1
|
Zhu C, Xu X, Zhou S, Zhou B, Liu Y, Xu H, Tian Y, Zhu X. WGCNA based identification of hub genes associated with cold response and development in Apis mellifera metamorphic pupae. Front Physiol 2023; 14:1169301. [PMID: 37250124 PMCID: PMC10213956 DOI: 10.3389/fphys.2023.1169301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Honeybee is a crucial pollinator in nature, and plays an indispensable role in both agricultural production and scientific research. In recent decades, honeybee was challenged with health problems by biotic and abiotic stresses. As a key ecological factor, temperature has been proved to have an impact on the survival and production efficiency of honeybees. Previous studies have demonstrated that low temperature stress can affect honeybee pupation and shorten adult longevity. However, the molecular mechanism underlying the effects of low temperatures on honeybee growth and development during their developmental period remain poorly understood. In this paper, the weighted gene co-expression analysis (WGCNA) was employed to explore the molecular mechanisms underpinnings of honeybees' respond to low temperatures (20°C) during four distinct developmental stages: large-larvae, prepupae, early-pupae and mid-pupae. Through an extensive transcriptome analysis, thirteen gene co-expression modules were identified and analyzed in relation to honeybee development and stress responses. The darkorange module was found to be associated with low temperature stress, with its genes primarily involved in autophagy-animal, endocytosis and MAPK signaling pathways. Four hub genes were identified within this module, namely, loc726497, loc409791, loc410923, and loc550857, which may contribute to honeybee resistance to low temperature and provide insight into the underlying mechanism. The gene expression patterns of grey60 and black modules were found to correspond to the developmental stages of prepupae and early-pupae, respectively, with the hub genes loc409494, loc725756, loc552457, loc726158, Ip3k and Lcch3 in grey60 module likely involved in brain development, and the hub genes loc410555 in black module potentially related to exoskeleton development. The brown module genes exhibited a distinct pattern of overexpression in mid-pupae specimens, with genes primarily enriched in oxidative phosphorylation, citrate cycle and other pathways, which may be related to the formation of bee flying muscle. No related gene expression module was found for mature larvae stage. These findings provide valuable insights into the developmental process of honeybees at molecular level during the capped brood stage.
Collapse
Affiliation(s)
- Chenyu Zhu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinjian Xu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- Honeybee Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shujing Zhou
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- Honeybee Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bingfeng Zhou
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- Honeybee Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yiming Liu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongzhi Xu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanmingyue Tian
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiangjie Zhu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- Honeybee Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Kaneko K, Suenami S, Kubo T. Gene expression profiles and neural activities of Kenyon cell subtypes in the honeybee brain: identification of novel 'middle-type' Kenyon cells. ZOOLOGICAL LETTERS 2016; 2:14. [PMID: 27478620 PMCID: PMC4967334 DOI: 10.1186/s40851-016-0051-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/18/2016] [Indexed: 05/23/2023]
Abstract
In the honeybee (Apis mellifera L.), it has long been thought that the mushroom bodies, a higher-order center in the insect brain, comprise three distinct subtypes of intrinsic neurons called Kenyon cells. In class-I large-type Kenyon cells and class-I small-type Kenyon cells, the somata are localized at the edges and in the inner core of the mushroom body calyces, respectively. In class-II Kenyon cells, the somata are localized at the outer surface of the mushroom body calyces. The gene expression profiles of the large- and small-type Kenyon cells are distinct, suggesting that each exhibits distinct cellular characteristics. We recently identified a novel gene, mKast (middle-type Kenyon cell-preferential arrestin-related gene-1), which has a distinctive expression pattern in the Kenyon cells. Detailed expression analyses of mKast led to the discovery of novel 'middle-type' Kenyon cells characterized by their preferential mKast-expression in the mushroom bodies. The somata of the middle-type Kenyon cells are localized between the large- and small-type Kenyon cells, and the size of the middle-type Kenyon cell somata is intermediate between that of large- and small-type Kenyon cells. Middle-type Kenyon cells appear to differentiate from the large- and/or small-type Kenyon cell lineage(s). Neural activity mapping using an immediate early gene, kakusei, suggests that the small-type and some middle-type Kenyon cells are prominently active in the forager brain, suggesting a potential role in processing information during foraging flight. Our findings indicate that honeybee mushroom bodies in fact comprise four types of Kenyon cells with different molecular and cellular characteristics: the previously known class-I large- and small-type Kenyon cells, class-II Kenyon cells, and the newly identified middle-type Kenyon cells described in this review. As the cellular characteristics of the middle-type Kenyon cells are distinct from those of the large- and small-type Kenyon cells, their careful discrimination will be required in future studies of honeybee Kenyon cell subtypes. In this review, we summarize recent progress in analyzing the gene expression profiles and neural activities of the honeybee Kenyon cell subtypes, and discuss possible roles of each Kenyon cell subtype in the honeybee brain.
Collapse
Affiliation(s)
- Kumi Kaneko
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Shota Suenami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
3
|
Becker N, Kucharski R, Rössler W, Maleszka R. Age-dependent transcriptional and epigenomic responses to light exposure in the honey bee brain. FEBS Open Bio 2016; 6:622-39. [PMID: 27398303 PMCID: PMC4932443 DOI: 10.1002/2211-5463.12084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/02/2016] [Accepted: 05/09/2016] [Indexed: 01/21/2023] Open
Abstract
Light is a powerful environmental stimulus of special importance in social honey bees that undergo a behavioral transition from in-hive to outdoor foraging duties. Our previous work has shown that light exposure induces structural neuronal plasticity in the mushroom bodies (MBs), a brain center implicated in processing inputs from sensory modalities. Here, we extended these analyses to the molecular level to unravel light-induced transcriptomic and epigenomic changes in the honey bee brain. We have compared gene expression in brain compartments of 1- and 7-day-old light-exposed honey bees with age-matched dark-kept individuals. We have found a number of differentially expressed genes (DEGs), both novel and conserved, including several genes with reported roles in neuronal plasticity. Most of the DEGs show age-related changes in the amplitude of light-induced expression and are likely to be both developmentally and environmentally regulated. Some of the DEGs are either known to be methylated or are implicated in epigenetic processes suggesting that responses to light exposure are at least partly regulated at the epigenome level. Consistent with this idea light alters the DNA methylation pattern of bgm, one of the DEGs affected by light exposure, and the expression of microRNA miR-932. This confirms the usefulness of our approach to identify candidate genes for neuronal plasticity and provides evidence for the role of epigenetic processes in driving the molecular responses to visual stimulation.
Collapse
Affiliation(s)
- Nils Becker
- Behavioral Physiology and Sociobiology Biozentrum University of Würzburg Germany
| | - Robert Kucharski
- Research School of Biology The Australian National University Acton Australia
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology Biozentrum University of Würzburg Germany
| | - Ryszard Maleszka
- Research School of Biology The Australian National University Acton Australia
| |
Collapse
|
4
|
Ihle KE, Rueppell O, Huang ZY, Wang Y, Fondrk MK, Page RE, Amdam GV. Genetic architecture of a hormonal response to gene knockdown in honey bees. J Hered 2015; 106:155-65. [PMID: 25596612 PMCID: PMC4323067 DOI: 10.1093/jhered/esu086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Variation in endocrine signaling is proposed to underlie the evolution and regulation of social life histories, but the genetic architecture of endocrine signaling is still poorly understood. An excellent example of a hormonally influenced set of social traits is found in the honey bee (Apis mellifera): a dynamic and mutually suppressive relationship between juvenile hormone (JH) and the yolk precursor protein vitellogenin (Vg) regulates behavioral maturation and foraging of workers. Several other traits cosegregate with these behavioral phenotypes, comprising the pollen hoarding syndrome (PHS) one of the best-described animal behavioral syndromes. Genotype differences in responsiveness of JH to Vg are a potential mechanistic basis for the PHS. Here, we reduced Vg expression via RNA interference in progeny from a backcross between 2 selected lines of honey bees that differ in JH responsiveness to Vg reduction and measured JH response and ovary size, which represents another key aspect of the PHS. Genetic mapping based on restriction site-associated DNA tag sequencing identified suggestive quantitative trait loci (QTL) for ovary size and JH responsiveness. We confirmed genetic effects on both traits near many QTL that had been identified previously for their effect on various PHS traits. Thus, our results support a role for endocrine control of complex traits at a genetic level. Furthermore, this first example of a genetic map of a hormonal response to gene knockdown in a social insect helps to refine the genetic understanding of complex behaviors and the physiology that may underlie behavioral control in general.
Collapse
Affiliation(s)
- Kate E Ihle
- From the School of Life Sciences, Arizona State University, Tempe, AZ 85287 (Ihle, Wang, Fondrk, Page, and Amdam); Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Ancon, Panamá (Ihle); the Department of Biology, North Carolina State University at Greensboro, Greensboro, NC 27402 (Rueppell); the Department of Entomology, Michigan State University, East Lansing, MI 48824 (Huang); the Department of Entomology, University of California, Davis, CA 95616 (Fondrk); and the Department of Biochemistry and Food Science, Norwegian University of Life Sciences, NO-1432 Aas, Norway (Amdam).
| | - Olav Rueppell
- From the School of Life Sciences, Arizona State University, Tempe, AZ 85287 (Ihle, Wang, Fondrk, Page, and Amdam); Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Ancon, Panamá (Ihle); the Department of Biology, North Carolina State University at Greensboro, Greensboro, NC 27402 (Rueppell); the Department of Entomology, Michigan State University, East Lansing, MI 48824 (Huang); the Department of Entomology, University of California, Davis, CA 95616 (Fondrk); and the Department of Biochemistry and Food Science, Norwegian University of Life Sciences, NO-1432 Aas, Norway (Amdam)
| | - Zachary Y Huang
- From the School of Life Sciences, Arizona State University, Tempe, AZ 85287 (Ihle, Wang, Fondrk, Page, and Amdam); Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Ancon, Panamá (Ihle); the Department of Biology, North Carolina State University at Greensboro, Greensboro, NC 27402 (Rueppell); the Department of Entomology, Michigan State University, East Lansing, MI 48824 (Huang); the Department of Entomology, University of California, Davis, CA 95616 (Fondrk); and the Department of Biochemistry and Food Science, Norwegian University of Life Sciences, NO-1432 Aas, Norway (Amdam)
| | - Ying Wang
- From the School of Life Sciences, Arizona State University, Tempe, AZ 85287 (Ihle, Wang, Fondrk, Page, and Amdam); Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Ancon, Panamá (Ihle); the Department of Biology, North Carolina State University at Greensboro, Greensboro, NC 27402 (Rueppell); the Department of Entomology, Michigan State University, East Lansing, MI 48824 (Huang); the Department of Entomology, University of California, Davis, CA 95616 (Fondrk); and the Department of Biochemistry and Food Science, Norwegian University of Life Sciences, NO-1432 Aas, Norway (Amdam)
| | - M Kim Fondrk
- From the School of Life Sciences, Arizona State University, Tempe, AZ 85287 (Ihle, Wang, Fondrk, Page, and Amdam); Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Ancon, Panamá (Ihle); the Department of Biology, North Carolina State University at Greensboro, Greensboro, NC 27402 (Rueppell); the Department of Entomology, Michigan State University, East Lansing, MI 48824 (Huang); the Department of Entomology, University of California, Davis, CA 95616 (Fondrk); and the Department of Biochemistry and Food Science, Norwegian University of Life Sciences, NO-1432 Aas, Norway (Amdam)
| | - Robert E Page
- From the School of Life Sciences, Arizona State University, Tempe, AZ 85287 (Ihle, Wang, Fondrk, Page, and Amdam); Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Ancon, Panamá (Ihle); the Department of Biology, North Carolina State University at Greensboro, Greensboro, NC 27402 (Rueppell); the Department of Entomology, Michigan State University, East Lansing, MI 48824 (Huang); the Department of Entomology, University of California, Davis, CA 95616 (Fondrk); and the Department of Biochemistry and Food Science, Norwegian University of Life Sciences, NO-1432 Aas, Norway (Amdam)
| | - Gro V Amdam
- From the School of Life Sciences, Arizona State University, Tempe, AZ 85287 (Ihle, Wang, Fondrk, Page, and Amdam); Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Ancon, Panamá (Ihle); the Department of Biology, North Carolina State University at Greensboro, Greensboro, NC 27402 (Rueppell); the Department of Entomology, Michigan State University, East Lansing, MI 48824 (Huang); the Department of Entomology, University of California, Davis, CA 95616 (Fondrk); and the Department of Biochemistry and Food Science, Norwegian University of Life Sciences, NO-1432 Aas, Norway (Amdam)
| |
Collapse
|
5
|
Woodard SH, Bloch G, Band MR, Robinson GE. Social regulation of maternal traits in nest-founding bumble bee (Bombus terrestris) queens. ACTA ACUST UNITED AC 2014; 216:3474-82. [PMID: 23966589 DOI: 10.1242/jeb.087403] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the nest-founding phase of the bumble bee colony cycle, queens undergo striking changes in maternal care behavior. Early in the founding phase, prior to the emergence of workers in the nest, queens are reproductive and also provision and feed their offspring. However, later in the founding phase, queens reduce their feeding of larvae and become specialized on reproduction. This transition is synchronized with the emergence of workers in the colony, who assume the task of feeding their siblings. Using a social manipulation experiment with the bumble bee Bombus terrestris, we tested the hypothesis that workers regulate the transition from feeding brood to specialization on reproduction in nest-founding bumble bee queens. Consistent with this hypothesis, we found that early-stage nest-founding queens with workers prematurely added to their nests reduce their brood-feeding behavior and increase egg laying, and likewise, late-stage nest-founding queens increase their brood-feeding behavior and decrease egg-laying when workers are removed from their nests. Further, brood-feeding and egg-laying behaviors were negatively correlated. We used Agilent microarrays designed from B. terrestris brain expressed sequenced tags (ESTs) to explore a second hypothesis, that workers alter brain gene expression in nest-founding queens. We found evidence that brain gene expression in nest-founding queens is altered by the presence of workers, with the effect being much stronger in late-stage founding queens. This study provides new insights into how the transition from feeding brood to specialization on reproduction in queen bumble bees is regulated during the nest initiation phase of the colony cycle.
Collapse
Affiliation(s)
- S Hollis Woodard
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, IL 61801, USA.
| | | | | | | |
Collapse
|
6
|
A comparison of digital gene expression profiling and methyl DNA immunoprecipitation as methods for gene discovery in honeybee (Apis mellifera) behavioural genomic analyses. PLoS One 2013; 8:e73628. [PMID: 24040006 PMCID: PMC3767799 DOI: 10.1371/journal.pone.0073628] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/30/2013] [Indexed: 02/07/2023] Open
Abstract
The honey bee has a well-organized system of division of labour among workers. Workers typically progress through a series of discrete behavioural castes as they age, and this has become an important case study for exploring how dynamic changes in gene expression can influence behaviour. Here we applied both digital gene expression analysis and methyl DNA immunoprecipitation analysis to nurse, forager and reverted nurse bees (nurses that have returned to the nursing state after a period spent foraging) from the same colony in order to compare the outcomes of these different forms of genomic analysis. A total of 874 and 710 significantly differentially expressed genes were identified in forager/nurse and reverted nurse/forager comparisons respectively. Of these, 229 genes exhibited reversed directions of gene expression differences between the forager/nurse and reverted nurse/forager comparisons. Using methyl-DNA immunoprecipitation combined with high-throughput sequencing (MeDIP-seq) we identified 366 and 442 significantly differentially methylated genes in forager/nurse and reverted nurse/forager comparisons respectively. Of these, 165 genes were identified as differentially methylated in both comparisons. However, very few genes were identified as both differentially expressed and differentially methylated in our comparisons of nurses and foragers. These findings confirm that changes in both gene expression and DNA methylation are involved in the nurse and forager behavioural castes, but the different analytical methods reveal quite distinct sets of candidate genes.
Collapse
|
7
|
Lutz CC, Rodriguez-Zas SL, Fahrbach S, Robinson GE. Transcriptional response to foraging experience in the honey bee mushroom bodies. Dev Neurobiol 2012; 72:153-66. [PMID: 21634017 PMCID: PMC3256269 DOI: 10.1002/dneu.20929] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Enriched environmental conditions induce neuroanatomical plasticity in a variety of vertebrate and invertebrate species. We explored the molecular processes associated with experience-induced plasticity, using naturally occurring foraging behavior in adult worker honey bees (Apis mellifera). In honey bees, the mushroom bodies exhibit neuroanatomical plasticity that is dependent on accumulated foraging experience. To investigate molecular processes associated with foraging experience, we performed a time-course microarray study to examine gene expression changes in the mushroom bodies as a function of days foraged. We found almost 500 genes that were regulated by duration of foraging experience. Bioinformatic analyses of these genes suggest that foraging experience is associated with multiple molecular processes in the mushroom bodies, including some that may contribute directly to neuropil growth, and others that could potentially protect the brain from the effects of aging and physiological stress.
Collapse
Affiliation(s)
- Claudia C. Lutz
- Neuroscience Program, University of Illinois, Urbana, Illinois 61801
| | | | - S.E. Fahrbach
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109
| | - Gene E. Robinson
- Neuroscience Program, University of Illinois, Urbana, Illinois 61801
- Department of Entomology, University of Illinois, Urbana, Illinois 61801
- Institute of Genomic Biology, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
8
|
Lockett GA, Kucharski R, Maleszka R. DNA methylation changes elicited by social stimuli in the brains of worker honey bees. GENES BRAIN AND BEHAVIOR 2011; 11:235-42. [PMID: 22098706 DOI: 10.1111/j.1601-183x.2011.00751.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Social environments are notoriously multifactorial, yet studies in rodents have suggested that single variables such as maternal care can in fact be disentangled and correlated with specific DNA methylation changes. This study assesses whether non-detrimental social environmental variation in a highly plastic social insect is correlated with epigenomic modifications at the DNA methylation level. Honey bee workers perform tasks such as nursing and foraging in response to the social environment in the hive, in an age-linked but not age-dependent manner. In this study, the methylation levels of 83 cytosine-phosphate-guanosine dinucleotides over eight genomic regions were compared between the brains of age-matched bees performing nursing or foraging tasks. The results reveal more changes correlated with task than with chronological age, and also hive-associated methylation at some sites. One methylation site from a gene encoding Protein Kinase C binding protein 1 was consistently more methylated in foragers than nurses, which is suggested to lead to production of task-specific protein isoforms via alternative splicing. This study illustrates the ability of the neural epigenome to dynamically respond to complex social stimuli.
Collapse
Affiliation(s)
- G A Lockett
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | | | | |
Collapse
|
9
|
Gabor Miklos GL, Maleszka R. Epigenomic communication systems in humans and honey bees: from molecules to behavior. Horm Behav 2011; 59:399-406. [PMID: 20594964 DOI: 10.1016/j.yhbeh.2010.05.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 05/24/2010] [Indexed: 01/05/2023]
Abstract
A 2010 Nature editorial entitled "Time for the Epigenome" trumpets the appearance of the International Human Epigenome Consortium and likens it to Biology's equivalent of the Large Hadron Collider. It strongly endorses the viewpoint that selective modifications of "marks" on DNA and histones constitute the crucial codes of life, a proposition which is hotly contested (Ptashne et al., in 2010). This proposition reflects the current mindset that DNA and histone modifications are the prime movers in gene regulation during evolution. This claim is perplexing, since the well characterized organisms, Drosophila melanogaster and Caenorhabditis elegans, lack methylated DNA "marks" and the DNA methytransferase enzymology. Despite their complete absence, D. melanogaster nevertheless has extensive gene regulatory networks which drive sophisticated development, gastrulation, migration of germ cells and yield a nervous system with significant neural attributes. In stark contrast, the honey bee Apis mellifera deploys its human-type DNA methyltransferase enzymology to "mark" its DNA and it too has sophisticated development. What roles therefore is DNA methylation playing in different animals? The honey bee brings a fresh perspective to this question. Its combinatorial chemistry of pheromones, tergal and cuticular exudates provide an exquisite communication system between thousands of individuals. The development of queen and worker is strictly controlled by differential feeding of royal jelly and their adult behaviors are accompanied by epigenomic changes. Their interfaces with different "environments" are extensive, allowing an evaluation of the roles of epigenomes in behavior in a natural environment, in the space of a few weeks, and at requisite levels of experimental rigor.
Collapse
|
10
|
Schell MJ. Inositol trisphosphate 3-kinases: focus on immune and neuronal signaling. Cell Mol Life Sci 2010; 67:1755-78. [PMID: 20066467 PMCID: PMC11115942 DOI: 10.1007/s00018-009-0238-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/14/2009] [Accepted: 12/18/2009] [Indexed: 11/28/2022]
Abstract
The localized control of second messenger levels sculpts dynamic and persistent changes in cell physiology and structure. Inositol trisphosphate [Ins(1,4,5)P(3)] 3-kinases (ITPKs) phosphorylate the intracellular second messenger Ins(1,4,5)P(3). These enzymes terminate the signal to release Ca(2+) from the endoplasmic reticulum and produce the messenger inositol tetrakisphosphate [Ins(1,3,4,5)P(4)]. Independent of their enzymatic activity, ITPKs regulate the microstructure of the actin cytoskeleton. The immune phenotypes of ITPK knockout mice raise new questions about how ITPKs control inositol phosphate lifetimes within spatial and temporal domains during lymphocyte maturation. The intense concentration of ITPK on actin inside the dendritic spines of pyramidal neurons suggests a role in signal integration and structural plasticity in the dendrite, and mice lacking neuronal ITPK exhibit memory deficits. Thus, the molecular and anatomical features of ITPKs allow them to regulate the spatiotemporal properties of intracellular signals, leading to the formation of persistent molecular memories.
Collapse
Affiliation(s)
- Michael J Schell
- Department of Pharmacology, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA.
| |
Collapse
|
11
|
Foret S, Kucharski R, Pittelkow Y, Lockett GA, Maleszka R. Epigenetic regulation of the honey bee transcriptome: unravelling the nature of methylated genes. BMC Genomics 2009; 10:472. [PMID: 19828049 PMCID: PMC2768749 DOI: 10.1186/1471-2164-10-472] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 10/14/2009] [Indexed: 11/25/2022] Open
Abstract
Background Epigenetic modification of DNA via methylation is one of the key inventions in eukaryotic evolution. It provides a source for the switching of gene activities, the maintenance of stable phenotypes and the integration of environmental and genomic signals. Although this process is widespread among eukaryotes, both the patterns of methylation and their relevant biological roles not only vary noticeably in different lineages, but often are poorly understood. In addition, the evolutionary origins of DNA methylation in multicellular organisms remain enigmatic. Here we used a new 'epigenetic' model, the social honey bee Apis mellifera, to gain insights into the significance of methylated genes. Results We combined microarray profiling of several tissues with genome-scale bioinformatics and bisulfite sequencing of selected genes to study the honey bee methylome. We find that around 35% of the annotated honey bee genes are expected to be methylated at the CpG dinucleotides by a highly conserved DNA methylation system. We show that one unifying feature of the methylated genes in this species is their broad pattern of expression and the associated 'housekeeping' roles. In contrast, genes involved in more stringently regulated spatial or temporal functions are predicted to be un-methylated. Conclusion Our data suggest that honey bees use CpG methylation of intragenic regions as an epigenetic mechanism to control the levels of activity of the genes that are broadly expressed and might be needed for conserved core biological processes in virtually every type of cell. We discuss the implications of our findings for genome-scale regulatory network structures and the evolution of the role(s) of DNA methylation in eukaryotes. Our findings are particularly important in the context of the emerging evidence that environmental factors can influence the epigenetic settings of some genes and lead to serious metabolic and behavioural disorders.
Collapse
Affiliation(s)
- Sylvain Foret
- Centre for Bioinformation, Mathematical Sciences Institute, The Australian National University, Canberra ACT 0200, Australia.
| | | | | | | | | |
Collapse
|
12
|
Smith CR, Toth AL, Suarez AV, Robinson GE. Genetic and genomic analyses of the division of labour in insect societies. Nat Rev Genet 2008; 9:735-48. [PMID: 18802413 DOI: 10.1038/nrg2429] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Division of labour--individuals specializing in different activities--features prominently in the spectacular success of the social insects. Until recently, genetic and genomic analyses of division of labour were limited to just a few species. However, research on an ever-increasing number of species has provided new insight, from which we highlight two results. First, heritable influences on division of labour are more pervasive than previously imagined. Second, different forms of division of labour, in lineages in which eusociality has arisen independently, have evolved through changes in the regulation of highly conserved molecular pathways associated with several basic life-history traits, including nutrition, metabolism and reproduction.
Collapse
Affiliation(s)
- Chris R Smith
- Program in Ecology and Evolutionary Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
13
|
Lloyd-Burton SM, Yu JCH, Irvine RF, Schell MJ. Regulation of Inositol 1,4,5-Trisphosphate 3-Kinases by Calcium and Localization in Cells. J Biol Chem 2007; 282:9526-9535. [PMID: 17284449 DOI: 10.1074/jbc.m610253200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) 3-kinases (IP(3)Ks) are a group of calmodulin-regulated inositol polyphosphate kinases (IPKs) that convert the second messenger Ins(1,4,5)P(3) into inositol 1,3,4,5-tetrakisphosphate. However, what they contribute to the complexities of Ca(2+) signaling, and how, is still not fully understood. In this study, we have used a simple Ca(2+) imaging assay to compare the abilities of various Ins (1,4,5)P(3)-metabolizing enzymes to regulate a maximal histamine-stimulated Ca(2+) signal in HeLa cells. Using transient transfection, we overexpressed green fluorescent protein-tagged versions of all three mammalian IP(3)K isoforms, including mutants with disrupted cellular localization or calmodulin regulation, and then imaged the Ca(2+) release stimulated by 100 microm histamine. Both localization to the F-actin cytoskeleton and calmodulin regulation enhance the efficiency of mammalian IP(3)Ks to dampen the Ins (1,4,5)P(3)-mediated Ca(2+) signals. We also compared the effects of the these IP(3)Ks with other enzymes that metabolize Ins(1,4,5)P(3), including the Type I Ins(1,4,5)P(3) 5-phosphatase, in both membrane-targeted and soluble forms, the human inositol polyphosphate multikinase, and the two isoforms of IP(3)K found in Drosophila. All reduce the Ca(2+) signal but to varying degrees. We demonstrate that the activity of only one of two IP(3)K isoforms from Drosophila is positively regulated by calmodulin and that neither isoform associates with the cytoskeleton. Together the data suggest that IP(3)Ks evolved to regulate kinetic and spatial aspects of Ins (1,4,5)P(3) signals in increasingly complex ways in vertebrates, consistent with their probable roles in the regulation of higher brain and immune function.
Collapse
Affiliation(s)
- Samantha M Lloyd-Burton
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Jowie C H Yu
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Robin F Irvine
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom.
| | - Michael J Schell
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| |
Collapse
|
14
|
Maleszka J, Forêt S, Saint R, Maleszka R. RNAi-induced phenotypes suggest a novel role for a chemosensory protein CSP5 in the development of embryonic integument in the honeybee (Apis mellifera). Dev Genes Evol 2007; 217:189-96. [PMID: 17216269 DOI: 10.1007/s00427-006-0127-y] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2006] [Accepted: 11/30/2006] [Indexed: 11/25/2022]
Abstract
Small chemosensory proteins (CSPs) belong to a conserved, but poorly understood, protein family found in insects and other arthropods. They exhibit both broad and restricted expression patterns during development. In this paper, we used a combination of genome annotation, transcriptional profiling and RNA interference to unravel the functional significance of a honeybee gene (csp5) belonging to the CSP family. We show that csp5 expression resembles the maternal-zygotic pattern that is characterized by the initiation of transcription in the ovary and the replacement of maternal mRNA with embryonic mRNA. Blocking the embryonic expression of csp5 with double-stranded RNA causes abnormalities in all body parts where csp5 is highly expressed. The treated embryos show a "diffuse", often grotesque morphology, and the head skeleton appears to be severely affected. They are 'unable-to-hatch' and cannot progress to the larval stages. Our findings reveal a novel, essential role for this gene family and suggest that csp5 (unable-to-hatch) is an ectodermal gene involved in embryonic integument formation. Our study confirms the utility of an RNAi approach to functional characterization of novel developmental genes uncovered by the honeybee genome project and provides a starting point for further studies on embryonic integument formation in this insect.
Collapse
Affiliation(s)
- J Maleszka
- ARC Centre for the Molecular Genetics of Development and Visual Sciences, Research School of Biological Sciences, The Australian National University, Canberra, ACT, 0200, Australia
| | | | | | | |
Collapse
|
15
|
Robinson GE, Grozinger CM, Whitfield CW. Sociogenomics: social life in molecular terms. Nat Rev Genet 2005; 6:257-70. [PMID: 15761469 DOI: 10.1038/nrg1575] [Citation(s) in RCA: 289] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spectacular progress in molecular biology, genome-sequencing projects and genomics makes this an appropriate time to attempt a comprehensive understanding of the molecular basis of social life. Promising results have already been obtained in identifying genes that influence animal social behaviour and genes that are implicated in social evolution. These findings - derived from an eclectic mix of species that show varying levels of sociality - provide the foundation for the integration of molecular biology, genomics, neuroscience, behavioural biology and evolutionary biology that is necessary for this endeavour.
Collapse
Affiliation(s)
- Gene E Robinson
- Neuroscience Program, Department of Entomology, 505 South Goodwin Avenue, 320 Morrill Hall, Urbana, Illinois 61801, USA.
| | | | | |
Collapse
|
16
|
Pintér M, Lent DD, Strausfeld NJ. Memory consolidation and gene expression in Periplaneta americana. Learn Mem 2005; 12:30-8. [PMID: 15647592 PMCID: PMC548493 DOI: 10.1101/lm.87905] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A unique behavioral paradigm has been developed for Periplaneta americana that assesses the timing and success of memory consolidation leading to long-term memory of visual-olfactory associations. The brains of trained and control animals, removed at the critical consolidation period, were screened by two-directional suppression subtractive hybridization. Screens identified neurobiologically relevant as well as novel genes that are differentially expressed at the consolidation phase of memory. The differential expression of six transcripts was confirmed with real-time RT-PCR experiments. There are mitochondrial DNA encoded transcripts among the up-regulated ones (COX, ATPase6). One of the confirmed down-regulated transcripts is RNA polymerase II largest subunit. The mitochondrial genes are of particular interest because mitochondria represent autonomous DNA at synapses. These transcripts will be used as one of several tools in the identification of neuronal circuits, such as in the mushroom bodies, that are implicated in memory consolidation.
Collapse
Affiliation(s)
- Marianna Pintér
- Arizona Research Laboratories, Division of Neurobiology, The University of Arizona, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
17
|
Brehm M, Schreiber I, Bertsch U, Wegner A, Mayr G. Identification of the actin-binding domain of Ins(1,4,5)P3 3-kinase isoform B (IP3K-B). Biochem J 2004; 382:353-62. [PMID: 15130091 PMCID: PMC1133948 DOI: 10.1042/bj20031751] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 03/30/2004] [Accepted: 05/06/2004] [Indexed: 12/31/2022]
Abstract
Dewaste et al. [Dewaste, Moreau, De Smedt, Bex, De Smedt, Wuytaack, Missiaen and Erneux (2003) Biochem. J. 374, 41-49] showed that over-expressed EGFP (enhanced green fluorescent protein) fused to Ins(1,4,5)P3 3-kinase B (IP3K-B) co-localizes with the cytoskeleton, as well as with the endoplasmic reticulum and the plasma membrane. The domains responsible for these subcellular localizations are not yet identified. For the endogenous enzyme, we confirmed both actin and endoplasmic reticulum localization by employing a high affinity antibody against IP3K-B. F-actin targeting is exclusively dependent on the non-catalytic N-terminal region of IP3K-B. By expressing fragments of this N-terminal domain as EGFP-fusion proteins and inspecting transfected cells by confocal microscopy, we characterized a distinct 63-amino-acid domain comprising amino acids 108-170 of the enzyme which is responsible for F-actin targeting. A truncation of this fragment from both sides revealed that the full size of this segment is essential for this function. Deletion of this segment in a full-length over-expressed IP3K-B-EGFP-fusion protein completely abolished F-actin interaction. Direct interaction of this actin-binding segment with only F-actin, but not with G-actin, was observed in vitro using a bacterially expressed, affinity-purified GST (glutathione S-transferase)-Rattus norvegicus IP3K (aa 108-170) fusion protein. Helix-breaking mutations within this isolated segment abolished the F-actin binding properties both in vitro and when over-expressed in cells, indicating that an intact secondary structure is essential for actin targeting. The segment shows sequence similarities to the actin-binding region in IP3K-A, but no similarity to other actin-binding domains.
Collapse
Key Words
- actin-binding domain
- f-actin
- ins(1,4,5)p3 3-kinase b
- subcellular localization
- abd, actin-binding domain
- dtt, dithiothreitol
- ecfp, enhanced cyan fluorescent protein
- egfp, enhanced green fluorescent protein
- er, endoplasmic reticulum
- f-abd, f-actin-binding domain
- gap, gtpase-activating protein
- gst, glutathione s-transferase
- hs, homo sapiens
- ip3k, ins(1,4,5)p3 3-kinase
- nls, nuclear localization sequence
- nrk, normal rat kidney
- 5′-race, rapid amplification of cdna 5′-ends
- rn, rattus norvegicus
- rt-pcr, reverse transcriptase-pcr
- tca, trichloroacetic acid
- wt, wild-type
- l139p, leu139→pro
Collapse
Affiliation(s)
- Maria A. Brehm
- *Institut für Biochemie and Molekularbiologie I: Zelluläre Signaltransduktion, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Isabell Schreiber
- *Institut für Biochemie and Molekularbiologie I: Zelluläre Signaltransduktion, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Uwe Bertsch
- †Institut für Neuropathologie, Ludwig-Maximilians Universität, Zentrum f. Neuropathologie und Prionforschung, Feodor-Lynen-Strasse 23, München 81377, Germany
| | - Albrecht Wegner
- ‡Institute of Physiological Chemistry, Ruhr University, Universitaetsstr. 150, Bochum 44780, Germany
| | - Georg W. Mayr
- *Institut für Biochemie and Molekularbiologie I: Zelluläre Signaltransduktion, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| |
Collapse
|
18
|
Guez D, Belzunces LP, Maleszka R. Effects of imidacloprid metabolites on habituation in honeybees suggest the existence of two subtypes of nicotinic receptors differentially expressed during adult development. Pharmacol Biochem Behav 2003; 75:217-22. [PMID: 12759130 DOI: 10.1016/s0091-3057(03)00070-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Habituation of the proboscis extension reflex (PER) in honeybees (Apis mellifera) is age-dependent. Very young bees (< or =7 days old) require significantly less trials to abolish the response to multiple sucrose stimulations than older bees (> or =8 days old). A nicotinic agonist, imidacloprid, modifies this behaviour by increasing the number of trials in < or =7-day-old bees and by decreasing it in older bees [Neurobiol. Learn. Mem. 76 (2001) 183.]. Here we tested our hypothesis that this effect is associated with a differential expression of two subtypes of nicotinic acetylcholine receptors (nAChRs). By testing the effects of six metabolites of imidacloprid, we show that two of them, olefin and 5-hydroxy-imidacloprid, modify the number of trials needed to habituate the PER in a contrasting manner. Olefin increases the number of trials in both age groups, whereas 5-hydroxy-imidacloprid decreases the number of trials, but only in 8-day-old individuals. We conclude that olefin and 5-hydroxy-imidacloprid are specific agonists of two subtypes of an nAChR that are differentially expressed during adult maturation of young honeybees. Olefin is the agonist of an nAChR expressed in both age groups, whereas 5-hydroxy-imidacloprid is the agonist of a late-onset nAChR that is activated in 8-day-old bees. The implications of this finding for the honeybee biology are discussed.
Collapse
Affiliation(s)
- D Guez
- Visual Sciences, Research School of Biological Sciences, Australian National University, Canberra, ACT 0200, Australia.
| | | | | |
Collapse
|
19
|
Robinson GE, Ben-Shahar Y. Social behavior and comparative genomics: new genes or new gene regulation? GENES, BRAIN, AND BEHAVIOR 2002; 1:197-203. [PMID: 12882364 DOI: 10.1034/j.1601-183x.2002.10401.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Molecular analyses of social behavior are distinguished by the use of an unusually broad array of animal models. This is advantageous for a number of reasons, including the opportunity for comparative genomic analyses that address fundamental issues in the molecular biology of social behavior. One issue relates to the kinds of changes in genome structure and function that occur to give rise to social behavior. This paper considers one aspect of this issue, whether social evolution involves new genes, new gene regulation, or both. This is accomplished by briefly reviewing findings from studies of the fish Haplochromis burtoni, the vole Microtus ochrogaster, and the honey bee Apis mellifera, with a more detailed and prospective consideration of the honey bee.
Collapse
Affiliation(s)
- G E Robinson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana 61801, USA.
| | | |
Collapse
|