1
|
He Q, Xu HP, Wang P, Tian N. Dopamine D1 receptors regulate the light dependent development of retinal synaptic responses. PLoS One 2013; 8:e79625. [PMID: 24260267 PMCID: PMC3834122 DOI: 10.1371/journal.pone.0079625] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/02/2013] [Indexed: 12/30/2022] Open
Abstract
Retinal synaptic connections and function are developmentally regulated. Retinal synaptic activity plays critical roles in the development of retinal synaptic circuitry. Dopamine receptors have been thought to play important roles in the activity-dependent synaptic plasticity in central nervous system. The primary goal of this study is to determine whether dopamine D1 receptor regulates the activity-dependent development of retinal light responsiveness. Accordingly, we recorded electroretinogram from wild type mice and mice with genetic deletion of D1 dopamine receptor (D1-/- mice) raised under cyclic light conditions and constant darkness. Our results demonstrated that D1-/- mice have reduced amplitudes of all three major components of electroretinogram in adulthood. When the relative strength of the responses is considered, the D1-/- mice have selective reduction of the amplitudes of a-wave and oscillatory potentials evoked by low-intermediate intensities of lights. During postnatal development, D1-/- mice have increased amplitude of b-wave at the time of eye-opening but reduced developmental increase of the amplitude of b-wave after eye opening. Light deprivation from birth significantly reduced the amplitudes of b-wave and oscillatory potentials, increased the outer retinal light response gain and altered the light response kinetics of both a- and b-waves of wild type mice. In D1-/- mice, the effect of dark rearing on the amplitude of oscillatory potentials was diminished and dark rearing induced effects on the response gain of outer retina and the kinetics of a-wave were reversed. These results demonstrated roles of dopamine D1 receptor in the activity-dependent functional development of mouse retina.
Collapse
Affiliation(s)
- Quanhua He
- College of Pharmacy, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Hong-ping Xu
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ping Wang
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Ning Tian
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
2
|
Zabouri N, Bouchard JF, Casanova C. Cannabinoid receptor type 1 expression during postnatal development of the rat retina. J Comp Neurol 2011; 519:1258-80. [DOI: 10.1002/cne.22534] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Wang XP, Cooper NGF. Characterization of the transcripts and protein isoforms for cytoplasmic polyadenylation element binding protein-3 (CPEB3) in the mouse retina. BMC Mol Biol 2009; 10:109. [PMID: 20003455 PMCID: PMC2807433 DOI: 10.1186/1471-2199-10-109] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 12/14/2009] [Indexed: 12/23/2022] Open
Abstract
Background Cytoplasmic polyadenylation element binding proteins (CPEBs) regulate translation by binding to regulatory motifs of defined mRNA targets. This translational mechanism has been shown to play a critical role in oocyte maturation, early development, and memory formation in the hippocampus. Little is known about the presence or functions of CPEBs in the retina. The purpose of the current study is to investigate the alternative splicing isoforms of a particular CPEB, CPEB3, based on current databases, and to characterize the expression of CPEB3 in the retina. Results In this study, we have characterized CPEB3, whose putative role is to regulate the translation of GluR2 mRNA. We identify the presence of multiple alternative splicing isoforms of CPEB3 transcripts and proteins in the current databases. We report the presence of eight alternative splicing patterns of CPEB3, including a novel one, in the mouse retina. All but one of the patterns appear to be ubiquitous in 13 types of tissue examined. The relative abundance of the patterns in the retina is demonstrated. Experimentally, we show that CPEB3 expression is increased in a time-dependent manner during the course of postnatal development, and CPEB3 is localized mostly in the inner retina, including retinal ganglion cells. Conclusion The level of CPEB3 was up-regulated in the retina during development. The presence of multiple CPEB3 isoforms indicates remarkable complexity in the regulation and function of CPEB3.
Collapse
Affiliation(s)
- Xiang-Ping Wang
- Department of Anatomical Sciences and Neurobiology, Health Sciences Campus, 500 S, Preston Street, University of Louisville, Louisville, KY, USA.
| | | |
Collapse
|
4
|
Chan YC, Chiao CC. Effect of visual experience on the maturation of ON-OFF direction selective ganglion cells in the rabbit retina. Vision Res 2008; 48:2466-75. [PMID: 18782584 DOI: 10.1016/j.visres.2008.08.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 08/11/2008] [Accepted: 08/12/2008] [Indexed: 11/29/2022]
Abstract
Activity-dependent neural plasticity is well known in the development of the visual cortical circuitry. However, the role of neural plasticity in the developing retina is less well understood. In the light of recent findings that light deprivation alters the development of synaptic pathway in the mouse and turtle retinas, we studied whether visual experience is required for the maturation of the ON-OFF direction selective ganglion cells (DSGCs) in the rabbit retina. The DSGCs of rabbits raised under a normal light-dark cycle and in the constant darkness were recorded extracellularly at various postnatal stages. Receptive field properties, such as direction selectivity, velocity tuning, classical center-surround interaction and motion-induced surround inhibition were examined. Recorded cells were subsequently injected with Neurobiotin in order to characterize their morphological features and tracer coupling patterns. Our results revealed that visual experience is not critical for the maturation of the classical receptive field properties of the DSGCs, such as direction selectivity and velocity tuning. However, the dark-reared rabbits showed altered surround inhibition, which is mediated by the amacrine cells of the inner retina. In addition, the DSGCs of both normal- and dark-reared rabbits showed similar dendritic features and tracer coupling patterns. Taken together, this study indicates that visual experience plays a less significant role on the DS circuitry maturation in the retina than in the cortex.
Collapse
Affiliation(s)
- Ya-Chien Chan
- Institute of Molecular Medicine, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan
| | | |
Collapse
|
5
|
Cooper NGF, Laabich A, Fan W, Wang X. The relationship between neurotrophic factors and CaMKII in the death and survival of retinal ganglion cells. PROGRESS IN BRAIN RESEARCH 2008; 173:521-40. [PMID: 18929132 DOI: 10.1016/s0079-6123(08)01136-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The scientific discourse relating to the causes and treatments for glaucoma are becoming reflective of the need to protect and preserve retinal neurons from degenerative changes, which result from the injurious environment associated with this disease. Knowledge, in particular, of the signal transduction pathways which affect death and survival of the retinal ganglion cells is critical to this discourse and to the development of a suitable neurotherapeutic strategy for this disease. The goal of this chapter is to review what is known of the chief suspects involved in initiating the cell death/survival pathways in these cells, and what still remains to be uncovered. The least controversial aspect of the subject relates to the potential role of neurotrophic factors in the protection of the retinal ganglion cells. On the other hand, the postulated triggers for signaling cell death in glaucoma remain controversial. Certainly, the restricted flow of neurotrophic factors has been cited as one possible trigger. However, the connections between glaucoma and other factors present in the retina, such as glutamate, long held to be a prospective culprit in retinal ganglion cell death are still being questioned. Whatever the outcome of this particular debate, it is clear that the downstream intersections between the cell death and survival pathways should provide important foci for future studies whose goal is to protect retinal neurons, situated as they are, in the stressful environment of a cell destroying disease. The evidence for CaMKII being one of these intersecting points is discussed.
Collapse
Affiliation(s)
- N G F Cooper
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | | | | | |
Collapse
|
6
|
Tropea D, Kreiman G, Lyckman A, Mukherjee S, Yu H, Horng S, Sur M. Gene expression changes and molecular pathways mediating activity-dependent plasticity in visual cortex. Nat Neurosci 2006; 9:660-8. [PMID: 16633343 DOI: 10.1038/nn1689] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 03/28/2006] [Indexed: 12/31/2022]
Abstract
Two key models for examining activity-dependent development of primary visual cortex (V1) involve either reduction of activity in both eyes via dark-rearing (DR) or imbalance of activity between the two eyes via monocular deprivation (MD). Combining DNA microarray analysis with computational approaches, RT-PCR, immunohistochemistry and physiological imaging, we find that DR leads to (i) upregulation of genes subserving synaptic transmission and electrical activity, consistent with a coordinated response of cortical neurons to reduction of visual drive, and (ii) downregulation of parvalbumin expression, implicating parvalbumin-expressing interneurons as underlying the delay in cortical maturation after DR. MD partially activates homeostatic mechanisms but differentially upregulates molecular pathways related to growth factors and neuronal degeneration, consistent with reorganization of connections after MD. Expression of a binding protein of insulin-like growth factor-1 (IGF1) is highly upregulated after MD, and exogenous application of IGF1 prevents the physiological effects of MD on ocular dominance plasticity examined in vivo.
Collapse
Affiliation(s)
- Daniela Tropea
- Department of Brain and Cognitive Sciences and Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Hauck SM, Ekström PAR, Ahuja-Jensen P, Suppmann S, Paquet-Durand F, van Veen T, Ueffing M. Differential modification of phosducin protein in degenerating rd1 retina is associated with constitutively active Ca2+/calmodulin kinase II in rod outer segments. Mol Cell Proteomics 2005; 5:324-36. [PMID: 16253986 DOI: 10.1074/mcp.m500217-mcp200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinitis pigmentosa comprises a heterogeneous group of incurable progressive blinding diseases with unknown pathogenic mechanisms. The retinal degeneration 1 (rd1) mouse is a retinitis pigmentosa model that carries a mutation in a rod photoreceptor-specific phosphodiesterase gene, leading to rapid degeneration of these cells. Elucidation of the molecular differences between rd1 and healthy retinae is crucial for explaining this degeneration and could assist in suggesting novel therapies. Here we used high resolution proteomics to compare the proteomes of the rd1 mouse retina and its congenic, wild-type counterpart at postnatal day 11 when photoreceptor death is profound. Over 3000 protein spots were consistently resolved by two-dimensional gel electrophoresis and subjected to a rigorous filtering procedure involving computer-based spot analyses. Five proteins were accepted as being differentially expressed in the rd1 model and subsequently identified by mass spectrometry. The difference in one such protein, phosducin, related to an altered modification pattern in the rd1 retina rather than to changed expression levels. Additional experiments showed phosducin in healthy retinae to be highly phosphorylated in the dark- but not in the light-adapted phase. In contrast, rd1 phosducin was highly phosphorylated irrespective of light status, indicating a dysfunctional rd1 light/dark response. The increased rd1 phosducin phosphorylation coincided with increased activation of calcium/calmodulin-activated protein kinase II, which is known to utilize phosducin as a substrate. Given the increased rod calcium levels present in the rd1 mutation, calcium-evoked overactivation of this kinase may be an early and long sought for step in events leading to photoreceptor degeneration in the rd1 mouse.
Collapse
Affiliation(s)
- Stefanie M Hauck
- GSF-National Research Centre for Environment and Health, Institute of Human Genetics, Neuherberg 85764, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Armata IA, Giompres P, Smith A, Stasi K, Kouvelas ED, Mitsacos A. Genetically induced retinal degeneration leads to changes in metabotropic glutamate receptor expression. Neurosci Lett 2005; 393:12-7. [PMID: 16213654 DOI: 10.1016/j.neulet.2005.09.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 09/12/2005] [Accepted: 09/13/2005] [Indexed: 11/17/2022]
Abstract
In the retina, neurotransmission from photoreceptors to ON-cone and rod bipolar cells is sign reversing and mediated by the metabotropic glutamate receptor mGluR6, which converts the light-evoked hyperpolarization of the photoreceptors into depolarization of ON bipolar cells. The Royal College of Surgeons (RCS) rat retina undergoes progressive photoreceptor loss due to a genetic defect in the pigment epithelium cells. The consequences of photoreceptor loss and the concomitant loss of glutamatergic input to second-order retinal neurons on the expression of the metabotropic glutamate receptor was investigated in the RCS rat retina from early stages of photoreceptor degeneration (P17) up to several months after complete rod and cone degeneration (P120). The expression of the gene encoding mGluR6 was studied by in situ hybridization in the retina, using an [(35)S]dATP-labeled oligonucleotide probe. In congenic control and RCS retina, we found mRNA expression of mGluR6 receptor only in the outer half of the inner nuclear layer (INL) on emulsion-coated retinal sections. Quantitative analysis of the hybridization signal obtained from the autoradiographic films revealed decreased expression levels of the mGluR6 mRNA at early stages of photoreceptor degeneration (P17). On the contrary, increased expression levels were observed at late stages of degeneration (P60 and P120) in RCS compared to congenic control retina. In conclusion, our data demonstrate that the metabotropic glutamate receptor-6 mRNA levels are altered in the young and adult RCS rat retina and suggest that the genetically induced degeneration of photoreceptors affects the expression of this receptor by the INL retinal neurons.
Collapse
Affiliation(s)
- Ioanna A Armata
- Department of Physiology, Faculty of Medicine, Medical School, University of Patras, Greece
| | | | | | | | | | | |
Collapse
|
9
|
Liang Y, Li C, Guzman VM, Chang WW, Evinger AJ, Pablo JV, Woodward DF. Upregulation of orphan nuclear receptor Nur77 following PGF(2alpha), Bimatoprost, and Butaprost treatments. Essential role of a protein kinase C pathway involved in EP(2) receptor activated Nur77 gene transcription. Br J Pharmacol 2004; 142:737-48. [PMID: 15159280 PMCID: PMC1575044 DOI: 10.1038/sj.bjp.0705829] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 04/01/2004] [Accepted: 04/05/2004] [Indexed: 11/09/2022] Open
Abstract
1. Using gene chip technology, we first identified that PGF(2alpha) (FP agonist) and Butaprost (EP(2) agonist) induced about a five-fold upregulation of Nur77 mRNA expression in hFP-HEK 293/EBNA and hEP(2)-HEK293/EBNA cells. Northern Blot analysis revealed that PGF(2alpha)- and Butaprost-induced upregulation of Nur77 expression are dose- and time-dependent. 2. Both PGF(2alpha) and Butaprost upregulated Nur77 gene expression through the protein kinase C (PKC) pathway. These data are the first showing a link between EP(2) receptor stimulation and protein kinase C activation. Calcineurin was found to be involved downstream of the PKC pathway in PGF(2alpha)-induced Nur77 expression, but not in Butaprost-induced Nur77 expression. 3. We also used Nur77 as a marker gene to compare the effects of PGF(2alpha), Butaprost, and Bimatoprost (a prostamide) on Nur77 expression in human primary trabecular meshwork and ciliary smooth muscle (SM) cells, which are target cells for antiglaucoma drugs. The results showed that PGF(2alpha) and Butaprost, but not Bimatoprost, induced upregulation of Nur77 expression in human TM cells. PGF(2alpha), but not Bimatoprost, dramatically induced upregulation of Nur77 mRNA expression in human ciliary SM cells, whereas Butaprost slightly upregulated Nur77 mRNA expression in SM cells. 4. Nur77 promoter deletion analysis indicated that PGF(2alpha), but not Bimatoprost, activated Nur77 promoter-luciferase reporter in hFP-HEK 293/EBNA cells. Butaprost was less efficacious in inducing Nur77 promoter-luciferase reporter activity in hEP(2)-HEK293/EBNA cells relative to PGF(2alpha) in the comparable assay. The data for Nur77 promoter functional analysis were matched to the Northern blot analysis. 5. It appears that PGF(2alpha) and Butaprost activate Nur77 transcription mechanisms through the activation of FP and EP(2) receptor-coupled signaling pathways, whereas Bimatoprost stimulates neither FP nor EP(2) receptors.
Collapse
MESH Headings
- Alprostadil/analogs & derivatives
- Alprostadil/pharmacology
- Alprostadil/therapeutic use
- Amides
- Bimatoprost
- Cell Line
- Ciliary Body/drug effects
- Ciliary Body/pathology
- Ciliary Body/physiology
- Cloprostenol/analogs & derivatives
- DNA-Binding Proteins/drug effects
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dinoprost/pharmacology
- Dinoprost/therapeutic use
- Epstein-Barr Virus Nuclear Antigens/chemistry
- Humans
- Immunoblotting/methods
- Kinetics
- Lipids/pharmacology
- Lipids/therapeutic use
- Luciferases/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Promoter Regions, Genetic/physiology
- Protein Kinase C/physiology
- RNA/genetics
- RNA/isolation & purification
- Receptors, Cytoplasmic and Nuclear
- Receptors, Prostaglandin E/drug effects
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E, EP2 Subtype
- Receptors, Steroid
- Trabecular Meshwork/drug effects
- Trabecular Meshwork/pathology
- Trabecular Meshwork/physiology
- Transcription Factors/drug effects
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic/physiology
- Transfection/methods
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Yanbin Liang
- Department of Biological Science, Allergan, Inc, Irvine, CA 92612, USA.
| | | | | | | | | | | | | |
Collapse
|