1
|
Todoriki M, Oki S, Matsuyama SI, Urabe I, Yomo T. Unique Colony Housing the Coexisting Escherichia coli and Dictyostelium discoideum. J Biol Phys 2013; 28:793-7. [PMID: 23345814 DOI: 10.1023/a:1021263427826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two well-characterized and phylogenetically diverse species, Escherichiacoli and Dictyostelium discoideum, were used as the modelorganisms. When the two species were mixed and allowed to grow onminimal agar plates at 22 (°)C, instead of the predator Dictyostelium exterminating E.coli, the two species remarkablyachieved a state of stable coexistence in about two weeks. In addition, theemerged colonies housing the coexisting species have a mucoidal naturethat is distinctive from its origin. The simplicity of the system and the shorttime span for the two species to develop the coexistence state, that isproven stable and reproducible on laboratory conditions, hence, providesa new model system for the study of symbiosis, particularly with referenceto the initial stages.
Collapse
Affiliation(s)
- M Todoriki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita City, Japan
| | | | | | | | | |
Collapse
|
2
|
Abstract
Phosphatidylinositol lipids generated through the action of phosphinositide 3-kinase (PI3K) are key mediators of a wide array of biological responses. In particular, their role in the regulation of cell migration has been extensively studied and extends to amoeboid as well as mesenchymal migration. Through the emergence of fluorescent probes that target PI3K products as well as the use of specific inhibitors and knockout technologies, the spatio-temporal distribution of PI3K products in chemotaxing cells has been shown to represent a key anterior polarity signal that targets downstream effectors to actin polymerization. In addition, through intricate cross-talk networks PI3K products have been shown to regulate signals that control posterior effectors. Yet, in more complex environments or in conditions where chemoattractant gradients are steep, a variety of cell types can still chemotax in the absence of PI3K signals. Indeed, parallel signal transduction pathways have been shown to coordinately regulate cell polarity and directed movement. In this chapter, we will review the current role PI3K products play in the regulation of directed cell migration in various cell types, highlight the importance of mathematical modeling in the study of chemotaxis, and end with a brief overview of other signaling cascades known to also regulate chemotaxis.
Collapse
Affiliation(s)
- Michael C Weiger
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bldg.37/Rm2066, 20892-4256, Bethesda, MD, USA
| | | |
Collapse
|
3
|
Urushihara H. Developmental biology of the social amoeba: history, current knowledge and prospects. Dev Growth Differ 2008; 50 Suppl 1:S277-81. [PMID: 18482401 DOI: 10.1111/j.1440-169x.2008.01013.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The cellular slime molds are known as the social amoebae because they conditionally construct multicellular forms in which cell differentiation takes place. Among them, Dictyostelium discoideum has many advantages as an experimental system and is widely used as a model organism. This review aims to reconsider how it has contributed to the understanding of developmental mechanisms and what should be done in the future. Chemotaxis, cell differentiation, genome and transcriptome, and the ecological and evolutionary implications of development are discussed.
Collapse
Affiliation(s)
- Hideko Urushihara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
4
|
Abstract
This unit describes culturing and imaging of D. discoideum amoebae to study fundamental cellular responses, such as motility and directed migration. The system displays powerful molecular genetics that can be used to link structural determinants of proteins with in vivo cellular functions.
Collapse
Affiliation(s)
- C A Parent
- National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Williams JG, Noegel AA, Eichinger L. Manifestations of multicellularity: Dictyostelium reports in. Trends Genet 2005; 21:392-8. [PMID: 15975432 DOI: 10.1016/j.tig.2005.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 02/08/2005] [Accepted: 05/03/2005] [Indexed: 12/21/2022]
Abstract
The recent release of the Dictyostelium genome sequence is important because Dictyostelium has become a much-favoured model system for cell and developmental biologists. The sequence has revealed a remarkably high total number of approximately 12 500 genes, only a thousand fewer than are encoded by Drosophila. Previous protein-sequence comparisons suggested that Dictyostelium is evolutionarily closer to animals and fungi than to plants, and the global protein sequence comparison, now made possible by the genome sequence, confirms this. This review focuses on several classes of proteins that are shared by Dictyostelium and animals: a highly sophisticated array of microfilament components, a large family of G-protein-coupled receptors and a diverse set of SH2 domain-containing proteins. The presence of these proteins strengthens the case for a relatively close relationship with animals and extends the range of problems that can be addressed using Dictyostelium as a model organism.
Collapse
Affiliation(s)
- Jeffrey G Williams
- School of Life Sciences, University of Dundee, MSI/WTB Complex, Dow Street, Dundee DD1 5EH. Scotland, UK.
| | | | | |
Collapse
|
6
|
Felder M, Szafranski K, Lehmann R, Eichinger L, Noegel AA, Platzer M, Glöckner G. DictyMOLD-a Dictyostelium discoideum genome browser database. Bioinformatics 2005; 21:696-7. [PMID: 15681572 DOI: 10.1093/bioinformatics/bti250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
UNLABELLED With the Dictyostelium Genome Project nearing completion, we initiated the construction of a data repository for all Dictyostelium discoideum genomic data. Up to now this database, called DictyMOLD (Dicty Map Of Linked Data), incorporates the recently completed D.discoideum chromosomes 1 and 2 sequences together with related annotations. To visualise maps, sequences and annotations and to provide access for the scientific community a perl-based browser was developed. AVAILABILITY The DictyMOLD database is freely accessible via http://genome.imb-jena.de/dictyostelium/ CONTACT gernot@imb-jena.de.
Collapse
Affiliation(s)
- Marius Felder
- IMB Jena, Department of Genome Analysis Beutenbergstrasse 11, 07745 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Matsuyama SI, Furusawa C, Todoriki M, Urabe I, Yomo T. Global change in Escherichia coli gene expression in initial stage of symbiosis with Dictyostelium cells. Biosystems 2004; 73:163-71. [PMID: 15026193 DOI: 10.1016/j.biosystems.2003.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Revised: 12/09/2003] [Accepted: 12/10/2003] [Indexed: 11/28/2022]
Abstract
Genome-wide gene expression profiling was performed to investigate the early formation of symbiosis using an artificial symbiosis of Escherichia coli and Dictyostelium discoideum. We have previously reported that when these two species were allowed to grow on minimal agar plates, they achieved a stable state of coexistence, in which the emerging E. coli colonies housing Dictyostelium cells were of a mucoidal nature that was not observed originally. We used this microbiological system as a model to study the initial stages of the development of the symbiotic relationship. The E. coli gene expression profiles of symbiotic cells and non-symbiotic cells captured using GeneChip technology were compared. It was clearly shown that the gene expression profile was substantially altered in E. coli cells undergoing symbiotic transition. The genes responsible for central energy metabolism as well as those responsible for translation apparatus were down-regulated in symbiotic E. coli. The transcriptional patterns of genes coding for the E. coli cell surface structure were drastically altered, and this alteration may determine the mucoidal nature and unique structure of coexisting colonies. General stress inducible genes were expressed at low levels in symbiotic E. coli. These observed changes in the transcription profile indicate that the central metabolism of symbiotic E. coli is attenuated as a whole, and the cells are probably under less stress because of the benefits brought by coexistence with the symbiotic counterpart Dictyostelium.
Collapse
Affiliation(s)
- Shin-Ichi Matsuyama
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 2-1 Yamada-oka, Suita City, Osaka 565-0871 Japan
| | | | | | | | | |
Collapse
|
8
|
Glöckner G, Eichinger L, Szafranski K, Pachebat JA, Bankier AT, Dear PH, Lehmann R, Baumgart C, Parra G, Abril JF, Guigó R, Kumpf K, Tunggal B, Cox E, Quail MA, Platzer M, Rosenthal A, Noegel AA. Sequence and analysis of chromosome 2 of Dictyostelium discoideum. Nature 2002; 418:79-85. [PMID: 12097910 DOI: 10.1038/nature00847] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genome of the lower eukaryote Dictyostelium discoideum comprises six chromosomes. Here we report the sequence of the largest, chromosome 2, which at 8 megabases (Mb) represents about 25% of the genome. Despite an A + T content of nearly 80%, the chromosome codes for 2,799 predicted protein coding genes and 73 transfer RNA genes. This gene density, about 1 gene per 2.6 kilobases (kb), is surpassed only by Saccharomyces cerevisiae (one per 2 kb) and is similar to that of Schizosaccharomyces pombe (one per 2.5 kb). If we assume that the other chromosomes have a similar gene density, we can expect around 11,000 genes in the D. discoideum genome. A significant number of the genes show higher similarities to genes of vertebrates than to those of other fully sequenced eukaryotes. This analysis strengthens the view that the evolutionary position of D. discoideum is located before the branching of metazoa and fungi but after the divergence of the plant kingdom, placing it close to the base of metazoan evolution.
Collapse
Affiliation(s)
- Gernot Glöckner
- IMB Jena, Department of Genome Analysis, Beutenbergstr. 11, 07745 Jena, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Décavé E, Garrivier D, Bréchet Y, Fourcade B, Bruckert F. Shear flow-induced detachment kinetics of Dictyostelium discoideum cells from solid substrate. Biophys J 2002; 82:2383-95. [PMID: 11964228 PMCID: PMC1302030 DOI: 10.1016/s0006-3495(02)75583-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using Dictyostelium discoideum as a model organism of specific and nonspecific adhesion, we studied the kinetics of shear flow-induced cell detachment. For a given cell, detachment occurs for values of the applied hydrodynamic stress above a threshold. Cells are removed from the substrate with an apparent first-order rate constant that strongly depends on the applied stress. The threshold stress depends on cell size and physicochemical properties of the substrate, but is not affected by depolymerization of the actin and tubulin cytoskeleton. In contrast, the kinetics of cell detachment is almost independent of cell size, but is strongly affected by a modification of the substrate and the presence of an intact actin cytoskeleton. These results are interpreted in the framework of a peeling model. The threshold stress and the cell-detachment rate measure the local equilibrium energy and the dissociation rate constant of the adhesion bridges, respectively.
Collapse
Affiliation(s)
- Emmanuel Décavé
- Département de Biologie Moléculaire et Structurale/BBSI, Commissariat à l'Energie Atomique Grenoble, 38054 Grenoble cedex 9, France
| | | | | | | | | |
Collapse
|
10
|
Gräf R. DdNek2, the first non-vertebrate homologue of human Nek2, is involved in the formation of microtubule-organizing centers. J Cell Sci 2002; 115:1919-29. [PMID: 11956323 DOI: 10.1242/jcs.115.9.1919] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dictyostelium Nek2 (DdNek2) is the first structural and functional non-vertebrate homologue of human Nek2, a NIMA-related serine/threonine kinase required for centrosome splitting in early mitosis. DdNek2 shares 43% overall amino-acid identity with its human counterpart and 54% identity within the catalytic domain. Both proteins can be subdivided in an N-terminal catalytic domain, a leucine zipper and a C-terminal domain. Kinase assays with bacterially expressed DdNek2 and C-terminal deletion mutants revealed that catalytic activity requires the presence of the leucine zipper and that autophosphorylation occurs at the C-terminus. Microscopic analyses with DdNek2 antibodies and expression of a GFP-DdNek2 fusion protein in Dictyostelium showed that DdNek2 is a permanent centrosomal resident and suggested that it is a component of the centrosomal core. The GFP-DdNek2-overexpressing mutants frequently exhibit supernumerary microtubule-organizing centers (MTOCs). This phenotype did not require catalytic activity because it was also observed in cells expressing inactive GFP-K33R. However, it was shown to be caused by overexpression of the C-terminal domain since it also occurred in GFP-mutants expressing only the C-terminus or a leucine zipper/C-terminus construct but not in those mutants expressing only the catalytic domain or a catalytic domain/leucine zipper construct. These results suggest that DdNek2 is involved in the formation of MTOCs. Furthermore, the localization of the GFP-fusion proteins revealed two independent centrosomal targeting domains of DdNek2, one within the catalytic or leucine zipper domain and one in the C-terminal domain.
Collapse
Affiliation(s)
- Ralph Gräf
- Adolf-Butenandt-Institut/Zellbiologie, Universität München, Schillerstrasse 42, D-80336 Münich, Germany.
| |
Collapse
|
11
|
Daunderer C, Gräf RO. Molecular analysis of the cytosolic Dictyostelium gamma-tubulin complex. Eur J Cell Biol 2002; 81:175-84. [PMID: 12018385 DOI: 10.1078/0171-9335-00241] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
gamma-Tubulin plays an essential role in microtubule nucleation and organization and occurs, besides its centrosomal localization, in the cytosol, where it forms soluble complexes with other proteins. We investigated the size and composition of gamma-tubulin complexes in Dictyostelium, using a mutant cell line in which the endogenous copy of the gamma-tubulin gene had been replaced by a tagged version. Dictyostelium gamma-tubulin complexes were generally much smaller than the large gamma-tubulin ring complexes found in higher organisms. The stability of the small Dictyostelium gamma-tubulin complexes depended strongly on the purification conditions, with a striking stabilization of the complexes under high salt conditions. Furthermore, we cloned the Dictyostelium homolog of Spc97 and an almost complete sequence of the Dictyostelium homolog of Spc98, which are both components of gamma-tubulin complexes in other organisms. Both proteins localize to the centrosome in Dictyostelium throughout the cell cycle and are also present in a cytosolic pool. We could show that the prevailing small complex present in Dictyostelium consists of DdSpc98 and gamma-tubulin, whereas DdSpc97 does not associate. Dictyostelium is thus the first organism investigated so far where the three proteins do not interact stably in the cytosol.
Collapse
|
12
|
Todoriki M, Oki S, Matsuyama SI, Ko-Mitamura EP, Urabe I, Yomo T. An observation of the initial stage towards a symbiotic relationship. Biosystems 2002; 65:105-12. [PMID: 12069721 DOI: 10.1016/s0303-2647(02)00006-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Two well-characterized and phylogeneticaly different species, Escherichia coli and Dictyostelium discoideum, were used as the model organisms. When the two species were mixed and allowed to grow on minimal agar plates at 22 degrees C, remarkably, the two species achieved a state of coexistence at an average of 2-4 weeks. In addition, the emerged colonies housing the coexisting species had a mucoidal nature that was not observed from its origin. Moreover, the state of coexistence was confirmed to be stable, and so was the mucoidal nature of the emerged colonies. Comparing with the pure E. coli origin, the mucoidal colony showed a significant increase in higher molecular weight extracellular components, with polysaccharides as the major constituent. Qualitative analysis of the monosaccharide contents in the extracellular components of the mucoidal colony revealed not only a significant increase in the glucose content, but also significant amount of additional xylose and galactose. The system permits the initial stages of the development of relationship between two species be captured within a short period of time. This feature, together with being simple and reproducible in laboratory conditions, provides a new model system for the study of symbiosis, especially when initial stages are concerned.
Collapse
Affiliation(s)
- Masahiko Todoriki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Bankir L, Ahloulay M, Devreotes PN, Parent CA. Extracellular cAMP inhibits proximal reabsorption: are plasma membrane cAMP receptors involved? Am J Physiol Renal Physiol 2002; 282:F376-92. [PMID: 11832418 DOI: 10.1152/ajprenal.00202.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glucagon binding to hepatocytes has been known for a long time to not only stimulate intracellular cAMP accumulation but also, intriguingly, induce a significant release of liver-borne cAMP in the blood. Recent experiments have shown that the well-documented but ill-understood natriuretic and phosphaturic actions of glucagon are actually mediated by this extracellular cAMP, which inhibits the reabsorption of sodium and phosphate in the renal proximal tubule. The existence of this "pancreato-hepatorenal cascade" indicates that proximal tubular reabsorption is permanently influenced by extracellular cAMP, the concentration of which is most probably largely dependent on the insulin-to-glucagon ratio. The possibility that renal cAMP receptors may be involved in this process is supported by the fact that cAMP has been shown to bind to brush-border membrane vesicles. In other cell types (i.e., adipocytes, erythrocytes, glial cells, cardiomyocytes), cAMP eggress and/or cAMP binding have also been shown to occur, suggesting additional paracrine effects of this nucleotide. Although not yet identified in mammals, cAMP receptors (cARs) are already well characterized in lower eukaryotes. The amoeba Dictyostelium discoideum expresses four different cARs during its development into a multicellular organism. cARs belong to the superfamily of seven transmembrane domain G protein-coupled receptors and exhibit a modest homology with the secretin receptor family (which includes PTH receptors). However, the existence of specific cAMP receptors in mammals remains to be demonstrated. Disturbances in the pancreato-hepatorenal cascade provide an adequate pathophysiological understanding of several unexplained observations, including the association of hyperinsulinemia and hypertension, the hepatorenal syndrome, and the hyperfiltration of diabetes mellitus. The observations reviewed in this paper show that cAMP should no longer be regarded only as an intracellular second messenger but also as a first messenger responsible for coordinated hepatorenal functions, and possibly for paracrine regulations in several other tissues.
Collapse
Affiliation(s)
- Lise Bankir
- Institut National de la Santé et de la Recherche Médicale Unité 367, Institut du Fer à Moulin, 75005 Paris, France.
| | | | | | | |
Collapse
|
14
|
Affiliation(s)
- R Gräf
- Adolf-Butenandt-Institut/Zellbiologie Ludwig-Maximilians-Universität München D-80336 München, Germany
| |
Collapse
|
15
|
Levraud JP, Adam M, Cornillon S, Golstein P. Methods to study cell death in Dictyostelium discoideum. Methods Cell Biol 2002; 66:469-97. [PMID: 11396017 DOI: 10.1016/s0091-679x(01)66022-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- J P Levraud
- Centre d'Immunologie INSERM-CNRS de Marseille-Luminy 13288 Marseille Cedex 9, France
| | | | | | | |
Collapse
|
16
|
Coates JC, Harwood AJ. Cell-cell adhesion and signal transduction duringDictyosteliumdevelopment. J Cell Sci 2001; 114:4349-58. [PMID: 11792801 DOI: 10.1242/jcs.114.24.4349] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of the non-metazoan eukaryote Dictyostelium discoideum displays many of the features of animal embryogenesis, including regulated cell-cell adhesion. During early development, two proteins, DdCAD-1 and csA, mediate cell-cell adhesion between amoebae as they form a loosely packed multicellular mass. The mechanism governing this process is similar to epithelial sheet sealing in animals. Although cell differentiation can occur in the absence of cell contact, regulated cell-cell adhesion is an important component of Dictyostelium morphogenesis, and a third adhesion molecule, gp150, is required for multicellular development past the aggregation stage.Cell-cell junctions that appear to be adherens junctions form during the late stages of Dictyostelium development. Although they are not essential to establish the basic multicellular body plan, these junctions are required to maintain the structural integrity of the fruiting body. The Dictyostelium β-catenin homologue Aardvark (Aar) is present in adherens junctions, which are lost in its absence. As in the case of its metazoan counterparts, Aar also has a function in cell signalling and regulates expression of the pre-spore gene psA.It is becoming clear that cell-cell adhesion is an integral part of Dictyostelium development. As in animals, cell adhesion molecules have a mechanical function and may also interact with the signal-transduction processes governing morphogenesis.
Collapse
Affiliation(s)
- J C Coates
- MRC Laboratory for Molecular Cell Biology and Department of Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | | |
Collapse
|
17
|
Daunderer C, Schliwa M, Gräf R. Dictyostelium centrin-related protein (DdCrp), the most divergent member of the centrin family, possesses only two EF hands and dissociates from the centrosome during mitosis. Eur J Cell Biol 2001; 80:621-30. [PMID: 11713866 DOI: 10.1078/0171-9335-00198] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have identified a Dictyostelium discoideum cDNA sequence with homology to centrins. The derived protein, Dictyostelium discoideum centrinn-related protein (DdCrp), is the most divergent member of the centrin family. Most strikingly it lacks the first two EF-hand consensus motifs, whereas a number of other centrin-specific sequence features are conserved. Southern and Northern blot analysis and the data presently available from the Dictyostelium genome and cDNA projects suggest that DdCrp is the only centrin isoform present in Dictyostelium. Immunofluorescence analysis with anti-DdCrp antibodies revealed that the protein is localized to the centrosome, to a second, centrosome-associated structure close to the nucleus and to the nucleus itself. Confocal microscopy resolved that the centrosomal label is confined to the corona surrounding the centrosome core. Unlike for other centrins the localization of DdCrp is cell cycle-dependent. Both the centrosomal and the centrosome-associated label disappear during prometaphase, most likely in concert with the dissociation of the corona at this stage. The striking differences of DdCrp to all other centrins may be related to the distinct structure and duplication mode of the Dictyostelium centrosome.
Collapse
Affiliation(s)
- C Daunderer
- Adolf-Butenandt-Institut/Zellbiologie, Universität München, Germany
| | | | | |
Collapse
|
18
|
Hentschel U, Zündorf I, Dingermann T, Winckler T. On the problem of establishing the subcellular localization of Dictyostelium retrotransposon TRE5-A proteins by biochemical analysis of nuclear extracts. Anal Biochem 2001; 296:83-91. [PMID: 11520035 DOI: 10.1006/abio.2001.5207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At first sight a protein that is enriched in extracts prepared from nuclei by means of biochemical methods can be considered to be a nuclear protein in vivo. Although this assumption will hold true for most of the analyzed proteins, it could also lead to false interpretations. We analyzed the subcellular distribution of endogenous and plasmid-borne proteins derived from the retrotransposon TRE5-A of Dictyostelium discoideum. In biochemical fractionation experiments the proteins encoded by TRE5-A open reading frame 1 (ORF1p) and the putative endonuclease encoded in ORF2 (ENp) were found in the detergent-insoluble material containing the nuclei. However, salt extraction of isolated nuclei did not considerably release the TRE5-A proteins. Instead, the TRE5-A proteins were strongly enriched in a fraction that contained the chromosomal DNA after removal of most cytoskeletal and histone proteins. These observations implied that ORF1p and ENp were both attached to chromatin in vivo, but this conclusion was disproved by the expression of genetic fusions of green fluorescent protein with either ORF1p or ENp. We show conclusive evidence that both fusion proteins were located as large aggregates of native protein in the cytoplasm of D. discoideum cells.
Collapse
Affiliation(s)
- U Hentschel
- Institut für Pharmazeutische Biologie, Universität Frankfurt (Biozentrum), Marie-Curie-Strasse 9, Frankfurt am Main, D-60439, Germany
| | | | | | | |
Collapse
|
19
|
Affiliation(s)
- J Roelofs
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | |
Collapse
|
20
|
Glöckner G, Szafranski K, Winckler T, Dingermann T, Quail MA, Cox E, Eichinger L, Noegel AA, Rosenthal A. The complex repeats of Dictyostelium discoideum. Genome Res 2001; 11:585-94. [PMID: 11282973 PMCID: PMC311061 DOI: 10.1101/gr.162201] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the course of determining the sequence of the Dictyostelium discoideum genome we have characterized in detail the quantity and nature of interspersed repetitive elements present in this species. Several of the most abundant small complex repeats and transposons (DIRS-1; TRE3-A,B; TRE5-A; skipper; Tdd-4; H3R) have been described previously. In our analysis we have identified additional elements. Thus, we can now present a complete list of complex repetitive elements in D. discoideum. All elements add up to 10% of the genome. Some of the newly described elements belong to established classes (TRE3-C, D; TRE5-B,C; DGLT-A,P; Tdd-5). However, we have also defined two new classes of DNA transposable elements (DDT and thug) that have not been described thus far. Based on the nucleotide amount, we calculated the least copy number in each family. These vary between <10 up to >200 copies. Unique sequences adjacent to the element ends and truncation points in elements gave a measure for the fragmentation of the elements. Furthermore, we describe the diversity of single elements with regard to polymorphisms and conserved structures. All elements show insertion preference into loci in which other elements of the same family reside. The analysis of the complex repeats is a valuable data resource for the ongoing assembly of whole D. discoideum chromosomes.
Collapse
Affiliation(s)
- G Glöckner
- IMB Jena, Department of Genome Analysis, D-07745 Jena, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
de la Roche MA, Côté GP. Regulation of Dictyostelium myosin I and II. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1525:245-61. [PMID: 11257438 DOI: 10.1016/s0304-4165(01)00110-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dictyostelium expresses 12 different myosins, including seven single-headed myosins I and one conventional two-headed myosin II. In this review we focus on the signaling pathways that regulate Dictyostelium myosin I and myosin II. Activation of myosin I is catalyzed by a Cdc42/Rac-stimulated myosin I heavy chain kinase that is a member of the p21-activated kinase (PAK) family. Evidence that myosin I is linked to the Arp2/3 complex suggests that pathways that regulate myosin I may also influence actin filament assembly. Myosin II activity is stimulated by a cGMP-activated myosin light chain kinase and inhibited by myosin heavy chain kinases (MHCKs) that block bipolar filament assembly. Known MHCKs include MHCK A and MHCK B, which have a novel type of kinase catalytic domain joined to a WD repeat domain, and MHC-protein kinase C (PKC), which contains both diacylglycerol kinase and PKC-related protein kinase catalytic domains. A Dictyostelium PAK (PAKa) acts indirectly to promote myosin II filament formation, suggesting that the MHCKs may be indirectly regulated by Rac GTPases.
Collapse
Affiliation(s)
- M A de la Roche
- Department of Biochemistry, Queen's University, K7L 3N6, Kingston, Ont., Canada
| | | |
Collapse
|
22
|
Rivero F, Dislich H, Glöckner G, Noegel AA. The Dictyostelium discoideum family of Rho-related proteins. Nucleic Acids Res 2001; 29:1068-79. [PMID: 11222756 PMCID: PMC29714 DOI: 10.1093/nar/29.5.1068] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Taking advantage of the ongoing Dictyostelium genome sequencing project, we have assembled >73 kb of genomic DNA in 15 contigs harbouring 15 genes and one pseudogene of Rho-related proteins. Comparison with EST sequences revealed that every gene is interrupted by at least one and up to four introns. For racC extensive alternative splicing was identified. Northern blot analysis showed that mRNAs for racA, racE, racG, racH and racI were present at all stages of development, whereas racJ and racL were expressed only at late stages. Amino acid sequences have been analysed in the context of Rho-related proteins of other organisms. Rac1a/1b/1c, RacF1/F2 and to a lesser extent RacB and the GTPase domain of RacA can be grouped in the Rac subfamily. None of the additional Dictyostelium Rho-related proteins belongs to any of the well-defined subfamilies, like Rac, Cdc42 or Rho. RacD and RacA are unique in that they lack the prenylation motif characteristic of Rho proteins. RacD possesses a 50 residue C-terminal extension and RacA a 400 residue C-terminal extension that contains a proline-rich region, two BTB domains and a novel C-terminal domain. We have also identified homologues for RacA in Drosophila and mammals, thus defining a new subfamily of Rho proteins, RhoBTB.
Collapse
Affiliation(s)
- F Rivero
- Institut für Biochemie I, Medizinische Fakultät, Universität zu Köln, Joseph-Stelzmann-Strasse 52, D-50931 Köln, Germany.
| | | | | | | |
Collapse
|
23
|
Huang CH, Liu PZ. New Insights into the Rh Superfamily of Genes and Proteins in Erythroid Cells and Nonerythroid Tissues. Blood Cells Mol Dis 2001; 27:90-101. [PMID: 11358367 DOI: 10.1006/bcmd.2000.0355] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The past decade has seen extensive studies of the erythrocyte Rh30 polypeptides and Rh-associated glycoprotein, which specify the clinically important Rh blood group system. Here we consider recent advances on these and other Rh homologues in the context of gene organization, molecular evolution, tissue-specific expression, protein structure, and potential biological functions. The Rh family is now known to contain a large number of homologues that form a unique branch in the eucarya life domain. The ancient origin and broad distribution imply central roles for the various Rh proteins in maintaining normal cellular and organismal homeostatic conditions. Rh homologues occur in the form of multiple chromosomal loci in mice and humans, but as single-copy genes in unicellular organisms (e.g., green alga and slime mold). While primitive Rh genes vary largely in exon/intron design, the mammalian Rh homologues bear a similar genomic organization. Sequence comparisons have revealed the signatures and a consensus 12-transmembrane fold characteristic of the Rh family. Phylogenetic analysis has placed all Rh homologues as a related cluster that intercepts ammonium transporter (Amt) clusters, indicating an intimate evolutionary and structural relationship between the Rh and Amt families. The biochemical identification and epithelial expression of RhBG and RhCG orthologues in mammalian kidney, liver, skin, testis, and brain suggest that they serve as transporters likely participating in ammonia homeostasis. Further inquires into the structure, function, biosynthesis, and interaction of Rh proteins will shed new light on ammonia homeostasis in a wide range of human physiological and pathological states.
Collapse
Affiliation(s)
- C H Huang
- Laboratory of Biochemistry and Molecular Genetics, New York Blood Center, New York, New York 10021, USA.
| | | |
Collapse
|
24
|
Strassmann JE, Zhu Y, Queller DC. Altruism and social cheating in the social amoeba Dictyostelium discoideum. Nature 2000; 408:965-7. [PMID: 11140681 DOI: 10.1038/35050087] [Citation(s) in RCA: 314] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The social amoeba, Dictyostelium discoideum, is widely used as a simple model organism for multicellular development, but its multicellular fruiting stage is really a society. Most of the time, D. discoideum lives as haploid, free-living, amoeboid cells that divide asexually. When starved, 10(4)-10(5) of these cells aggregate into a slug. The anterior 20% of the slug altruistically differentiates into a non-viable stalk, supporting the remaining cells, most of which become viable spores. If aggregating cells come from multiple clones, there should be selection for clones to exploit other clones by contributing less than their proportional share to the sterile stalk. Here we use microsatellite markers to show that different clones collected from a field population readily mix to form chimaeras. Half of the chimaeric mixtures show a clear cheater and victim. Thus, unlike the clonal and highly cooperative development of most multicellular organisms, the development of D. discoideum is partly competitive, with conflicts of interests among cells. These conflicts complicate the use of D. discoideum as a model for some aspects of development, but they make it highly attractive as a model system for social evolution.
Collapse
Affiliation(s)
- J E Strassmann
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas 77251-1892, USA.
| | | | | |
Collapse
|
25
|
Weeks G. Signalling molecules involved in cellular differentiation during Dictyostelium morphogenesis. Curr Opin Microbiol 2000; 3:625-30. [PMID: 11121784 DOI: 10.1016/s1369-5274(00)00151-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
GSK-3, Dd-STATa, PKA, rZIP and Ras all play important roles in cell type determination of Dictyostelium discoideum. The fact that homologs of these proteins also function in metazoan development emphasizes the importance of Dictyostelium as a model microbial organism for studying the molecular mechanisms that regulate development. The recent elaboration of the central role for GSK-3 in cell type determination has been of particular importance. The stimulatory effect of extracellular cAMP on GSK-3 activity has been shown to act through the cell surface receptor cAR3 and a tyrosine protein kinase ZAK1, which directly activates and phosphorylates GSK-3. Several proteins, including Dd-STATa, have been identified as substrates for GSK-3, and are therefore potential transducers of the signals involved in cell type determination.
Collapse
Affiliation(s)
- G Weeks
- Department of Microbiology and Immunology, The University of British Columbia, Room 300, 6174 University Boulevard, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
26
|
Konfortov BA, Cohen HM, Bankier AT, Dear PH. A high-resolution HAPPY map of Dictyostelium discoideum chromosome 6. Genome Res 2000; 10:1737-42. [PMID: 11076859 PMCID: PMC310974 DOI: 10.1101/gr.141700] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have made a high-resolution HAPPY map of chromosome 6 of Dictyostelium discoideum consisting of 300 sequence-tagged sites with an average spacing of 14 kb along the approximately 4-Mb chromosome. The majority of the marker sequences were derived from randomly chosen clones from four different chromosome 6-enriched plasmid libraries or from subclones of YACs previously mapped to chromosome 6. The map appears to span the entire chromosome, although marker density is greater in some regions than in others and is lowest within the telomeric region. Our map largely supports previous gene-based maps of this chromosome but reveals a number of errors in the physical map. In addition, we find that a high proportion of the plasmid sequences derived from gel-enriched chromosome 6 (and that form the basis of a chromosome-specific sequencing project) originates from other chromosomes.
Collapse
Affiliation(s)
- B A Konfortov
- MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom.
| | | | | | | |
Collapse
|
27
|
Loughran G, Pinter K, Newell PC, Gross JD. Identification of STKA-dependent genes in Dictyostelium discoideum. Differentiation 2000; 66:71-80. [PMID: 11100898 DOI: 10.1046/j.1432-0436.2000.660202.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During culmination of Dictyostelium aggregates, prespore and prestalk cells undergo terminal differentiation to form spores and a cellular stalk. Disruption of the cell-fate gene stkA leads to a phenotype in which all the cells destined to become spores end up as stalk cells. 'Stalky' mutants express normal levels of prespore cell transcripts but fail to produce the culmination-stage spore transcript spiA. The stkA gene encodes a putative GATA-type transcription factor (STKA). In order to identify possible downstream targets of STKA we used the technique of mRNA differential display and isolated four cDNA fragments that hybridise to mRNAs present during the later stages of development. All four gene tags were cloned and sequenced. mRNAs represented by these four sequence tags do not accumulate during culmination of 'stalky' cells and therefore must be specific to the spore pathway. By screening a cDNA library, longer cDNAs for all four were cloned and sequenced. Three of these contained complete protein-coding regions while only a partial cDNA was recovered for the fourth. One of the corresponding proteins has significant homology to a surface zinc metalloproteinase (GP63) of the protozoan parasite Leishmania, while another is closely related to a human pre-RNA binding protein (hnRNP R).
Collapse
Affiliation(s)
- G Loughran
- Dept. of Biochemistry, University of Oxford, United Kingdom
| | | | | | | |
Collapse
|
28
|
Robinson DN, Spudich JA. Dynacortin, a genetic link between equatorial contractility and global shape control discovered by library complementation of a Dictyostelium discoideum cytokinesis mutant. J Cell Biol 2000; 150:823-38. [PMID: 10953006 PMCID: PMC2175282 DOI: 10.1083/jcb.150.4.823] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have developed a system for performing interaction genetics in Dictyostelium discoideum that uses a cDNA library complementation/multicopy suppression strategy. Chemically mutagenized cells were screened for cytokinesis-deficient mutants and one mutant was subjected to library complementation. Isolates of four different genes were recovered as modifiers of this strain's cytokinesis defect. These include the cleavage furrow protein cortexillin I, a novel protein we named dynacortin, an ezrin-radixin-moesin-family protein, and coronin. The cortexillin I locus and transcript were found to be disrupted in the strain, identifying it as the affected gene. Dynacortin is localized partly to the cell cortex and becomes enriched in protrusive regions, a localization pattern that is similar to coronin and partly dependent on RacE. During cytokinesis, dynacortin is found in the cortex and is somewhat enriched at the poles. Furthermore, it appears to be reduced in the cleavage furrow. The genetic interactions and the cellular distributions of the proteins suggest a hypothesis for cytokinesis in which the contraction of the medial ring is a function of spatially restricted cortexillin I and myosin II and globally distributed dynacortin, coronin, and RacE.
Collapse
Affiliation(s)
- D N Robinson
- Department of Biochemistry and Developmental Biology, Beckman Center, Stanford University, Stanford, California 94305-5307, USA.
| | | |
Collapse
|
29
|
|
30
|
Abstract
A key step in the development of all multicellular organisms is the differentiation of specialized cell types. The eukaryotic microorganism Dictyostelium discoideum provides a unique experimental system for studying cell-type determination and spatial patterning in a developing multicellular organism. Unlike metazoans, which become multicellular by undergoing many rounds of cell division after fertilization of an egg, the social amoeba Dictyostelium achieves multicellularity by the aggregation of approximately 10(5) cells in response to nutrient depletion. Following aggregation, cell-type differentiation and morphogenesis result in a multicellular organism with only a few cell types that exhibit a defined patterning along the anterior-posterior axis of the organism. Analysis of the mechanisms that control these processes is facilitated by the relative simplicity of Dictyostelium development and the availability of molecular, genetic, and cell biological tools. Interestingly, analysis has shown that many molecules that play integral roles in the development of higher eukaryotes, such as PKA, STATs, and GSK-3, are also essential for cell-type differentiation and patterning in Dictyostelium. The role of these and other signaling pathways in the induction, maintenance, and patterning of cell types during Dictyostelium development is discussed.
Collapse
Affiliation(s)
- J M Brown
- Center for Molecular Genetics, Department of Biology, University of California at San Diego, La Jolla 92093-0634, USA
| | | |
Collapse
|
31
|
Affiliation(s)
- J G Williams
- Department of Anatomy and Physiology, University of Dundee, Dundee, 001 5EH, UK
| |
Collapse
|
32
|
Affiliation(s)
- J G Williams
- Dept of Anatomy and Physiology, University of Dundee, MSI/WTB Complex, Dow Street, Dundee, UK DD1 5EH.
| |
Collapse
|