1
|
Gallo MT, Dolci B, Fumagalli F, Brivio P, Calabrese F. Prenatal Fluoxetine Exposure Influences Glucocorticoid Receptor-Mediated Activity in the Prefrontal Cortex of Adolescent Rats Exposed to Acute Stress. ACS Chem Neurosci 2024; 15:1560-1569. [PMID: 38507566 DOI: 10.1021/acschemneuro.3c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Any deviation from the programmed processes of brain development may modify its formation and functions, thereby precipitating pathological conditions, which often become manifest in adulthood. Exposure to a challenge during crucial periods of vulnerability, such as adolescence, may reveal molecular changes preceding behavioral outcomes. Based on a previous study showing that prenatal fluoxetine (FLX) leads to the development of an anhedonic-like behavior in adult rats, we aimed to assess whether the same treatment regimen (i.e., fluoxetine during gestation; 15 mg/kg/day) influences the ability to respond to acute restraint stress (ARS) during adolescence. We subjected the rats to a battery of behavioral tests evaluating the development of various phenotypes (cognitive deficit, anhedonia, and anxiety). Furthermore, we carried out molecular analyses in the plasma and prefrontal cortex, a brain region involved in stress response, and whose functions are commonly altered in neuropsychiatric conditions. Our findings confirm that prenatal manipulation did not affect behavior in adolescent rats but impaired the capability to respond properly to ARS. Indeed, we observed changes in several molecular key players of the hypothalamic pituitary adrenal axis, particularly influencing genomic effects mediated by the glucocorticoid receptor. This study highlights that prenatal FLX exposure influences the ability of adolescent male rats to respond to an acute challenge, thereby altering the functionality of the hypothalamic-pituitary-adrenal axis, and indicates that the prenatal manipulation may prime the response to challenging events during this critical period of life.
Collapse
Affiliation(s)
- Maria Teresa Gallo
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan 20133, Italy
| | - Beatrice Dolci
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan 20133, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan 20133, Italy
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan 20133, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan 20133, Italy
| |
Collapse
|
2
|
The mechanisms underlying montelukast's neuropsychiatric effects - new insights from a combined metabolic and multiomics approach. Life Sci 2022; 310:121056. [DOI: 10.1016/j.lfs.2022.121056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
3
|
Freimer D, Yang TT, Ho TC, Tymofiyeva O, Leung C. The gut microbiota, HPA axis, and brain in adolescent-onset depression: Probiotics as a novel treatment. Brain Behav Immun Health 2022; 26:100541. [PMID: 36536630 PMCID: PMC9758412 DOI: 10.1016/j.bbih.2022.100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022] Open
Abstract
Stress-associated disruptions in the development of frontolimbic regions may play a critical role in the emergence of adolescent-onset depression. These regions are particularly sensitive to Hypothalamic-Pituitary-Adrenal (HPA) axis signaling. The HPA axis is hyperactive in adolescent depression, and interventions that attenuate such hyperactivity hold promise as potential treatments. The Microbiome-Gut-Brain (MGB) axis is an important pathway through which stress dysregulates HPA-axis activity and thus exerts deleterious effects on the adolescent brain. Probiotic agents, which alter the gut microbiota composition by introducing bacterial strains with beneficial physiological effects, normalize aberrant HPA-axis activity and reduce depressive symptoms in both animal studies and adult clinical trials. While the potential utility of such agents in treating or preventing adolescent depression remains largely unexplored, recent data suggest the existence of an adolescent sensitive window during which probiotics may be especially efficacious in reducing depressive symptoms compared to effects observed in adult populations. In this review, we outline evidence that probiotic use may attenuate stress effects on frontolimbic development, providing a novel means of improving depressive symptoms among adolescent populations.
Collapse
Affiliation(s)
- Daniel Freimer
- University of California, San Francisco (UCSF), School of Medicine, USA
| | - Tony T. Yang
- University of California, San Francisco (UCSF), School of Medicine, USA
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, USA
- Division of Child and Adolescent Psychiatry, USA
- The Langley Porter Psychiatric Institute, USA
| | - Tiffany C. Ho
- University of California, San Francisco (UCSF), School of Medicine, USA
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, USA
| | - Olga Tymofiyeva
- University of California, San Francisco (UCSF), School of Medicine, USA
- Department of Radiology and Biomedical Imaging, USA
| | - Cherry Leung
- University of California, San Francisco (UCSF), School of Nursing, Department of Community Health Systems, USA
| |
Collapse
|
4
|
Conley MI, Skalaban LJ, Rapuano KM, Gonzalez R, Laird AR, Dick AS, Sutherland MT, Watts R, Casey B. Altered hippocampal microstructure and function in children who experienced Hurricane Irma. Dev Psychobiol 2021; 63:864-877. [PMID: 33325561 PMCID: PMC8206237 DOI: 10.1002/dev.22071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/31/2020] [Accepted: 11/25/2020] [Indexed: 01/12/2023]
Abstract
Hurricane Irma was the most powerful Atlantic hurricane in recorded history, displacing 6 million and killing over 120 people in the state of Florida alone. Unpredictable disasters like Irma are associated with poor cognitive and health outcomes that can disproportionately impact children. This study examined the effects of Hurricane Irma on the hippocampus and memory processes previously related to unpredictable stress. We used an innovative application of an advanced diffusion-weighted imaging technique, restriction spectrum imaging (RSI), to characterize hippocampal microstructure (i.e., cell density) in 9- to 10-year-old children who were exposed to Hurricane Irma relative to a non-exposed control group (i.e., assessed the year before Hurricane Irma). We tested the hypotheses that the experience of Hurricane Irma would be associated with decreases in: (a) hippocampal cellularity (e.g., neurogenesis), based on known associations between unpredictable stress and hippocampal alterations; and (b) hippocampal-related memory function as indexed by delayed recall. We show an association between decreased hippocampal cellularity and delayed recall memory in children who experienced Hurricane Irma relative to those who did not. These findings suggest an important role of RSI for assessing subtle microstructural changes related to functionally significant changes in the developing brain in response to environmental events.
Collapse
Affiliation(s)
- May I. Conley
- Department of PsychologyYale UniversityNew HavenCTUSA
| | | | | | - Raul Gonzalez
- Department of PsychologyFlorida International UniversityMiamiFLUSA
| | - Angela R. Laird
- Department of PhysicsFlorida International UniversityMiamiFLUSA
| | | | | | - Richard Watts
- Department of PsychologyYale UniversityNew HavenCTUSA
| | - B.J. Casey
- Department of PsychologyYale UniversityNew HavenCTUSA
| |
Collapse
|
5
|
Rouzer SK, Diaz MR. Factors of sex and age dictate the regulation of GABAergic activity by corticotropin-releasing factor receptor 1 in the medial sub-nucleus of the central amygdala. Neuropharmacology 2021; 189:108530. [PMID: 33741404 PMCID: PMC10538372 DOI: 10.1016/j.neuropharm.2021.108530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023]
Abstract
Adolescents are phenotypically characterized with hyper-sensitivity to stress and inappropriate response to stress-inducing events. Despite behavioral distinctions from adults, investigations of developmental shifts in the function of stress peptide corticotropin-releasing factor (CRF) are generally limited. Rodent models have determined that CRF receptor 1 (CRFR1) activation within the central amygdala is associated with a stress response and induces increased GABAergic synaptic neurotransmission within adult males. To investigate age- and sex-specific function of this system, we performed whole-cell patch clamp electrophysiology in brain slices from naive adolescent (postnatal days (P) 40-49) and adult (>P70) male and female Sprague Dawley rats to assess GABAergic activity in the medial central amygdala (CeM). Our results indicate a dynamic influence of age and sex on neuronal excitability within this region, as well as basal spontaneous and miniature (m) inhibitory post-synaptic currents (IPSCs) in the CeM. In addition to replicating prior findings of CRFR1-regulated increases in mIPSC frequency in adult males, we found that the selective CRFR1 agonist, Stressin-1, attenuated mIPSC frequency in adolescent males, at a concentration that did not produce an effect in adult males. Importantly, this age-specific distinction was absent in females, as Stressin-1 attenuated mIPSC frequency in both adolescent and adult females. Finally, an increase in mIPSC frequency in response to the CRF1R antagonist, NBI 35965, was observed only in the CeM of adult males. Together, these data emphasize the robust influence of age and sex on neurophysiological function of a brain region involved in the production of the stress response.
Collapse
Affiliation(s)
- Siara Kate Rouzer
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, 13902, United States; Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, 13902, United States
| | - Marvin R Diaz
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, 13902, United States; Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, 13902, United States.
| |
Collapse
|
6
|
Zhang X, Xun Y, Wang L, Zhang J, Hou W, Ma H, Cai W, Li L, Guo Q, Li Y, Lv Z, Jia R, Tai F, He Z. Involvement of the dopamine system in the effect of chronic social isolation during adolescence on social behaviors in male C57 mice. Brain Res 2021; 1765:147497. [PMID: 33894223 DOI: 10.1016/j.brainres.2021.147497] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/22/2021] [Accepted: 04/18/2021] [Indexed: 01/10/2023]
Abstract
In the early stage of life, experiencing social isolation can generate long-lasting deleterious effects on behaviors and brain development. However, the effects of chronic social isolation during adolescence on social behaviors and its underlying neurobiological mechanisms remain unclear. The present study found that four weeks of social isolation during adolescence impaired social recognition ability in the three-chamber test and five-trial social recognition test, and increased aggressive-like behaviors, but reduced environmental exploration, as showed in the social interaction test. Chronic social isolation decreased levels of dopamine D2 receptor in the shell of the nucleus accumbens (NAcc) and medial prefrontal cortex. It also reduced TH in the NAcc. Using in vivo fiber photometry, it was also found that isolated mice displayed a reduction in NAcc shell activity upon exploring unfamiliar social stimuli. An injection of a 100 ng dose of the D2R agonist quinpirole into the shell of the NAcc reversed behavioral abnormalities induced by chronic social isolation. These data suggest that the dopamine system is involved in alterations in social behaviors induced by chronic social isolation. This finding sheds light on the mechanism underlying abnormalities in social behavior induced by adolescent chronic social isolation and provides a promising target to treat mental diseases relevant to social isolation.
Collapse
Affiliation(s)
- Xueni Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yufeng Xun
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Limin Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Jing Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Huan Ma
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenqi Cai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Laifu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Qianqian Guo
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yitong Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zijian Lv
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Rui Jia
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| | - Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
7
|
Street ME, Sartori C, Catellani C, Righi B. Precocious Puberty and Covid-19 Into Perspective: Potential Increased Frequency, Possible Causes, and a Potential Emergency to Be Addressed. Front Pediatr 2021; 9:734899. [PMID: 34616700 PMCID: PMC8488256 DOI: 10.3389/fped.2021.734899] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/20/2021] [Indexed: 01/01/2023] Open
Abstract
A significant increase in precocious puberty, rapidly progressive puberty and precocious menarche has been reported in Italy since the initial lockdown because of the pandemic, and this could represent a new emergency to be addressed during this pandemic. There is a need, therefore, for further understanding and research. Many causes could account for this. Initially, it was thought that the changes in life-style, in screen time, and sleeping habits could be the cause but if considered individually these are insufficient to explain this phenomenon. Likely, changes in central nervous mediators, and an increase in catecholamines could contribute as a trigger, however, these aspects are poorly studied and understood as well as the real perceptions of these children. Finally, staying more indoors has certainly exposed these children to specific contaminants working as endocrine disruptors which could also have had an effect. It would be of utmost importance to compare this phenomenon worldwide with appropriate studies in order to verify what is happening, and gain a new insight into the consequences of the covid-19 pandemic and into precocious puberty and for future prevention.
Collapse
Affiliation(s)
- Maria E Street
- Division of Pediatric Endocrinology and Diabetology, Unit of Pediatrics, Department of Mother and Child, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Chiara Sartori
- Division of Pediatric Endocrinology and Diabetology, Unit of Pediatrics, Department of Mother and Child, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Cecilia Catellani
- Division of Pediatric Endocrinology and Diabetology, Unit of Pediatrics, Department of Mother and Child, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.,PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Righi
- Division of Pediatric Endocrinology and Diabetology, Unit of Pediatrics, Department of Mother and Child, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
8
|
Sarigecili E, Arslan I, Ucar HK, Celik U. Pediatric anti-NMDA receptor encephalitis associated with COVID-19. Childs Nerv Syst 2021; 37:3919-3922. [PMID: 33852058 PMCID: PMC8045445 DOI: 10.1007/s00381-021-05155-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/01/2021] [Indexed: 01/08/2023]
Abstract
Anti-N-methyl-D-aspartate receptor encephalitis is a clinical condition characterized by acute behavioral and mood changes, abnormal movements, autonomic instability, seizures, and encephalopathy. We describe a 7-year-old boy diagnosed with autoimmune encephalitis due to NMDAR antibody in association with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (coronavirus disease 2019) (COVID-19), without pulmonary involvement or fever. The patient presented with acute ataxia, rapidly developed encephalopathy, and autoimmune encephalitis was suspected. Steroid treatment was withheld because of lymphopenia and intravenous immunoglobulin was started. The absence of clinical response prompted plasmapheresis and, when lymphocyte counts improved, pulse steroid treatment was applied. The latter was followed by significant improvement and the patient was discharged in a conscious and ambulatory state. Autoimmune encephalitis should be considered in the presence of neurological symptoms accompanying SARS-CoV-2 infection and steroid treatment should be preferred unless limited by contraindications.
Collapse
Affiliation(s)
- Esra Sarigecili
- Department of Pediatric Neurology, Adana City Training and Research Hospital, Adana, Turkey
| | - Ilknur Arslan
- Department of Pediatric Intensive Care Unit, Adana City Training and Research Hospital, Adana, Turkey
| | - Habibe Koc Ucar
- Department of Pediatric Neurology, Adana City Training and Research Hospital, Adana, Turkey
| | - Umit Celik
- Department of Pediatric Infectious Diseases, Adana City Training and Research Hospital, Adana, Turkey
| |
Collapse
|
9
|
Rice T, Simon H, Barckak D, Maiyuran H, Chan V, Hassan Y, Tatum J, Coffey BJ. Amantadine for Treatment of Disruptive Mood Dysregulation Disorder Symptoms. J Child Adolesc Psychopharmacol 2019; 29:642-646. [PMID: 31592724 DOI: 10.1089/cap.2019.29172.bjc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Timothy Rice
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hannah Simon
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Danielle Barckak
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Harinee Maiyuran
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Vivian Chan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yonis Hassan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jasmine Tatum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Barbara J Coffey
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
10
|
Music exposure attenuates anxiety- and depression-like behaviors and increases hippocampal spine density in male rats. Behav Brain Res 2019; 372:112023. [DOI: 10.1016/j.bbr.2019.112023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/18/2019] [Accepted: 06/07/2019] [Indexed: 01/14/2023]
|
11
|
Saboory E, Mohammadi S, Dindarian S, Mohammadi H. Prenatal stress and elevated seizure susceptibility: Molecular inheritable changes. Epilepsy Behav 2019; 96:122-131. [PMID: 31132613 DOI: 10.1016/j.yebeh.2019.04.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023]
Abstract
Stressful episodes are common during early-life and may have a wide range of negative effects on both physical and mental status of the offspring. In addition to various neurobehavioral complications induced by prenatal stress (PS), seizure is a common complication with no fully explained cause. In this study, the association between PS and seizure susceptibility was reviewed focusing on sex differences and various underlying mechanisms. The role of drugs in the initiation of seizure and the effects of PS on the nervous system that prone the brain for seizure, especially the hypothalamic-pituitary-adrenal (HPA) axis, are also discussed in detail by reviewing the papers studying the effect of PS on glutamatergic, gamma-aminobutyric acid (GABA)ergic, and adrenergic systems in the context of seizure and epilepsy. Finally, epigenetic changes in epilepsy are described, and the underlying mechanisms of this change are expanded. As the effects of PS may be life-lasting, it is possible to prevent future psychiatric and behavioral disorders including epilepsy by preventing avoidable PS risk factors.
Collapse
Affiliation(s)
- Ehsan Saboory
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| | - Sedra Mohammadi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
| | - Sina Dindarian
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Hozan Mohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Sayed Javad Javaheri ES, Bigdeli MR, Zibaii MI, Dargahi L, Pouretemad HR. Optogenetic Stimulation of the Anterior Cingulate Cortex Ameliorates Autistic-Like Behaviors in Rats Induced by Neonatal Isolation, Caudate Putamen as a Site for Alteration. Neuromolecular Med 2019; 21:132-142. [PMID: 30784006 DOI: 10.1007/s12017-019-08526-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/24/2019] [Indexed: 01/06/2023]
Abstract
Epigenetic agents, such as neonatal isolation during neurodevelopmental period of life, can change various regions of the brain. It may further induce psychological disorders such as autistic-like phenomena. This study indicated the role of chronic increased anterior cingulate cortex (ACC) output on alteration of caudate putamen (CPu) as a main behavior regulator region of the brain in adult maternal deprived (MD) rats. For making an animal model, neonates were isolated from their mothers in postnatal days (PND 1-10, 3 h/day). Subsequently, they bilaterally received pLenti-CaMKIIa-hChR2 (H134R)-mCherry-WPRE virus in ACC area via stereotaxic surgery in PND50. After 22 days, these regions were exposed to blue laser (473 nm) for six consecutive days (15 min/day). Then, behavioral deficits were tested and were compared with control group in the following day. Animals were immediately killed and their brains were prepared for tissue processing. Results showed that neonatal isolation induces autistic-like behaviors and leads to overexpression of NMDAR1 and Nox2-gp91phox proteins and elevation of catalase activity in the CPu regions of the adult offspring compared with control group. Chronic optogenetic stimulation of ACC neurons containing (ChR2+) led to significant reduction in the appearance of stereotypical behavior and alien-phobia in MD rats. The amount of NMDAR1 and Nox2-gp91phox expression and the catalase activity in CPu were reduced after this treatment. Therefore, autistic-like behavior seems to be related with elevation of NMDAR1 and Nox2-gp91phox protein levels that enhance the effect of glutamatergic projection on CPu regions. Optogenetic treatment also could ameliorate behavioral deficits by modulating these protein densities.
Collapse
Affiliation(s)
- Elham Sadat Sayed Javad Javaheri
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, IR, Iran
| | - Mohammad Reza Bigdeli
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, IR, Iran.
- Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran.
| | | | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
13
|
Genty J, Tetsi Nomigni M, Anton F, Hanesch U. The combination of postnatal maternal separation and social stress in young adulthood does not lead to enhanced inflammatory pain sensitivity and depression-related behavior in rats. PLoS One 2018; 13:e0202599. [PMID: 30142161 PMCID: PMC6108470 DOI: 10.1371/journal.pone.0202599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/19/2018] [Indexed: 11/19/2022] Open
Abstract
The cumulative and match/mismatch hypotheses of stress are still under discussion regarding the effects of early life stress (ELS) on the vulnerability or resilience to psychopathology. In this context, an additional stress in later life (second hit) often leads to stress-related disorders that frequently include comorbid pain states. We previously observed that maternal separation (MS), a model of ELS, reduces vulnerability to neuropathic and inflammatory pain in rats. In the present study, we investigated the effects of an additional later stressor on the vulnerability to inflammatory pain. Sprague Dawley pups were divided into 4 groups: controls (CON, no stress), MS, social stress (SS) and MS+SS. At young adult age (from 7 to 15 weeks), stress- as well as pain-related parameters were evaluated prior and during 21 days following the induction of paw inflammation with complete Freund's adjuvant (CFA). Finally spinal glutamatergic transmission, immunocompetent cells, pro-inflammatory cytokines and growth factors were examined using qPCR. None of the stress conditions had a significant impact on corticosterone levels and anhedonia. In the forced swim test, MS and SS displayed increased passive coping whereas the combination of both stressors revoked this effect. The different stress conditions had no influence on basal mechanical thresholds and heat sensitivity. At 4 days post-inflammation all stress groups displayed lower mechanical thresholds than CON but the respective values were comparable at 7, 10, and 14 days. Only on day 21, MS rats were more sensitive to mechanical stimulation compared to the other groups. Regarding noxious heat sensitivity, MS+SS animals were significantly less sensitive than CON at 10 and 21 days after CFA-injection. qPCR results were mitigated. Despite the finding that stress conditions differentially affected different players of glutamatergic transmission, astrocyte activity and NGF expression, our biochemical results could not readily be related to the behavioral observations, precluding a congruent conclusion. The present results do neither confirm the cumulative nor corroborate or disprove the match/mismatch hypothesis.
Collapse
Affiliation(s)
- Julien Genty
- Research group Stress, Pain and Pain Modulation, Institute for Health and Behavior, University of Luxembourg, Luxembourg, Luxembourg
- * E-mail:
| | - Milène Tetsi Nomigni
- Research group Stress, Pain and Pain Modulation, Institute for Health and Behavior, University of Luxembourg, Luxembourg, Luxembourg
| | - Fernand Anton
- Research group Stress, Pain and Pain Modulation, Institute for Health and Behavior, University of Luxembourg, Luxembourg, Luxembourg
| | - Ulrike Hanesch
- Research group Stress, Pain and Pain Modulation, Institute for Health and Behavior, University of Luxembourg, Luxembourg, Luxembourg
| |
Collapse
|
14
|
Early-life and pubertal stress differentially modulate grey matter development in human adolescents. Sci Rep 2018; 8:9201. [PMID: 29907813 PMCID: PMC6003940 DOI: 10.1038/s41598-018-27439-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/30/2018] [Indexed: 12/23/2022] Open
Abstract
Animal and human studies have shown that both early-life traumatic events and ongoing stress episodes affect neurodevelopment, however, it remains unclear whether and how they modulate normative adolescent neuro-maturational trajectories. We characterized effects of early-life (age 0-5) and ongoing stressors (age 14-17) on longitudinal changes (age 14 to17) in grey matter volume (GMV) of healthy adolescents (n = 37). Timing and stressor type were related to differential GMV changes. More personal early-life stressful events were associated with larger developmental reductions in GMV over anterior prefrontal cortex, amygdala and other subcortical regions; whereas ongoing stress from the adolescents' social environment was related to smaller reductions over the orbitofrontal and anterior cingulate cortex. These findings suggest that early-life stress accelerates pubertal development, whereas an adverse adolescent social environment disturbs brain maturation with potential mental health implications: delayed anterior cingulate maturation was associated with more antisocial traits - a juvenile precursor of psychopathy.
Collapse
|
15
|
Masrour FF, Peeri M, Azarbayjani MA, Hosseini MJ. Voluntary Exercise During Adolescence Mitigated Negative the Effects of Maternal Separation Stress on the Depressive-Like Behaviors of Adult Male Rats: Role of NMDA Receptors. Neurochem Res 2018; 43:1067-1074. [PMID: 29616445 DOI: 10.1007/s11064-018-2519-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/19/2018] [Accepted: 03/26/2018] [Indexed: 10/17/2022]
Abstract
Evidence indicates that experiencing early-life stress (ELS) is a risk factor for the development of mental disorders such as depression. Maternal separation stress (MS) is a valid animal model of ELS that caused to induce long-lasting effects on the brain and behaviors of animals. It hypothesized that adolescence is a critical stage in which the brain is still developing, and applying (non)pharmacological therapies in this period may attenuate the effects of ELS on the brain and behavior. Male rats were subjected to MS from postnatal day (PND) 2-14, and the stressed animals were then treated with (1) chronic fluoxetine (FLX) (5 mg/kg) and (2) voluntary running wheel exercise (RW) from PND 30, for 30 days. Then, we subjected the animals to behavioral and molecular assessments at PND 60. Our data showed that MS provoked depressive-like behaviors in rats, tested by the forced swimming test, splash test, and sucrose preference test. Additionally, we found that MS increased the gene expression of the NR2A (and not NR2B) subunit of N-methyl-D-aspartate (NMDA) receptors in the hippocampus of adult rats. Both FLX and RW treatments during adolescence were able to mitigate the negative effects of ELS on stressed animals. These results highlighted the importance of adolescence in treating stressed animals with FLX/voluntary RW exercise to alleviate the depressive effects of ELS. In addition, we found that ELS altered the transcriptional level of Grin2a (and not Grin2b) in the hippocampus. Finally, our results showed that FLX/voluntary RW exercise during adolescence could normalize altered expression of Grin2a in the hippocampus of adult rats.
Collapse
Affiliation(s)
- Forouzan Fattahi Masrour
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, P.O. Box: 1465613111, Tehran, Iran
| | - Maghsoud Peeri
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, P.O. Box: 1465613111, Tehran, Iran.
| | - Mohammad Ali Azarbayjani
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, P.O. Box: 1465613111, Tehran, Iran
| | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
16
|
Claflin DI, Schmidt KD, Vallandingham ZD, Kraszpulski M, Hennessy MB. Influence of postnatal glucocorticoids on hippocampal-dependent learning varies with elevation patterns and administration methods. Neurobiol Learn Mem 2017; 143:77-87. [PMID: 28545908 DOI: 10.1016/j.nlm.2017.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 11/17/2022]
Abstract
Recent interest in the lasting effects of early-life stress has expanded to include effects on cognitive performance. An increase in circulating glucocorticoids is induced by stress exposure and glucocorticoid effects on the hippocampus likely underlie many of the cognitive consequences. Here we review studies showing that corticosterone administered to young rats at the conclusion of the stress-hyporesponsiveness period affects later performance in hippocampally-mediated trace eyeblink conditioning. The nature and even direction of these effects varies with the elevation patterns (level, duration, temporal fluctuation) achieved by different administration methods. We present new time course data indicating that constant glucocorticoid elevations generally corresponded with hippocampus-mediated learning deficits, whereas acute, cyclical elevations corresponded with improved initial acquisition. Sensitivity was greater for males than for females. Further, changes in hippocampal neurogenesis paralleled some but not all effects. The findings demonstrate that specific patterns of glucocorticoid elevation produced by different drug administration procedures can have markedly different, sex-specific consequences on basic cognitive performance and underlying hippocampal physiology. Implications of these findings for glucocorticoid medications prescribed in childhood are discussed.
Collapse
Affiliation(s)
- Dragana I Claflin
- Department of Psychology, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| | - Kevin D Schmidt
- Department of Psychology, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA; Applied Neuroscience Branch, Air Force Research Laboratory, 2510 Fifth St., Wright-Patterson AFB, OH 45433, USA.
| | - Zachary D Vallandingham
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| | - Michal Kraszpulski
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| | - Michael B Hennessy
- Department of Psychology, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| |
Collapse
|
17
|
Peri-adolescent asthma symptoms cause adult anxiety-related behavior and neurobiological processes in mice. Behav Brain Res 2017; 326:244-255. [PMID: 28284954 DOI: 10.1016/j.bbr.2017.02.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 12/29/2022]
Abstract
Human and animal studies have shown that physical challenges and stressors during adolescence can have significant influences on behavioral and neurobiological development associated with internalizing disorders such as anxiety and depression. Given the prevalence of asthma during adolescence and increased rates of internalizing disorders in humans with asthma, we used a mouse model to test if and which symptoms of adolescent allergic asthma (airway inflammation or labored breathing) cause adult anxiety- and depression-related behavior and brain function. To mimic symptoms of allergic asthma in young BALB/cJ mice (postnatal days [P] 7-57; N=98), we induced lung inflammation with repeated intranasal administration of house dust mite extract (most common aeroallergen for humans) and bronchoconstriction with aerosolized methacholine (non-selective muscarinic receptor agonist). Three experimental groups, in addition to a control group, included: (1) "Airway inflammation only", allergen exposure 3 times/week, (2) "Labored breathing only", methacholine exposure once/week, and (3) "Airway inflammation+Labored breathing", allergen and methacholine exposure. Compared to controls, mice that experienced methacholine-induced labored breathing during adolescence displayed a ∼20% decrease in time on open arms of the elevated plus maze in early adulthood (P60), a ∼30% decrease in brainstem serotonin transporter (SERT) mRNA expression and a ∼50% increase in hippocampal serotonin receptor 1a (5Htr1a) and corticotropin releasing hormone receptor 1 (Crhr1) expression in adulthood (P75). This is the first evidence that experimentally-induced clinical symptoms of adolescent asthma alter adult anxiety-related behavior and brain function several weeks after completion of asthma manipulations.
Collapse
|
18
|
McCormick CM, Green MR, Simone JJ. Translational relevance of rodent models of hypothalamic-pituitary-adrenal function and stressors in adolescence. Neurobiol Stress 2017; 6:31-43. [PMID: 28229107 PMCID: PMC5314422 DOI: 10.1016/j.ynstr.2016.08.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/18/2016] [Accepted: 08/20/2016] [Indexed: 12/27/2022] Open
Abstract
Elevations in glucocorticoids that result from environmental stressors can have programming effects on brain structure and function when the exposure occurs during sensitive periods that involve heightened neural development. In recent years, adolescence has gained increasing attention as another sensitive period of development, a period in which pubertal transitions may increase the vulnerability to stressors. There are similarities in physical and behavioural development between humans and rats, and rats have been used effectively as an animal model of adolescence and the unique plasticity of this period of ontogeny. This review focuses on benefits and challenges of rats as a model for translational research on hypothalamic-pituitary-adrenal (HPA) function and stressors in adolescence, highlighting important parallels and contrasts between adolescent rats and humans, and we review the main stress procedures that are used in investigating HPA stress responses and their consequences in adolescence in rats. We conclude that a greater focus on timing of puberty as a factor in research in adolescent rats may increase the translational relevance of the findings.
Collapse
Affiliation(s)
- Cheryl M. McCormick
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Matthew R. Green
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Jonathan J. Simone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| |
Collapse
|
19
|
Long-term effects of repeated maternal separation and ethanol intake on HPA axis responsiveness in adult rats. Brain Res 2017; 1657:193-201. [DOI: 10.1016/j.brainres.2016.11.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 11/10/2016] [Accepted: 11/30/2016] [Indexed: 01/23/2023]
|
20
|
Raghavan NS, Chen H, Schipma M, Luo W, Chung S, Wang L, Redei EE. Prepubertal Ovariectomy Exaggerates Adult Affective Behaviors and Alters the Hippocampal Transcriptome in a Genetic Rat Model of Depression. Front Endocrinol (Lausanne) 2017; 8:373. [PMID: 29403433 PMCID: PMC5786888 DOI: 10.3389/fendo.2017.00373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/19/2017] [Indexed: 11/13/2022] Open
Abstract
Major depressive disorder (MDD) is a debilitating illness that affects twice as many women than men postpuberty. This female bias is thought to be caused by greater heritability of MDD in women and increased vulnerability induced by female sex hormones. We tested this hypothesis by removing the ovaries from prepubertal Wistar Kyoto (WKY) more immobile (WMI) females, a genetic animal model of depression, and its genetically close control, the WKY less immobile (WLI). In adulthood, prepubertally ovariectomized (PrePubOVX) animals and their Sham-operated controls were tested for depression- and anxiety-like behaviors, using the routinely employed forced swim and open field tests, respectively, and RNA-sequencing was performed on their hippocampal RNA. Our results confirmed that the behavioral and hippocampal expression changes that occur after prepubertal ovariectomy are the consequences of an interaction between genetic predisposition to depressive behavior and ovarian hormone-regulated processes. Lack of ovarian hormones during and after puberty in the WLIs led to increased depression-like behavior. In WMIs, both depression- and anxiety-like behaviors worsened by prepubertal ovariectomy. The unbiased exploration of the hippocampal transcriptome identified sets of differentially expressed genes (DEGs) between the strains and treatment groups. The relatively small number of hippocampal DEGs resulting from the genetic differences between the strains confirmed the genetic relatedness of these strains. Nevertheless, the differences in DEGs between the strains in response to prepubertal ovariectomy identified different molecular processes, including the importance of glucocorticoid receptor-mediated mechanisms, that may be causative of the increased depression-like behavior in the presence or absence of genetic predisposition. This study contributes to the understanding of hormonal maturation-induced changes in affective behaviors and the hippocampal transcriptome as it relates to genetic predisposition to depression.
Collapse
Affiliation(s)
- Neha S. Raghavan
- The Asher Center for the Study & Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hao Chen
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Matthew Schipma
- Next-Generation Sequencing Core Facility, Northwestern University, Chicago, IL, United States
| | - Wendy Luo
- The Asher Center for the Study & Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Sarah Chung
- The Asher Center for the Study & Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eva E. Redei
- The Asher Center for the Study & Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- *Correspondence: Eva E. Redei,
| |
Collapse
|
21
|
Romeo RD. The impact of stress on the structure of the adolescent brain: Implications for adolescent mental health. Brain Res 2017; 1654:185-191. [DOI: 10.1016/j.brainres.2016.03.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
|
22
|
Novick AM, Mears M, Forster GL, Lei Y, Tejani-Butt SM, Watt MJ. Adolescent social defeat alters N-methyl-D-aspartic acid receptor expression and impairs fear learning in adulthood. Behav Brain Res 2016; 304:51-9. [PMID: 26876136 PMCID: PMC4795455 DOI: 10.1016/j.bbr.2016.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/27/2016] [Accepted: 02/08/2016] [Indexed: 11/19/2022]
Abstract
Repeated social defeat of adolescent male rats results in adult mesocortical dopamine hypofunction, impaired working memory, and increased contextual anxiety-like behavior. Given the role of glutamate in dopamine regulation, cognition, and fear and anxiety, we investigated potential changes to N-methyl-D-aspartic acid (NMDA) receptors following adolescent social defeat. As both NMDA receptors and mesocortical dopamine are implicated in the expression and extinction of conditioned fear, a separate cohort of rats was challenged with a classical fear conditioning paradigm to investigate whether fear learning is altered by adolescent defeat. Quantitative autoradiography was used to measure 3H-MK-801 binding to NMDA receptors in regions of the medial prefrontal cortex, caudate putamen, nucleus accumbens, amygdala and hippocampus. Assessment of fear learning was achieved using an auditory fear conditioning paradigm, with freezing toward the auditory tone used as a measure of conditioned fear. Compared to controls, adolescent social defeat decreased adult NMDA receptor expression in the infralimbic region of the prefrontal cortex and central amygdala, while increasing expression in the CA3 region of the hippocampus. Previously defeated rats also displayed decreased conditioned freezing during the recall and first extinction periods, which may be related to the observed decreases and increases in NMDA receptors within the central amygdala and CA3, respectively. The alteration in NMDA receptors seen following adolescent social defeat suggests that dysfunction of glutamatergic systems, combined with mesocortical dopamine deficits, likely plays a role in the some of the long-term behavioral consequences of social stressors in adolescence seen in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Andrew M Novick
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA.
| | - Mackenzie Mears
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
| | - Gina L Forster
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
| | - Yanlin Lei
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, 600 S 43rd St., Philadelphia, PA 19104, USA
| | - Shanaz M Tejani-Butt
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, 600 S 43rd St., Philadelphia, PA 19104, USA
| | - Michael J Watt
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
| |
Collapse
|
23
|
Chaby LE, Cavigelli SA, Hirrlinger AM, Lim J, Warg KM, Braithwaite VA. Chronic Stress During Adolescence Impairs and Improves Learning and Memory in Adulthood. Front Behav Neurosci 2015; 9:327. [PMID: 26696849 PMCID: PMC4675857 DOI: 10.3389/fnbeh.2015.00327] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
HIGHLIGHTS This study tested the effects of adolescent-stress on adult learning and memory.Adolescent-stressed rats had enhanced reversal learning compared to unstressed rats.Adolescent-stress exposure made working memory more vulnerable to disturbance.Adolescent-stress did not affect adult associative learning or reference memory. Exposure to acute stress can cause a myriad of cognitive impairments, but whether negative experiences continue to hinder individual as they age is not as well understood. We determined how chronic unpredictable stress during adolescence affects multiple learning and memory processes in adulthood. Using male Sprague Dawley rats, we measured learning (both associative and reversal) and memory (both reference and working) starting 110 days after completion of an adolescent-stress treatment. We found that adolescent-stress affected adult cognitive abilities in a context-dependent way. Compared to rats reared without stress, adolescent-stressed rats exhibited enhanced reversal learning, an indicator of behavioral flexibility, but showed no change in associative learning and reference memory abilities. Working memory, which in humans is thought to underpin reasoning, mathematical skills, and reading comprehension, may be enhanced by exposure to adolescent-stress. However, when adolescent-stressed animals were tested after a novel disturbance, they exhibited a 5-fold decrease in working memory performance while unstressed rats continued to exhibit a linear learning curve. These results emphasize the capacity for stress during adolescence to transform the cognitive abilities of adult animals, even after stress exposure has ceased and animals have resided in safe environments for the majority of their lifespans.
Collapse
Affiliation(s)
- Lauren E Chaby
- Center for Brain, Behavior, and Cognition, Pennsylvania State University University Park, PA, USA ; Department of Ecosystem Science and Management, Pennsylvania State University University Park, PA, USA ; Institute of the Neurosciences, The Huck Institutes of the Life Sciences, Pennsylvania State University University Park, PA, USA
| | - Sonia A Cavigelli
- Center for Brain, Behavior, and Cognition, Pennsylvania State University University Park, PA, USA ; Institute of the Neurosciences, The Huck Institutes of the Life Sciences, Pennsylvania State University University Park, PA, USA ; Department of Biobehavioral Health, Pennsylvania State University University Park, PA, USA
| | - Amy M Hirrlinger
- Center for Brain, Behavior, and Cognition, Pennsylvania State University University Park, PA, USA
| | - James Lim
- Center for Brain, Behavior, and Cognition, Pennsylvania State University University Park, PA, USA
| | - Kendall M Warg
- Veterinary and Biomedical Sciences, Pennsylvania State University University Park, PA, USA
| | - Victoria A Braithwaite
- Center for Brain, Behavior, and Cognition, Pennsylvania State University University Park, PA, USA ; Department of Ecosystem Science and Management, Pennsylvania State University University Park, PA, USA ; Institute of the Neurosciences, The Huck Institutes of the Life Sciences, Pennsylvania State University University Park, PA, USA ; Department of Biology, Pennsylvania State University University Park, PA, USA
| |
Collapse
|
24
|
Romeo RD. Perspectives on stress resilience and adolescent neurobehavioral function. Neurobiol Stress 2015; 1:128-33. [PMID: 27589663 PMCID: PMC4721430 DOI: 10.1016/j.ynstr.2014.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/02/2014] [Indexed: 11/19/2022] Open
Abstract
Interest in adolescence as a crucial stage of neurobehavioral maturation is growing, as is the concern of how stress may perturb this critical period of development. Though it is well recognized that stress-related vulnerabilities increase during adolescence, not all adolescent individuals are uniformly affected by stress nor do stressful experiences inevitability lead to negative outcomes. Indeed, many adolescents show resilience to stress-induced dysfunctions. However, relatively little is known regarding the mechanisms that may mediate resilience to stress in adolescence. The goal of this brief review is to bring together a few separate, yet related lines of research that highlight specific variables that may influence stress resilience during adolescence, including early life programming of the hypothalamic-pituitary-adrenal (HPA) axis, stress inoculation, and genetic predisposition. Though we are far from a clear understanding of the factors that mediate resistance to stress-induced dysfunctions, it is imperative that we identify and delineate these aspects of resilience to help adolescents reach their full potential, even in the face of adversity.
Collapse
Affiliation(s)
- Russell D. Romeo
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York, NY 10027, USA
| |
Collapse
|
25
|
Stress and the city: impact of urban upbringing on the (re)activity of the hypothalamus-pituitary-adrenal axis. Psychosom Med 2014; 76:678-85. [PMID: 25333499 DOI: 10.1097/psy.0000000000000113] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Urbanization is a major challenge for the 21st century with a significant impact on health; mental health, in particular, can be negatively affected. The mechanisms linking urban living to psychopathology, however, remain unclear. We tested the hypothesis that urban upbringing may alter the activity of the hypothalamus-pituitary-adrenal (HPA) axis, one of the body's major stress response systems. METHODS In three independent experiments (n = 248 in total), we measured the changes in cortisol, the end-product of the HPA axis, in response to different stress tasks (memory recall with critical social evaluation [Experiment 1] or Socially Evaluated Cold Pressor Test [Experiment 2] and to awakening in participants raised in cities or more rural areas. RESULTS Urban upbringing was associated with elevated cortisol responses to acute stress (task × time point of measurement × urbanicity interaction: F(2,132) = 3.10 [p = .048] in Experiment 1 and F(2,112) = 3.29 [p = .041] in Experiment 2) but with a blunted cortisol awakening response (time point of measurement × urbanicity interaction: F(1,114) = 4.00, p = .048). The autonomic stress response, as indicated by blood pressure measurements, was not affected by urban upbringing. Moreover, current city living was not associated with any changes in the physiological responses to stress or awakening. CONCLUSIONS Our findings suggest that urban upbringing changes the (re)activity of the HPA axis. Given that changes in HPA axis regulation have been associated with several psychiatric disorders, this may represent a mechanism that contributes to the increased risk for psychopathology in urban populations.
Collapse
|
26
|
Chohan TW, Nguyen A, Todd SM, Bennett MR, Callaghan P, Arnold JC. Partial genetic deletion of neuregulin 1 and adolescent stress interact to alter NMDA receptor binding in the medial prefrontal cortex. Front Behav Neurosci 2014; 8:298. [PMID: 25324742 PMCID: PMC4179617 DOI: 10.3389/fnbeh.2014.00298] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 08/13/2014] [Indexed: 02/02/2023] Open
Abstract
Schizophrenia is thought to arise due to a complex interaction between genetic and environmental factors during early neurodevelopment. We have recently shown that partial genetic deletion of the schizophrenia susceptibility gene neuregulin 1 (Nrg1) and adolescent stress interact to disturb sensorimotor gating, neuroendocrine activity and dendritic morphology in mice. Both stress and Nrg1 may have converging effects upon N-methyl-D-aspartate receptors (NMDARs) which are implicated in the pathogenesis of schizophrenia, sensorimotor gating and dendritic spine plasticity. Using an identical repeated restraint stress paradigm to our previous study, here we determined NMDAR binding across various brain regions in adolescent Nrg1 heterozygous (HET) and wild-type (WT) mice using [3H] MK-801 autoradiography. Repeated restraint stress increased NMDAR binding in the ventral part of the lateral septum (LSV) and the dentate gyrus (DG) of the hippocampus irrespective of genotype. Partial genetic deletion of Nrg1 interacted with adolescent stress to promote an altered pattern of NMDAR binding in the infralimbic (IL) subregion of the medial prefrontal cortex. In the IL, whilst stress tended to increase NMDAR binding in WT mice, it decreased binding in Nrg1 HET mice. However, in the DG, stress selectively increased the expression of NMDAR binding in Nrg1 HET mice but not WT mice. These results demonstrate a Nrg1-stress interaction during adolescence on NMDAR binding in the medial prefrontal cortex.
Collapse
Affiliation(s)
- Tariq W Chohan
- The Brain and Mind Research Institute, University of Sydney Sydney, NSW, Australia ; Discipline of Pharmacology, School of Medical Science, University of Sydney Sydney, NSW, Australia
| | - An Nguyen
- The Brain and Mind Research Institute, University of Sydney Sydney, NSW, Australia ; ANSTO LifeSciences, Australian Nuclear Science and Technology Organisation Sydney, NSW, Australia
| | - Stephanie M Todd
- The Brain and Mind Research Institute, University of Sydney Sydney, NSW, Australia ; Discipline of Pharmacology, School of Medical Science, University of Sydney Sydney, NSW, Australia
| | - Maxwell R Bennett
- The Brain and Mind Research Institute, University of Sydney Sydney, NSW, Australia
| | - Paul Callaghan
- The Brain and Mind Research Institute, University of Sydney Sydney, NSW, Australia ; ANSTO LifeSciences, Australian Nuclear Science and Technology Organisation Sydney, NSW, Australia
| | - Jonathon C Arnold
- The Brain and Mind Research Institute, University of Sydney Sydney, NSW, Australia ; Discipline of Pharmacology, School of Medical Science, University of Sydney Sydney, NSW, Australia
| |
Collapse
|
27
|
Morrison KE, Rodgers AB, Morgan CP, Bale TL. Epigenetic mechanisms in pubertal brain maturation. Neuroscience 2014; 264:17-24. [PMID: 24239720 PMCID: PMC3959229 DOI: 10.1016/j.neuroscience.2013.11.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/25/2013] [Accepted: 11/06/2013] [Indexed: 01/21/2023]
Abstract
Puberty is a critical period of development during which the reemergence of gonadotropin-releasing hormone secretion from the hypothalamus triggers a cascade of hormone-dependent processes. Maturation of specific brain regions including the prefrontal cortex occurs during this window, but the complex mechanisms underlying these dynamic changes are not well understood. Particularly, the potential involvement of epigenetics in this programming has been under-examined. The epigenome is known to guide earlier stages of development, and it is similarly poised to regulate vital pubertal-driven brain maturation. Further, as epigenetic machinery is highly environmentally responsive, its involvement may also lend this period of growth to greater vulnerability to external insults, resulting in reprogramming and increased disease risk. Importantly, neuropsychiatric diseases commonly present in individuals during or immediately following puberty, and environmental perturbations including stress may precipitate disease onset by disrupting the normal trajectory of pubertal brain development via epigenetic mechanisms. In this review, we discuss epigenetic processes involved in pubertal brain maturation, the potential points of derailment, and the importance of future studies for understanding this dynamic developmental window and gaining a better understanding of neuropsychiatric disease risk.
Collapse
Affiliation(s)
- K E Morrison
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, United States.
| | - A B Rodgers
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, United States
| | - C P Morgan
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, United States
| | - T L Bale
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, United States
| |
Collapse
|
28
|
Koe AS, Salzberg MR, Morris MJ, O'Brien TJ, Jones NC. Early life maternal separation stress augmentation of limbic epileptogenesis: the role of corticosterone and HPA axis programming. Psychoneuroendocrinology 2014; 42:124-33. [PMID: 24636509 DOI: 10.1016/j.psyneuen.2014.01.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/12/2014] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
Early life stress causes long-lasting effects on the limbic system that may be relevant to the development of mesial temporal lobe epilepsy (MTLE) and its associated psychopathology. Recent studies in rats suggest that maternal separation (MS), a model of early life stress, confers enduring vulnerability to amygdala kindling limbic epileptogenesis. However, the mechanisms underlying this remain unknown. Here, we tested whether hypothalamic-pituitary-adrenal (HPA) axis hyper-reactivity induced by MS - specifically the excessive secretion of corticosterone following a seizure - was involved in this vulnerability. In adult female rats subjected to MS from postnatal days 2-14, seizure-induced corticosterone responses were significantly augmented and prolonged for at least two hours post-seizure, compared to control early-handled (EH) rats. This was accompanied by reduced seizure threshold (p<0.05) and increased vulnerability to the kindling-induced progression of seizure duration (p<0.05) in MS rats. Pre-seizure treatment with the corticosterone synthesis inhibitor, metyrapone (MET) (50mg/kgsc) effectively blocked seizure-induced corticosterone responses. When delivered throughout kindling, MET treatment also reversed the MS-induced reduction in seizure threshold and the lengthened seizure duration back to levels of EH rats. These observations suggest that adverse early life environments induce a vulnerability to kindling epileptogenesis mediated by HPA axis hyper-reactivity, which could have relevance for the pathogenesis of MTLE.
Collapse
Affiliation(s)
- Amelia S Koe
- Department of Medicine, Royal Melbourne Hospital, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Michael R Salzberg
- St Vincent's Mental Health Service, St Vincent's Hospital, Fitzroy, VIC, Australia; Department of Psychiatry, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Margaret J Morris
- Department of Pharmacology, University of New South Wales, Sydney, NSW, Australia
| | - Terence J O'Brien
- Department of Medicine, Royal Melbourne Hospital, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia; Department of Neurology, University of Melbourne, Parkville, VIC, Australia
| | - Nigel C Jones
- Department of Medicine, Royal Melbourne Hospital, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
29
|
Tavassoli E, Saboory E, Teshfam M, Rasmi Y, Roshan‐Milani S, Ilkhanizadeh B, Hesari AK. Effect of prenatal stress on density of NMDA receptors in rat brain. Int J Dev Neurosci 2013; 31:790-5. [DOI: 10.1016/j.ijdevneu.2013.09.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 11/15/2022] Open
Affiliation(s)
- Elham Tavassoli
- Faculty of Veterinary SciencesIslamic Azad University, Science and Research CampusTehranIran
| | - Ehsan Saboory
- Neurophysiology Research CenterUrmia University of Medical SciencesUrmiaIran
| | - Masood Teshfam
- Department of Physiology, Faculty of Veterinary SciencesIslamic Azad University, Science and Research CampusTehranIran
| | - Yusef Rasmi
- Department of BiochemistryFaculty of MedicineUrmia University of Medical SciencesUrmiaIran
| | - Shiva Roshan‐Milani
- Neurophysiology Research CenterUrmia University of Medical SciencesUrmiaIran
| | - Behrooz Ilkhanizadeh
- Department of PathologyFaculty of MedicineUrmia University of Medical SciencesUrmiaIran
| | - Ali Kalantari Hesari
- Department of Histology, Faculty of Veterinary SciencesUrmia UniversityUrmiaIran
| |
Collapse
|
30
|
Romeo RD. The Teenage Brain: The Stress Response and the Adolescent Brain. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2013; 22:140-145. [PMID: 25541572 DOI: 10.1177/0963721413475445] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Adolescence is a time of many psychosocial and physiological changes. One such change is how an individual responds to stressors. Specifically, adolescence is marked by significant shifts in hypothalamic-pituitary-adrenal (HPA) axis reactivity, resulting in heightened stress-induced hormonal responses. It is presently unclear what mediates these changes in stress reactivity and what impacts they may have on an adolescent individual. However, stress-sensitive limbic and cortical brain areas that continue to mature during adolescence may be particularly vulnerable to these shifts in responsiveness. Consequently, perturbations of the maturing adolescent brain may contribute to the increase in stress-related psychological dysfunctions, such as anxiety, depression, and drug abuse, often observed during this stage of development. The purpose of this review is to describe the changes that occur in HPA function during adolescence, as well as briefly discuss the possible ramifications of these changes on the developing brain and psychological health.
Collapse
Affiliation(s)
- Russell D Romeo
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York, NY 10027
| |
Collapse
|
31
|
Eiland L, Romeo RD. Stress and the developing adolescent brain. Neuroscience 2012; 249:162-71. [PMID: 23123920 DOI: 10.1016/j.neuroscience.2012.10.048] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/22/2012] [Accepted: 10/24/2012] [Indexed: 01/16/2023]
Abstract
Adolescence is a time of continued brain maturation, particularly in limbic and cortical regions, which undoubtedly plays a role in the physiological and emotional changes coincident with adolescence. An emerging line of research has indicated that stressors experienced during this crucial developmental stage may affect the trajectory of this neural maturation and contribute to the increase in psychological morbidities, such as anxiety and depression, often observed during adolescence. In this review, we discuss the short- and long-term effects of periadolescent stress exposure on the structure and function of the brain. More specifically, we examine how stress at prepubertal and early adolescent stages of development affects the morphological plasticity of limbic and cortical brain regions, as well as the enduring effects of adolescent stress exposure on these brain regions in adulthood. We suggest that, due to a number of converging factors during this period of maturation, the adolescent brain may be particularly sensitive to stress-induced neurobehavioral dysfunctions with important consequences on an individual's immediate and long-term health and well-being.
Collapse
Affiliation(s)
- L Eiland
- Laboratory of Neuroendocrinology, Rockefeller University, New York, NY 10065, United States
| | | |
Collapse
|
32
|
Aiello G, Horowitz M, Hepgul N, Pariante CM, Mondelli V. Stress abnormalities in individuals at risk for psychosis: a review of studies in subjects with familial risk or with "at risk" mental state. Psychoneuroendocrinology 2012; 37:1600-13. [PMID: 22663896 DOI: 10.1016/j.psyneuen.2012.05.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/08/2012] [Accepted: 05/11/2012] [Indexed: 01/17/2023]
Abstract
Increased sensitivity to stress is known to play an important role in the transition to first episode psychosis (FEP). Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, and, in general, an increased sensitivity to stress, have been hypothesised to be components of the vulnerability to psychosis, but whether these abnormalities are already present before the onset of psychosis has not yet been systematically reviewed. Here we have reviewed all studies examining psychological and biological markers of the stress response in the relatives of psychotic patients and in individuals at Ultra High Risk (UHR) for psychosis. In relatives, there is evidence of increased sensitivity to stress, as shown by increased emotional reactivity to daily life stress, increased adrenocorticotropic hormone (ACTH) in response to stress, increased pituitary volume and reduced hippocampal volume. However, evidence of increased cortisol levels is less consistent. On the other hand, subjects who experience attenuated psychotic symptoms show increased cortisol levels as well as increased pituitary and reduced hippocampal volumes. Moreover, this HPA axis hyperactivity seems to be even greater among those individuals who subsequently develop frank psychosis. In summary, an enhanced HPA axis response to stress appears to be part of the biological vulnerability to psychosis which is present prior to the onset of psychosis. A further increase in cortisol levels during the transition to FEP suggests the presence of an additive factor, possibly environmental, at this stage of the illness. Possible causes and consequences of HPA axis impairment in risk for psychosis are discussed.
Collapse
Affiliation(s)
- Giuliano Aiello
- King's College London, Institute of Psychiatry, Department of Psychological Medicine, London, UK
| | | | | | | | | |
Collapse
|
33
|
Taylor SB, Taylor AR, Koenig JI. The interaction of disrupted type II neuregulin 1 and chronic adolescent stress on adult anxiety- and fear-related behaviors. Neuroscience 2012; 249:31-42. [PMID: 23022220 DOI: 10.1016/j.neuroscience.2012.09.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/15/2012] [Accepted: 09/19/2012] [Indexed: 01/11/2023]
Abstract
The incidence of anxiety, mood, substance abuse disorders and schizophrenia increases during adolescence. Epidemiological evidence confirms that exposure to stress during sensitive periods of development can create vulnerabilities that put genetically predisposed individuals at increased risk for psychiatric disorders. Neuregulin 1 (NRG1) is a frequently identified schizophrenia susceptibility gene that has also been associated with the psychotic features of bipolar disorder. Previously, we established that Type II NRG1 is expressed in the hypothalamic-pituitary-adrenal (HPA) axis neurocircuitry. We also found, using a line of Nrg1 hypomorphic rats (Nrg1(Tn)), that genetic disruption of Type II NRG1 results in altered HPA axis function and environmental reactivity. The present studies used the Nrg1(Tn) rats to test whether Type II NRG1 gene disruption and chronic stress exposure during adolescence interact to alter adult anxiety- and fear-related behaviors. Male and female Nrg1(Tn) and wild-type rats were exposed to chronic variable stress (CVS) during mid-adolescence and then tested for anxiety-like behavior, cued fear conditioning and basal corticosterone secretion in adulthood. The disruption of Type II NRG1 alone significantly impacts rat anxiety-related behavior by reversing normal sex-related differences and impairs the ability to acquire cued fear conditioning. Sex-specific interactions between genotype and adolescent stress also were identified such that CVS-treated wild-type females exhibited a slight reduction in anxiety-like behavior and basal corticosterone, while CVS-treated Nrg1(Tn) females exhibited a significant increase in cued fear extinction. These studies confirm the importance of Type II NRG1 in anxiety and fear behaviors and point to adolescence as a time when stressful experiences can shape adult behavior and HPA axis function.
Collapse
Affiliation(s)
- S B Taylor
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
34
|
Datson NA, Polman JAE, de Jonge RT, van Boheemen PTM, van Maanen EMT, Welten J, McEwen BS, Meiland HC, Meijer OC. Specific regulatory motifs predict glucocorticoid responsiveness of hippocampal gene expression. Endocrinology 2011; 152:3749-57. [PMID: 21846803 DOI: 10.1210/en.2011-0287] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The glucocorticoid receptor (GR) is an ubiquitously expressed ligand-activated transcription factor that mediates effects of cortisol in relation to adaptation to stress. In the brain, GR affects the hippocampus to modulate memory processes through direct binding to glucocorticoid response elements (GREs) in the DNA. However, its effects are to a high degree cell specific, and its target genes in different cell types as well as the mechanisms conferring this specificity are largely unknown. To gain insight in hippocampal GR signaling, we characterized to which GRE GR binds in the rat hippocampus. Using a position-specific scoring matrix, we identified evolutionary-conserved putative GREs from a microarray based set of hippocampal target genes. Using chromatin immunoprecipitation, we were able to confirm GR binding to 15 out of a selection of 32 predicted sites (47%). The majority of these 15 GREs are previously undescribed and thus represent novel GREs that bind GR and therefore may be functional in the rat hippocampus. GRE nucleotide composition was not predictive for binding of GR to a GRE. A search for conserved flanking sequences that may predict GR-GRE interaction resulted in the identification of GC-box associated motifs, such as Myc-associated zinc finger protein 1, within 2 kb of GREs with GR binding in the hippocampus. This enrichment was not present around nonbinding GRE sequences nor around proven GR-binding sites from a mesenchymal stem-like cell dataset that we analyzed. GC-binding transcription factors therefore may be unique partners for DNA-bound GR and may in part explain cell-specific transcriptional regulation by glucocorticoids in the context of the hippocampus.
Collapse
Affiliation(s)
- N A Datson
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Effects of early life stress on neuroendocrine and neurobehavior: mechanisms and implications. Pediatr Neonatol 2011; 52:122-9. [PMID: 21703552 DOI: 10.1016/j.pedneo.2011.03.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 11/30/2010] [Accepted: 12/23/2010] [Indexed: 12/12/2022] Open
Abstract
Evidence continues to mount that adverse experiences early in life have an impact on brain functions. Early life stress can program the development of the hypothalamic-pituitary-adrenal axis and cause alterations of neurochemistry and signaling pathways involved in regulating neuroplasticity, with resultant neurobehavioral changes. Early life experiences and genetic factors appear to interact in determining the individual vulnerability to mental health disorders. We reviewed the effects of early life stress on neuroendocrine regulation and the relevance to neurobehavioral development.
Collapse
|
36
|
Silverman JL, Yang M, Turner SM, Katz AM, Bell DB, Koenig JI, Crawley JN. Low stress reactivity and neuroendocrine factors in the BTBR T+tf/J mouse model of autism. Neuroscience 2010; 171:1197-208. [PMID: 20888890 PMCID: PMC2991427 DOI: 10.1016/j.neuroscience.2010.09.059] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/02/2010] [Accepted: 09/28/2010] [Indexed: 12/31/2022]
Abstract
Autism is a neurodevelopmental disorder characterized by abnormal reciprocal social interactions, communication deficits, and repetitive behaviors with restricted interests. BTBR T+tf/J (BTBR) is an inbred mouse strain that displays robust behavioral phenotypes with analogies to all three of the diagnostic symptoms of autism, including low social interactions, reduced vocalizations in social settings, and high levels of repetitive self-grooming. Autism-relevant phenotypes in BTBR offer translational tools to discover neurochemical mechanisms underlying unusual mouse behaviors relevant to symptoms of autism. Because repetitive self-grooming in mice may be a displacement behavior elevated by stressors, we investigated neuroendocrine markers of stress and behavioral reactivity to stressors in BTBR mice, as compared to C57BL/6J (B6), a standard inbred strain with high sociability. Radioimmunoassays replicated previous findings that circulating corticosterone is higher in BTBR than in B6. Higher basal glucocorticoid receptor mRNA and higher oxytocin peptide levels were detected in the brains of BTBR as compared to B6. No significant differences were detected in corticotrophin releasing factor (CRF) peptide or CRF mRNA. In response to behavioral stressors, BTBR and B6 were generally similar on behavioral tasks including stress-induced hyperthermia, elevated plus-maze, light ↔ dark exploration, tail flick, acoustic startle and prepulse inhibition. BTBR displayed less reactivity than B6 to a noxious thermal stimulus in the hot plate, and less immobility than B6 in both the forced swim and tail suspension depression-related tasks. BTBR, therefore, exhibited lower depression-like scores than B6 on two standard tests sensitive to antidepressants, did not differ from B6 on two well-validated anxiety-like behaviors, and did not exhibit unusual stress reactivity to sensory stimuli. Our findings support the interpretation that autism-relevant social deficits, vocalizations, and repetitive behaviors are not the result of abnormal stress reactivity in the BTBR mouse model of autism.
Collapse
MESH Headings
- Adaptation, Ocular/genetics
- Adaptation, Ocular/physiology
- Animals
- Autistic Disorder/genetics
- Autistic Disorder/metabolism
- Autistic Disorder/pathology
- Autistic Disorder/physiopathology
- Corticosterone/metabolism
- Corticotropin-Releasing Hormone/genetics
- Corticotropin-Releasing Hormone/metabolism
- Disease Models, Animal
- Fever/etiology
- Hindlimb Suspension/physiology
- Interpersonal Relations
- Maze Learning/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Oxytocin/metabolism
- Pain Threshold/physiology
- RNA, Messenger/metabolism
- Radioimmunoassay
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Reflex, Acoustic/physiology
- Stress, Psychological/etiology
- Stress, Psychological/genetics
Collapse
Affiliation(s)
- J L Silverman
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, Bethesda, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Differential impact of juvenile stress and corticosterone in juvenility and in adulthood, in male and female rats. Behav Brain Res 2010; 214:268-76. [DOI: 10.1016/j.bbr.2010.05.036] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Revised: 05/19/2010] [Accepted: 05/23/2010] [Indexed: 12/17/2022]
|
38
|
Abstract
The magnitude and duration of the hormonal stress response change dramatically throughout an organism's lifespan. Although much is known about the factors that modulate stress reactivity during adulthood and how neonatal development and aging influence stress responsiveness, we know relatively little about how stress reactivity changes during the juvenile to adult transition. Recent studies in adolescent boys and girls have suggested that stress is an important factor contributing to an individual's vulnerability to various neuropsychological dysfunctions, including anxiety, depression, and drug abuse. Thus, understanding how exposure to stressors during this crucial period of development lead to negative consequences is of paramount importance. A growing body of literature indicates that pubertal organisms react differentially, both physiologically and behaviorally, to a stressor compared to adults. The purpose of this review, therefore, is to discuss the recent findings regarding the pubertal maturation of stress reactivity, while also highlighting future research directions that will aid in our understanding of stress and adolescent mental health and development.
Collapse
Affiliation(s)
- Russell D Romeo
- Department of Psychology, and Neuroscience and Behavior Program, Barnard College of Columbia University, New York, NY 10027, USA.
| |
Collapse
|
39
|
Koolhaas JM, de Boer SF, Coppens CM, Buwalda B. Neuroendocrinology of coping styles: towards understanding the biology of individual variation. Front Neuroendocrinol 2010; 31:307-21. [PMID: 20382177 DOI: 10.1016/j.yfrne.2010.04.001] [Citation(s) in RCA: 610] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 04/01/2010] [Accepted: 04/04/2010] [Indexed: 01/29/2023]
Abstract
Individual variation in behavior and physiology is a widespread and ecologically functional phenomenon in nature in virtually all vertebrate species. Due to domestication of laboratory animals, studies may suffer from a strong selection bias. This paper summarizes behavioral, neuroendocrine and neurobiological studies using the natural individual variation in rats and mice. Individual behavioral characteristics appear to be consistent over time and across situations. The individual variation has at least two dimensions in which the quality of the response to a challenging condition (coping style) is independent from the quantity of that response (stress reactivity). The neurobiology reveals important differences in the homeostatic control of the serotonergic neuron and the neuropeptides vasopressin and oxytocin in relation to coping style. It is argued that a careful exploitation of the broad natural and biologically functional individual variation in behavior and physiology may help in developing better animal models for understanding individual disease vulnerability.
Collapse
Affiliation(s)
- J M Koolhaas
- Dept. of Behavioural Physiology, University Groningen, 9750 AA Haren, The Netherlands.
| | | | | | | |
Collapse
|
40
|
Pubertal maturation and programming of hypothalamic-pituitary-adrenal reactivity. Front Neuroendocrinol 2010; 31:232-40. [PMID: 20193707 DOI: 10.1016/j.yfrne.2010.02.004] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 02/19/2010] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
Abstract
Modifications in neuroendocrine function are a hallmark of pubertal development. These changes have many short- and long-term implications for the physiological and neurobehavioral function of an individual. The purpose of the present review is to discuss our current understanding of how pubertal development and stress interact to affect the hypothalamic-pituitary-adrenal (HPA) axis, the major neuroendocrine axis that controls the hormonal stress response. A growing body of literature indicates that puberty is marked by dramatic transitions in stress reactivity. Moreover, recent studies indicate that exposure to stressors during pubertal maturation may result in enduring changes in HPA responsiveness in adulthood. As puberty is marked by a substantial increase in many stress-related psychological and physiological disorders (e.g., depression, anxiety, drug abuse), it is essential to understand the factors that regulate and modulate HPA function during this crucial period of development.
Collapse
|
41
|
Wang F, Liu W, Jin Y, Dai J, Yu W, Liu X, Liu L. Transcriptional effects of prenatal and neonatal exposure to PFOS in developing rat brain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:1847-53. [PMID: 20136073 DOI: 10.1021/es902799f] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Perfluorooctane sulfonate (PFOS), a persistent and bioaccumulative compound, is widely distributed in the environment. To explore the molecular mechanism of neonatal neurotoxic effects, we evaluated the transcriptional effects of prenatal and neonatal exposure to PFOS in developing rat brain by performing gene expression profiling in the cerebral cortex. Dams received 3.2 mg/kg PFOS in their feed from gestational day 1 (GD1) to weaning (PND 21). Pups then had free access to treated feed until PND 35. Six Illumina RatRef-12 Expression BeadChips were used to identify gene expression changes on postnatal days (PNDs) 1, 7, and 35. Significantly affected genes (P < 0.05) were involved in neuroactive ligand-receptor interaction, calcium signaling pathways, cell communication, long-term potentiation/depression, the cell cycle, and peroxisome proliferator-activated receptor (PPAR) signaling. To compare prenatal and lactational exposure contributions to transcriptional effects, a subset of altered genes obtained from the gene-profile study that represented neurobiological functions was analyzed using RT-PCR in a follow-up cross-foster study lasting from PND1 to 21. Prenatal and postnatal exposure to PFOS caused potential neurotoxicity as demonstrated by developmentally different global transcriptional changes. Prenatal exposure was more effective in altering expression of several genes. Also, transcriptional effects of PFOS exposure on neurodevelopment occurred primarily by disrupting the neuroendocrine system.
Collapse
Affiliation(s)
- Faqi Wang
- School of Environmental and Biological Science and Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, Dalian 116024, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Lai MC, Lui CC, Yang SN, Wang JY, Huang LT. Epileptogenesis is increased in rats with neonatal isolation and early-life seizure and ameliorated by MK-801: a long-term MRI and histological study. Pediatr Res 2009; 66:441-7. [PMID: 19581840 DOI: 10.1203/pdr.0b013e3181b337d2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Early-life stress has been shown to destabilize the homeostatic synaptic plasticity and compromise the developing brain to the later encountered insults. This study would determine the long-term epileptogenic effect of neonatal isolation (NI) on early-life seizure. There were five groups: normal rearing (NR) rats; NI rats; NR rats suffering from status epilepticus (SE) at P12 (NR-SE); NI-SE rats; NI-SE-MK801 rats. All adult rats were video monitored to detect behavioral seizures, examined with brain magnetic resonance imaging, and assessed for hippocampal NeuN-immunoreactive (NeuN-IR) cells. Behavioral seizures were detected in one of six NR-SE rats, all the NI-SE rats (eight of eight), and none in the NR, NI, or NI-SE-MK801 rats. High hippocampal T2 signal were only found in three of five NR-SE rats, five of six NI-SE rats, and one of five NI-SE-MK801 rats. There was a significant decrease in the number of hippocampal NeuN-IR cells in the NR-SE and NI-SE groups, compared with the NR group, and MK-801 treatment ameliorated the neuronal loss. Our results demonstrated that NI led to an increase in epileptogenesis in rat pups with early-life SE, and treatment with MK-801 could ameliorate brain injuries, indicating a critical role of N-methyl-d-aspartic acid receptor in the epileptogenic process.
Collapse
Affiliation(s)
- Ming-Chi Lai
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | | | | | | | | |
Collapse
|
43
|
Lupien SJ, McEwen BS, Gunnar MR, Heim C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 2009; 10:434-45. [PMID: 19401723 DOI: 10.1038/nrn2639] [Citation(s) in RCA: 3916] [Impact Index Per Article: 244.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chronic exposure to stress hormones, whether it occurs during the prenatal period, infancy, childhood, adolescence, adulthood or aging, has an impact on brain structures involved in cognition and mental health. However, the specific effects on the brain, behaviour and cognition emerge as a function of the timing and the duration of the exposure, and some also depend on the interaction between gene effects and previous exposure to environmental adversity. Advances in animal and human studies have made it possible to synthesize these findings, and in this Review a model is developed to explain why different disorders emerge in individuals exposed to stress at different times in their lives.
Collapse
Affiliation(s)
- Sonia J Lupien
- Université de Montréal, Mental Health Research Centre, Fernand Seguin Hôpital Louis-H Lafontaine, Quebec, Canada.
| | | | | | | |
Collapse
|
44
|
Gao Y, Han H, Xu R, Cao J, Luo J, Xu L. Effects of prolonged exposure to context following contextual fear conditioning on synaptic properties in rat hippocampal slices. Neurosci Res 2008; 61:385-9. [DOI: 10.1016/j.neures.2008.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Revised: 04/11/2008] [Accepted: 04/16/2008] [Indexed: 11/16/2022]
|
45
|
Walker E, Mittal V, Tessner K. Stress and the hypothalamic pituitary adrenal axis in the developmental course of schizophrenia. Annu Rev Clin Psychol 2008; 4:189-216. [PMID: 18370616 DOI: 10.1146/annurev.clinpsy.4.022007.141248] [Citation(s) in RCA: 443] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diathesis-stress models of schizophrenia and other psychotic disorders have dominated theorizing about etiology for over three decades. More recently, with advances in our understanding of the biological processes mediating the effects of stress, these models have incorporated mechanisms to account for the adverse impact of stress on brain function. This review examines recent scientific findings on the role of the hypothalamic-pituitary-adrenal (HPA) axis, one of the primary neural systems triggered by stress exposure, in the expression of vulnerability for schizophrenia. The results indicate that psychotic disorders are associated with elevated baseline and challenge-induced HPA activity, that antipsychotic medications reduce HPA activation, and that agents that augment stress hormone (cortisol) release exacerbate psychotic symptoms. The cumulative findings are discussed in light of a neural diathesis-stress model that postulates that cortisol has the potential to increase activity of dopamine pathways that have been implicated in schizophrenia and other psychotic disorders.
Collapse
Affiliation(s)
- Elaine Walker
- Department of Psychology, Emory University, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
46
|
Sabeti J, Gruol DL. Emergence of NMDAR-independent long-term potentiation at hippocampal CA1 synapses following early adolescent exposure to chronic intermittent ethanol: role for sigma-receptors. Hippocampus 2008; 18:148-68. [PMID: 17960647 DOI: 10.1002/hipo.20379] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adolescent humans who abuse alcohol are more vulnerable than adults to the development of memory impairments. Memory impairments often involve modifications in the ability of hippocampal neurons to establish long-term potentiation (LTP) of excitatory neurotransmission; however, few studies have examined how chronic ethanol exposure during adolescence affects LTP mechanisms in hippocampus. We investigated changes in LTP mechanisms in hippocamal slices from rats exposed to intoxicating concentrations of chronic intermittent ethanol (CIE) vapors in their period of early-adolescent (i.e., prepubescent) or late-adolescent (i.e., postpubescent) development. LTP was evaluated at excitatory CA1 synapses in hippocampal slices at 24 h after the cessation of air (control) or CIE vapor treatments. CA1 synapses in control slices showed steady LTP following induction by high-frequency stimulation, which was fully dependent on NMDAR function. By contrast, slices from early-adolescent CIE exposed animals showed a compound form of LTP consisting of an NMDAR-dependent component and a slow-developing component independent of NMDARs. These components summated to yield LTP of robust magnitude above LTP levels in age-matched control slices. Bath-application of the sigma-receptor antagonist BD1047 and the neuroactive steroid pregnenolone sulfate, but not acute ethanol application, blocked NMDAR-independent LTP, while leaving NMDAR-dependent LTP intact. Analysis of presynaptic function during NMDAR-independent LTP induction demonstrated increased presynaptic function via a sigma-receptor-dependent mechanism in slices from early-adolescent CIE-exposed animals. By contrast, CIE exposure after puberty onset in late-adolescent animals produced decrements in LTP levels. The identification of a role for sigma-receptors and neuroactive steroids in the development of NMDAR-independent LTP suggests an important pathway by which hippocampal synaptic plasticity, and perhaps memory, may be uniquely altered by chronic ethanol exposure during the prepubescent phase of adolescent development.
Collapse
Affiliation(s)
- Jilla Sabeti
- Department of Molecular and Integrative Neurosciences (MIND), The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
47
|
Harré EM, Galic MA, Mouihate A, Noorbakhsh F, Pittman QJ. Neonatal inflammation produces selective behavioural deficits and alters N-methyl-D-aspartate receptor subunit mRNA in the adult rat brain. Eur J Neurosci 2008; 27:644-53. [PMID: 18279317 PMCID: PMC3547975 DOI: 10.1111/j.1460-9568.2008.06031.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peripheral inflammation causes production of central cytokines that alter transmission at the N-methyl-D-aspartate receptor (NR). During development, NRs are important for synaptic plasticity and network connectivity. We therefore asked if neonatal inflammation would alter expression of NRs in the brain and behavioural performance in adulthood. We gave lipopolysaccharide (LPS) (100 microg/kg, i.p.) or saline to male rats on postnatal day (P)5, P14, P30 or P77. Subsequently we assessed mRNA levels of the NR1, NR2A, B, C and D subunits in the hippocampus and cortex either acutely (2 h) or in adulthood using real-time reverse transcriptase-polymerase chain reaction. We explored learning and memory behaviours in adult rats using the Morris water maze and contextual fear conditioning paradigms. Hippocampal NR1 mRNA was acutely increased in the P5- and P77-treated rats but was reduced in adults treated with LPS at P5, P30 and P77. P14 LPS-treated rats showed few acute changes but showed pronounced increases in NR2A, B, C and D subunit mRNA later in adulthood. The cortex displayed relatively few acute changes in expression in the neonatal-treated rats; however, it showed robust changes in NR2B, C and D mRNA in all groups given LPS in adulthood. Behavioural deficits were observed specifically in the P5 and P30 LPS-treated groups in the water maze probe trial and fear conditioning tests, consistent with hippocampal NR1 mRNA down-regulation. Thus, a single bout of inflammation during development can programme specific and persistent differences in NR mRNA subunit expression in the hippocampus, which could be associated with behavioural and cognitive deficits in adulthood.
Collapse
Affiliation(s)
- E.-M. Harré
- Hotchkiss Brain Institute and Institute of Infection, Immunity and Inflammation, Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Health Sciences Centre, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1
| | - M. A. Galic
- Hotchkiss Brain Institute and Institute of Infection, Immunity and Inflammation, Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Health Sciences Centre, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1
| | | | - F. Noorbakhsh
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada, T6G 2S2
| | - Q. J. Pittman
- Hotchkiss Brain Institute and Institute of Infection, Immunity and Inflammation, Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Health Sciences Centre, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1
| |
Collapse
|
48
|
Abstract
During adolescence the brain shows remarkable changes in both structure and function. The plasticity exhibited by the brain during this pubertal period may make individuals more vulnerable to perturbations, such as stress. Although much is known about how exposure to stress and stress hormones during perinatal development and adulthood affect the structure and function of the brain, relatively little is known about how the pubertal brain responds to stress. Furthermore, it is not clear whether stressors experienced during adolescence lead to altered physiological and behavioral potentials in adulthood, as has been shown for perinatal development. The purpose of this review is to present what is currently known about the pubertal maturation of the hypothalamic-pituitary-adrenal (HPA) axis, the neuroendocrine axis that mediates the stress response, and discuss what is currently known about how stressors affect the adolescent brain. Our dearth of knowledge regarding the effects of stress on the pubertal brain will be discussed in the context of our accumulating knowledge regarding stress-induced neuronal remodeling in the adult. Finally, as the adolescent brain is capable of such profound plasticity during this developmental stage, we will also explore the possibility of adolescence as a period of interventions and opportunities to mitigate negative consequences from earlier developmental insults.
Collapse
Affiliation(s)
- Russell D Romeo
- Laboratory of Neuroendocrinology, The Rockefeller University, Box 165, New York, NY 10021, USA.
| | | |
Collapse
|
49
|
Walker CD, Long H, Williams S, Richard D. Long-lasting effects of elevated neonatal leptin on rat hippocampal function, synaptic proteins and NMDA receptor subunits. J Neurosci Res 2007; 85:816-28. [PMID: 17245750 DOI: 10.1002/jnr.21173] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The high circulating levels of leptin in neonatal rodents do not seem to be regulating energy balance at this age, but rather may play an important role for brain development. We tested the hypothesis that high neonatal leptin levels modify hippocampal function and production of synaptic proteins with possible long-term consequences on long-term potentiation (LTP) in adulthood. We first showed that in postnatal day (PND) 10 neonates, acute leptin treatment functionally activated leptin receptors (ObR) in the CA1 and DG regions of the hippocampus through the induction of phosphoERK1/2, but not phosphoSTAT3 protein although both phospho-proteins were induced in the arcuate nucleus. We next examined whether chronic leptin administration (3 mg/kg BW, intraperitoneally) during the first 2 weeks of life (postnatal day, PND 2-14) produces a functional signal in the hippocampus that alters the expression of NMDA receptor subunits (NR1, NR2A, NR2B), synaptic proteins and LTP in the short and long-term. In PND 10 as in adults (PND 70) rats, chronic leptin treatment increased NR1 expression in the hippocampus while reducing NR2B protein levels. Elevated hippocampal concentrations of synapsin2A and synaptophysin were detected during leptin treatment on PND 10 suggesting increased neurotransmitter release. In adults, only SNAP-25 expression was increased after neonatal leptin treatment. LTP was reduced dramatically by leptin treatment in preweaning rats although the changes did not persist until adulthood. Elevated exposure to leptin during a critical period of neonatal hippocampal development might serve to enhance NMDA-dependent functions other than LTP and have important effects on synaptogenesis and neurotransmitter release.
Collapse
Affiliation(s)
- Claire-Dominique Walker
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
50
|
McCormick CM, Mathews IZ. HPA function in adolescence: Role of sex hormones in its regulation and the enduring consequences of exposure to stressors. Pharmacol Biochem Behav 2007; 86:220-33. [PMID: 16901532 DOI: 10.1016/j.pbb.2006.07.012] [Citation(s) in RCA: 280] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 05/24/2006] [Accepted: 07/06/2006] [Indexed: 11/27/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is one of the physiological systems involved in coping with stressors. There are functional shifts in the HPA axis and its regulation by sex hormones over the lifespan that allow the animal to meet the challenges of the internal and external environment that are specific to each stage of development. Sex differences in HPA function emerge over adolescence, a phenomenon reflecting the concomitant initiation of regulatory effects of sex hormones. The focus of this review is recent research on differences between adolescents and adults in HPA function and the enduring effects of exposure to stressors in adolescence. During adolescence, HPA function is characterized by a prolonged activation in response to stressors compared to adulthood, which may render ongoing development of the brain vulnerable. Although research has been scarce, there is a growing evidence that exposure to stressors in adolescence may alter behavioural responses to drugs and cognitive performance in adulthood. However, the effects reported appear to be stressor-specific and sex-specific. Such research may contribute toward understanding the increased risk for drug abuse and psychopathology that occurs over adolescence in people.
Collapse
Affiliation(s)
- Cheryl M McCormick
- Behavioural Neuroscience, Center for Neuroscience and Department of Psychology, Brock University, St Catharines ON, Canada.
| | | |
Collapse
|