1
|
Galambos AR, Essmat N, Lakatos PP, Szücs E, Boldizsár I, Abbood SK, Karádi DÁ, Kirchlechner-Farkas JM, Király K, Benyhe S, Riba P, Tábi T, Harsing LG, Zádor F, Al-Khrasani M. Glycine Transporter 1 Inhibitors Minimize the Analgesic Tolerance to Morphine. Int J Mol Sci 2024; 25:11136. [PMID: 39456918 PMCID: PMC11508341 DOI: 10.3390/ijms252011136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Opioid analgesic tolerance (OAT), among other central side effects, limits opioids' indispensable clinical use for managing chronic pain. Therefore, there is an existing unmet medical need to prevent OAT. Extrasynaptic N-methyl D-aspartate receptors (NMDARs) containing GluN2B subunit blockers delay OAT, indicating the involvement of glutamate in OAT. Glycine acts as a co-agonist on NMDARs, and glycine transporters (GlyTs), particularly GlyT-1 inhibitors, could affect the NMDAR pathways related to OAT. Chronic subcutaneous treatments with morphine and NFPS, a GlyT-1 inhibitor, reduced morphine antinociceptive tolerance (MAT) in the rat tail-flick assay, a thermal pain model. In spinal tissues of rats treated with a morphine-NFPS combination, NFPS alone, or vehicle-comparable changes in µ-opioid receptor activation, protein and mRNA expressions were seen. Yet, no changes were observed in GluN2B mRNA levels. An increase was observed in glycine and glutamate contents of cerebrospinal fluids from animals treated with a morphine-NFPS combination and morphine, respectively. Finally, GlyT-1 inhibitors are likely to delay MAT by mechanisms relying on NMDARs functioning rather than an increase in opioid efficacy. This study, to the best of our knowledge, shows for the first time the impact of GlyT-1 inhibitors on MAT. Nevertheless, future studies are required to decipher the exact mechanisms.
Collapse
Affiliation(s)
- Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Nariman Essmat
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Péter P. Lakatos
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
| | - Edina Szücs
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary;
| | - Imre Boldizsár
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Sarah Kadhim Abbood
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Dávid Á. Karádi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Judit Mária Kirchlechner-Farkas
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Sándor Benyhe
- HUN-REN Biological Research Centre, Institute of Biochemistry, Temesvári krt. 62, H-6726 Szeged, Hungary;
| | - Pál Riba
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Tamás Tábi
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
| | - Laszlo G. Harsing
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Ferenc Zádor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| |
Collapse
|
2
|
Dousti Kataj P, Vousooghi N, Hadjighassem M, Farahmandfar M, Ebrahimi-Barough S. Evaluation of the effect of mesenchymal stem cells injection in the nucleus accumbens on the morphine reinstatement behavior in a conditioned place preference model in Wistar rat: Expression changes of NMDA receptor subunits and NT-3. Behav Brain Res 2023; 444:114360. [PMID: 36854364 DOI: 10.1016/j.bbr.2023.114360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/31/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Mesenchymal stem cells (MSCs) have been recently shown to improve functional recovery in animal models of CNS disorders and are currently being examined in clinical studies for sclerosis, stroke, and CNS lesions. The activation of endogenous CNS protection and repair mechanisms is unclear. MSC-based approaches are considered a new potential target for neurodegenerative disorders. This study was designed to discover the effect of MSCs injection in the nucleus accumbens (NAc) on the reinstatement of behavior in morphine-induced conditioned place preference (CPP) in male rats. The CPP was induced via intra-peritoneal (i.p.) morphine injection (5 mg/kg) for three consecutive days. After being tested for CPP induction, animals received MSCs or culture medium (DMEM F-12) in their NAc using stereotaxic surgery. Following extinction, a priming dose of morphine (2 mg/kg) was administered to induce reinstatement. Expression of GluN1, GluN2A, and GluN2B subunits of the NMDA receptor and the NT-3 gene in the NAc was assessed on the last day of extinction and following CPP reinstatement. The results showed that local injection of MSCs attenuated reinstatement after receiving a priming dose of morphine, and also shortened the period of CPP extinction. The mRNA expression of the NT-3 gene in the group receiving MSCs was increased compared to control animals, as was observed for GluN1 and GluN2B, but not GluN2A. It is concluded that intra-NAc injection of MSCs may facilitate morphine extinction and alleviate reinstatement behavior which may be via expression changes in NMDA receptor subunits and NT-3 gene.
Collapse
Affiliation(s)
- Parviz Dousti Kataj
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, the Islamic Republic of Iran
| | - Nasim Vousooghi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, the Islamic Republic of Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, the Islamic Republic of Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, the Islamic Republic of Iran.
| | - Mahmoudreza Hadjighassem
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, the Islamic Republic of Iran
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, the Islamic Republic of Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, the Islamic Republic of Iran
| |
Collapse
|
3
|
Yu H, Chen A, Chen E, Long LS, Agrawal AK. Low-dose Ketamine Infusion for Pediatric Hematology/Oncology Patients: Case Series and Literature Review. J Pediatr Hematol Oncol 2022; 44:e188-e193. [PMID: 34486547 DOI: 10.1097/mph.0000000000002290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Management of refractory pain in pediatric sickle cell disease (SCD) and oncology is reliant on opioids though high opioid dosing increases side effects and tachyphylaxis. We introduced low-dose ketamine infusion (LDKI) to our inpatient unit to determine if LDKI was tolerable. We subsequently hypothesized that LDKI would improve pain scores. We reviewed inpatients from LDKI initiation in March 2014 through October 2017, with the day before LDKI initiation compared with the day of LDKI initiation and 2 subsequent days. For patients with SCD, the LDKI admission was compared with up to 3 admissions in the prior year for a vaso-occlusive event. Nineteen patients (12 oncology, 7 SCD) with a median age of 14.6 years received LDKI for a median of 6 days at a median initial dose of 0.06 mg/kg/h (1.1 µg/kg/min). There was no change in pain scores or opioid utilization when comparing the day before LDKI initiation with subsequent days. No patient discontinued LDKI because of intolerability. For patients with SCD, there was a median 32% reduction in cumulative pain scores when comparing the LDKI admission with prior admissions. LDKI is well tolerated for refractory pediatric cancer-related and sickle cell-related pain.
Collapse
Affiliation(s)
| | - Allen Chen
- University of California Berkeley, Berkeley, CA
| | - Eric Chen
- University of California Berkeley, Berkeley, CA
| | | | - Anurag K Agrawal
- Pediatric Hematology/Oncology, UCSF Benioff Children's Hospital Oakland, Oakland
| |
Collapse
|
4
|
Kazi JA, Zatilfarihiah R. Gabapentin completely neutralized the acute morphine activation in the rat hypothalamus: a c-Fos study. FUTURE NEUROLOGY 2019. [DOI: 10.2217/fnl-2018-0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: The molecular mechanism of gabapentin (GBP)–morphine combinational function and its neuro-anatomical sites of action to prevent, to neutralize morphine side effects and also the enhancement its analgesic effect of morphine is unknown. Methods: Morphine (10 mg/kg), saline, co-injection: GBP (150 mg/kg) with morphine (10 mg/kg) were injected by intraperitoneal injection in rats under deep anaesthesia. C-Fos immunohistochemistry technique was used to locate c-Fos expression in rat hypothalamus. Results: Gabapentin in combination with morphine significantly (p < 0.01) attenuated the acute morphine induced c-Fos immunoreactive neuron in hypothalamus. Conclusion: GBP neutralized the morphine sensitization in rat hypothalamus. GBP might neuromodulate and or antagonize the receptor regulatory machinery of morphine sensitization circuit which might work for drug discovery of morphine abuse.
Collapse
Affiliation(s)
- Jamil Ahsan Kazi
- Universiti Teknologi MARA (UiTM), Faculty of Dentistry, Centre of Studies for Preclinical Science, Jalan Hospital, 47000 SUNGAI BULOH, Selangor, Malaysia
| | - Rasdi Zatilfarihiah
- Universiti Teknologi MARA (UiTM), Faculty of Dentistry, Centre of Studies for Preclinical Science, Jalan Hospital, 47000 SUNGAI BULOH, Selangor, Malaysia
| |
Collapse
|
5
|
Huang J, Wang J, Guo Q, Zou W. Emerging roles of microRNAs in morphine tolerance. J Pain Res 2019; 12:1139-1147. [PMID: 31114297 PMCID: PMC6497837 DOI: 10.2147/jpr.s187592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/25/2019] [Indexed: 12/19/2022] Open
Abstract
Morphine is commonly used in clinical management to alleviate moderate-to-severe pain. However, prolonged and repeated use of morphine leads to tolerance. Morphine tolerance is a challenging clinical problem that limits its clinical application in pain treatment. The mechanisms underlying morphine tolerance are still not completely understood. MicroRNAs (miRNAs) are small noncoding RNAs containing 18~22 nucleotides that modulate gene expression in a post-transcriptional manner, and their dysregulation causes various diseases. miRNAs bind to the 3ʹ-UTR (untranslated region) of target gene mRNA, inhibiting or destabilizing translation of the transcripts. Morphine causes differential miRNA upregulation or downregulation. This review will present evidence for the contribution of miRNAs to tolerance of the antinociception effect of opioids.
Collapse
Affiliation(s)
- Jiangju Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Jian Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
6
|
Daneshparvar H, Sadat-Shirazi MS, Fekri M, Khalifeh S, Ziaie A, Esfahanizadeh N, Vousooghi N, Zarrindast MR. NMDA receptor subunits change in the prefrontal cortex of pure-opioid and multi-drug abusers: a post-mortem study. Eur Arch Psychiatry Clin Neurosci 2019; 269:309-315. [PMID: 29766293 DOI: 10.1007/s00406-018-0900-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/24/2018] [Indexed: 12/29/2022]
Abstract
Addiction is a chronic relapsing disorder and is one of the most important issues in the world. Changing the level of neurotransmitters and the activities of their receptors, play a major role in the pathophysiology of substance abuse disorders. It is well-established that N-methyl-D-aspartate receptors (NMDARs) play a significant role in the molecular basis of addiction. NMDAR has two obligatory GluN1 and two regionally localized GluN2 subunits. This study investigated changes in the protein level of GluN1, GluN2A, and GluN2B in the prefrontal cortex of drug abusers. The medial prefrontal cortex (mPFC), lateral prefrontal cortex (lPFC), and orbitofrontal cortex (OFC) were dissected from the brain of 101 drug addicts brains and were compared with the brains of non-addicts (N = 13). Western blotting technique was used to show the alteration in NMDAR subunits level. Data obtained using Western blotting technique showed a significant increase in the level of GluN1 and GluN2B, but not in GluN2A subunits in all the three regions (mPFC, lPFC, and OFC) of men whom suffered from addiction as compared to the appropriate controls. These findings showed a novel role for GluN1, GluN2B subunits, rather than the GluN2A subunit of NMDARs, in the pathophysiology of addiction and suggested their role in the drug-induced plasticity of NMDARs.
Collapse
Affiliation(s)
| | - Mitra-Sadat Sadat-Shirazi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, P.O.Box: 13145-784, Iran.,Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Monir Fekri
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, P.O.Box: 13145-784, Iran
| | - Solmaz Khalifeh
- Cognitive and Neuroscience research Center (CNRC), Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran
| | | | - Nasrin Esfahanizadeh
- Department of Periodontics, Tehran Dental Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Vousooghi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, P.O.Box: 13145-784, Iran.,Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, P.O.Box: 13145-784, Iran. .,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Sadat-Shirazi MS, Vousooghi N, Alizadeh B, Makki SM, Zarei SZ, Nazari S, Zarrindast MR. Expression of NMDA receptor subunits in human blood lymphocytes: A peripheral biomarker in online computer game addiction. J Behav Addict 2018; 7:260-268. [PMID: 29788757 PMCID: PMC6174581 DOI: 10.1556/2006.7.2018.35] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background and aims Repeated performance of some behaviors such as playing computer games could result in addiction. The NMDA receptor is critically involved in the development of behavioral and drug addictions. It has been claimed that the expression level of neurotransmitter receptors in the brain may be reflected in peripheral blood lymphocytes (PBLs). Methods Here, using a real-time PCR method, we have investigated the mRNA expression of GluN2A, GluN2D, GluN3A, and GluN3B subunits of the NMDA receptor in PBLs of male online computer game addicts (n = 25) in comparison with normal subjects (n = 26). Results Expression levels of GluN2A, GluN2D, and GluN3B subunits were not statistically different between game addicts and the control group. However, the mRNA expression of the GluN3A subunit was downregulated in PBLs of game addicts. Discussion and conclusions Transcriptional levels of GluN2A and GluN2D subunits in online computer game addicts are similar to our previously reported data of opioid addiction and are not different from the control group. However, unlike our earlier finding of drug addiction, the mRNA expression levels of GluN3A and GluN3B subunits in PBLs of game addicts are reduced and unchanged, respectively, compared with control subjects. It seems that the downregulated state of the GluN3A subunit of NMDA receptor in online computer game addicts is a finding that deserves more studies in the future to see whether it can serve as a peripheral biomarker in addiction studies, where the researcher wants to rule out the confusing effects of abused drugs.
Collapse
Affiliation(s)
- Mitra-Sadat Sadat-Shirazi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran,Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran,Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran,Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author: Nasim Vousooghi, Pharm D, PhD; Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, PO Box 1417755469, Tehran, Iran; Phone: +98 21 8899 1118; Fax: +98 21 8899 1117; E-mail:
| | - Bentolhoda Alizadeh
- Department of Biology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Mohammad Makki
- Department of Psychiatry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shahrzad Nazari
- Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zarrindast
- Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,School of Cognitive Sciences, Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran,Institute for Cognitive Science Studies, Tehran, Iran
| |
Collapse
|
8
|
B Vitamins Potentiate Acute Morphine Antinociception and Attenuate the Development of Tolerance to Chronic Morphine in Mice. PAIN MEDICINE 2017; 18:1961-1974. [DOI: 10.1093/pm/pnw358] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Ahmadi S, Rafieenia F, Rostamzadeh J. Morphine-Induced Analgesic Tolerance Effect on Gene Expression of the NMDA Receptor Subunit 1 in Rat Striatum and Prefrontal Cortex. Basic Clin Neurosci 2016; 7:241-8. [PMID: 27563417 PMCID: PMC4981836 DOI: 10.15412/j.bcn.03070309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Introduction: Morphine is a potent analgesic but its continual use results in analgesic tolerance. Mechanisms of this tolerance remain to be clarified. However, changes in the functions of μ-opioid and N-Methyl-D-aspartate (NMDA) receptors have been proposed in morphine tolerance. We examined changes in gene expression of the NMDA receptor subunit 1 (NR1) at mRNA levels in rat striatum and prefrontal cortex (PFC) after induction of morphine tolerance. Methods: Morphine (10 mg/kg, IP) was injected in male Wistar rats for 7 consecutive days (intervention group), but control rats received just normal saline (1 mL/kg, IP). We used a hotplate test of analgesia to assess induction of tolerance to analgesic effects of morphine on days 1 and 8 of injections. Later, two groups of rats were sacrificed one day after 7 days of injections, their whole brains removed, and the striatum and PFC immediately dissected. Then, the NR1 gene expression was examined with a semi-quantitative RT-PCR method. Results: The results showed that long-term morphine a administration induces tolerance to analgesic effect of the opioid, as revealed by a significant decrease in morphine-induced analgesia on day 8 compared to day 1 of the injections (P<0.001). The results also showed that the NR1 gene expression at mRNA level in rats tolerant to morphine was significantly increased in the striatum (P<0.01) but decreased in the PFC (P<0.001). Conclusion: Therefore, changes in the NR1 gene expression in rat striatum and PFC have a region-specific association with morphine-induced analgesic tolerance.
Collapse
Affiliation(s)
- Shamseddin Ahmadi
- Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Fatemeh Rafieenia
- Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Jalal Rostamzadeh
- Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
10
|
Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behav Brain Sci 2015; 39:e200. [PMID: 26126507 DOI: 10.1017/s0140525x15000667] [Citation(s) in RCA: 361] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Emotional arousal enhances perception and memory of high-priority information but impairs processing of other information. Here, we propose that, under arousal, local glutamate levels signal the current strength of a representation and interact with norepinephrine (NE) to enhance high priority representations and out-compete or suppress lower priority representations. In our "glutamate amplifies noradrenergic effects" (GANE) model, high glutamate at the site of prioritized representations increases local NE release from the locus coeruleus (LC) to generate "NE hotspots." At these NE hotspots, local glutamate and NE release are mutually enhancing and amplify activation of prioritized representations. In contrast, arousal-induced LC activity inhibits less active representations via two mechanisms: 1) Where there are hotspots, lateral inhibition is amplified; 2) Where no hotspots emerge, NE levels are only high enough to activate low-threshold inhibitory adrenoreceptors. Thus, LC activation promotes a few hotspots of excitation in the context of widespread suppression, enhancing high priority representations while suppressing the rest. Hotspots also help synchronize oscillations across neural ensembles transmitting high-priority information. Furthermore, brain structures that detect stimulus priority interact with phasic NE release to preferentially route such information through large-scale functional brain networks. A surge of NE before, during, or after encoding enhances synaptic plasticity at NE hotspots, triggering local protein synthesis processes that enhance selective memory consolidation. Together, these noradrenergic mechanisms promote selective attention and memory under arousal. GANE not only reconciles apparently contradictory findings in the emotion-cognition literature but also extends previous influential theories of LC neuromodulation by proposing specific mechanisms for how LC-NE activity increases neural gain.
Collapse
|
11
|
Morphine and MK-801 administration leads to alternative N-methyl-D-aspartate receptor 1 splicing and associated changes in reward seeking behavior and nociception on an operant orofacial assay. Neuroscience 2012; 214:14-27. [PMID: 22531378 DOI: 10.1016/j.neuroscience.2012.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/06/2012] [Accepted: 04/03/2012] [Indexed: 11/21/2022]
Abstract
The NMDA receptor plays a large role in opioid-induced plastic changes in the nervous system. The expression levels of its NR1 subunit are altered dramatically by morphine but no changes in its alternative splicing have been reported. Changes in the splicing of the N1, C1, C2, and C2' cassettes can alter the pharmacology and regulation of this receptor. Western Blots run on brain tissue from rats made tolerant to morphine revealed altered splicing of the N1 cassettes in the accumbens and amygdala (AMY), and the C1 cassette in the AMY and the dorsal hippocampus (HIPP). After 3days of withdrawal C2'-containing NR1 subunits were down-regulated in each of these areas. These were not due to acute doses of morphine and may represent long-term alterations in drug-induced neuroplasticity. We also examined the effects of morphine tolerance on an operant orofacial nociception assay which forces an animal to endure an aversive heat stimulus in order to receive a sweet milk reward. Morphine decreased pain sensitivity as expected but also increased motivational reward seeking in this task. NMDAR antagonism potentiated this reward seeking behavior suggesting that instead of attenuating tolerance, MK-801 may actually alter the rewarding and/or motivational properties of morphine. When combined, MK-801 and morphine had an additive effect which led to altered splicing in the accumbens, AMY, and the HIPP. In conclusion, NR1 splicing may play a major role in the cognitive behavioral aspects especially in motivational reward-seeking behaviors.
Collapse
|
12
|
Huang YN, Tsai RY, Lin SL, Chien CC, Cherng CH, Wu CT, Yeh CC, Wong CS. Amitriptyline attenuates astrocyte activation and morphine tolerance in rats: Role of the PSD-95/NR1/nNOS/PKCγ signaling pathway. Behav Brain Res 2012; 229:401-11. [DOI: 10.1016/j.bbr.2012.01.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 01/19/2012] [Accepted: 01/23/2012] [Indexed: 12/13/2022]
|
13
|
Tao PL, Chen CF, Huang EYK. Dextromethorphan attenuated the higher vulnerability to inflammatory thermal hyperalgesia caused by prenatal morphine exposure in rat offspring. J Biomed Sci 2011; 18:64. [PMID: 21861871 PMCID: PMC3179950 DOI: 10.1186/1423-0127-18-64] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 08/23/2011] [Indexed: 11/10/2022] Open
Abstract
Background Co-administration of dextromethorphan (DM) with morphine during pregnancy and throughout lactation has been found to reduce morphine physical dependence and tolerance in rat offspring. No evidence was presented, however, for the effect of DM co-administered with morphine during pregnancy on inflammatory hyperalgesia in morphine-exposed offspring. Therefore, we attempt to investigate the possible effect of prenatal morphine exposure on the vulnerability to hyperalgesia and the possible therapeutic effect of DM in the present study. Methods Fifty μl of carrageenan (20 mg/ml) was injected subcutaneously into the plantar surface of the right hind paw in p18 rats to induce hyperalgesia. Mean paw withdrawal latency was measured in the plantar test to index the severity of hyperalgesia. Using Western blotting and RT-PCR, the quantitative analyses of NMDA receptor NR1 and NR2B subunits were performed in spinal cords from different groups of animals. Results In the carrageenan-induced hyperalgesia model, rat offspring passively exposed to morphine developed a severe hyperalgesia on postnatal day 18 (p18), which also had a more rapid time course than those in the controls. Co-administration of DM with morphine in the dams prevented this adverse effect of morphine in the offspring rats. Western blot and RT-PCR analysis showed that the levels of protein and mRNA of NMDA receptor NR1 and NR2B subunits were significantly higher in the lumbar spinal cords of rats (p14) exposed to prenatal morphine; the co-administration of DM could reverse the effect of morphine on NR1 and attenuate the effect on NR2B. Conclusions Thus, DM may have a great potential in the prevention of higher vulnerability to inflammatory thermal hyperalgesia in the offspring of morphine-addicted mothers.
Collapse
Affiliation(s)
- Pao-Luh Tao
- Division of Mental Health and Addiction Medicine, Institute of Population Health Sciences, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan
| | | | | |
Collapse
|
14
|
Ghasemi M, Shafaroodi H, Nazarbeiki S, Meskar H, Ghasemi A, Bahremand A, Ziai P, Dehpour AR. Inhibition of NMDA receptor/NO signaling blocked tolerance to the anticonvulsant effect of morphine on pentylenetetrazole-induced seizures in mice. Epilepsy Res 2010; 91:39-48. [DOI: 10.1016/j.eplepsyres.2010.06.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 05/31/2010] [Accepted: 06/23/2010] [Indexed: 11/17/2022]
|
15
|
Sedaghati M, Vousooghi N, Goodarzi A, Yaghmaei P, Mokri A, Zarrindast MR. Expression of NR3B but not NR2D subunit of NMDA receptor in human blood lymphocytes can serve as a suitable peripheral marker for opioid addiction studies. Eur J Pharmacol 2010; 633:50-4. [PMID: 20153313 DOI: 10.1016/j.ejphar.2010.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 12/17/2009] [Accepted: 02/02/2010] [Indexed: 11/18/2022]
Abstract
Glutamate is critically involved in opioid addiction. It has been suggested that neurotransmitter receptors expression in peripheral blood lymphocytes may reflect brain status. In the present study, using Real-time PCR, the mRNA expression of NR2D and NR3B subunits of NMDA glutamate receptor has been investigated in peripheral blood lymphocytes of four groups each comprising of 25 male individuals: opioid addicts, methadone maintained patients, long-term abstinent former opioid addicts, and non-addicted control subjects. We found that NR2D subunit mRNA expression was not changed in all three test groups in comparison to control subjects. However, the NR3B mRNA expression was significantly up-regulated by the factors 9.11 (P<0.001), 10.07 (P<0.001) and 4.08 (P<0.05) in abstinent, addicted and methadone maintained subjects, respectively relative to control group. As a conclusion, our data indicate that the transcriptional level of the NR2D subunit of NMDA receptor is not regulated by chronic opioid addiction. However, it seems that the over-expression of NR3B subunit of NMDA receptor is a long lasting result of opioid abuse. In addition, considerable decrease in the up-regulated state of the NR3B subunit by methadone may represent another benefit of methadone therapy for opioid addicts and may serve as a suitable marker to evaluate the successfulness of therapy.
Collapse
Affiliation(s)
- Mahmoud Sedaghati
- Science and Research Branch of Islamic Azad University, Tehran, Iran; Sina Cellular and Molecular Research Center, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
16
|
Yoshikawa M, Shinomiya T, Takayasu N, Tsukamoto H, Kawaguchi M, Kobayashi H, Oka T, Hashimoto A. Long-term treatment with morphine increases the D-serine content in the rat brain by regulating the mRNA and protein expressions of serine racemase and D-amino acid oxidase. J Pharmacol Sci 2008; 107:270-6. [PMID: 18603832 DOI: 10.1254/jphs.08030fp] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Recent studies indicate that an endogenous co-agonist for an N-methyl-D-aspartate (NMDA) receptor-related glycine site, D-serine, is synthesized by serine racemase and is metabolized by D-amino acid oxidase (DAO) and that acute treatment with morphine augments the gene expression of serine racemase and DAO in rat brain. To further elucidate the mechanism underlying the activation of NMDA receptors following chronic opioid administration, we have evaluated the effects of the chronic administration of morphine on the mRNA and protein expressions of serine racemase and DAO and on the contents of D-serine in several areas of the rat brain. Repeated administration of morphine for 30 days produced a significant augmentation of both the mRNA and protein expressions of serine racemase in all the brain regions, whereas no significant change in the protein expression of DAO was observed in all the brain regions. Furthermore, the chronic administration caused a slight but significant elevation in the concentration of D-serine in the cortex, striatum, and hippocampus. These results indicate the elevated D-serine level following the chronic morphine treatment could at least in part be involved in the activation of NMDA receptors via the glycine site.
Collapse
Affiliation(s)
- Masanobu Yoshikawa
- Department of Clinical Pharmacology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Martini L, Whistler JL. The role of mu opioid receptor desensitization and endocytosis in morphine tolerance and dependence. Curr Opin Neurobiol 2007; 17:556-64. [DOI: 10.1016/j.conb.2007.10.004] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/10/2007] [Accepted: 10/16/2007] [Indexed: 12/12/2022]
|
18
|
Allen RM, Dykstra LA, Carelli RM. Continuous exposure to the competitive N-methyl-D: -aspartate receptor antagonist, LY235959, facilitates escalation of cocaine consumption in Sprague-Dawley rats. Psychopharmacology (Berl) 2007; 191:341-51. [PMID: 17225167 DOI: 10.1007/s00213-006-0661-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 11/26/2006] [Indexed: 11/28/2022]
Abstract
RATIONALE Chronic high dose consumption of cocaine is associated with significant negative effects to individual users and society. Nevertheless, the precise mechanisms that mediate increases in cocaine consumption in a drug-using individual are not fully understood. OBJECTIVES This study used a long access version of the drug self-administration procedure to determine whether escalation of cocaine consumption is mediated by increased activity through N-methyl-D: -aspartate (NMDA) receptors. MATERIALS AND METHODS Male Sprague-Dawley rats (n = 63) were first trained to self-administer cocaine (0.33 mg/infusion, i.v.) under a fixed-ratio 1 schedule of reinforcement. After training, some rats were implanted with subcutaneous osmotic minipumps filled with vehicle or the competitive NMDA receptor antagonist, LY235959, and subsequently allowed to self-administer cocaine in short (2 h) or long (6 h) access self-administration sessions. RESULTS Vehicle-treated rats escalated cocaine self-administration across 14 long-access self-administration sessions. Rats treated with LY235959 via osmotic minipump, but not twice daily injections, escalated cocaine self-administration at a greater rate and to a greater degree than vehicle-treated rats. In post-escalation cocaine dose-infusion tests, rats treated continuously with LY235959 self-administered more cocaine (0.08-1.32 mg/infusion) than vehicle-treated rats, regardless of access condition, shifting the dose-infusion curves upward. During extinction sessions, which were conducted after the escalation phase of the study, rats that had long (6 h) access to cocaine stopped responding sooner than rats that had short (2 h) access to cocaine, independent of LY235959 treatment. CONCLUSIONS These data are consistent with hypo-glutamatergic consequences of repeated cocaine exposure.
Collapse
Affiliation(s)
- Richard M Allen
- Department of Psychology, University of Colorado at Denver and Health Sciences Center, Downtown Denver Campus, CB# 173, P.O. Box 173364, Denver, CO 80217, USA.
| | | | | |
Collapse
|
19
|
Cota D, Tschöp MH, Horvath TL, Levine AS. Cannabinoids, opioids and eating behavior: the molecular face of hedonism? ACTA ACUST UNITED AC 2005; 51:85-107. [PMID: 16364446 DOI: 10.1016/j.brainresrev.2005.10.004] [Citation(s) in RCA: 266] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 10/13/2005] [Accepted: 10/17/2005] [Indexed: 01/07/2023]
Abstract
Obesity represents nowadays one of the most devastating health threats. Published reports even project a decline in life expectancy of US citizens due to the rapidly increasing prevalence of obesity. This alarming increase is intimately linked with recent changes of environment and lifestyle in western countries. In this context, the rewarding or even addictive properties of popular food may represent one of the most serious obstacles to overcome for an effective anti-obesity therapy. Therefore, in addition to molecular networks controlling energy homeostasis, now researchers are starting to define central nervous mechanisms governing hedonic and addictive components of food intake. A recently emerging body of data suggests that the endogenous cannabinoid and opioid systems both represent key circuits responding to the rewarding value of food. This review focuses on the role of these two systems for the homeostatic and hedonic aspects of eating behavior and includes their anatomical and functional interactions. Independent from the degree to which eating can be considered an addiction, cannabinoid and opioid receptor antagonists are promising anti-obesity drugs, since they are targeting both hedonic and homeostatic components of energy balance control.
Collapse
Affiliation(s)
- Daniela Cota
- Obesity Research Center, Department of Psychiatry, University of Cincinnati-Genome Research Institute, 2170 E Galbraith Road, Cincinnati, OH 45237, USA.
| | | | | | | |
Collapse
|
20
|
He L, Whistler JL. An opiate cocktail that reduces morphine tolerance and dependence. Curr Biol 2005; 15:1028-33. [PMID: 15936273 DOI: 10.1016/j.cub.2005.04.052] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 04/21/2005] [Indexed: 10/25/2022]
Abstract
Morphine is an exceptionally effective analgesic whose utility is compromised by the development of tolerance and dependence to the drug. Morphine analgesia and dependence are mediated by its activity at the mu opioid peptide (MOP) receptor [1]. The MOP receptor is activated not only by morphine, but also by other opiate drugs such as methadone and endogenous opioids such as endorphins. Morphine, however, is a unique opioid agonist ligand because it fails to induce endocytic trafficking of the MOP receptor [2], whereas the endogenous ligands and methadone do facilitate endocytosis [3]. Using the unique pharmacology of the MOP receptor and its proposed existence as an oligomeric structure [4], we designed a pharmacological cocktail that facilitates endocytosis of the MOP receptor in response to morphine. This cocktail consists of morphine and a small dose of methadone. Importantly, this cocktail, while retaining full analgesic potency, does not promote morphine dependence. We further demonstrate that dependence is reduced, at least in part, because endocytosis of the MOP receptor in response to morphine prevents the upregulation of N-methyl-D-aspartate (NMDA) receptors.
Collapse
Affiliation(s)
- Li He
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, 5858 Horton Street, Suite 200, Emeryville, California 94608, USA
| | | |
Collapse
|
21
|
Smith FL, Smith PA, Dewey WL, Javed RR. Effects of mGlu1 and mGlu5 metabotropic glutamate antagonists to reverse morphine tolerance in mice. Eur J Pharmacol 2005; 492:137-42. [PMID: 15178357 DOI: 10.1016/j.ejphar.2004.03.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Revised: 03/24/2004] [Accepted: 03/30/2004] [Indexed: 10/26/2022]
Abstract
Intracerebroventricular (i.c.v.) injection of phospholipase C inhibitors and structurally dissimilar PKC inhibitors were shown to completely reverse morphine antinociceptive tolerance in mice. Since Group I metabotropic glutamate receptors (mGlu(1) and mGlu(5)) activate phospholipase C through Galpha(q) Galpha(11) proteins, we hypothesized that morphine tolerance could occur through an increase in mGlu(1) and mGlu(5) receptor stimulation. Seventy-two hours after implantation of placebo or 75 mg morphine pellets, mice were tested in the 56 degrees C warm-water tail-withdrawal test following i.c.v. injection of vehicle or test drug. The mGlu(1) receptor antagonist CPCCOEt (7-(Hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester) partly but significantly reversed morphine tolerance. The mGlu(5) receptor antagonist MPEP (2-Methyl-6-(phenylethynyl)pyridine hydrochloride) also partly reversed the antinociceptive tolerance. Co-administering CPCCOEt with MPEP completely reversed the tolerance. Furthermore, the mixed mGlu(1)/mGlu(5) antagonist AIDA ((RS)-1-Aminoindan-1,5-dicarboxylic acid) also completely reversed the tolerance. Thus, greater mGlu(1) and mGlu(5) receptor stimulation during morphine tolerance may lead to persistent activation of the phosphatidylinositol cascade.
Collapse
Affiliation(s)
- Forrest L Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University Medical Center, P.O. Box 980613, Richmond, VA 23298-0613, USA.
| | | | | | | |
Collapse
|
22
|
Abstract
Repeated opiate administration alters gene expression in different brain regions of rodents, an effect which may contribute to plastic changes associated with addictive behaviour. There is increasing evidence that multiple transcription factors are induced in morphine tolerance, sensitization and during morphine withdrawal. Whereas morphine treatment does not lead to major alterations in the expression of mu-opioid receptors (MOR), there is transcriptional regulation of proteins involved in MOR trafficking such as GRK2 or beta arrestin 2 as well as altered expression of other receptors such as dopamine receptors, NMDA receptors, GABA(A) receptor and alpha(2A) adrenoceptor. Recent gene expression profiling studies reveal additional clusters of morphine-responsive genes: whereas single dose administration has been shown to predominantly reduce expression of genes involved in metabolic function, ascending morphine doses leading to morphine tolerance revealed induction of genes which alter patterns of synaptic connectivity such as arc or ania-3. These genes remained elevated after precipitated withdrawal, which also triggered the expression of several transcriptional activators and repressors. In addition, morphine has been shown to be a strong inducer of heat shock protein 70, a cell protective protein which might counter-regulate opiate-induced neurotoxicity. Temporal expression profiles during a chronic morphine application schedule revealed discrete and fluctuating expression of gene clusters such as transcription factors, G-protein-coupled receptors and neuropeptides. Prolonged abstinence seems to be characterized by up-regulation of several transcription factors and persistent down-regulation of ligand gated ion channels such as glutamatergic and GABA-ergic receptor subunits. These long-term changes in receptor expression suggest a persistent alteration of synaptic signalling after morphine treatment.
Collapse
Affiliation(s)
- Susanne Ammon-Treiber
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany.
| | | |
Collapse
|
23
|
Shimoyama N, Shimoyama M, Davis AM, Monaghan DT, Inturrisi CE. An antisense oligonucleotide to the N-methyl-D-aspartate (NMDA) subunit NMDAR1 attenuates NMDA-induced nociception, hyperalgesia, and morphine tolerance. J Pharmacol Exp Ther 2005; 312:834-40. [PMID: 15388787 DOI: 10.1124/jpet.104.074856] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We determined whether the i.t. administration of an 18-mer phosphodiester antisense oligodeoxynucleotide (ODN) that reduces the expression of the rat NMDAR1 subunit of the N-methyl-d-aspartate (NMDA) receptor would affect nociceptive behaviors and prevent the development of morphine tolerance. Rats received 5 microl of i.t. saline, 30 nM antisense, or mismatch ODN twice a day for 5 days (NMDA-induced nociception, NMDA-induced thermal hyperalgesia, NR1 mRNA, and ligand binding studies) or for 3 days (formalin study). For the tolerance study, 5 days of ODNs or saline were followed by 3 days of concurrent administration of ODNs or saline (twice a day) and i.t. morphine (three times a day). Antisense, but not mismatch, results in the reduction of formalin phase 2 flinching by 50%, the spinal cord dorsal horn levels of NMDAR1 mRNA by 30%, and ligand binding by 50%. The i.t. ED(50) for NMDA-induced nociceptive behaviors is doubled, and thermal hyperalgesia is blocked by antisense treatment. The effects of antisense on NMDA-induced nociception and thermal hyperalgesia are completely reversed by discontinuing antisense. The coadministration of antisense with increasing doses of i.t. morphine for 3 days attenuates the development of morphine tolerance. These results demonstrate that an in vivo antisense targeting of the NMDAR1 subunit results in antihyperalgesic effects and a partial blockade of spinal morphine tolerance. They provide additional support for the critical role of the NMDA receptor in these forms of spinal nociception and in the development of morphine tolerance and suggest the potential therapeutic utility of this approach.
Collapse
Affiliation(s)
- Naohito Shimoyama
- Department of Pharmacology, Weill Medical College of Cornell University, Room LC-524, 1300 York Ave., New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
This paper is the 26th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2003 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology, Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
25
|
Abstract
Opioid receptors belong to the large superfamily of seven transmembrane-spanning (7TM) G protein-coupled receptors (GPCRs). As a class, GPCRs are of fundamental physiological importance mediating the actions of the majority of known neurotransmitters and hormones. Opioid receptors are particularly intriguing members of this receptor family. They are activated both by endogenously produced opioid peptides and by exogenously administered opiate compounds, some of which are not only among the most effective analgesics known but also highly addictive drugs of abuse. A fundamental question in addiction biology is why exogenous opioid drugs, such as morphine and heroin, have a high liability for inducing tolerance, dependence, and addiction. This review focuses on many aspects of opioid receptors with the aim of gaining a greater insight into mechanisms of opioid tolerance and dependence.
Collapse
Affiliation(s)
- Maria Waldhoer
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California 94608, USA.
| | | | | |
Collapse
|