1
|
Gómez-Ilescas A, Silveira PP. Early adversity and the comorbidity between metabolic disease and psychopathology. J Physiol 2025. [PMID: 40349327 DOI: 10.1113/jp285927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 04/01/2025] [Indexed: 05/14/2025] Open
Abstract
Although the co-existence of metabolic and psychiatric disorders in the same individual (comorbidity) is very prevalent, the mechanisms by which these disorders co-occur are poorly understood, but a history of early-life adversity is a common developmental risk factor. Exposure to adverse environments during critical periods of development (e.g. fetal life and infancy) modifies the metabolism and the function of the brain persistently, influencing behaviours that contribute to both metabolic and mental health disarrangements over the life course. We will review molecular and clinical evidence supporting the notion that early adversity is an important risk factor for the comorbidity between metabolic and psychiatric conditions. We will also discuss the possible mechanisms involved: neurometabolic programming, epigenetic alterations and the cumulative effects of altered inflammatory and oxidative pathways linked to early adversity.
Collapse
Affiliation(s)
| | - Patricia Pelufo Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Gill A, Gill M, Mittal R, Hirani K, Sharma A. Leptin-dopamine interactions: unveiling the common link between type-2 diabetes and neuropsychiatric comorbidities. Behav Pharmacol 2025:00008877-990000000-00124. [PMID: 40079260 DOI: 10.1097/fbp.0000000000000820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Clinical evidence highlights the central nervous system as a key target in type-2 diabetes-related complications, yet the mechanisms underlying the increased prevalence of mood disorder issues, mainly depression, in patients with diabetes remain poorly understood. Leptin, an adiposity hormone known for its role in energy homeostasis, has been shown to improve insulin sensitivity and regulate blood glucose levels in diabetic populations. Beyond its metabolic effects, leptin also has the potential to mitigate psychiatric complications such as depression and anxiety. Notably, leptin receptors are predominantly expressed on dopamine (DA) neurons in the brain, hinting that leptin may orchestrate DA activity by serving as its endogenous modulator. This review examines the role of leptin as a potential common link between type-2 diabetes and mood disorders, particularly through its effects on DA function. This article proposes defective leptin signaling as a vital mechanism contributing to psychiatric complications and compromised DA functions in type-2 diabetes, highlighting leptin as a promising therapeutic target for addressing metabolic and psychiatric comorbidities.
Collapse
Affiliation(s)
- Allyson Gill
- Department of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Science Center, Lubbock, Texas
| | - Madison Gill
- Department of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Science Center, Lubbock, Texas
| | - Rahul Mittal
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Khemraj Hirani
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ajay Sharma
- Department of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Science Center, Lubbock, Texas
- Department of Pharmacology and Toxicology, Wright State University, Boonshoft School of Medicine, Dayton, Ohio
| |
Collapse
|
3
|
Burns ME, Contini FM, Michaud JM, Waring CT, Price JC, McFarland AT, Burke SG, Murphy CA, Guindon GE, Krevosky MK, Seggio JA. Obesity alters circadian and behavioral responses to constant light in male mice. Physiol Behav 2024; 287:114711. [PMID: 39395627 DOI: 10.1016/j.physbeh.2024.114711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Exposure to artificial light during the night is known to promote disruption to the biological clock, which can lead to impaired mood and metabolism. Metabolic hormone secretion is modulated by the circadian pacemaker and recent research has shown that hormones such as insulin and leptin can also directly affect behavioral outcomes and the circadian clock. In turn, obesity itself is known to modulate the circadian rhythm and alter emotionality. This study investigated the behavioral and metabolic effects of constant light exposure in two models of obesity - a leptin null mutant (OB) and diet-induced obesity via high-fat diet. For both experiments, mice were placed into either a standard Light:Dark cycle (LD) or constant light (LL) and their circadian locomotor rhythms were continuously monitored. After 10 weeks of exposure to their respective lighting conditions, all mice were subjected to an open field assay to assess their explorative behaviors. Their metabolic hormone levels and inflammation levels were also measured. Behaviorally, exposure to constant light led to increased period lengthening and open field activity in the lean mice compared to both obesity models. Metabolically, LL led to increased cytokine levels and poorer metabolic outcomes in both lean and obese mice, sometimes exacerbating the metabolic issues in the obese mice, independent of weight gain. This study illustrates that LL can produce altered behavioral and physiological outcomes, even in lean mice. These results also indicate that obesity induced by different reasons can lead to shortened circadian rhythmicity and exploratory activity when exposed to chronic light.
Collapse
Affiliation(s)
- Meredith E Burns
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Fernanda Medeiros Contini
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA; Now at Harvard University Medical School, Neurobiology Department
| | - Julie M Michaud
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Caitlin T Waring
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA; Now at Colorado State University, College of Veterinary Medicine & Biomedical Sciences
| | - John C Price
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Alexander T McFarland
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA; Now at Georgia Southern University, Department of Biology
| | - Samantha G Burke
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA; Now at Cummings School of Veterinary Medicine at Tufts University
| | - Cloey A Murphy
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Grace E Guindon
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Merideth K Krevosky
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Joseph A Seggio
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA.
| |
Collapse
|
4
|
Rabiller G, Ip Z, Zarrabian S, Zhang H, Sato Y, Yazdan-Shahmorad A, Liu J. Type-2 Diabetes Alters Hippocampal Neural Oscillations and Disrupts Synchrony between the Hippocampus and Cortex. Aging Dis 2024; 15:2255-2270. [PMID: 38029397 PMCID: PMC11346393 DOI: 10.14336/ad.2023.1106] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) increases the risk of neurological diseases, yet how brain oscillations change as age and T2DM interact is not well characterized. To delineate the age and diabetic effect on neurophysiology, we recorded local field potentials with multichannel electrodes spanning the somatosensory cortex and hippocampus (HPC) under urethane anesthesia in diabetic and normoglycemic control mice, at 200 and 400 days of age. We analyzed the signal power of brain oscillations, brain state, sharp wave associate ripples (SPW-Rs), and functional connectivity between the cortex and HPC. We found that while both age and T2DM were correlated with a breakdown in long-range functional connectivity and reduced neurogenesis in the dentate gyrus and subventricular zone, T2DM further slowed brain oscillations and reduced theta-gamma coupling. Age and T2DM also prolonged the duration of SPW-Rs and increased gamma power during SPW-R phase. Our results have identified potential electrophysiological substrates of hippocampal changes associated with T2DM and age. The perturbed brain oscillation features and diminished neurogenesis may underlie T2DM-accelerated cognitive impairment.
Collapse
Affiliation(s)
- Gratianne Rabiller
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA
- San Francisco VA medical Center, San Francisco, CA, USA
| | - Zachary Ip
- Departments of Bioengineering, University of Washington, Seattle, WA, USA
| | - Shahram Zarrabian
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA
- San Francisco VA medical Center, San Francisco, CA, USA
| | - Hongxia Zhang
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA
- San Francisco VA medical Center, San Francisco, CA, USA
| | - Yoshimichi Sato
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA
- San Francisco VA medical Center, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Azadeh Yazdan-Shahmorad
- Departments of Bioengineering, University of Washington, Seattle, WA, USA
- Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Jialing Liu
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA
- San Francisco VA medical Center, San Francisco, CA, USA
| |
Collapse
|
5
|
Woodruff JL, Bykalo MK, Loyo-Rosado FZ, Maissy ES, Sadek AT, Hersey M, Erichsen JM, Maxwell ND, Wilson MA, Wood SK, Hashemi P, Grillo CA, Reagan LP. Differential effects of high-fat diet on endocrine, metabolic and depressive-like behaviors in male and female rats. Appetite 2024; 199:107389. [PMID: 38697221 PMCID: PMC11139556 DOI: 10.1016/j.appet.2024.107389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
The complications of obesity extend beyond the periphery to the central nervous system (CNS) and include an increased risk of developing neuropsychiatric co-morbidities like depressive illness. Preclinical studies support this concept, including studies that have examined the effects of a high-fat diet (HFD) on depressive-like behaviors. Although women are approximately two-fold more likely to develop depressive illness compared to men, most preclinical studies have focused on the effects of HFD in male rodents. Accordingly, the goal of this study was to examine depressive-like behaviors in male and female rats provided access to a HFD. In agreement with prior studies, male and female rats provided a HFD segregate into an obesity phenotype (i.e., diet-induced obesity; DIO) or a diet resistant (DR) phenotype. Upon confirmation of the DR and DIO phenotypes, behavioral assays were performed in control chow, DR, and DIO rats. In the sucrose preference test, male DIO rats exhibited significant decreases in sucrose consumption (i.e., anhedonia) compared to male DR and male control rats. In the forced swim test (FST), male DIO rats exhibited increases in immobility and decreases in climbing behaviors in the pre-test sessions. Interestingly, male DR rats exhibited these same changes in both the pre-test and test sessions of the FST, suggesting that consumption of a HFD, even in the absence of the development of an obesity phenotype, has behavioral consequences. Female rats did not exhibit differences in sucrose preference, but female DIO rats exhibited increases in immobility exclusively in the test session of the FST, behavioral changes that were not affected by the stage of the estrous cycle. Collectively, these studies demonstrate that access to a HFD elicits different behavioral outcomes in male and female rats.
Collapse
Affiliation(s)
- J L Woodruff
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA; Columbia VA Health Care System, Columbia, SC, USA
| | - M K Bykalo
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - F Z Loyo-Rosado
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - E S Maissy
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - A T Sadek
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - M Hersey
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - J M Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - N D Maxwell
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - M A Wilson
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA; Columbia VA Health Care System, Columbia, SC, USA
| | - S K Wood
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA; Columbia VA Health Care System, Columbia, SC, USA
| | - P Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA; Department of Bioengineering, Imperial College, London, SW7 2AZ, UK
| | - C A Grillo
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA; Columbia VA Health Care System, Columbia, SC, USA
| | - L P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA; Columbia VA Health Care System, Columbia, SC, USA.
| |
Collapse
|
6
|
Belviranlı M, Okudan N, Sezer T. Exercise Training Alleviates Symptoms and Cognitive Decline in a Reserpine-induced Fibromyalgia Model by Activating Hippocampal PGC-1α/FNDC5/BDNF Pathway. Neuroscience 2024; 549:145-155. [PMID: 38759912 DOI: 10.1016/j.neuroscience.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/25/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
The purpose of this study was to assess, from a behavioral, biochemical, and molecular standpoint, how exercise training affected fibromyalgia (FM) symptoms in a reserpine-induced FM model and to look into the potential involvement of the hippocampal PGC-1α/FNDC5/BDNF pathway in this process. Reserpine (1 mg kg-1) was subcutaneously injected once daily for three consecutive days and then the rats were exercised for 21 days. Mechanical allodynia was evaluated 1, 11, and 21 days after the last injection. At the end of the exercise training protocol forced swim, open field and Morris water maze tests were performed to assess depression, locomotion and cognition, respectively. Additionally, biochemical and molecular markers related to the pathogenesis of the FM and cognitive functions were measured. Reserpine exposure was associated with a decrease in locomotion, an increase in depression, an increase in mechanical allodynia, and a decrease in spatial learning and memory (p < 0.05). These behavioral abnormalities were found to be correlated with elevated blood cytokine levels, reduced serotonin levels in the prefrontal cortex, and altered PGC-1α/FNDC5/BDNF pathway in the hippocampus (p < 0.05). Interestingly, exercise training attenuated all the neuropathological changes mentioned above (p < 0.05). These results imply that exercise training restored behavioral, biochemical, and molecular changes against reserpine-induced FM-like symptoms in rats, hence mitigating the behavioral abnormalities linked to pain, depression, and cognitive functioning.
Collapse
Affiliation(s)
- Muaz Belviranlı
- Selçuk University, School of Medicine, Department of Physiology, Konya, Turkey.
| | - Nilsel Okudan
- Selçuk University, School of Medicine, Department of Physiology, Konya, Turkey
| | - Tuğba Sezer
- Selçuk University, School of Medicine, Department of Physiology, Konya, Turkey
| |
Collapse
|
7
|
Rabiller G, Ip Z, Zarrabian S, Zhang H, Sato Y, Yazdan-Shahmorad A, Liu J. Type-2 diabetes alters hippocampal neural oscillations and disrupts synchrony between hippocampus and cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542288. [PMID: 37292743 PMCID: PMC10245872 DOI: 10.1101/2023.05.25.542288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Type 2 diabetes mellitus (T2DM) increases the risk of neurological diseases, yet how brain oscillations change as age and T2DM interact is not well characterized. To delineate the age and diabetic effect on neurophysiology, we recorded local field potentials with multichannel electrodes spanning the somatosensory cortex and hippocampus (HPC) under urethane anesthesia in diabetic and normoglycemic control mice, at 200 and 400 days of age. We analyzed the signal power of brain oscillations, brain state, sharp wave associate ripples (SPW-Rs), and functional connectivity between the cortex and HPC. We found that while both age and T2DM were correlated with a breakdown in long-range functional connectivity and reduced neurogenesis in the dentate gyrus and subventricular zone, T2DM further slowed brain oscillations and reduced theta-gamma coupling. Age and T2DM also prolonged the duration of SPW-Rs and increased gamma power during SPW-R phase. Our results have identified potential electrophysiological substrates of hippocampal changes associated with T2DM and age. The perturbed brain oscillation features and diminished neurogenesis may underlie T2DM-accelerated cognitive impairment.
Collapse
|
8
|
Fadahunsi N, Lund J, Breum AW, Mathiesen CV, Larsen IB, Knudsen GM, Klein AB, Clemmensen C. Acute and long-term effects of psilocybin on energy balance and feeding behavior in mice. Transl Psychiatry 2022; 12:330. [PMID: 35953488 PMCID: PMC9372155 DOI: 10.1038/s41398-022-02103-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 12/13/2022] Open
Abstract
Psilocybin and other serotonergic psychedelics have re-emerged as therapeutics for neuropsychiatric disorders, including addiction. Psilocybin induces long-lasting effects on behavior, likely due to its profound ability to alter consciousness and augment neural connectivity and plasticity. Impaired synaptic plasticity in obesity contributes to 'addictive-like' behaviors, including heightened motivation for palatable food, and excessive food seeking and consumption. Here, we evaluate the effects of psilocybin on feeding behavior, energy metabolism, and as a weight-lowering agent in mice. We demonstrate that a single dose of psilocybin substantially alters the prefrontal cortex transcriptome but has no acute or long-lasting effects on food intake or body weight in diet-induced obese mice or in genetic mouse models of obesity. Similarly, sub-chronic microdosing of psilocybin has no metabolic effects in obese mice and psilocybin does not augment glucagon-like peptide-1 (GLP-1) induced weight loss or enhance diet-induced weight loss. A single high dose of psilocybin reduces sucrose preference but fails to counter binge-like eating behavior. Although these preclinical data discourage clinical investigation, there may be nuances in the mode of action of psychedelic drugs that are difficult to capture in rodent models, and thus require human evaluation to uncover.
Collapse
Affiliation(s)
- Nicole Fadahunsi
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Lund
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alberte Wollesen Breum
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Vad Mathiesen
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Isabella Beck Larsen
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- grid.4973.90000 0004 0646 7373Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XFaculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Bue Klein
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Hebebrand J, Hildebrandt T, Schlögl H, Seitz J, Denecke S, Vieira D, Gradl-Dietsch G, Peters T, Antel J, Lau D, Fulton S. The role of hypoleptinemia in the psychological and behavioral adaptation to starvation: implications for anorexia nervosa. Neurosci Biobehav Rev 2022; 141:104807. [PMID: 35931221 DOI: 10.1016/j.neubiorev.2022.104807] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/11/2022] [Accepted: 07/31/2022] [Indexed: 12/17/2022]
Abstract
This narrative review aims to pinpoint mental and behavioral effects of starvation, which may be triggered by hypoleptinemia and as such may be amenable to treatment with leptin receptor agonists. The reduced leptin secretion results from the continuous loss of fat mass, thus initiating a graded triggering of diverse starvation related adaptive functions. In light of leptin receptors located in several peripheral tissues and many brain regions adaptations may extend beyond those of the hypothalamus-pituitary-end organ-axes. We focus on gastrointestinal tract and reward system as relevant examples of peripheral and central effects of leptin. Despite its association with extreme obesity, congenital leptin deficiency with its many parallels to a state of starvation allows the elucidation of mental symptoms amenable to treatment with exogenous leptin in both ob/ob mice and humans with this autosomal recessive disorder. For starvation induced behavioral changes with an intact leptin signaling we particularly focus on rodent models for which proof of concept has been provided for the causative role of hypoleptinemia. For humans, we highlight the major cognitive, emotional and behavioral findings of the Minnesota Starvation Experiment to contrast them with results obtained upon a lesser degree of caloric restriction. Evidence for hypoleptinemia induced mental changes also stems from findings obtained in lipodystrophies. In light of the recently reported beneficial cognitive, emotional and behavioral effects of metreleptin-administration in anorexia nervosa we discuss potential implications for the treatment of this eating disorder. We postulate that leptin has profound psychopharmacological effects in the state of starvation.
Collapse
Affiliation(s)
- Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Tom Hildebrandt
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Haiko Schlögl
- Department of Endocrinology, Nephrology, Rheumatology, Division of Endocrinology, University Hospital Leipzig, Liebigstr. 20, 04103 Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH University Hospital Aachen, Germany
| | - Saskia Denecke
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Diana Vieira
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Gertraud Gradl-Dietsch
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Triinu Peters
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Jochen Antel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - David Lau
- Department of Nutrition, Neuroscience - University of Montreal & CRCHUM, Montréal QC H3T1J4, Canada
| | - Stephanie Fulton
- Department of Nutrition, Neuroscience - University of Montreal & CRCHUM, Montréal QC H3T1J4, Canada
| |
Collapse
|
10
|
Scott SR, Manczak EM. Metabolic proteins at birth predict early childhood mental health symptoms. Dev Psychobiol 2022; 64:e22248. [PMID: 35191530 DOI: 10.1002/dev.22248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/09/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022]
Abstract
Child mental health disorders are the leading cause of disability in children and adolescents worldwide. Biological correlates predict psychosocial outcomes throughout human development; however, less is known about metabolic proteins. Drawing from a longitudinal birth cohort study, Born in Bradford (BiB), we examined the role of infant metabolic proteins at birth in predicting early childhood mental health symptoms at 3 and 5 years. We found that higher leptin predicted more prosocial behavior at age 3. Additionally, a higher leptin-to-adiponectin ratio predicted increased total symptom difficulties. At age 5, we found that higher adiponectin predicted a decreased likelihood of being rated by teachers as meeting or exceeding expectations in the domain of "managing feelings and behaviors" and marginally predicted lower competency in "making relationships" on national developmental milestone evaluations. To our knowledge, this is among the first few studies to prospectively predict mental health symptoms from cord blood metabolic proteins, and the first examining this association with a leptin-to-adiponectin ratio. Our results provide support for the possibility that metabolic proteins at birth forecast risk for mental health symptoms in early childhood.
Collapse
Affiliation(s)
- Samantha R Scott
- Department of Psychology, University of Denver, Denver, Colorado, USA
| | - Erika M Manczak
- Department of Psychology, University of Denver, Denver, Colorado, USA
| |
Collapse
|
11
|
Erichsen JM, Fadel JR, Reagan LP. Peripheral versus central insulin and leptin resistance: Role in metabolic disorders, cognition, and neuropsychiatric diseases. Neuropharmacology 2022; 203:108877. [PMID: 34762922 PMCID: PMC8642294 DOI: 10.1016/j.neuropharm.2021.108877] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/14/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
Insulin and leptin are classically regarded as peptide hormones that play key roles in metabolism. In actuality, they serve several functions in both the periphery and central nervous system (CNS). Likewise, insulin and leptin resistance can occur both peripherally and centrally. Metabolic disorders such as diabetes and obesity share several key features including insulin and leptin resistance. While the peripheral effects of these disorders are well-known (i.e. cardiovascular disease, hypertension, stroke, dyslipidemia, etc.), the CNS complications of leptin and insulin resistance have come into sharper focus. Both preclinical and clinical findings have indicated that insulin and leptin resistance are associated with cognitive deficits and neuropsychiatric diseases such as depression. Importantly, these studies also suggest that these deficits in neuroplasticity can be reversed by restoration of insulin and leptin sensitivity. In view of these observations, this review will describe, in detail, the peripheral and central functions of insulin and leptin and explain the role of insulin and leptin resistance in various metabolic disorders, cognition, and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Jennifer M Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA.
| | - Jim R Fadel
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA
| | - Lawrence P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA; Columbia VA Health Care System, Columbia, SC, 29208, USA
| |
Collapse
|
12
|
Reagan L, Cowan H, Woodruff J, Piroli G, Erichsen J, Evans A, Burzynski H, Maxwell N, Loyo-Rosado F, Macht V, Grillo C. Hippocampal-specific insulin resistance elicits behavioral despair and hippocampal dendritic atrophy. Neurobiol Stress 2021; 15:100354. [PMID: 34258333 PMCID: PMC8252121 DOI: 10.1016/j.ynstr.2021.100354] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 01/02/2023] Open
Abstract
Insulin resistance is a major contributor to the neuroplasticity deficits observed in patients with metabolic disorders. However, the relative contribution of peripheral versus central insulin resistance in the development of neuroplasticity deficits remains equivocal. To distinguish between peripheral and central insulin resistance, we developed a lentiviral vector containing an antisense sequence selective for the insulin receptor (LV-IRAS). We previously demonstrated that intra-hippocampal injection of this vector impairs synaptic transmission and hippocampal-dependent learning and memory in the absence of peripheral insulin resistance. In view of the increased risk for the development of neuropsychiatric disorders in patients with insulin resistance, the current study examined depressive and anxiety-like behaviors, as well as hippocampal structural plasticity in rats with hippocampal-specific insulin resistance. Following hippocampal administration of either the LV-control virus or the LV-IRAS, anhedonia was evaluated by the sucrose preference test, despair behavior was assessed in the forced swim test, and anxiety-like behaviors were determined in the elevated plus maze. Hippocampal neuron morphology was studied by Golgi-Cox staining. Rats with hippocampal insulin resistance exhibited anxiety-like behaviors and behavioral despair without differences in anhedonia, suggesting that some but not all components of depressive-like behaviors were affected. Morphologically, hippocampal-specific insulin resistance elicited atrophy of the basal dendrites of CA3 pyramidal neurons and dentate gyrus granule neurons, and also reduced the expression of immature dentate gyrus granule neurons. In conclusion, hippocampal-specific insulin resistance elicits structural deficits that are accompanied by behavioral despair and anxiety-like behaviors, identifying hippocampal insulin resistance as a key factor in depressive illness.
Collapse
Affiliation(s)
- L.P. Reagan
- Columbia VA Health Care System, Columbia, SC, 29209, USA
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - H.B. Cowan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - J.L. Woodruff
- Columbia VA Health Care System, Columbia, SC, 29209, USA
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - G.G. Piroli
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - J.M. Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - A.N. Evans
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - H.E. Burzynski
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - N.D. Maxwell
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - F.Z. Loyo-Rosado
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - V.A. Macht
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - C.A. Grillo
- Columbia VA Health Care System, Columbia, SC, 29209, USA
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| |
Collapse
|
13
|
Lam YY, Tsai SF, Chen PC, Kuo YM, Chen YW. Pioglitazone rescues high-fat diet-induced depression-like phenotypes and hippocampal astrocytic deficits in mice. Biomed Pharmacother 2021; 140:111734. [PMID: 34022606 DOI: 10.1016/j.biopha.2021.111734] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022] Open
Abstract
The prevalence of diabetes is rapidly increasing worldwide and is highly associated with the incidence of depression. Pioglitazone, a Peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist, is widely used for treating patients with type 2 diabetes. However, whether pioglitazone alleviates metabolic disorder-related depression and astrocytic deficits remains unclear. Here we showed that 12 weeks of high-fat diet (HFD) feeding (from 8- to 20-week-old) induced not only obesity and insulin resistance, but also depression-like behaviors in mice. Astrocytic activation, a sign closely associated with depression, was also evident in the ventral hippocampus. Four weeks of pioglitazone (10 or 20 mg/kg, daily, from 20- to 24-week-old) treatment alleviated the HFD-induced glucose-metabolic dysfunctions, upregulation of ventral hippocampal GFAP, reduction of the total process lengths and the number of branch points of the ventral hippocampal CA1 GFAP-immunoreactive astrocytes and depressive phenotypes but had no effect on anxiety-like behaviors or hippocampus-related learning and memory in mice. These findings suggest that pioglitazone could be a potential therapeutic agent for metabolic disorders and associated depression.
Collapse
Affiliation(s)
- Ying-Yiu Lam
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Feng Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chun Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yun-Wen Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
14
|
Hersey M, Woodruff JL, Maxwell N, Sadek AT, Bykalo MK, Bain I, Grillo CA, Piroli GG, Hashemi P, Reagan LP. High-fat diet induces neuroinflammation and reduces the serotonergic response to escitalopram in the hippocampus of obese rats. Brain Behav Immun 2021; 96:63-72. [PMID: 34010713 PMCID: PMC8319113 DOI: 10.1016/j.bbi.2021.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/22/2021] [Accepted: 05/14/2021] [Indexed: 12/27/2022] Open
Abstract
Clinical studies indicate that obese individuals have an increased risk of developing co-morbid depressive illness and that these patients have reduced responses to antidepressant therapy, including selective serotonin reuptake inhibitors (SSRIs). Obesity, a condition of chronic mild inflammation including obesity-induced neuroinflammation, is proposed to contribute to decreases in synaptic concentrations of neurotransmitters like serotonin (5HT) by decreasing 5HT synthesis in the dorsal raphe nucleus (DRN) and/or affecting 5HT reuptake in DRN target regions like the hippocampus. In view of these observations, the goal of the current study was to examine inflammatory markers and serotonergic dynamics in co-morbid obesity and depression. Biochemical and behavioral assays revealed that high-fat diet produced an obesity and depressive-like phenotype in one cohort of rats and that these changes were marked by increases in key pro-inflammatory cytokines in the hippocampus. In real time using fast scan cyclic voltammetry (FSCV), we observed no changes in basal levels of hippocampal 5HT; however responses to escitalopram were significantly impaired in the hippocampus of obese rats compared to diet resistant rats and control rats. Further studies revealed that these neurochemical observations could be explained by increases in serotonin transporter (SERT) expression in the hippocampus driven by elevated neuroinflammation. Collectively, these results demonstrate that obesity-induced increases in neuroinflammation adversely affect SERT expression in the hippocampus of obese rats, thereby providing a potential synaptic mechanism for reduced SSRI responsiveness in obese subjects with co-morbid depressive illness.
Collapse
Affiliation(s)
- Melinda Hersey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA,Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina SOM, Columbia, SC, USA
| | - Jennifer L. Woodruff
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina SOM, Columbia, SC, USA,Columbia VA Health Care System, Columbia, SC, USA
| | - Nicholas Maxwell
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina SOM, Columbia, SC, USA
| | - Alia T. Sadek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina SOM, Columbia, SC, USA
| | - Maria K. Bykalo
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina SOM, Columbia, SC, USA
| | - Ian Bain
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Claudia A. Grillo
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina SOM, Columbia, SC, USA,Columbia VA Health Care System, Columbia, SC, USA
| | - Gerardo G. Piroli
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina SOM, Columbia, SC, USA
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA,Department of Bioengineering, Imperial College, London, SW7 2AZ UK
| | - Lawrence P. Reagan
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina SOM, Columbia, SC, USA,Columbia VA Health Care System, Columbia, SC, USA,Corresponding author: Lawrence P. Reagan, Ph.D., Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Road, D40, Columbia, SC, USA 29208, Phone: 001 803 216 3515; Fax: 001 803 216 3538,
| |
Collapse
|
15
|
Plant Extracts for Type 2 Diabetes: From Traditional Medicine to Modern Drug Discovery. Antioxidants (Basel) 2021; 10:antiox10010081. [PMID: 33435282 PMCID: PMC7827314 DOI: 10.3390/antiox10010081] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the largest public health problems worldwide. Insulin resistance-related metabolic dysfunction and chronic hyperglycemia result in devastating complications and poor prognosis. Even though there are many conventional drugs such as metformin (MET), Thiazolidinediones (TZDs), sulfonylureas (SUF), dipeptidyl peptidase 4 (DPP-4) inhibitors, glucagon like peptide 1 (GLP-1) and sodium-glucose cotransporter-2 (SGLT-2) inhibitors, side effects still exist. As numerous plant extracts with antidiabetic effects have been widely reported, they have the potential to be a great therapeutic agent for type 2 diabetes with less side effects. In this study, sixty-five recent studies regarding plant extracts that alleviate type 2 diabetes were reviewed. Plant extracts regulated blood glucose through the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. The anti-inflammatory and antioxidant properties of plant extracts suppressed c-Jun amino terminal kinase (JNK) and nuclear factor kappa B (NF-κB) pathways, which induce insulin resistance. Lipogenesis and fatty acid oxidation, which are also associated with insulin resistance, are regulated by AMP-activated protein kinase (AMPK) activation. This review focuses on discovering plant extracts that alleviate type 2 diabetes and exploring its therapeutic mechanisms.
Collapse
|
16
|
Meta-analysis of cognitive and behavioral tests in leptin- and leptin receptor-deficient mice. Neurosci Res 2020; 170:217-235. [PMID: 33316303 DOI: 10.1016/j.neures.2020.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 01/19/2023]
Abstract
Leptin is a hormone produced by adipocytes that regulates food intake and metabolism. Leptin-related gene-deficient mice, such as db/db and ob/ob mice, are widely used to study diabetes and its related diseases. However, broad effects of leptin appear to cause variability in behavioral test results. We performed a meta-analysis of major behavioral tests in db/db and ob/ob mice. These mice exhibited significant impairments in the Morris water maze, forced swim, novel object recognition, Y-maze, tail suspension, and light-dark box tests, whereas the elevated plus maze and open field tests did not reveal significant changes. We also performed correlation and regression analyses between the animals' performances and the experimental protocols and conditions. The memory-related tests were characterized by the correlations of their results with animal age, while the performances in the elevated plus-maze and forced swim tests were affected by the width of the devices used. In conclusion, db/db and ob/ob mice mainly exhibit memory deficits and depression-like behavior, although experimenters should be aware of animal age and device size in conducting experiments.
Collapse
|
17
|
Structural and functional consequences in the amygdala of leptin-deficient mice. Cell Tissue Res 2020; 382:421-426. [PMID: 32789683 PMCID: PMC7584530 DOI: 10.1007/s00441-020-03266-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/22/2020] [Indexed: 11/17/2022]
Abstract
On the one hand, the emotional state can influence food intake and on the other hand, hunger can have an impact on the emotional state. Leptin, which is encoded by the ob gene, is involved in the energy homeostasis and plays a role in development of obesity. Mice deficient for leptin (ob/ob) are obese and display several behavioral alterations. It has been shown that ob/ob mice display striking changes in neuronal plasticity within the limbic system, e.g., hippocampal formation. We focus on alterations in ob/ob mice that can be related to alter processing in another part of the limbic system, the amygdala. ob/ob mice have a higher food consumption than age-matched controls, which might have an impact on the emotional state of these mice. Since the amygdala is involved in emotional processing, we analyze whether ob/ob mice display alterations in plasticity at the electrophysiological and structural level. No changes were seen in dendritic spine densities in the basolateral and lateral (LA) nucleus of the amygdala. Interestingly and in contrast to the hippocampus (Porter et al. 2013), long-term potentiation in the LA was increased in ob/ob mice. Our results indicate that amygdalar and hippocampal synaptic plasticity are regulated in different ways by leptin deficiency in accordance with the different functions of these limbic structures in stress and anxiety.
Collapse
|
18
|
Gauda EB, Conde S, Bassi M, Zoccal DB, Almeida Colombari DS, Colombari E, Despotovic N. Leptin: Master Regulator of Biological Functions that Affects Breathing. Compr Physiol 2020; 10:1047-1083. [PMID: 32941688 DOI: 10.1002/cphy.c190031] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity is a global epidemic in developed countries accounting for many of the metabolic and cardiorespiratory morbidities that occur in adults. These morbidities include type 2 diabetes, sleep-disordered breathing (SDB), obstructive sleep apnea, chronic intermittent hypoxia, and hypertension. Leptin, produced by adipocytes, is a master regulator of metabolism and of many other biological functions including central and peripheral circuits that control breathing. By binding to receptors on cells and neurons in the brainstem, hypothalamus, and carotid body, leptin links energy and metabolism to breathing. In this comprehensive article, we review the central and peripheral locations of leptin's actions that affect cardiorespiratory responses during health and disease, with a particular focus on obesity, SDB, and its effects during early development. Obesity-induced hyperleptinemia is associated with centrally mediated hypoventilation with decrease CO2 sensitivity. On the other hand, hyperleptinemia augments peripheral chemoreflexes to hypoxia and induces sympathoexcitation. Thus, "leptin resistance" in obesity is relative. We delineate the circuits responsible for these divergent effects, including signaling pathways. We review the unique effects of leptin during development on organogenesis, feeding behavior, and cardiorespiratory responses, and how undernutrition and overnutrition during critical periods of development can lead to cardiorespiratory comorbidities in adulthood. We conclude with suggestions for future directions to improve our understanding of leptin dysregulation and associated clinical diseases and possible therapeutic targets. Lastly, we briefly discuss the yin and the yang, specifically the contribution of relative adiponectin deficiency in adults with hyperleptinemia to the development of metabolic and cardiovascular disease. © 2020 American Physiological Society. Compr Physiol 10:1047-1083, 2020.
Collapse
Affiliation(s)
- Estelle B Gauda
- Division of Neonatology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Silvia Conde
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Lisboa, Portugal
| | - Mirian Bassi
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Debora Simoes Almeida Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Nikola Despotovic
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Systemic TNF-α blockade attenuates anxiety and depressive-like behaviors in db/db mice through downregulation of inflammatory signaling in peripheral immune cells. Saudi Pharm J 2020; 28:621-629. [PMID: 32435144 PMCID: PMC7229333 DOI: 10.1016/j.jsps.2020.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
Research studies have indicated that the comorbidity burden of mood disorders and obesity is reasonably high. Insulin signaling has been shown to modulate multiple physiological functions in the brain, indicating its association with neuropsychiatric diseases, including mood disorders. Leptin is a hormone responsible for regulating body weight and insulin homeostasis. Previous studies on db/db mice (a mouse model that carries a spontaneous genetic mutation in leptin receptor Leprdb) have shown that they exhibit inflammation as well as neurobehavioral traits associated with mood. Therefore, targeting inflammatory pathways such as TNF-α may be an effective strategy in the treatment of obesity-linked mood disorders. The objective of this study was to investigate the effect of long-term administration of etanercept (a TNF-α blocker) on anxiety and depressive-like behaviors in db/db mice. This was performed using light/dark box, forced swim, and open field tests with lean littermate wild type (WT) mice serving as a control group. Using flow cytometry in peripheral blood, we further examined the molecular effects of etanercept on NF-κB p65, TNF-α, IL-17A, and TLR-4 expressing CD4+, CD8+, and CD14+ cells in the peripheral blood. Our data show that peripheral administration of etanercept decreased these cells in db/db mice. Furthermore, our results indicated that peripheral administration of etanercept reduced anxiety and depressive-like behaviors. Therefore, targeting TNF-α signaling might be an effective strategy for modulating obesity-associated depression and anxiety.
Collapse
|
20
|
Ambrus L, Westling S. Leptin, Anxiety Symptoms, and Hypothalamic-Pituitary-Adrenal Axis Activity among Drug-Free, Female Suicide Attempters. Neuropsychobiology 2020; 78:145-152. [PMID: 31189176 DOI: 10.1159/000500737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 04/29/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Dysregulation of leptin secretion and functioning of the hypothalamic-pituitary-adrenal (HPA) axis may be involved in the pathophysiology of suicide. Preclinical and clinical studies have shown interactions between the HPA axis and leptin. There is also evidence for a negative relationship between leptin and anxiety in humans. However, these possible associations have not been studied in individuals with attempted suicide. OBJECTIVES To examine the relationship between leptin, HPA axis activity, and anxiety in individuals with a recent suicide attempt. METHOD Sixty-nine individuals with a recent suicide attempt (n = 37 females; n = 32 males) were recruited and subjected to the Dexamethasone Suppression Test (DST), lumbar puncture, and evaluation with the Comprehensive Psychopathological Rating Scale from which the Brief Scale for Anxiety (BSA) was derived. Leptin was analyzed in cerebrospinal fluid (CSF) and cortisol in serum. Leptin was corrected for body mass index (BMI) by dividing CSF-leptin by BMI (CSF-leptin/BMI). Due to gender-related differences in leptin secretion and HPA axis activity, calculations were made for males and females separately. RESULTS Significant differences were only found among females; CSF-leptin/BMI levels correlated significantly and negatively with BSA (p < 0.05), pre-DST cortisol, and post-DST serum cortisol at 8 a.m. and 3 p.m. (all p < 0.05). Furthermore, CSF-leptin/BMI was significantly lower in nonsuppressors of dexamethasone as compared to suppressors (p < 0.05). CONCLUSIONS These findings suggest that in females with a recent suicide attempt, low CSF leptin may be related to symptoms of anxiety and a hyperactive HPA axis.
Collapse
Affiliation(s)
- Livia Ambrus
- Section of Psychiatry, Department of Clinical Sciences, Clinical Psychiatric Research Center, Lund University, Lund, Sweden,
| | - Sofie Westling
- Section of Psychiatry, Department of Clinical Sciences, Clinical Psychiatric Research Center, Lund University, Lund, Sweden
| |
Collapse
|
21
|
Bland T, Zhu M, Dillon C, Sahin GS, Rodriguez-Llamas JL, Appleyard SM, Wayman GA. Leptin Controls Glutamatergic Synaptogenesis and NMDA-Receptor Trafficking via Fyn Kinase Regulation of NR2B. Endocrinology 2020; 161:5678106. [PMID: 31840160 PMCID: PMC7015580 DOI: 10.1210/endocr/bqz030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/10/2019] [Indexed: 01/13/2023]
Abstract
Activation of the leptin receptor, LepRb, by the adipocytokine/neurotrophic factor leptin in the central nervous system has procognitive and antidepressive effects. Leptin has been shown to increase glutamatergic synaptogenesis in multiple brain regions. In contrast, mice that have a mutation in the LepRb gene show abnormal synapse development in the hippocampus as well as deficits in cognition and increased depressive-like symptoms. Leptin increases glutamatergic synaptogenesis, in part, through enhancement of N-methyl-D-aspartic acid (NMDA) receptor function; yet the underlying signaling pathway is not known. In this study, we examine how leptin regulates surface expression of NR2B-containing NMDA receptors in hippocampal neurons. Leptin stimulation increases NR2BY1472 phosphorylation, which is inhibited by the Src family kinase inhibitor, PP1. Moreover, we show that Fyn, a member of the Src family kinases, is required for leptin-stimulated NR2BY1472 phosphorylation. Furthermore, inhibiting Y1472 phosphorylation with either a dominant negative Fyn mutant or an NR2B mutant that lacks the phosphorylation site (NR2BY1472F) blocks leptin-stimulated synaptogenesis. Additionally, we show that LepRb forms a complex with NR2B and Fyn. Taken together, these findings expand our knowledge of the LepRb interactome and the mechanisms by which leptin stimulates glutamatergic synaptogenesis in the developing hippocampus. Comprehending these mechanisms is key for understanding dendritic spine development and synaptogenesis, alterations of which are associated with many neurological disorders.
Collapse
Affiliation(s)
- Tyler Bland
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Mingyan Zhu
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Crystal Dillon
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Gulcan Semra Sahin
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Jose Luis Rodriguez-Llamas
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Suzanne M Appleyard
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Gary A Wayman
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
- Correspondence: Gary A. Wayman, Department of Integrative Physiology and Neuroscience, Program in Neuroscience, Washington State University, Pullman Washington 99164. E-mail:
| |
Collapse
|
22
|
Bland T, Sahin GS, Zhu M, Dillon C, Impey S, Appleyard SM, Wayman GA. USP8 Deubiquitinates the Leptin Receptor and Is Necessary for Leptin-Mediated Synapse Formation. Endocrinology 2019; 160:1982-1998. [PMID: 31199479 PMCID: PMC6660906 DOI: 10.1210/en.2019-00107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/08/2019] [Indexed: 11/19/2022]
Abstract
Leptin has neurotrophic actions in the hippocampus to increase synapse formation and stimulate neuronal plasticity. Leptin also enhances cognition and has antidepressive and anxiolytic-like effects, two hippocampal-dependent behaviors. In contrast, mice lacking leptin or the long form of the leptin receptor (LepRb) have lower cortical volume and decreased memory and exhibit depressive-like behaviors. A number of the signaling pathways regulated by LepRb are known, but how membrane LepRb levels are regulated in the central nervous system is not well understood. Here, we show that the lysosomal inhibitor chloroquine increases LepRb expression in hippocampal cultures, suggesting that LepRb is degraded in the lysosome. Furthermore, we show that leptin increases surface expression of its own receptor by decreasing the level of ubiquitinated LepRbs. This decrease is mediated by the deubiquitinase ubiquitin-specific protease 8 (USP8), which we show is in complex with LepRb. Acute leptin stimulation increases USP8 activity. Moreover, leptin stimulates USP8 gene expression through cAMP response element-binding protein (CREB)-dependent transcription, an effect blocked by expression of a dominant-negative CREB or with short hairpin RNA knockdown of CREB. Increased expression of USP8 causes increased surface localization of LepRb, which in turn enhances leptin-mediated activation of the MAPK kinase/extracellular signal-regulated kinase pathway and CREB activation. Lastly, increased USP8 expression increases glutamatergic synapse formation in hippocampal cultures, an effect dependent on expression of LepRbs. Leptin-stimulated synapse formation also requires USP8. In conclusion, we show that USP8 deubiquitinates LepRb, thus inhibiting lysosomal degradation and enhancing surface localization of LepRb, which are essential for leptin-stimulated synaptogenesis in the hippocampus.
Collapse
Affiliation(s)
- Tyler Bland
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Gulcan Semra Sahin
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Mingyan Zhu
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Crystal Dillon
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Soren Impey
- Oregon Stem Cell Center, Oregon Health and Sciences University, Portland, Oregon
| | - Suzanne M Appleyard
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Gary A Wayman
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington
- Correspondence: Gary A. Wayman, PhD, Department of Integrative Physiology and Neuroscience, Program in Neuroscience, Washington State University, Pullman, Washington 99164. E-mail:
| |
Collapse
|
23
|
Zou X, Zhong L, Zhu C, Zhao H, Zhao F, Cui R, Gao S, Li B. Role of Leptin in Mood Disorder and Neurodegenerative Disease. Front Neurosci 2019; 13:378. [PMID: 31130833 PMCID: PMC6510114 DOI: 10.3389/fnins.2019.00378] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 04/02/2019] [Indexed: 12/21/2022] Open
Abstract
The critical regulatory role of leptin in the neuroendocrine system has been widely reported. Significantly, leptin can improve learning and memory, affect hippocampal synaptic plasticity, exert neuroprotective efficacy and reduce the risk of several neuropsychiatric diseases. In terms of depression, leptin could modulate the levels of neurotransmitters, neurotrophic factors and reverse the dysfunction in the hypothalamic-pituitary-adrenal axis (HPA). At the same time, leptin affects neurological diseases during the regulation of metabolic homeostasis. With regards to neurodegenerative diseases, leptin can affect them via neuroprotection, mainly including Alzheimer's disease and Parkinson's disease. This review will summarize the mechanisms of leptin signaling within the neuroendocrine system with respect to these diseases and discuss the therapeutic potential of leptin.
Collapse
Affiliation(s)
- Xiaohan Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Lili Zhong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Cuilin Zhu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Haisheng Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Shuohui Gao
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
24
|
Grillo CA, Woodruff JL, Macht VA, Reagan LP. Insulin resistance and hippocampal dysfunction: Disentangling peripheral and brain causes from consequences. Exp Neurol 2019; 318:71-77. [PMID: 31028829 DOI: 10.1016/j.expneurol.2019.04.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
In the periphery insulin plays a critical role in the regulation of metabolic homeostasis by stimulating glucose uptake into peripheral organs. In the central nervous system (CNS), insulin plays a critical role in the formation of neural circuits and synaptic connections from the earliest stages of development and facilitates and promotes neuroplasticity in the adult brain. Beyond these physiological roles of insulin, a shared feature between the periphery and CNS is that decreases in insulin receptor activity and signaling (i.e. insulin resistance) contributes to the pathological consequences of type 2 diabetes (T2DM) and obesity. Indeed, clinical and preclinical studies illustrate that CNS insulin resistance elicits neuroplasticity deficits that lead to decreases in cognitive function and increased risk of neuropsychiatric disorders. The goals of this review are to provide an overview of the literature that have identified the neuroplasticity deficits observed in T2DM and obesity, as well as to discuss the potential causes and consequences of insulin resistance in the CNS, with a particular focus on how insulin resistance impacts hippocampal neuroplasticity. Interestingly, studies that have examined the effects of hippocampal-specific insulin resistance illustrate that brain insulin resistance may impair neuroplasticity independent of peripheral insulin resistance, thereby supporting the concept that restoration of brain insulin activity is an attractive therapeutic strategy to ameliorate or reverse cognitive decline observed in patients with CNS insulin resistance such as T2DM and Alzheimer's Disease.
Collapse
Affiliation(s)
- Claudia A Grillo
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, USA; WJB Dorn VA Medical Center, Columbia, SC 29209, USA
| | - Jennifer L Woodruff
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, USA; WJB Dorn VA Medical Center, Columbia, SC 29209, USA
| | - Victoria A Macht
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, USA; WJB Dorn VA Medical Center, Columbia, SC 29209, USA
| | - Lawrence P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, USA; WJB Dorn VA Medical Center, Columbia, SC 29209, USA.
| |
Collapse
|
25
|
Van Doorn C, Macht VA, Grillo CA, Reagan LP. Leptin resistance and hippocampal behavioral deficits. Physiol Behav 2017; 176:207-213. [PMID: 28267584 PMCID: PMC10538552 DOI: 10.1016/j.physbeh.2017.03.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 01/05/2023]
Abstract
The adipocyte-derived hormone leptin is an important regulator of body weight and metabolism through activation of brain leptin receptors expressed in regions such as the hypothalamus. Beyond these well described and characterized activities of leptin in the hypothalamus, it is becoming increasingly clear that the central activities of leptin extend to the hippocampus. Indeed, leptin receptors are expressed in the hippocampus where these receptors are proposed to mediate various aspects of hippocampal synaptic plasticity that ultimately impact cognitive function. This concept is supported by studies demonstrating that leptin promotes hippocampal-dependent learning and memory, as well as studies indicating that leptin resistance is associated with deficits in hippocampal-dependent behaviors and in the induction of depressive-like behaviors. The effects of leptin on cognitive/behavioral plasticity in the hippocampus may be regulated by direct activation of leptin receptors expressed in the hippocampus; additionally, leptin-mediated activation of synaptic networks that project to the hippocampus may also impact hippocampal-mediated behaviors. In view of these previous observations, the goal of this review will be to discuss the mechanisms through which leptin facilitates cognition and behavior, as well as to dissect the loci at which leptin resistance leads to impairments in hippocampal synaptic plasticity, including the development of cognitive deficits and increased risk of depressive illness in metabolic disorders such as obesity and type 2 diabetes mellitus (T2DM).
Collapse
Affiliation(s)
- Catherine Van Doorn
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, United States
| | - Victoria A Macht
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, United States
| | - Claudia A Grillo
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, United States
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, United States; W.J.B. Dorn VA Medical Center, Columbia, SC 29208, United States.
| |
Collapse
|
26
|
Physical exercise ameliorates mood disorder-like behavior on high fat diet-induced obesity in mice. Psychiatry Res 2017; 250:71-77. [PMID: 28142069 DOI: 10.1016/j.psychres.2017.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/05/2016] [Accepted: 01/03/2017] [Indexed: 01/17/2023]
Abstract
Obesity is associated with mood disorders such as depression and anxiety. The aim of this study was to investigate whether treadmill exercise had any benefits on mood disorder by high fat diet (HFD) induced obesity. Mice were randomly divided into four groups: control, control and exercise, high fat diet (HFD), and HFD and exercise. Obesity was induced by a 20-week HFD (60%). In the exercise groups, exercise was performed 6 times a week for 12 weeks, with the exercise duration and intensity gradually increasing at 4-week intervals. Mice were tested in tail suspension and elevated plus maze tasks in order to verify the mood disorder like behavior such as depression and anxiety on obesity. In the present study, the number of 5-HT- and TPH-positive cells, and expression of 5-HT1A and 5-HTT protein decreased in dorsal raphe, and depression and anxiety like behavior increased in HFD group compared with the CON group. In contrast, treadmill exercise ameliorated mood disorder like behavior by HFD induced obesity and enhanced expression of the serotonergic system in the dorsal raphe. We concluded that exercise increases the capacity of the serotonergic system in the dorsal raphe, which improves the mood disorders associated with HFD-induced obesity.
Collapse
|
27
|
Macht VA, Vazquez M, Petyak CE, Grillo CA, Kaigler K, Enos RT, McClellan JL, Cranford TL, Murphy EA, Nyland JF, Solomon G, Gertler A, Wilson MA, Reagan LP. Leptin resistance elicits depressive-like behaviors in rats. Brain Behav Immun 2017; 60:151-160. [PMID: 27743935 DOI: 10.1016/j.bbi.2016.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/22/2016] [Accepted: 10/10/2016] [Indexed: 12/13/2022] Open
Abstract
There is a growing appreciation that the complications of obesity extend to the central nervous system (CNS) and include increased risk for development of neuropsychiatric co-morbidities such as depressive illness. The neurological consequences of obesity may develop as a continuum and involve a progression of pathological features which is initiated by leptin resistance. Leptin resistance is a hallmark feature of obesity, but it is unknown whether leptin resistance or blockage of leptin action is casually linked to the neurological changes which underlie depressive-like phenotypes. Accordingly, the aim of the current study was to examine whether chronic administration of a pegylated leptin receptor antagonist (Peg-LRA) elicits depressive-like behaviors in adult male rats. Peg-LRA administration resulted in endocrine and metabolic features that are characteristic of an obesity phenotype. Peg-LRA rats also exhibited increased immobility in the forced swim test, depressive-like behaviors that were accompanied by indices of peripheral inflammation. These results demonstrate that leptin resistance elicits an obesity phenotype that is characterized by peripheral immune changes and depressive-like behaviors in rats, supporting the concept that co-morbid obesity and depressive illness develop as a continuum resulting from changes in the peripheral endocrine and metabolic milieu.
Collapse
Affiliation(s)
- V A Macht
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA; Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | - M Vazquez
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - C E Petyak
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - C A Grillo
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - K Kaigler
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - R T Enos
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - J L McClellan
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - T L Cranford
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - E A Murphy
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - J F Nyland
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - G Solomon
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - A Gertler
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - M A Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA; W.J.B. Dorn VA Medical Center, Columbia, SC 29208, USA
| | - L P Reagan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA; W.J.B. Dorn VA Medical Center, Columbia, SC 29208, USA.
| |
Collapse
|
28
|
Lee EY, Hwang YG, Lee HS. Hypothalamic neuronal origin of neuropeptide Y (NPY) or cocaine- and amphetamine-regulated transcript (CART) fibers projecting to the tuberomammillary nucleus of the rat. Brain Res 2017; 1657:16-28. [DOI: 10.1016/j.brainres.2016.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 12/25/2022]
|
29
|
Wang L, Zhou C, Zhu D, Wang X, Fang L, Zhong J, Mao Q, Sun L, Gong X, Xia J, Lian B, Xie P. Serotonin-1A receptor alterations in depression: a meta-analysis of molecular imaging studies. BMC Psychiatry 2016; 16:319. [PMID: 27623971 PMCID: PMC5022168 DOI: 10.1186/s12888-016-1025-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/30/2016] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Postmortem studies of people who have successfully committed suicide and people with depression have implicated the serotonin-1A (5-HT1A) receptor system in the pathophysiology of depression. Several molecular imaging studies have investigated alterations in 5-HT1A receptors in patients with depression using positron emission tomography and have reported conflicting results. METHODS We performed a meta-analysis of studies investigating the relationship between depression and 5-HT1A binding. We conducted a comprehensive search of Medline, Embase, ScienceDirect, Scopus and Springer databases for relevant studies published between January 1999 and October 2015. The meta-analysis was conducted in accordance with the Meta-analysis of Observational Studies in Epidemiology guidelines. RESULTS Ten studies were included, comprising 218 patients with depression and 261 healthy controls. The results of these studies indicated a reduction in 5-HT1A receptors in mesiotemporal cortex, yielding a summary effect estimate of -0.8 (95 % CI -1.36, -0.24). Smaller reductions were reported in 5-HT1A receptor binding in the hippocampus, raphe nuclei, insular, anterior cingulate cortex and occipital cortex of people with depression. No clear effect of depression on 5-HT1A receptors was detected in the amygdala. CONCLUSIONS Reduced 5-HT1A receptor binding was associated with the pathology of depression and predicted altered serotonergic neurotransmission in various brain regions. These findings increase our understanding of the neurophysiological processes underlying depression.
Collapse
Affiliation(s)
- Ling Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Yixueyuan Road, Yuzhong District Chongqing, China ,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Yixueyuan Road, Yuzhong District Chongqing, China
| | - Chanjuan Zhou
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Yixueyuan Road, Yuzhong District Chongqing, China ,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Yixueyuan Road, Yuzhong District Chongqing, China ,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Youyi Road, Yuzhong District Chongqing, China ,Institute of Neuroscience, Chongqing Medical University, Yixueyuan Road, Yuzhong District Chongqing, China
| | - Dan Zhu
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Yixueyuan Road, Yuzhong District Chongqing, China ,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Yixueyuan Road, Yuzhong District Chongqing, China ,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Youyi Road, Yuzhong District Chongqing, China ,Institute of Neuroscience, Chongqing Medical University, Yixueyuan Road, Yuzhong District Chongqing, China
| | - Xinfa Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Yixueyuan Road, Yuzhong District Chongqing, China ,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Yixueyuan Road, Yuzhong District Chongqing, China ,Institute of Neuroscience, Chongqing Medical University, Yixueyuan Road, Yuzhong District Chongqing, China ,Department of Neurology, The Yongchuan Hospital of Chongqing Medical University, Xuanhua Road, Yongchuan District Chongqing, China
| | - Liang Fang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Yixueyuan Road, Yuzhong District Chongqing, China ,Institute of Neuroscience, Chongqing Medical University, Yixueyuan Road, Yuzhong District Chongqing, China ,Department of Neurology, The Yongchuan Hospital of Chongqing Medical University, Xuanhua Road, Yongchuan District Chongqing, China
| | - Jiaju Zhong
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Yixueyuan Road, Yuzhong District Chongqing, China ,Institute of Neuroscience, Chongqing Medical University, Yixueyuan Road, Yuzhong District Chongqing, China ,Department of Neurology, The Yongchuan Hospital of Chongqing Medical University, Xuanhua Road, Yongchuan District Chongqing, China
| | - Qiang Mao
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Yixueyuan Road, Yuzhong District Chongqing, China ,Institute of Neuroscience, Chongqing Medical University, Yixueyuan Road, Yuzhong District Chongqing, China
| | - Lu Sun
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Yixueyuan Road, Yuzhong District Chongqing, China ,Institute of Neuroscience, Chongqing Medical University, Yixueyuan Road, Yuzhong District Chongqing, China
| | - Xue Gong
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Yixueyuan Road, Yuzhong District Chongqing, China ,Institute of Neuroscience, Chongqing Medical University, Yixueyuan Road, Yuzhong District Chongqing, China
| | - Jinjun Xia
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Yixueyuan Road, Yuzhong District Chongqing, China ,Institute of Neuroscience, Chongqing Medical University, Yixueyuan Road, Yuzhong District Chongqing, China
| | - Bing Lian
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Yixueyuan Road, Yuzhong District Chongqing, China ,Institute of Neuroscience, Chongqing Medical University, Yixueyuan Road, Yuzhong District Chongqing, China
| | - Peng Xie
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Yixueyuan Road, Yuzhong District, Chongqing, China. .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Yixueyuan Road, Yuzhong District, Chongqing, China. .,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Youyi Road, Yuzhong District, Chongqing, China. .,Institute of Neuroscience, Chongqing Medical University, Yixueyuan Road, Yuzhong District, Chongqing, China. .,Department of Neurology, The Yongchuan Hospital of Chongqing Medical University, Xuanhua Road, Yongchuan District, Chongqing, China.
| |
Collapse
|
30
|
Liu L, Byrd A, Plummer J, Erikson KM, Harrison SH, Han J. The Effects of Dietary Fat and Iron Interaction on Brain Regional Iron Contents and Stereotypical Behaviors in Male C57BL/6J Mice. Front Nutr 2016; 3:20. [PMID: 27493939 PMCID: PMC4954826 DOI: 10.3389/fnut.2016.00020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/27/2016] [Indexed: 12/18/2022] Open
Abstract
Adequate brain iron levels are essential for enzyme activities, myelination, and neurotransmitter synthesis in the brain. Although systemic iron deficiency has been found in genetically or dietary-induced obese subjects, the effects of obesity-associated iron dysregulation in brain regions have not been examined. The objective of this study was to examine the effect of dietary fat and iron interaction on brain regional iron contents and regional-associated behavior patterns in a mouse model. Thirty C57BL/6J male weanling mice were randomly assigned to six dietary treatment groups (n = 5) with varying fat (control/high) and iron (control/high/low) contents. The stereotypical behaviors were measured during the 24th week. Blood, liver, and brain tissues were collected at the end of the 24th week. Brains were dissected into the hippocampus, midbrain, striatum, and thalamus regions. Iron contents and ferritin heavy chain (FtH) protein and mRNA expressions in these regions were measured. Correlations between stereotypical behaviors and brain regional iron contents were analyzed at the 5% significance level. Results showed that high-fat diet altered the stereotypical behaviors such as inactivity and total distance traveled (P < 0.05). The high-fat diet altered brain iron contents and FtH protein and mRNA expressions in a regional-specific manner: (1) high-fat diet significantly decreased the brain iron content in the striatum (P < 0.05), but not other regions, and (2) thalamus has a more distinct change in FtH mRNA expression compared with other regions. Furthermore, high-fat diet resulted in a significant decreased total distance traveled and a significant correlation between iron content and sleeping in midbrain (P < 0.05). Dietary iron also decreased brain iron content and FtH protein expression in a regionally specific manner. The effect of interaction between dietary fat and iron was observed in brain iron content and behaviors. All these findings will lay foundations to further explore the links among obesity, behaviors, and brain iron alteration.
Collapse
Affiliation(s)
- Lumei Liu
- Department of Biology, North Carolina Agricultural and Technical State University , Greensboro, NC , USA
| | - Aria Byrd
- Department of Biology, North Carolina Agricultural and Technical State University , Greensboro, NC , USA
| | - Justin Plummer
- Department of Nutrition, The University of North Carolina at Greensboro , Greensboro, NC , USA
| | - Keith M Erikson
- Department of Nutrition, The University of North Carolina at Greensboro , Greensboro, NC , USA
| | - Scott H Harrison
- Department of Biology, North Carolina Agricultural and Technical State University , Greensboro, NC , USA
| | - Jian Han
- Department of Biology, North Carolina Agricultural and Technical State University , Greensboro, NC , USA
| |
Collapse
|
31
|
Kurosawa N, Shimizu K, Seki K. The development of depression-like behavior is consolidated by IL-6-induced activation of locus coeruleus neurons and IL-1β-induced elevated leptin levels in mice. Psychopharmacology (Berl) 2016; 233:1725-37. [PMID: 26385227 DOI: 10.1007/s00213-015-4084-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 09/10/2015] [Indexed: 12/17/2022]
Abstract
RATIONALE Many studies have supported the cytokine hypothesis as the underlying pathophysiology of depressive disorder. OBJECTIVES We previously reported that lipopolysaccharide (LPS)-induced depression-like behavior is abrogated by the α1-adrenoceptor antagonist prazosin. Since cytokines are involved in LPS effects on the brain, we investigated the effects of cytokines on noradrenergic neurons in the locus coeruleus (LC) and whether central α1-adrenoceptors can cause the development of depression-like behavior. METHODS Adult male CD1 mice were treated with LPS (1 mg/kg, i.p.) or saline and sacrificed 2 h later for immunofluorescence studies of c-fos and tyrosine hydroxylase (TH) expression in LC neurons. Serum cytokines were measured using enzyme-linked immunosorbent assay (ELISA). Another group of mice were implanted with intracerebroventricular (i.c.v.) cannulae and given artificial cerebrospinal fluid (CSF) (control), interleukin (IL)-1β (0.5 μg), IL-6 (1 μg), or tumor necrosis factor (TNF)-α (1 μg), and sacrificed 2 h later for c-fos and TH immunofluorescence analysis. Serum samples were analyzed for leptin levels. In addition, tail suspension test (TST), forced swimming test (FST), and sucrose preference (SP) test were conducted in a separate group of mice treated i.c.v. with cytokines, recombinant mouse leptin (5 μg) or phenylephrine (40 μg). These effects were countered by i.c.v. administration of prazosin and a leptin antagonist. RESULTS LPS increased c-fos expression in TH-positive neurons. Central administration of IL-6 and IL-1β increased c-fos immunoreactivity and serum leptin levels. Phenylephrine, an α1-adrenoceptor agonist, given i.c.v., increased the immobility time during FST and decreased SP, but had no effect on TST. Central leptin administration increased immobility time during FST but did not affect TST or SP. The combination of phenylephrine and leptin increased immobility time during FST and TST, and decreased SP. Induction of depression-like behavior by co-administration of IL-1β and IL-6 was prevented by pretreatment with prazosin alone. CONCLUSION These results suggest that IL-6-dependent LC neuronal activation induced depression-like behavior and IL-1β-induced increase in leptin levels enhanced α1-adrenoceptor-mediated depression-like behavior.
Collapse
Affiliation(s)
- Natsuki Kurosawa
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan
| | - Koh Shimizu
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan
| | - Kenjiro Seki
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan.
| |
Collapse
|
32
|
Lee HJ, Kim SH, Kim EY, Lee NY, Yu HY, Kim YS, Ahn YM. Leptin is associated with mood status and metabolic homeostasis in patients with bipolar disorder. Neuropsychobiology 2016; 70:203-9. [PMID: 25471890 DOI: 10.1159/000366488] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 08/05/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Patients with bipolar disorder are at a high risk for becoming obese. Adipokines are associated with depression and obesity via the inflammatory process. However, few studies have investigated the associations between depression and leptin, adiponectin and resistin levels in patients with bipolar disorder. We explored the associations between serum levels of leptin, adiponectin and resistin and mood and metabolic status in patients with bipolar disorder. METHODS Body mass index (BMI) and serum leptin, adiponectin and resistin levels were assessed in 94 Korean patients with bipolar disorder. The Hamilton Rating Scale for Depression-17 and the Young Mania Rating Scale were used to assess mood state. RESULTS Leptin (17.19 ± 13.08 vs. 10.47 ± 10.05 ng/ml; p = 0.008) and adiponectin (10.51 ± 8.37 vs. 5.91 ± 2.82 μg/ml; p = 0.001) levels were higher in female than in male patients. After adjusting for mood state, age, smoking, alcohol habit, and BMI in a multivariate analysis of covariance (MANCOVA), leptin (17.86 ± 1.22 vs. 10.05 ± 1.48 ng/ml; p < 0.001) and adiponectin (10.18 ± 0.98 vs. 6.40 ± 1.19 μg/ml; p = 0.027) levels were still higher in female than in male patients. Compared to euthymic patients, depressed patients had higher levels of leptin (17.37 ± 14.69 vs. 11.65 ± 9.04 ng/ml; p = 0.024), but there was no significant difference in adiponectin and resistin levels between the two groups. After adjusting for age, gender and BMI in the MANCOVA, leptin levels were also significantly higher in depressed (16.78 ± 1.34 ng/ml) than in euthymic patients (10.73 ± 1.22 ng/ml; p = 0.001). CONCLUSION Leptin is closely associated with the regulation of mood and metabolic homeostasis in patients with bipolar disorder.
Collapse
Affiliation(s)
- Hyun Jeong Lee
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
| | | | | | | | | | | | | |
Collapse
|
33
|
Mapping inflammation onto mood: Inflammatory mediators of anhedonia. Neurosci Biobehav Rev 2016; 64:148-66. [PMID: 26915929 DOI: 10.1016/j.neubiorev.2016.02.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 11/30/2015] [Accepted: 02/18/2016] [Indexed: 12/20/2022]
Abstract
Evidence supports inflammatory involvement in mood and cognitive symptoms across psychiatric, neurological and medical disorders; however, inflammation is not a sensitive or specific characteristic of these diagnoses. The National Institute of Mental Health Research Domain Criteria (RDoC) ask for a shift away from symptom-based diagnoses toward a transdiagnostic neurobiological focus in the study of brain illnesses. The RDoC matrix may provide a useful framework for integrating the effects of inflammation on brain function. Based on preclinical and clinical findings, relevant relationships span negative and positive valence systems, cognitive systems, systems for social processes and arousal/regulatory systems. As an exemplar, we consider the psychopathological domain of anhedonia, conceptualizing the relevance of inflammation (e.g., cellular immunity) and downstream processes (e.g., indoleamine 2,3-dioxygenase activation and oxidative inactivation of tetrahydrobiopterin) across RDoC units of analysis (e.g., catecholamine neurotransmitter molecules, nucleus accumbens medium spiny neuronal cells, dopaminergic mesolimbic and mesocortical reward circuits, animal paradigms, etc.). We discuss implications across illnesses affecting the brain, including infection, major depressive disorder, stroke, Alzheimer's disease and type 2 diabetes.
Collapse
|
34
|
Fadel JR, Reagan LP. Stop signs in hippocampal insulin signaling: the role of insulin resistance in structural, functional and behavioral deficits. Curr Opin Behav Sci 2015; 9:47-54. [PMID: 26955646 DOI: 10.1016/j.cobeha.2015.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In peripheral tissues insulin activates signaling cascades to facilitate glucose uptake from the blood into tissues like liver, muscle and fat. While insulin appears to play a minor role in the regulation of glucose uptake in the central nervous system (CNS), insulin is known to play a major role in regulating synaptic plasticity in brain regions like the hippocampus. The concept that insulin regulates hippocampal neuroplasticity is further supported from animal models of type 2 diabetes (T2DM) and Alzheimer's disease (AD). The goal of this review is to provide an overview of these studies, as well as the studies that have examined whether deficits in hippocampal insulin signaling are amenable to intervention strategies.
Collapse
Affiliation(s)
- Jim R Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA; WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| |
Collapse
|
35
|
Brain signaling systems in the Type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases. Future Sci OA 2015; 1:FSO25. [PMID: 28031898 PMCID: PMC5137856 DOI: 10.4155/fso.15.23] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The changes in the brain signaling systems play an important role in etiology and pathogenesis of Type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS), being a possible cause of these diseases. Therefore, their restoration at the early stages of T2DM and MS can be regarded as a promising way to treat and prevent these diseases and their complications. The data on the functional state of the brain signaling systems regulated by insulin, IGF-1, leptin, dopamine, serotonin, melanocortins and glucagon-like peptide-1, in T2DM and MS, are analyzed. The pharmacological approaches to restoration of these systems and improvement of insulin sensitivity, energy expenditure, lipid metabolism, and to prevent diabetic complications are discussed.
Collapse
|
36
|
Abstract
Clinical studies suggest a link between type 2 diabetes mellitus (T2DM) and insulin resistance (IR) and cognitive dysfunction, but there are significant gaps in our knowledge of the mechanisms underlying this relationship. Animal models of IR help to bridge these gaps and point to hippocampal IR as a potential mediator of cognitive dysfunction in T2DM, as well as in Alzheimer disease (AD). This Review highlights these observations and discusses intervention studies which suggest that the restoration of insulin activity in the hippocampus may be an effective strategy to alleviate the cognitive decline associated with T2DM and AD.
Collapse
|
37
|
Castanon N, Luheshi G, Layé S. Role of neuroinflammation in the emotional and cognitive alterations displayed by animal models of obesity. Front Neurosci 2015; 9:229. [PMID: 26190966 PMCID: PMC4490252 DOI: 10.3389/fnins.2015.00229] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/11/2015] [Indexed: 12/15/2022] Open
Abstract
Obesity is associated with a high prevalence of mood disorders and cognitive dysfunctions in addition to being a significant risk factor for important health complications such as cardiovascular diseases and type 2 diabetes. Identifying the pathophysiological mechanisms underlying these health issues is a major public health challenge. Based on recent findings, from studies conducted on animal models of obesity, it has been proposed that inflammatory processes may participate in both the peripheral and brain disorders associated with the obesity condition including the development of emotional and cognitive alterations. This is supported by the fact that obesity is characterized by peripheral low-grade inflammation, originating from increased adipose tissue mass and/or dysbiosis (changes in gut microbiota environment), both of which contribute to increased susceptibility to immune-mediated diseases. In this review, we provide converging evidence showing that obesity is associated with exacerbated neuroinflammation leading to dysfunction in vulnerable brain regions associated with mood regulation, learning, and memory such as the hippocampus. These findings give new insights to the pathophysiological mechanisms contributing to the development of brain disorders in the context of obesity and provide valuable data for introducing new therapeutic strategies for the treatment of neuropsychiatric complications often reported in obese patients.
Collapse
Affiliation(s)
- Nathalie Castanon
- Nutrition and Integrative Neurobiology, INRA, UMR 1286, Université de Bordeaux Bordeaux, France
| | - Giamal Luheshi
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University Montreal, Canada
| | - Sophie Layé
- Nutrition and Integrative Neurobiology, INRA, UMR 1286, Université de Bordeaux Bordeaux, France
| |
Collapse
|
38
|
Zhang Y, Liu C, Zhao Y, Zhang X, Li B, Cui R. The Effects of Calorie Restriction in Depression and Potential Mechanisms. Curr Neuropharmacol 2015; 13:536-42. [PMID: 26412073 PMCID: PMC4790398 DOI: 10.2174/1570159x13666150326003852] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/13/2015] [Accepted: 01/25/2015] [Indexed: 12/31/2022] Open
Abstract
Depression, also called major depressive disorder, is a neuropsychiatric disorder jeopardizing an increasing number of the population worldwide. To date, a large number of studies have devoted great attention to this problematic condition and raised several hypotheses of depression. Based on these theories, many antidepressant drugs were developed for the treatment of depression. Yet, the depressed patients are often refractory to the antidepressant therapies. Recently, increasing experimental evidences demonstrated the effects of calorie restriction in neuroendocrine system and in depression. Both basic and clinical investigations indicated that short-term calorie restriction might induce an antidepressant efficacy in depression, providing a novel avenue for treatment. Molecular basis underlying the antidepressant actions of calorie restriction might involve multiple physiological processes, primarily including orexin signaling activation, increased CREB phosphorylation and neurotrophic effects, release of endorphin and ketone production. However, the effects of chronic calorie restriction were quite controversial, in the cases that it often resulted in the long-term detrimental effects via inhibiting the function of 5-HT system and decreasing leptin levels. Here we review such dual effects of calorie restriction in depression and potential molecular basis behind these effects, especially focusing on antidepressant effects.
Collapse
Affiliation(s)
| | | | | | | | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, the Second Hospital of Jilin
University, 218 Ziqiang Street, Changchun 130041, PR China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, the Second Hospital of Jilin
University, 218 Ziqiang Street, Changchun 130041, PR China
| |
Collapse
|
39
|
Voigt JP, Fink H. Serotonin controlling feeding and satiety. Behav Brain Res 2015; 277:14-31. [PMID: 25217810 DOI: 10.1016/j.bbr.2014.08.065] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 02/06/2023]
|
40
|
Derkach KV, Bondareva VM, Chistyakova OV, Berstein LM, Shpakov AO. The Effect of Long-Term Intranasal Serotonin Treatment on Metabolic Parameters and Hormonal Signaling in Rats with High-Fat Diet/Low-Dose Streptozotocin-Induced Type 2 Diabetes. Int J Endocrinol 2015; 2015:245459. [PMID: 26124826 PMCID: PMC4466391 DOI: 10.1155/2015/245459] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/27/2015] [Accepted: 04/30/2015] [Indexed: 12/13/2022] Open
Abstract
In the last years the treatment of type 2 diabetes mellitus (DM2) was carried out using regulators of the brain signaling systems. In DM2 the level of the brain serotonin is reduced. So far, the effect of the increase of the brain serotonin level on DM2-induced metabolic and hormonal abnormalities has been studied scarcely. The present work was undertaken with the aim of filling this gap. DM2 was induced in male rats by 150-day high-fat diet and the treatment with low dose of streptozotocin (25 mg/kg) on the 70th day of experiment. From the 90th day, diabetic rats received for two months intranasal serotonin (IS) at a daily dose of 20 μg/rat. The IS treatment of diabetic rats decreased the body weight, and improved glucose tolerance, insulin-induced glucose utilization, and lipid metabolism. Besides, it restored hormonal regulation of adenylyl cyclase (AC) activity in the hypothalamus and normalized AC stimulation by β-adrenergic agonists in the myocardium. In nondiabetic rats the same treatment induced metabolic and hormonal alterations, some of which were similar to those in DM2 but expressed to a lesser extent. In conclusion, the elevation of the brain serotonin level may be regarded as an effective approach to treat DM2 and its complications.
Collapse
Affiliation(s)
- Kira V. Derkach
- Laboratory of Molecular Endocrinology, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez Avenue 44, Saint Petersburg 194223, Russia
| | - Vera M. Bondareva
- Laboratory of Molecular Endocrinology, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez Avenue 44, Saint Petersburg 194223, Russia
| | - Oxana V. Chistyakova
- Laboratory of Molecular Endocrinology, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez Avenue 44, Saint Petersburg 194223, Russia
| | - Lev M. Berstein
- Laboratory of Oncoendocrinology, N.N. Petrov Research Institute of Oncology, Leningradskaya Street 68, Pesochny, Saint Petersburg 197758, Russia
| | - Alexander O. Shpakov
- Laboratory of Molecular Endocrinology, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez Avenue 44, Saint Petersburg 194223, Russia
- *Alexander O. Shpakov:
| |
Collapse
|
41
|
Gehlert DR, Shaw J. 5-Hydroxytryptamine 1A (5HT1A) receptors mediate increases in plasma glucose independent of corticosterone. Eur J Pharmacol 2014; 745:91-7. [DOI: 10.1016/j.ejphar.2014.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 11/29/2022]
|
42
|
Central genes, pathways and modules that regulate bone mass. Arch Biochem Biophys 2014; 561:130-6. [DOI: 10.1016/j.abb.2014.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/02/2014] [Accepted: 06/05/2014] [Indexed: 01/07/2023]
|
43
|
Rossetti C, Halfon O, Boutrel B. Controversies about a common etiology for eating and mood disorders. Front Psychol 2014; 5:1205. [PMID: 25386150 PMCID: PMC4209809 DOI: 10.3389/fpsyg.2014.01205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/06/2014] [Indexed: 12/25/2022] Open
Abstract
Obesity and depression represent a growing health concern worldwide. For many years, basic science and medicine have considered obesity as a metabolic illness, while depression was classified a psychiatric disorder. Despite accumulating evidence suggesting that obesity and depression may share commonalities, the causal link between eating and mood disorders remains to be fully understood. This etiology is highly complex, consisting of multiple environmental and genetic risk factors that interact with each other. In this review, we sought to summarize the preclinical and clinical evidence supporting a common etiology for eating and mood disorders, with a particular emphasis on signaling pathways involved in the maintenance of energy balance and mood stability, among which orexigenic and anorexigenic neuropeptides, metabolic factors, stress responsive hormones, cytokines, and neurotrophic factors.
Collapse
Affiliation(s)
- Clara Rossetti
- Center for Psychiatric Neuroscience, Lausanne University Hospital Lausanne, Switzerland
| | - Olivier Halfon
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital Lausanne, Switzerland
| | - Benjamin Boutrel
- Center for Psychiatric Neuroscience, Lausanne University Hospital Lausanne, Switzerland ; Division of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital Lausanne, Switzerland
| |
Collapse
|
44
|
Abstract
Bones are structures in vertebrates that provide support to organs, protect soft organs, and give them shape and defined features, functions that are essential for their survival. To perform these functions, bones are constantly renewed throughout life. The process through which bones are renewed is known as bone remodeling, an energy demanding process sensitive to changes in energy homeostasis of the organism. A close interplay takes place between the diversity of nutritional cues and metabolic signals with different elements of the hypothalamic circuits to co-ordinate energy metabolism with the regulation of bone mass. In this review, we focus on how mouse and human genetics have elucidated the roles of hormonal signals and neural circuits that originate in, or impinge on, the hypothalamus in the regulation of bone mass. This will help to understand the mechanisms whereby regulation of bone is gated and dynamically regulated by the hypothalamus.
Collapse
Affiliation(s)
- Kunal Sharan
- Systems Biology of Bone Laboratory, Department of Mouse and Zebrafish Genetics, The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Vijay K Yadav
- Systems Biology of Bone Laboratory, Department of Mouse and Zebrafish Genetics, The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; Sanger Mouse Genetics Project, Department of Mouse and Zebrafish Genetics, The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom.
| |
Collapse
|
45
|
Molecular and functional diversity of GABA-A receptors in the enteric nervous system of the mouse colon. J Neurosci 2014; 34:10361-78. [PMID: 25080596 DOI: 10.1523/jneurosci.0441-14.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The enteric nervous system (ENS) provides the intrinsic neural control of the gastrointestinal tract (GIT) and regulates virtually all GI functions. Altered neuronal activity within the ENS underlies various GI disorders with stress being a key contributing factor. Thus, elucidating the expression and function of the neurotransmitter systems, which determine neuronal excitability within the ENS, such as the GABA-GABAA receptor (GABAAR) system, could reveal novel therapeutic targets for such GI disorders. Molecular and functionally diverse GABAARs modulate rapid GABAergic-mediated regulation of neuronal excitability throughout the nervous system. However, the cellular and subcellular GABAAR subunit expression patterns within neurochemically defined cellular circuits of the mouse ENS, together with the functional contribution of GABAAR subtypes to GI contractility remains to be determined. Immunohistochemical analyses revealed that immunoreactivity for the GABAAR gamma (γ) 2 and alphas (α) 1, 2, 3 subunits was located on somatodendritic surfaces of neurochemically distinct myenteric plexus neurons, while being on axonal compartments of submucosal plexus neurons. In contrast, immunoreactivity for the α4-5 subunits was only detected in myenteric plexus neurons. Furthermore, α-γ2 subunit immunoreactivity was located on non-neuronal interstitial cells of Cajal. In organ bath studies, GABAAR subtype-specific ligands had contrasting effects on the force and frequency of spontaneous colonic longitudinal smooth muscle contractions. Finally, enhancement of γ2-GABAAR function with alprazolam reversed the stress-induced increase in the force of spontaneous colonic contractions. The study demonstrates the molecular and functional diversity of the GABAAR system within the mouse colon providing a framework for developing GABAAR-based therapeutics in GI disorders.
Collapse
|
46
|
Abstract
Food is a potent natural reward and food intake is a complex process. Reward and gratification associated with food consumption leads to dopamine (DA) production, which in turn activates reward and pleasure centers in the brain. An individual will repeatedly eat a particular food to experience this positive feeling of gratification. This type of repetitive behavior of food intake leads to the activation of brain reward pathways that eventually overrides other signals of satiety and hunger. Thus, a gratification habit through a favorable food leads to overeating and morbid obesity. Overeating and obesity stems from many biological factors engaging both central and peripheral systems in a bi-directional manner involving mood and emotions. Emotional eating and altered mood can also lead to altered food choice and intake leading to overeating and obesity. Research findings from human and animal studies support a two-way link between three concepts, mood, food, and obesity. The focus of this article is to provide an overview of complex nature of food intake where various biological factors link mood, food intake, and brain signaling that engages both peripheral and central nervous system signaling pathways in a bi-directional manner in obesity.
Collapse
Affiliation(s)
- Minati Singh
- Department of Pediatrics, University of Iowa Iowa City, IA, USA ; Department of Pediatrics, HHMI, University of Iowa Iowa City, IA, USA
| |
Collapse
|
47
|
Dhar M, Zhu M, Impey S, Lambert TJ, Bland T, Karatsoreos IN, Nakazawa T, Appleyard SM, Wayman GA. Leptin induces hippocampal synaptogenesis via CREB-regulated microRNA-132 suppression of p250GAP. Mol Endocrinol 2014; 28:1073-87. [PMID: 24877561 DOI: 10.1210/me.2013-1332] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Leptin acts in the hippocampus to enhance cognition and reduce depression and anxiety. Cognitive and emotional disorders are associated with abnormal hippocampal dendritic spine formation and synaptogenesis. Although leptin has been shown to induce synaptogenesis in the hypothalamus, its effects on hippocampal synaptogenesis and the mechanism(s) involved are not well understood. Here we show that leptin receptors (LepRs) are critical for hippocampal dendritic spine formation in vivo because db/db mice lacking the long form of the leptin receptor (LepRb) have reduced spine density on CA1 and CA3 neurons. Leptin promotes the formation of mature spines and functional glutamate synapses on hippocampal pyramidal neurons in both dissociated and slice cultures. These effects are blocked by short hairpin RNAs specifically targeting the LepRb and are absent in cultures from db/db mice. Activation of the LepR leads to cAMP response element-binding protein (CREB) phosphorylation and initiation of CREB-dependent transcription via the MAPK kinase/Erk pathway. Furthermore, both Mek/Erk and CREB activation are required for leptin-induced synaptogenesis. Leptin also increases expression of microRNA-132 (miR132), a well-known CREB target, which is also required for leptin-induced synaptogenesis. Last, leptin suppresses the expression of p250GAP, a miR132 target, and this suppression is obligatory for leptin's effects as is the downstream target of p250GAP, Rac1. LepRs appear to be critical in vivo as db/db mice have lowered hippocampal miR132 levels and elevated p250GAP expression. In conclusion, we identify a novel signaling pathway by which leptin increases synaptogenesis through inducing CREB transcription and increasing microRNA-mediated suppression of p250GAP activity, thus removing a known inhibitor of Rac1-stimulated synaptogenesis.
Collapse
Affiliation(s)
- Matasha Dhar
- Department of Integrative Physiology and Neuroscience (M.D., M.Z., T.J.L., T.B., I.N.K., S.M.A., G.A.W.), Program in Neuroscience, Washington State University, Pullman, Washington 99164; Oregon Stem Cell Center (S.I.), Oregon Health and Sciences University, Portland, Oregon 97239; and Department of Neurophysiology (T.N.), Graduate School of Medicine, University of Tokyo, Tokyo 113-0033 Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Valleau JC, Sullivan EL. The impact of leptin on perinatal development and psychopathology. J Chem Neuroanat 2014; 61-62:221-32. [PMID: 24862904 DOI: 10.1016/j.jchemneu.2014.05.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 04/18/2014] [Accepted: 05/11/2014] [Indexed: 01/29/2023]
Abstract
Leptin has long been associated with metabolism as it is a critical regulator of both food intake and energy expenditure, but recently, leptin dysregulation has been proposed as a mechanism of psychopathology. This review discusses the evidence supporting a role for leptin in mental health disorders and describes potential mechanisms that may underlie this association. Leptin plays a critical role in pregnancy and in fetal growth and development. Leptin's role and profile during development is examined in available human studies, and the validity of applying studies conducted in animal models to the human population are discussed. Rodents experience a postnatal leptin surge, which does not occur in humans or larger animal models. This suggests that further research using large mammal models, which have a leptin profile across pregnancy and development similar to humans, are of high importance. Maternal obesity and hyperleptinemia correlate with increased leptin levels in the umbilical cord, placenta, and fetus. Leptin levels are thought to impact fetal brain development; likely by activating proinflammatory cytokines that are known to impact many of the neurotransmitter systems that regulate behavior. Leptin is likely involved in behavioral regulation as leptin receptors are widely distributed in the brain, and leptin influences cortisol release, the mesoaccumbens dopamine pathway, serotonin synthesis, and hippocampal synaptic plasticity. In humans, both high and low levels of leptin are reported to be associated with psychopathology. This inconsistency is likely due to differences in the metabolic state of the study populations. Leptin resistance, which occurs in the obese state, may explain how both high and low levels of leptin are associated with psychopathology, as well as the comorbidity of obesity with numerous mental illnesses. Leptin resistance is likely to influence disorders such as depression and anxiety where high leptin levels have been correlated with symptomatology. Schizophrenia is also associated with both low and high leptin levels. However, as anti-psychotics pharmacotherapy induces weight gain, which elevates leptin levels, drug-naïve populations are needed for further studies. Elevated circulating leptin is consistently found in childhood neurodevelopmental disorders including autism spectrum disorders and Rhett disorder. Further, studies on the impact of leptin and leptin resistance on psychopathology and neurodevelopmental disorders are important directions for future research. Studies examining the mechanisms by which exposure to maternal obesity and hyperleptinemia during fetal development impact brain development and behavior are critical for the health of future generations.
Collapse
Affiliation(s)
- Jeanette C Valleau
- Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, 505 NW 185th Ave., Beaverton, OR, USA
| | - Elinor L Sullivan
- Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, 505 NW 185th Ave., Beaverton, OR, USA; Department of Biology, University of Portland, 5000 N Willamette Blvd., Portland, OR, USA.
| |
Collapse
|
49
|
Dietary restriction reverses obesity-induced anhedonia. Physiol Behav 2014; 128:126-32. [PMID: 24518861 DOI: 10.1016/j.physbeh.2014.01.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 01/21/2023]
Abstract
Obesity-induced changes in the metabolic and endocrine milieu elicit deficits in neuroplasticity, including increased risk for development of neuropsychiatric disorders such as depressive illness. We previously demonstrated that downregulation of hypothalamic insulin receptors (hypo-IRAS) elicits a phenotype that is consistent with features of the metabolic syndrome (MetS) and that rats with this phenotype exhibit deficits in neuronal plasticity, including depressive-like behaviors such as anhedonia. Since food restriction paradigms effectively inhibit obesity-induced neuroplasticity deficits, the aim of the current study was to determine whether food restriction could reverse obesity-induced anhedonia in hypo-IRAS rats. Compared to hypo-IRAS rats provided ad lib food access, food restriction paradigms that were initiated either prior to increases in body weight or following development of the MetS/obesity phenotype effectively restored sucrose intake in hypo-IRAS rats. Moreover, food restriction paradigms were able to prevent and reverse the changes in the endocrine/metabolic/inflammatory milieu observed in hypo-IRAS, such as increases in plasma leptin and triglyceride levels and increases in pro-inflammatory cytokines such as IL-1α, IL-6 and C-reactive protein (CRP). Collectively, these results demonstrate that obesity-induced anhedonia is a reversible process and identify some potential mechanistic mediators that may be responsible for co-morbid depression in obesity.
Collapse
|
50
|
Hryhorczuk C, Sharma S, Fulton SE. Metabolic disturbances connecting obesity and depression. Front Neurosci 2013; 7:177. [PMID: 24109426 PMCID: PMC3791387 DOI: 10.3389/fnins.2013.00177] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/16/2013] [Indexed: 12/14/2022] Open
Abstract
Obesity markedly increases the odds of developing depression. Depressed mood not only impairs motivation, quality of life and overall functioning but also increases the risks of obesity complications. Abdominal obesity is a better predictor of depression and anxiety risk than overall adipose mass. A growing amount of research suggests that metabolic abnormalities stemming from central obesity that lead to metabolic disease may also be responsible for the increased incidence of depression in obesity. As reviewed here, a higher mass of dysfunctional adipose tissue is associated with several metabolic disturbances that are either directly or indirectly implicated in the control of emotions and mood. To better comprehend the development of depression in obesity, this review pulls together select findings addressing the link between adiposity, diet and negative emotional states and discusses the evidence that alterations in glucocorticoids, adipose-derived hormones, insulin and inflammatory signaling that are characteristic of central obesity may be involved.
Collapse
Affiliation(s)
- Cecile Hryhorczuk
- Department of Nutrition, Faculty of Medicine, CRCHUM and Montreal Diabetes Research Center, Université de Montréal Montreal, QC, Canada
| | | | | |
Collapse
|