1
|
Juvenal G, Higa GSV, Bonfim Marques L, Tessari Zampieri T, Costa Viana FJ, Britto LR, Tang Y, Illes P, di Virgilio F, Ulrich H, de Pasquale R. Regulation of GABAergic neurotransmission by purinergic receptors in brain physiology and disease. Purinergic Signal 2025; 21:149-177. [PMID: 39046648 PMCID: PMC11958915 DOI: 10.1007/s11302-024-10034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Purinergic receptors regulate the processing of neural information in the hippocampus and cerebral cortex, structures related to cognitive functions. These receptors are activated when astrocytic and neuronal populations release adenosine triphosphate (ATP) in an autocrine and paracrine manner, following sustained patterns of neuronal activity. The modulation by these receptors of GABAergic transmission has only recently been studied. Through their ramifications, astrocytes and GABAergic interneurons reach large groups of excitatory pyramidal neurons. Their inhibitory effect establishes different synchronization patterns that determine gamma frequency rhythms, which characterize neural activities related to cognitive processes. During early life, GABAergic-mediated synchronization of excitatory signals directs the experience-driven maturation of cognitive development, and dysfunctions concerning this process have been associated with neurological and neuropsychiatric diseases. Purinergic receptors timely modulate GABAergic control over ongoing neural activity and deeply affect neural processing in the hippocampal and neocortical circuitry. Stimulation of A2 receptors increases GABA release from presynaptic terminals, leading to a considerable reduction in neuronal firing of pyramidal neurons. A1 receptors inhibit GABAergic activity but only act in the early postnatal period when GABA produces excitatory signals. P2X and P2Y receptors expressed in pyramidal neurons reduce the inhibitory tone by blocking GABAA receptors. Finally, P2Y receptor activation elicits depolarization of GABAergic neurons and increases GABA release, thus favoring the emergence of gamma oscillations. The present review provides an overall picture of purinergic influence on GABAergic transmission and its consequences on neural processing, extending the discussion to receptor subtypes and their involvement in the onset of brain disorders, including epilepsy and Alzheimer's disease.
Collapse
Affiliation(s)
- Guilherme Juvenal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Guilherme Shigueto Vilar Higa
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Lucas Bonfim Marques
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Thais Tessari Zampieri
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Felipe José Costa Viana
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luiz R Britto
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Yong Tang
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peter Illes
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany
| | | | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Roberto de Pasquale
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Witkin JM, Shafique H, Smith JL, Cerne R. Is there a biochemical basis for purinergic P2X3 and P2X4 receptor antagonists to be considered as anti-seizure medications? Biochem Pharmacol 2024; 222:116046. [PMID: 38341001 DOI: 10.1016/j.bcp.2024.116046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/15/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Patients with epilepsy require improved medications. Purinergic receptors were identified as late as 1976 and are slowly emerging as potential drug targets for the discovery of antiseizure medications. While compounds interacting with these receptors have been approved for use as medicines (e.g., gefapixant for cough) and continue to be explored for a number of diseases (e.g., pain, cancer), there have been no purinergic receptor antagonists that have been advanced for epilepsy. There are very few studies on the channel conducting receptors, P2X3 and P2X4, that suggest their possible role in seizure generation or control. However, the limited data available provides some compelling reasons to believe that they could be valuable antiseizure medication drug targets. The data implicating P2X3 and P2X4 receptors in epilepsy includes the role played by ATP in neuronal excitability and seizures, receptor localization, increased receptor expression in epileptic brain, the involvement of these receptors in seizure-associated inflammation, crosstalk between these purinergic receptors and neuronal processes involved in seizures (GABAergic and glutamatergic neurotransmission), and the significant attenuation of seizures and seizure-like activity with P2X receptor blockade. The discovery of new and selective antagonists for P2X3 and P2X4 receptors is ongoing, armed with new structural data to guide rational design. The availability of safe, brain-penetrant compounds will likely encourage the clinical exploration of epilepsy as a disease entity.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA; Department of Neuroscience and Trauma Research, Ascension St. Vincent, Indianapolis, IN, USA; Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| | | | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA; Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Lalo U, Pankratov Y. ATP-mediated signalling in the central synapses. Neuropharmacology 2023; 229:109477. [PMID: 36841527 DOI: 10.1016/j.neuropharm.2023.109477] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
ATP released from the synaptic terminals and astrocytes can activate neuronal P2 receptors at a variety of locations across the CNS. Although the postsynaptic ATP-mediated signalling does not bring a major contribution into the excitatory transmission, it is instrumental for slow and diffuse modulation of synaptic dynamics and neuronal firing in many CNS areas. Neuronal P2X and P2Y receptors can be activated by ATP released from the synaptic terminals, astrocytes and microglia and thereby can participate in the regulation of synaptic homeostasis and plasticity. There is growing evidence of importance of purinergic regulation of synaptic transmission in different physiological and pathological contexts. Here, we review the main mechanisms underlying the complexity and diversity of purinergic signalling and purinergic modulation in central neurons.
Collapse
Affiliation(s)
- Ulyana Lalo
- School of Life Sciences, University of Warwick, United Kingdom
| | - Yuriy Pankratov
- School of Life Sciences, University of Warwick, United Kingdom.
| |
Collapse
|
4
|
Beamer E, Kuchukulla M, Boison D, Engel T. ATP and adenosine-Two players in the control of seizures and epilepsy development. Prog Neurobiol 2021; 204:102105. [PMID: 34144123 DOI: 10.1016/j.pneurobio.2021.102105] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/07/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
Despite continuous advances in understanding the underlying pathogenesis of hyperexcitable networks and lowered seizure thresholds, the treatment of epilepsy remains a clinical challenge. Over one third of patients remain resistant to current pharmacological interventions. Moreover, even when effective in suppressing seizures, current medications are merely symptomatic without significantly altering the course of the disease. Much effort is therefore invested in identifying new treatments with novel mechanisms of action, effective in drug-refractory epilepsy patients, and with the potential to modify disease progression. Compelling evidence has demonstrated that the purines, ATP and adenosine, are key mediators of the epileptogenic process. Extracellular ATP concentrations increase dramatically under pathological conditions, where it functions as a ligand at a host of purinergic receptors. ATP, however, also forms a substrate pool for the production of adenosine, via the action of an array of extracellular ATP degrading enzymes. ATP and adenosine have assumed largely opposite roles in coupling neuronal excitability to energy homeostasis in the brain. This review integrates and critically discusses novel findings regarding how ATP and adenosine control seizures and the development of epilepsy. This includes purine receptor P1 and P2-dependent mechanisms, release and reuptake mechanisms, extracellular and intracellular purine metabolism, and emerging receptor-independent effects of purines. Finally, possible purine-based therapeutic strategies for seizure suppression and disease modification are discussed.
Collapse
Affiliation(s)
- Edward Beamer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; Centre for Bioscience, Manchester Metropolitan University, John Dalton Building, All Saints Campus, Manchester M15 6BH, UK
| | - Manvitha Kuchukulla
- Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, NJ 08854, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, NJ 08854, USA.
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.
| |
Collapse
|
5
|
Implication of Neuronal Versus Microglial P2X4 Receptors in Central Nervous System Disorders. Neurosci Bull 2020; 36:1327-1343. [PMID: 32889635 DOI: 10.1007/s12264-020-00570-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023] Open
Abstract
The P2X4 receptor (P2X4) is an ATP-gated cation channel that is highly permeable to Ca2+ and widely expressed in neuronal and glial cell types throughout the central nervous system (CNS). A growing body of evidence indicates that P2X4 plays key roles in numerous central disorders. P2X4 trafficking is highly regulated and consequently in normal situations, P2X4 is present on the plasma membrane at low density and found mostly within intracellular endosomal/lysosomal compartments. An increase in the de novo expression and/or surface density of P2X4 has been observed in microglia and/or neurons during pathological states. This review aims to summarize knowledge on P2X4 functions in CNS disorders and provide some insights into the relative contributions of neuronal and glial P2X4 in pathological contexts. However, determination of the cell-specific functions of P2X4 along with its intracellular and cell surface roles remain to be elucidated before its potential as a therapeutic target in multiple disorders can be defined.
Collapse
|
6
|
Kambli L, Bhatt LK, Oza M, Prabhavalkar K. Novel therapeutic targets for epilepsy intervention. Seizure 2017; 51:27-34. [DOI: 10.1016/j.seizure.2017.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 07/23/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022] Open
|
7
|
Rassendren F, Audinat E. Purinergic signaling in epilepsy. J Neurosci Res 2016; 94:781-93. [PMID: 27302739 DOI: 10.1002/jnr.23770] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/24/2022]
Abstract
Until recently, analysis of the mechanisms underlying epilepsy was centered on neuron dysfunctions. Accordingly, most of the available pharmacological treatments aim at reducing neuronal excitation or at potentiating neuronal inhibition. These therapeutic options can lead to obvious secondary effects, and, moreover, seizures cannot be controlled by any known medication in one-third of the patients. A purely neurocentric view of brain functions and dysfunctions has been seriously questioned during the past 2 decades because of the accumulation of experimental data showing the functional importance of reciprocal interactions between glial cells and neurons. In the case of epilepsy, our current knowledge of the human disease and analysis of animal models clearly favor the involvement of astrocytes and microglial cells during the progression of the disease, including at very early stages, opening the way to the identification of new therapeutic targets. Purinergic signaling is a fundamental feature of neuron-glia interactions, and increasing evidence indicates that modifications of this pathway contribute to the functional remodeling of the epileptic brain. This Review discusses the recent experimental results indicating the roles of astrocytic and microglial P2X and P2Y receptors in epilepsy. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- François Rassendren
- CNRS, UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM, U1191, Montpellier, France.,Université de Montpellier, UMR5203, Montpellier, France.,Labex ICST, Montpellier, France
| | - Etienne Audinat
- INSERM, U1128, Paris, France.,Laboratory of Neurophysiology and New Microscopies, Paris Descartes University, Paris, France
| |
Collapse
|
8
|
ATPergic signalling during seizures and epilepsy. Neuropharmacology 2015; 104:140-53. [PMID: 26549853 DOI: 10.1016/j.neuropharm.2015.11.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/01/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
Much progress has been made over the last few decades in the identification of new anti-epileptic drugs (AEDs). However, 30% of epilepsy patients suffer poor seizure control. This underscores the need to identify alternative druggable neurotransmitter systems and drugs with novel mechanisms of action. An emerging concept is that seizure generation involves a complex interplay between neurons and glial cells at the tripartite synapse and neuroinflammation has been proposed as one of the main drivers of epileptogenesis. The ATP-gated purinergic receptor family is expressed throughout the brain and is functional on neurons and glial cells. ATP is released in high amounts into the extracellular space after increased neuronal activity and during chronic inflammation and cell death to act as a neuro- and gliotransmitter. Emerging work shows pharmacological targeting of ATP-gated purinergic P2 receptors can potently modulate seizure generation, inflammatory processes and seizure-induced brain damage. To date, work showing the functional contribution of P2 receptors has been mainly performed in animal models of acute seizures, in particular, by targeting the ionotropic P2X7 receptor subtype. Other ionotropic P2X and metabotropic P2Y receptor family members have also been implicated in pathological processes following seizures such as the P2X4 receptor and the P2Y12 receptor. However, during epilepsy, the characterization of P2 receptors was mostly restricted to the study of expressional changes of the different receptor subtypes. This review summarizes the work to date on ATP-mediated signalling during seizures and the functional impact of targeting the ATP-gated purinergic receptors on seizures and seizure-induced pathology. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
|
9
|
Henshall DC, Diaz-Hernandez M, Miras-Portugal MT, Engel T. P2X receptors as targets for the treatment of status epilepticus. Front Cell Neurosci 2013; 7:237. [PMID: 24324404 PMCID: PMC3840793 DOI: 10.3389/fncel.2013.00237] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/08/2013] [Indexed: 11/26/2022] Open
Abstract
Prolonged seizures are amongst the most common neurological emergencies. Status epilepticus is a state of continuous seizures that is life-threatening and prompt termination of status epilepticus is critical to protect the brain from permanent damage. Frontline treatment comprises parenteral administration of anticonvulsants such as lorazepam that facilitate γ-amino butyric acid (GABA) transmission. Because status epilepticus can become refractory to anticonvulsants in a significant proportion of patients, drugs which act on different neurotransmitter systems may represent potential adjunctive treatments. P2X receptors are a class of ligand-gated ion channel activated by ATP that contributes to neuro- and glio-transmission. P2X receptors are expressed by both neurons and glia in various brain regions, including the hippocampus. Electrophysiology, pharmacology and genetic studies suggest certain P2X receptors are activated during pathologic brain activity. Expression of several members of the family including P2X2, P2X4, and P2X7 receptors has been reported to be altered in the hippocampus following status epilepticus. Recent studies have shown that ligands of the P2X7 receptor can have potent effects on seizure severity during status epilepticus and mice lacking this receptor display altered seizures in response to chemoconvulsants. Antagonists of the P2X7 receptor also modulate neuronal death, microglial responses and neuroinflammatory signaling. Recent work also found altered neuronal injury and inflammation after status epilepticus in mice lacking the P2X4 receptor. In summary, members of the P2X receptor family may serve important roles in the pathophysiology of status epilepticus and represent novel targets for seizure control and neuroprotection.
Collapse
Affiliation(s)
- David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland Dublin, Ireland ; Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland Dublin, Ireland
| | | | | | | |
Collapse
|
10
|
Lemoine D, Jiang R, Taly A, Chataigneau T, Specht A, Grutter T. Ligand-gated ion channels: new insights into neurological disorders and ligand recognition. Chem Rev 2012; 112:6285-318. [PMID: 22988962 DOI: 10.1021/cr3000829] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Damien Lemoine
- Laboratoire de Biophysicochimie des Récepteurs Canaux, UMR 7199 CNRS, Conception et Application de Molécules Bioactives, Faculté de Pharmacie, Université de Strasbourg , 67400 Illkirch, France
| | | | | | | | | | | |
Collapse
|
11
|
Burnstock G, Krügel U, Abbracchio MP, Illes P. Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 2011; 95:229-74. [PMID: 21907261 DOI: 10.1016/j.pneurobio.2011.08.006] [Citation(s) in RCA: 318] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 02/07/2023]
Abstract
Purinergic neurotransmission, involving release of ATP as an efferent neurotransmitter was first proposed in 1972. Later, ATP was recognised as a cotransmitter in peripheral nerves and more recently as a cotransmitter with glutamate, noradrenaline, GABA, acetylcholine and dopamine in the CNS. Both ATP, together with some of its enzymatic breakdown products (ADP and adenosine) and uracil nucleotides are now recognised to act via P2X ion channels and P1 and P2Y G protein-coupled receptors, which are widely expressed in the brain. They mediate both fast signalling in neurotransmission and neuromodulation and long-term (trophic) signalling in cell proliferation, differentiation and death. Purinergic signalling is prominent in neurone-glial cell interactions. In this review we discuss first the evidence implicating purinergic signalling in normal behaviour, including learning and memory, sleep and arousal, locomotor activity and exploration, feeding behaviour and mood and motivation. Then we turn to the involvement of P1 and P2 receptors in pathological brain function; firstly in trauma, ischemia and stroke, then in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's, as well as multiple sclerosis and amyotrophic lateral sclerosis. Finally, the role of purinergic signalling in neuropsychiatric diseases (including schizophrenia), epilepsy, migraine, cognitive impairment and neuropathic pain will be considered.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| | | | | | | |
Collapse
|
12
|
Shrivastava AN, Triller A, Sieghart W. GABA(A) Receptors: Post-Synaptic Co-Localization and Cross-Talk with Other Receptors. Front Cell Neurosci 2011; 5:7. [PMID: 21734865 PMCID: PMC3123775 DOI: 10.3389/fncel.2011.00007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 06/06/2011] [Indexed: 11/14/2022] Open
Abstract
γ-Aminobutyric acid type A receptors (GABAARs) are the major inhibitory neurotransmitter receptors in the central nervous system, and importantly contribute to the functional regulation of the nervous system. Several studies in the last few decades have convincingly shown that GABA can be co-localized with other neurotransmitters in the same synapse, and can be co-released with these neurotransmitters either from the same vesicles or from different vesicle pools. The co-released transmitters may act on post-synaptically co-localized receptors resulting in a simultaneous activation of both receptors. Most of the studies investigating such co-activation observed a reduced efficacy of GABA for activating GABAARs and thus, a reduced inhibition of the post-synaptic neuron. Similarly, in several cases activation of GABAARs has been reported to suppress the response of the associated receptors. Such a receptor cross-talk is either mediated via a direct coupling between the two receptors or via the activation of intracellular signaling pathways and is used for fine tuning of inhibition in the nervous system. Recently, it was demonstrated that a direct interaction of different receptors might already occur in intracellular compartments and might also be used to specifically target the receptors to the cell membrane. In this article, we provide an overview on such cross-talks between GABAARs and several other neurotransmitter receptors and briefly discuss their possible physiological and clinical importance.
Collapse
Affiliation(s)
- Amulya Nidhi Shrivastava
- Department of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna Vienna, Austria
| | | | | |
Collapse
|
13
|
Lopatář J, Dale N, Frenguelli BG. Minor contribution of ATP P2 receptors to electrically-evoked electrographic seizure activity in hippocampal slices: Evidence from purine biosensors and P2 receptor agonists and antagonists. Neuropharmacology 2011; 61:25-34. [PMID: 21338615 DOI: 10.1016/j.neuropharm.2011.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/12/2011] [Accepted: 02/12/2011] [Indexed: 10/18/2022]
Abstract
While the position of adenosine as an endogenous anticonvulsant is well established, it is unclear to what extent its precursor, ATP, contributes to seizure activity via P2 receptors. In this study we have addressed this issue through the use of ATP biosensors and agonists and antagonists of ATP P2 receptors to detect the release and role of ATP, respectively, during electrically-evoked electrographic seizure-like events (eSLEs) in rat hippocampal slices. The broad-spectrum P2 receptor antagonists RB-2 and PPADS (10μM) caused a small ∼30% inhibition of eSLE duration, and a reduction in intensity. This inhibition of eSLEs was partially reproduced with the P2X(1,2/3,3) antagonist NF023 (10μM), but not the P2X(7) antagonist BBG (10μM). However, the P2X receptor agonist α,β-meATP did not enhance eSLEs, but instead reduced their duration. Furthermore, we could discern no role for P2Y(1) receptors in electrically-evoked eSLEs: both the P2Y(1) antagonist MRS2179 (10μM) and the P2Y(1) receptor agonist 2-methylthioADP (10μM) were without effect on eSLEs. Consistent with a minor role for ATP P2 receptors on eSLEs we could detect no ATP release during eSLEs, although appreciable quantities of adenosine were detected, which had a pronounced inhibitory action on eSLEs via A(1) receptors. We conclude that the role of ATP P2 receptors in modulating electrographic seizure activity is limited, at least in models such as this one requiring electrical stimulation of afferent fibres. We further conclude that the presence and action of adenosine under these conditions may primarily reflect direct release of this purine.
Collapse
Affiliation(s)
- Ján Lopatář
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
14
|
Köles L, Leichsenring A, Rubini P, Illes P. P2 receptor signaling in neurons and glial cells of the central nervous system. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:441-93. [PMID: 21586367 DOI: 10.1016/b978-0-12-385526-8.00014-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purine and pyrimidine nucleotides are extracellular signaling molecules in the central nervous system (CNS) leaving the intracellular space of various CNS cell types via nonexocytotic mechanisms. In addition, ATP is a neuro-and gliotransmitter released by exocytosis from neurons and neuroglia. These nucleotides activate P2 receptors of the P2X (ligand-gated cationic channels) and P2Y (G protein-coupled receptors) types. In mammalians, seven P2X and eight P2Y receptor subunits occur; three P2X subtypes form homomeric or heteromeric P2X receptors. P2Y subtypes may also hetero-oligomerize with each other as well as with other G protein-coupled receptors. P2X receptors are able to physically associate with various types of ligand-gated ion channels and thereby to interact with them. The P2 receptor homomers or heteromers exhibit specific sensitivities against pharmacological ligands and have preferential functional roles. They may be situated at both presynaptic (nerve terminals) and postsynaptic (somatodendritic) sites of neurons, where they modulate either transmitter release or the postsynaptic sensitivity to neurotransmitters. P2 receptors exist at neuroglia (e.g., astrocytes, oligodendrocytes) and microglia in the CNS. The neuroglial P2 receptors subserve the neuron-glia cross talk especially via their end-feets projecting to neighboring synapses. In addition, glial networks are able to communicate through coordinated oscillations of their intracellular Ca(2+) over considerable distances. P2 receptors are involved in the physiological regulation of CNS functions as well as in its pathophysiological dysregulation. Normal (motivation, reward, embryonic and postnatal development, neuroregeneration) and abnormal regulatory mechanisms (pain, neuroinflammation, neurodegeneration, epilepsy) are important examples for the significance of P2 receptor-mediated/modulated processes.
Collapse
Affiliation(s)
- Laszlo Köles
- Rudolph-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Germany
| | | | | | | |
Collapse
|
15
|
Dale N, Frenguelli BG. Release of adenosine and ATP during ischemia and epilepsy. Curr Neuropharmacol 2010; 7:160-79. [PMID: 20190959 PMCID: PMC2769001 DOI: 10.2174/157015909789152146] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/15/2009] [Accepted: 05/01/2009] [Indexed: 12/17/2022] Open
Abstract
Eighty years ago Drury & Szent-Györgyi described the actions of adenosine, AMP (adenylic acid) and ATP (pyrophosphoric or diphosphoric ester of adenylic acid) on the mammalian cardiovascular system, skeletal muscle, intestinal and urinary systems. Since then considerable insight has been gleaned on the means by which these compounds act, not least of which in the distinction between the two broad classes of their respective receptors, with their many subtypes, and the ensuing diversity in cellular consequences their activation invokes. These myriad actions are of course predicated on the release of the purines into the extracellular milieu, but, surprisingly, there is still considerable ambiguity as to how this occurs in various physiological and pathophysiological conditions. In this review we summarise the release of ATP and adenosine during seizures and cerebral ischemia and discuss mechanisms by which the purines adenosine and ATP may be released from cells in the CNS under these conditions.
Collapse
Affiliation(s)
- Nicholas Dale
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|
16
|
Friedle SA, Curet MA, Watters JJ. Recent patents on novel P2X(7) receptor antagonists and their potential for reducing central nervous system inflammation. ACTA ACUST UNITED AC 2010; 5:35-45. [PMID: 19705995 DOI: 10.2174/157488910789753530] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 07/13/2009] [Indexed: 01/24/2023]
Abstract
Inflammation arises in the CNS from a number of neurodegenerative and oncogenic disorders, as well as from ischemic and traumatic brain injuries. These pathologies give rise to increased levels of extracellular adenine nucleotides which, via activation of a variety of cell surface P2 purinergic receptors, influence the inflammatory activities of responding immune cells. One P2 receptor subtype in particular, the P2X(7) receptor, potentiates the release of pro-inflammatory cytokines, such as interleukin-1beta (IL-1beta) from macrophage-like cells. It is also thought to contribute to secondary brain injury by inducing neuronal cell death. Therefore, antagonism of this receptor could have significant therapeutic impact on all disorders, not just CNS, to which excessive inflammatory activities contribute. The use of currently available P2X(7) receptor antagonists for the treatment of CNS inflammation has been limited to the generally non-selective antagonists PPADS, oxidized ATP, Brilliant Blue G, suramin, calmidizolium, and KN-62. However, the recent patents and development of novel P2X(7) receptor antagonists, as discussed in this review, will provide new tools both for clinical and research purposes. Here we discuss compounds for which patents have been applied since 2006, from the following categories: benzamide inhibitors, bicycloheteroaryl compounds, acylhdranzine antagonists, biaromatic P2X(7) antagonists, heterocyclic compounds and amide derivatives, and aromatic amine antagonists.
Collapse
Affiliation(s)
- Scott A Friedle
- Program in Cellular and Molecular Biology and Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
17
|
Kim DS, Kim JE, Kwak SE, Choi KC, Kim DW, Kwon OS, Choi SY, Kang TC. Spatiotemporal characteristics of astroglial death in the rat hippocampo-entorhinal complex following pilocarpine-induced status epilepticus. J Comp Neurol 2009; 511:581-98. [PMID: 18853423 DOI: 10.1002/cne.21851] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recently we reported that astroglial loss and subsequent gliogenesis in the dentate gyrus play a role in epileptogenesis following pilocarpine-induced status epilepticus (SE). In the present study we investigated whether astroglial damages in the hippocampo-entorhinal complex following SE are relevant to pathological or electrophysiological properties of temporal lobe epilepsy. Astroglial loss/damage was observed in the entorhinal cortex and the CA1 region at 4 weeks and 8 weeks after SE, respectively. These astroglial responses in the hippocampo-entorhinal cortex were accompanied by hyperexcitability of the CA1 region (impairment of paired-pulse inhibition and increase in excitability ratio). Unlike the dentate gyrus and the entorhinal cortex, CA1 astroglial damage was protected by conventional anti-epileptic drugs. alpha-Aminoadipic acid (a specific astroglial toxin) infusion into the entorhinal cortex induced astroglial damage and changed the electrophysiological properties in the CA1 region. Astroglial regeneration in the dentate gyrus and the stratum oriens of the CA1 region was found to originate from gliogenesis, while that in the entorhinal cortex and stratum radiatum of the CA1 region originated from in situ proliferation. These findings suggest that regional specific astroglial death/regeneration patterns may play an important role in the pathogenesis of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Duk-Soo Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Doná F, Ulrich H, Persike DS, Conceição IM, Blini JP, Cavalheiro EA, Fernandes MJS. Alteration of purinergic P2X4 and P2X7 receptor expression in rats with temporal-lobe epilepsy induced by pilocarpine. Epilepsy Res 2008; 83:157-67. [PMID: 19084381 DOI: 10.1016/j.eplepsyres.2008.10.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/20/2008] [Accepted: 10/22/2008] [Indexed: 11/29/2022]
Abstract
SUMMARY Although ATP and P2X receptor activity have been lately associated with epilepsy, little is known regarding their exact roles in epileptogenesis. Temporal-lobe epilepsy (TLE) in rat was induced by pilocarpine in order to study changes of hippocampal P2X(2), P2X(4) and P2X(7) receptor expression during acute, latent or chronic phases of epilepsy. During acute and chronic phases increased P2X(7) receptor expression was principally observed in glial cells and glutamatergic nerve terminals, suggesting participation of this receptor in the activation of inflammatory and excitotoxic processes during epileptogenesis. No significant alterations of hippocampal P2X(2) and P2X(4) receptor expression was noted during the acute or latent phase when compared to the control group, indicating that these receptors are not directly involved with the initiation of epilepsy. However, the reduction of hippocampal P2X(4) receptor immunostaining in the chronic phase could reflect neuronal loss or decreased GABAergic signaling.
Collapse
Affiliation(s)
- Flavia Doná
- Departamento Neurologia/Neurocirurgia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
19
|
Apolloni S, Montilli C, Finocchi P, Amadio S. Membrane compartments and purinergic signalling: P2X receptors in neurodegenerative and neuroinflammatory events. FEBS J 2008; 276:354-64. [DOI: 10.1111/j.1742-4658.2008.06796.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Up-regulated astroglial TWIK-related acid-sensitive K+ channel-1 (TASK-1) in the hippocampus of seizure-sensitive gerbils: a target of anti-epileptic drugs. Brain Res 2007; 1185:346-58. [PMID: 17959156 DOI: 10.1016/j.brainres.2007.09.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 09/13/2007] [Accepted: 09/15/2007] [Indexed: 01/27/2023]
Abstract
In order to identify the modulation of TASK (TWIK-related Acid-Sensitive K(+)) channel expressions in epilepsy, we conducted a comparative analysis of TASK channel immunoreactivities in the hippocampus of seizure-resistant (SR) and seizure-sensitive (SS) gerbils. There was no difference of the TASK-1 and TASK-2 channel expressions in the hippocampi of young SR and SS gerbils (1-2 months old). In adult SS gerbil hippocampus, TASK-1 immunoreactivity in astrocytes was higher than that in adult SR gerbil hippocampus. After seizures, TASK-1 immunoreactivity was significantly down-regulated in astrocytes of the SS gerbil hippocampus. In addition, various anti-epileptic drugs selectively affect TASK-1 immunoreactivity in astrocytes of the SS gerbil hippocampus. Gabapentin, lamotrigine, topiramate and valproic acid reduced the number of TASK-1(+) astrocytes in the hippocampus to 10-25% of that in saline-treated SS adult gerbils, whereas carbamazepine and vigabatrin decreased to approximately 50%. Therefore, the present study demonstrates that up-regulated TASK-1 immunoreactivity in astrocytes may be involved in the seizure activity of SS adult gerbils and suggests that the astroglial TASK-1 channel may be a target for epilepsy therapeutics.
Collapse
|
21
|
Majumder P, Trujillo CA, Lopes CG, Resende RR, Gomes KN, Yuahasi KK, Britto LRG, Ulrich H. New insights into purinergic receptor signaling in neuronal differentiation, neuroprotection, and brain disorders. Purinergic Signal 2007; 3:317-31. [PMID: 18404445 PMCID: PMC2072925 DOI: 10.1007/s11302-007-9074-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 08/09/2007] [Indexed: 05/07/2023] Open
Abstract
Ionotropic P2X and metabotropic P2Y purinergic receptors are expressed in the central nervous system and participate in the synaptic process particularly associated with acetylcholine, GABA, and glutamate neurotransmission. As a result of activation, the P2 receptors promote the elevation of free intracellular calcium concentration as the main signaling pathway. Purinergic signaling is present in early stages of embryogenesis and is involved in processes of cell proliferation, migration, and differentiation. The use of new techniques such as knockout animals, in vitro models of neuronal differentiation, antisense oligonucleotides to induce downregulation of purinergic receptor gene expression, and the development of selective inhibitors for purinergic receptor subtypes contribute to the comprehension of the role of purinergic signaling during neurogenesis. In this review, we shall discuss the participation of purinergic receptors in developmental processes and in brain physiology, including neuron-glia interactions and pathophysiology.
Collapse
Affiliation(s)
- Paromita Majumder
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kim DS, Kwak SE, Kim JE, Won MH, Kang TC. The co-treatments of vigabatrin and P2X receptor antagonists protect ischemic neuronal cell death in the gerbil hippocampus. Brain Res 2006; 1120:151-60. [PMID: 16979598 DOI: 10.1016/j.brainres.2006.08.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 08/12/2006] [Accepted: 08/15/2006] [Indexed: 10/24/2022]
Abstract
During transient global ischemia, the excessive accumulation of intracellular Ca2+ induced by several episodes triggers delayed neuronal death within the vulnerable CA1 region of the hippocampus after ischemia-reperfusion insults. Although P2X receptors provide an additional source of Ca2+ entry, little data are available that these receptors could modulate the performance of the ischemic neuronal death. Therefore, we investigated the roles of the P2X receptor in the ischemic neuronal damage associated with various sequelae of transient ischemia, and the effects of their antagonist on the ischemic insults. As the results, ischemic insults increased P2X receptor expression in the gerbil hippocampus. Neither vigabatrin (VGB) nor P2X receptor antagonists (suramin, pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid) protected against the delayed neuronal death in the CA1 region of the hippocampus after ischemia. However, the co-treatments of VGB and P2X receptor antagonists effectively prevent ischemia-induced neurodegeneration. Therefore, these findings suggest that blockade of the P2X receptor accompanied by activation of GABAergic inhibition may play an important role in the neuroprotection against ischemic insults.
Collapse
Affiliation(s)
- Duk-Soo Kim
- Department of Anatomy, College of Medicine, Hallym University, Chunchon, Kangwon-Do 200-702, South Korea
| | | | | | | | | |
Collapse
|
23
|
Kim DS, Kwak SE, Kim JE, Kim JS, Won MH, Kang TC. The selective effects of somatostatin- and GABA-mediated transmissions on voltage gated Ca2+ channel immunoreactivity in the gerbil hippocampus. Brain Res 2006; 1115:200-8. [PMID: 16920080 DOI: 10.1016/j.brainres.2006.07.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 07/13/2006] [Accepted: 07/24/2006] [Indexed: 10/24/2022]
Abstract
To identify whether altered expressions of voltage gated Ca(2+) channel (VGCC) are linked to inhibitory transmission abnormalities in the gerbil hippocampus, we investigated the effects of GABA receptor or somatostatin receptor (SST) antagonists/agonists on VGCC immunoreactivity in vivo. VGCC immunoreactivities in the hippocampus were significantly higher in seizure sensitive (SS) gerbils than in seizure resistant (SR) gerbils. P/Q-type VGCC immunoreactivity in the gerbil hippocampus was reduced by enhancement in GABA(A) and GABA(B) receptor-mediated transmission, but not by SST-mediated transmission. N-type VGCC immunoreactivity was reduced only by a SST agonist, whereas L-type (alpha1C) VGCC immunoreactivity was reduced only by a GABA(A) receptor agonist, and L-type (alpha1D) VGCC immunoreactivity was modulated by the GABA(B) receptor acting drugs. These findings provide a comprehensive description of the differential responses of VGCC subunits to alteration in GABAergic or somatostatinergic transmission. These findings also suggest that up-regulated VGCC immunoreactivity may be consequence of the neuronal excitability caused by a reduction in inhibitory neurotransmission in the gerbil hippocampus.
Collapse
MESH Headings
- Animals
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/metabolism
- Calcium Channels, N-Type/drug effects
- Calcium Channels, N-Type/metabolism
- Calcium Channels, P-Type/drug effects
- Calcium Channels, P-Type/metabolism
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Disease Models, Animal
- Epilepsy/chemically induced
- Epilepsy/metabolism
- Epilepsy/physiopathology
- Epilepsy, Temporal Lobe/metabolism
- Epilepsy, Temporal Lobe/physiopathology
- GABA Agonists/pharmacology
- GABA Antagonists/pharmacology
- GABA-A Receptor Agonists
- GABA-A Receptor Antagonists
- GABA-B Receptor Agonists
- GABA-B Receptor Antagonists
- Gerbillinae
- Hippocampus/drug effects
- Hippocampus/metabolism
- Hippocampus/physiopathology
- Immunohistochemistry
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Neurons/drug effects
- Neurons/metabolism
- Receptors, GABA-A/metabolism
- Receptors, Somatostatin/agonists
- Receptors, Somatostatin/antagonists & inhibitors
- Receptors, Somatostatin/metabolism
- Somatostatin/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- Duk-Soo Kim
- Department of Anatomy, College of Medicine, Hallym University, Chunchon, Kangwon-Do 200-702, South Korea
| | | | | | | | | | | |
Collapse
|
24
|
Franke H, Krügel U, Illes P. P2 receptors and neuronal injury. Pflugers Arch 2006; 452:622-44. [PMID: 16645849 DOI: 10.1007/s00424-006-0071-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 03/09/2006] [Indexed: 02/08/2023]
Abstract
Extracellular adenosine 5'-triphosphate (ATP) was proposed to be an activity-dependent signaling molecule that regulates glia-glia and glia-neuron communications. ATP is a neurotransmitter of its own right and, in addition, a cotransmitter of other classical transmitters such as glutamate or GABA. The effects of ATP are mediated by two receptor families belonging either to the P2X (ligand-gated cationic channels) or P2Y (G protein-coupled receptors) types. P2X receptors are responsible for rapid synaptic responses, whereas P2Y receptors mediate slow synaptic responses and other types of purinergic signaling involved in neuronal damage/regeneration. ATP may act at pre- and postsynaptic sites and therefore, it may participate in the phenomena of long-term potentiation and long-term depression of excitatory synaptic transmission. The release of ATP into the extracellular space, e.g., by exocytosis, membrane transporters, and connexin hemichannels, is a widespread physiological process. However, ATP may also leave cells through their plasma membrane damaged by inflammation, ischemia, and mechanical injury. Functional responses to the activation of multiple P2 receptors were found in neurons and glial cells under normal and pathophysiological conditions. P2 receptor-activation could either be a cause or a consequence of neuronal cell death/glial activation and may be related to detrimental and/or beneficial effects. The present review aims at demonstrating that purinergic mechanisms correlate with the etiopathology of brain insults, especially because of the massive extracellular release of ATP, adenosine, and other neurotransmitters after brain injury. We will focus in this review on the most important P2 receptor-mediated neurodegenerative and neuroprotective processes and their beneficial modulation by possible therapeutic manipulations.
Collapse
Affiliation(s)
- Heike Franke
- Rudolf-Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, 04107, Leipzig, Germany.
| | | | | |
Collapse
|
25
|
Kim DS, Kwak SE, Kim JE, Won MH, Suh JG, Oh YS, Kang TC. The effect of P2X receptor activity on GABAA receptor-mediated inhibition in the gerbil hippocampus. Brain Res 2005; 1065:125-31. [PMID: 16309634 DOI: 10.1016/j.brainres.2005.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 09/28/2005] [Accepted: 10/03/2005] [Indexed: 11/20/2022]
Abstract
In the present study, to elucidate the effect of altered P(2)X receptor transmission on GABA(A) receptor expression and its transmission, we studied the morphological and electrophysiological responses of GABA(A) receptor in the gerbil hippocampus following P(2)X receptor antagonist/agonist treatment. Suramin or pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) treatment did not affect GABA(A) receptor immunoreactivities and paired-pulse responses in the gerbil hippocampus. In addition, ATP treatment did not significantly affect population spike amplitude ratios and EPSP slope ratios in the gerbil dentate gyrus. Co-application, but not pretreatment, of PPADS or suramin enhanced the effect of muscimol on paired-pulse inhibition in the dentate gyrus. In contrast, co-application of ATP reduced the effect of muscimol in the dentate gyrus. These findings indicate that the blockade of P(2)X receptor did not affect GABA(A) receptor immunoreactivities, and P(2)X receptor may modulate GABA(A) receptor-mediated inhibition when in co-activation with GABA(A) receptor. Therefore, our findings suggest that the relationship between GABA(A) receptor and P(2)X receptor may not be reciprocal, although GABA(A) receptor activity affects P(2)X receptor functionality and its expression.
Collapse
Affiliation(s)
- Duk-Soo Kim
- Department of Anatomy, College of Medicine, Hallym University, Chunchon, Kangwon-Do 200-702, South Korea
| | | | | | | | | | | | | |
Collapse
|
26
|
Kwak SE, Kim JE, Kim DS, Won MH, Choi HC, Kim YI, Song HK, Choi SY, Kang TC. Differential effects of vigabatrin and zonisamide on the neuropeptide Y system in the hippocampus of seizure prone gerbil. Neuropeptides 2005; 39:507-13. [PMID: 16194568 DOI: 10.1016/j.npep.2005.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Accepted: 08/16/2005] [Indexed: 10/25/2022]
Abstract
Changed neuropeptide Y (NPY) system in the hippocampus has been reported in various experimental epileptic models. However, there have been little data concerning the alteration in the NPY system in the epileptic hippocampus following treatment of anti-epileptic drugs (AEDs). In the present study, therefore, we performed analyses of effects of vigabatrin (VGB) and zonisamide (ZNS) treatment on the NPY system in the hippocampus of the seizure sensitive (SS) gerbils. In SS gerbil, NPY immunoreactivity in the hippocampus was lower than that in seizure resistant gerbil. Following VGB treatment, the number of NPY immunoreactive neurons and NPY mRNA expression were increased in the hilus and the hippocampus proper. In contrast, ZNS treatment markedly elevated only the density of NPY immunoreactive fibers in the dentate gyrus, not in the hippocampus proper, as compared with saline-treated animals. These patterns were observed in the dose-dependent manners. These findings suggest that AEDs treatments may distinctly affect the NPY system in the SS gerbil hippocampus.
Collapse
Affiliation(s)
- Sung-Eun Kwak
- Department of Anatomy, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Franke H, Illes P. Involvement of P2 receptors in the growth and survival of neurons in the CNS. Pharmacol Ther 2005; 109:297-324. [PMID: 16102837 DOI: 10.1016/j.pharmthera.2005.06.002] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 06/06/2005] [Indexed: 12/12/2022]
Abstract
Extracellular adenosine 5'-triphosphate (ATP) has been recognized as a ubiquitous, unstable signalling molecule, acting as a fast neurotransmitter and modulator of transmitter release and neuronal excitability. Recent findings have demonstrated that ATP is a growth factor participating in differentiation, cell proliferation, and survival, as well as a toxic agent that mediates cellular degeneration and death. Potential sources of extracellular purines in the nervous system include neurons, glia, endothelium, and blood. A complex family of ectoenzymes rapidly hydrolyzes or interconverts extracellular nucleotides, thereby either terminating their signalling action or producing an active metabolite of altered purinoceptor selectivity. Most effects are mediated through the 2 main subclasses of specific cell surface receptors, P2X and P2Y. Members of these P2X/Y receptor families are widely expressed in the central nervous system (CNS) and are involved in glia-glia and glia-neuron communications, whereby they play important physiological and pathophysiological roles in a variety of biological processes. After different kinds of "acute" CNS injury (e.g., ischemia, hypoxia, mechanical stress, axotomy), extracellular ATP can reach high concentrations, up to the millimolar range, flowing out from cells into the extracellular space, exocytotically, via transmembrane transport, or as a result of cell damage. In this review, P2 receptor activation as a cause or a consequence of neuronal cell activation or death and/or glial activation is described. The involvement of P2 receptors is also described under different "chronic" pathological conditions, such as pain, epilepsia, toxic influence of ethanol or amphetamine, retinal diseases, Alzheimer's disease (AD), and possibly, Parkinson's disease. The relationship between changes in P2 receptor expression and the specific response of different cell types to injury is extremely complex and can be related to detrimental and/or beneficial effects. The present review therefore considers ATP acting via P2 receptors as a potent regulator of normal physiological and pathological processes in the brain, with a focus on pathophysiological implications of P2 receptor functions.
Collapse
Affiliation(s)
- Heike Franke
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, D-04107, Leipzig, Germany.
| | | |
Collapse
|
28
|
Hwang IK, Lee HY, Seong NS, Chung HG, Kim JH, Lee HJ, Kim JD, Kang TC, Won MH. Changes of Calbindin D-28k Immunoreactivity in the Hippocampus after Adrenalectomy in the Seizure Sensitive Gerbil. Anat Histol Embryol 2004; 33:299-303. [PMID: 15352884 DOI: 10.1111/j.1439-0264.2004.00554.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calbindin D-28k (CB), a calcium-binding protein, containing neurons in the hippocampus plays an important role in hippocampal excitability in epilepsy. In the present study, we investigated changes of CB immunoreactivity after adrenalectomy (ADX) in the hippocampus and dentate gyrus of the seizure sensitive gerbil, which is susceptible to seizure to identify roles of CB in epileptogenesis. The changes of the CB immunoreactivity after ADX were significant in the hippocampal CA1 region. By 24 h after ADX, CB-immunoreactive CA1 pyramidal cells and CB immunoreactivity increased. At this time, well-stained dendrites projected to the stratum radiatum. Thereafter, the CB immunoreactivity decreased time dependently by 96 h after ADX. In the dentate gyrus, the changes of CB-immunoreactive neurons were mainly observed in the granule cell layer. The number and immunoreactivity of CB-immunoreactive neurons was high at 24 h after ADX, thereafter, those decreased by 96 h after ADX. These results suggest that glucocorticoid has an important role in modulating the seizure activity and CB serves an inhibitory function, which regulates the seizure activity and output signals from the hippocampus.
Collapse
Affiliation(s)
- I K Hwang
- Department of Anatomy, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ma B, Ruan HZ, Cockayne DA, Ford APDW, Burnstock G, Dunn PM. Identification of P2X receptors in cultured mouse and rat parasympathetic otic ganglion neurones including P2X knockout studies. Neuropharmacology 2004; 46:1039-48. [PMID: 15081800 DOI: 10.1016/j.neuropharm.2004.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 11/28/2003] [Accepted: 01/08/2004] [Indexed: 11/26/2022]
Abstract
We have used patch-clamp recording from cultured neurones, immunohistochemistry and gene deletion techniques to characterize the P2X receptors present in mouse otic ganglion neurones, and demonstrated the presence of similar receptors in rat neurones. All neurones from wild-type (WT) mice responded to ATP (EC(50) 109 microM), but only 38% also responded to alpha beta-meATP (EC(50) 39 microM). The response to alpha beta-meATP was blocked by TNP-ATP with an IC(50) of 38.6 nM. Lowering extracellular pH and co-application of Zn(2+) potentiated responses to ATP and alpha beta-meATP. In P2X(3)(-/-) mouse otic ganglion, all neurones tested responded to 100 microM ATP with a sustained current, but none responded to alpha beta-meATP. In P2X(2)(-/-) mice, no sustained currents were observed, but 36% of neurones responded to both ATP and alpha beta-meATP with transient currents. In P2X(2)/P2X(3)(Dbl-/-) mice, no responses to ATP or alpha beta-meATP were detected, suggesting that other P2X subunits were not involved. In rat otic ganglia, 96% of neurones responded to both ATP and alpha beta-meATP with sustained currents, suggesting a greater proportion of neurones expressing P2X(2/3) receptors. The maximum response to alpha beta-meATP was 40-60% of that evoked by ATP in the same cell. Immunohistochemistry revealed staining for P2X(2) and P2X(3) subunits in WT mouse otic ganglion neurones, which was absent in knockout animals. In conclusion, we have shown for the first time that at least two distinct P2X receptors are present in mouse and rat otic neurones, probably homomeric P2X(2) and heteromeric P2X(2/3) receptors.
Collapse
Affiliation(s)
- Bei Ma
- Autonomic Neuroscience Institute, Department of Anatomy and Developmental Biology, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, UK
| | | | | | | | | | | |
Collapse
|
30
|
Kang TC, Park SK, Hwang IK, An SJ, Won MH. GABA(B) receptor-mediated regulation of P2X7 receptor expression in the gerbil hippocampus. ACTA ACUST UNITED AC 2004; 121:12-8. [PMID: 14969732 DOI: 10.1016/j.molbrainres.2003.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2003] [Indexed: 11/30/2022]
Abstract
In the present study, the P(2)X(7) receptor expression in the gerbil hippocampus and GABA-mediated responses of its expression was investigated in order to identify the roles of the P(2)X(7) receptor on seizure activity and recovery mechanisms. P(2)X(7) receptor immunoreactivity in seizure-resistant (SR) gerbils was similar to that in pre-seizure group of seizure-sensitive (SS) gerbils. The administration of baclofen, a GABA(B) receptor agonist, P(2)X(7) receptor immunoreactivity was decreased in the mossy fiber, compared with that of non-treated gerbils, whereas treatment with phaclofen, a GABA(B) receptor antagonist, elevated P(2)X(7) receptor expression. Neither the treatments with GABA(A) receptor agonist nor antagonist affected P(2)X(7) receptor expression in the hippocampus. These findings suggest that altered P(2)X(7) receptor expression may not be involved in the epileptogenesis or seizure activity in gerbils, and presynaptic GABA(B) receptor-mediated actions may be closely related with the regulation of P(2)X(7) receptor expression in the gerbil hippocampus.
Collapse
Affiliation(s)
- Tae-Cheon Kang
- Department of Anatomy, College of Medicine, Hallym University, Chunchon, Kangwon-Do 200-702, South Korea.
| | | | | | | | | |
Collapse
|