homeotherms: Implications for Retarding Human Aging. ACTA ACUST UNITED AC 2000. [DOI: 10.1089/rej.1.2000.3.25] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Abstract
The mitochondrial free radical theory of aging is seriously challenged by the finding that mutant mtDNA never becomes abundant in vivo, a result disputed only in experiments using novel PCR variants whose quantitative accuracy is widely doubted. However, evidence continues to mount that mitochondria are the crucial site of free radical damage in vivo, most notably that mice lacking the nonmitochondrial isoforms of superoxide dismutase are healthy. It is thus important to determine whether a low level of mutant mtDNA could have serious systemic effects. This possibility exists because of the observed mosaic distribution of mutant mtDNA: some cells (or muscle fiber segments) lack any aerobic respiration. Such cells are presumed to satisfy their ATP needs by glycolysis. In vitro, however, NADH recycling by transmembrane pyruvate/lactate exchange does not suffice: cells only survive if they can up-regulate the plasma membrane oxidoreductase (PMOR). The PMOR's physiological electron acceptor is unknown. It was proposed recently (de Grey, A. D. N. J. (1998) J. Anti-Aging Med. 1(1), 53-66) that a prominent in vivo acceptor from these mitochondrially mutant cells may be oxygen, forming extracellular superoxide. The mosaic ("hotspot") distribution of this superoxide would limit its dismutation by extracellular superoxide dismutase; it may thus reduce transition metals leading to oxidation of circulating material, such as LDL. This would raise systemic oxidative stress, greatly amplifying the damage done by the originating mitochondrially mutant cells. This model, now known as the "reductive hotspot hypothesis," has recently gained much indirect experimental support; several direct tests of it are also feasible.
Collapse
Affiliation(s)
- A D de Grey
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, United Kingdom.
| |
Collapse
|
34
|
Herrero A, Barja G. 8-oxo-deoxyguanosine levels in heart and brain mitochondrial and nuclear DNA of two mammals and three birds in relation to their different rates of aging. AGING (MILAN, ITALY) 1999; 11:294-300. [PMID: 10631878 DOI: 10.1007/bf03339803] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Previous studies found that the rate of mitochondrial oxygen radical generation is lower in long-lived birds than in short-lived mammals. In the present study, the oxidative DNA damage marker 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in heart and brain mitochondrial (mtDNA) and nuclear DNA (nDNA) was compared between mammals and birds of approximately similar body size and metabolic rates; rats (maximum life span, MLSP = 4 years) vs pigeons (MLSP = 35 years), and mice (MLSP = 3.5 years) vs parakeets (MLSP = 21 years) or canaries (MLSP = 24 years). Lower steady-state 8-oxodG values were observed in all cases in the heart mtDNA in birds than in mammals. 8-oxodG levels were also lower in brain mtDNA in pigeons than in rats, in brain nDNA in canaries than in mice, and in heart nDNA in parakeets compared with mice. The rest of the comparisons did not show significant differences between species. These results taken together indicate that oxidative damage to DNA tends to be lower in birds (highly long-lived species) than in short-lived mammals, specially in the case of mtDNA. This is consistent with the low rate of mitochondrial oxygen radical generation observed in all long-lived species investigated up to date, birds or mammals, including the bird species studied here. The results also show that 8-oxodG steady-state levels are much higher in mtDNA than in nDNA in all the tissues (heart and brain) and species (birds and mammals) studied.
Collapse
Affiliation(s)
- A Herrero
- Department of Animal Biology-II (Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain
| | | |
Collapse
|
35
|
Bauer MF, Gempel K, Hofmann S, Jaksch M, Philbrook C, Gerbitz KD. Mitochondrial disorders. A diagnostic challenge in clinical chemistry. Clin Chem Lab Med 1999; 37:855-76. [PMID: 10596952 DOI: 10.1515/cclm.1999.129] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mitochondria play a pivotal role in cellular metabolism and in energy production in particular. Defects in structure or function of mitochondria, mainly involving the oxidative phosphorylation (OXPHOS), mitochondrial biogenesis and other metabolic pathways, have been shown to be associated with a wide spectrum of clinical phenotypes. The ubiquitous nature of mitochondria and their unique genetic features contribute to the clinical, biochemical and genetic heterogeneity of mitochondrial diseases. We will focus on the recent advances in the field of mitochondrial disorders and their consequences for an advanced clinical and genetic diagnostics. In addition, an overview on recently identified genetic defects and their pathogenic molecular mechanisms will be given.
Collapse
Affiliation(s)
- M F Bauer
- Institute of Clinical Chemistry, Molecular Diagnostics and Mitochondrial Genetics, Diabetes Research Group, Academic Hospital Munich-Schwabing, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Melov S, Schneider JA, Coskun PE, Bennett DA, Wallace DC. Mitochondrial DNA rearrangements in aging human brain and in situ PCR of mtDNA. Neurobiol Aging 1999; 20:565-71. [PMID: 10638530 DOI: 10.1016/s0197-4580(99)00092-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Deletions of the mitochondrial DNA (mtDNA) have been shown to accumulate with age in a variety of species regardless of mean or maximal life span. This implies that such mutations are either a molecular biomarker of senescence or that they are more causally linked to senescence itself. One assay that can be used to detect these mtDNA mutations is the long-extension polymerase chain reaction assay. This assay amplifies approximately 16 kb of the mtDNA in mammalian mitochondria and preferentially amplifies mtDNAs that are either deleted or duplicated. We have applied this assay to the aging human brain and found a heterogeneous array of rearranged mtDNAs. In addition, we have developed in situ polymerase chain reaction to detect mtDNA within individual cells of both the mouse and the human brain as a first step in identifying and enumerating cells containing mutant mtDNAs in situ.
Collapse
Affiliation(s)
- S Melov
- Center For Molecular Medicine, Emory University, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
37
|
LEZZA A, MECOCCI P, CORMIO A, BEAL MFLINT, CHERUBINI A, CANTATORE P, SENIN U, GADALETA M. Area-Specific Differences in OH8dG and mtDNA4977 Levels in Alzheimer Disease Patients and Aged Controls. ACTA ACUST UNITED AC 1999. [DOI: 10.1089/rej.1.1999.2.209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|