1
|
Metaxa V, Lagoudaki R, Meditskou S, Thomareis O, Oikonomou L, Sakadamis A. Delayed post-ischaemic administration of xenon reduces brain damage in a rat model of global ischaemia. Brain Inj 2013; 28:364-9. [DOI: 10.3109/02699052.2013.865273] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
2
|
Jia X, Kowalski RG, Sciubba DM, Geocadin RG. Critical care of traumatic spinal cord injury. J Intensive Care Med 2011; 28:12-23. [PMID: 21482574 DOI: 10.1177/0885066611403270] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Approximately 11 000 people suffer traumatic spinal cord injury (TSCI) in the United States, each year. TSCI incidences vary from 13.1 to 52.2 per million people and the mortality rates ranged from 3.1 to 17.5 per million people. This review examines the critical care of TSCI. The discussion will focus on primary and secondary mechanisms of injury, spine stabilization and immobilization, surgery, intensive care management, airway and respiratory management, cardiovascular complication management, venous thromboembolism, nutrition and glucose control, infection management, pressure ulcers and early rehabilitation, pharmacologic cord protection, and evolving treatment options including the use of pluripotent stem cells and hypothermia.
Collapse
Affiliation(s)
- Xiaofeng Jia
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
3
|
Dietrich WD, Atkins CM, Bramlett HM. Protection in animal models of brain and spinal cord injury with mild to moderate hypothermia. J Neurotrauma 2009; 26:301-12. [PMID: 19245308 DOI: 10.1089/neu.2008.0806] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
For the past 20 years, various laboratories throughout the world have shown that mild to moderate levels of hypothermia lead to neuroprotection and improved functional outcome in various models of brain and spinal cord injury (SCI). Although the potential neuroprotective effects of profound hypothermia during and following central nervous system (CNS) injury have long been recognized, more recent studies have described clinically feasible strategies for protecting the brain and spinal cord using hypothermia following a variety of CNS insults. In some cases, only a one or two degree decrease in brain or core temperature can be effective in protecting the CNS from injury. Alternatively, raising brain temperature only a couple of degrees above normothermia levels worsens outcome in a variety of injury models. Based on these data, resurgence has occurred in the potential use of therapeutic hypothermia in experimental and clinical settings. The study of therapeutic hypothermia is now an international area of investigation with scientists and clinicians from every part of the world contributing to this important, promising therapeutic intervention. This paper reviews the experimental data obtained in animal models of brain and SCI demonstrating the benefits of mild to moderate hypothermia. These studies have provided critical data for the translation of this therapy to the clinical arena. The mechanisms underlying the beneficial effects of mild hypothermia are also summarized.
Collapse
Affiliation(s)
- W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida 33136-1060, USA.
| | | | | |
Collapse
|
4
|
Geocadin RG, Koenig MA, Jia X, Stevens RD, Peberdy MA. Management of brain injury after resuscitation from cardiac arrest. Neurol Clin 2008; 26:487-506, ix. [PMID: 18514823 PMCID: PMC3074242 DOI: 10.1016/j.ncl.2008.03.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The devastating neurologic injury in survivors of cardiac arrest has been recognized since the development of modern resuscitation techniques. After numerous failed clinical trials, two trials showed that induced mild hypothermia can ameliorate brain injury and improve survival and functional neurologic outcome in comatose survivors of out-of-hospital cardiac arrest. This article provides a comprehensive review of the advances in the care of brain injury after cardiac arrest, with updates on the process of prognostication, the use of therapeutic hypothermia and adjunctive intensive care unit care for cardiac arrest survivors.
Collapse
Affiliation(s)
- Romergryko G Geocadin
- Neurosciences Critical Care Division, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD 21287, USA.
| | | | | | | | | |
Collapse
|
5
|
Kobayashi MS, Asai S, Ishikawa K, Nishida Y, Nagata T, Takahashi Y. Global profiling of influence of intra-ischemic brain temperature on gene expression in rat brain. ACTA ACUST UNITED AC 2008; 58:171-91. [PMID: 18440647 DOI: 10.1016/j.brainresrev.2008.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Revised: 02/08/2008] [Accepted: 03/08/2008] [Indexed: 12/20/2022]
Abstract
Mild to moderate differences in brain temperature are known to greatly affect the outcome of cerebral ischemia. The impact of brain temperature on ischemic disorders has been mainly evaluated through pathological analysis. However, no comprehensive analyses have been conducted at the gene expression level. Using a high-density oligonucleotide microarray, we screened 24000 genes in the hippocampus under hypothermic (32 degrees C), normothermic (37 degrees C), and hyperthermic (39 degrees C) conditions in a rat ischemia-reperfusion model. When the ischemic group at each intra-ischemic brain temperature was compared to a sham-operated control group, genes whose expression levels changed more than three-fold with statistical significance could be detected. In our screening condition, thirty-three genes (some of them novel) were obtained after screening, and extensive functional surveys and literature reviews were subsequently performed. In the hypothermic condition, many neuroprotective factor genes were obtained, whereas cell death- and cell damage-associated genes were detected as the brain temperature increased. At all intra-ischemic brain temperatures, multiple molecular chaperone genes were obtained. The finding that intra-ischemic brain temperature affects the expression level of many genes related to neuroprotection or neurotoxicity coincides with the different pathological outcomes at different brain temperatures, demonstrating the utility of the genetic approach.
Collapse
Affiliation(s)
- Megumi Sugahara Kobayashi
- Division of Genomic Epidemiology and Clinical Trials, Advanced Medical Research Center, Nihon University School of Medicine, Oyaguchi-Kami Machi, Itabashi-ku, Tokyo 173-8610, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Zhao H, Steinberg GK, Sapolsky RM. General versus specific actions of mild-moderate hypothermia in attenuating cerebral ischemic damage. J Cereb Blood Flow Metab 2007; 27:1879-94. [PMID: 17684517 DOI: 10.1038/sj.jcbfm.9600540] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mild or moderate hypothermia is generally thought to block all changes in signaling events that are detrimental to ischemic brain, including ATP depletion, glutamate release, Ca(2+) mobilization, anoxic depolarization, free radical generation, inflammation, blood-brain barrier permeability, necrotic, and apoptotic pathways. However, the effects and mechanisms of hypothermia are, in fact, variable. We emphasize that, even in the laboratory, hypothermic protection is limited. In certain models of permanent focal ischemia, hypothermia may not protect at all. In cases where hypothermia reduces infarct, some studies have overemphasized its ability to maintain cerebral blood flow and ATP levels, and to prevent anoxic depolarization, glutamate release during ischemia. Instead, hypothermia may protect against ischemia by regulating cascades that occur after reperfusion, including blood-brain barrier permeability and the changes in gene and protein expressions associated with necrotic and apoptotic pathways. Hypothermia not only blocks multiple damaging cascades after stroke, but also selectively upregulates some protective genes. However, most of these mechanisms are addressed in models with intraischemic hypothermia; much less information is available in models with postischemic hypothermia. Moreover, although it has been confirmed that mild hypothermia is clinically feasible for acute focal stroke treatment, no definite beneficial effect has been reported yet. This lack of clinical protection may result from suboptimal criteria for patient entrance into clinical trials. To facilitate clinical translation, future efforts in the laboratory should focus more on the protective mechanisms of postischemic hypothermia, as well as on the effects of sex, age and rewarming during reperfusion on hypothermic protection.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Neurosurgery, Stanford University, Stanford, California 94305-5327, USA.
| | | | | |
Collapse
|
7
|
Geocadin RG, Koenig MA, Stevens RD, Peberdy MA. Intensive care for brain injury after cardiac arrest: therapeutic hypothermia and related neuroprotective strategies. Crit Care Clin 2007; 22:619-36; abstract viii. [PMID: 17239747 DOI: 10.1016/j.ccc.2006.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neurologic injury is the predominant cause of poor functional outcome in patients who are resuscitated from cardiac arrest. The management of these patients in the ICU can be challenging because of the paucity of effective therapies and lack of readily available diagnostic and prognostic tools. After several decades of failed pharmacologic neuroprotection trials, recent and well-designed randomized trials showed that therapeutic hypothermia is an effective neuroprotective measure in comatose survivors of cardiac arrest. Therapeutic hypothermia has been recommended by the International Liaison Committee on Resuscitation and has been incorporated in the American Heart Association CPR Guidelines. The American Academy of Neurology recently enhanced the delivery of care in survivors of cardiac arrest by providing evidence-based practice parameters on the prediction of poor outcome in comatose survivors of cardiac arrest, based on clinical evaluation and diagnostic tests. This article discusses these advances and their potential impact on the care provided in the ICU.
Collapse
Affiliation(s)
- Romergryko G Geocadin
- Department of Neurology, Johns Hopkins School of Medicine, Meyer 8-140, Baltimore, MD 21287, USA.
| | | | | | | |
Collapse
|
8
|
Jia X, Koenig MA, Shin HC, Zhen G, Yamashita S, Thakor NV, Geocadin RG. Quantitative EEG and neurological recovery with therapeutic hypothermia after asphyxial cardiac arrest in rats. Brain Res 2006; 1111:166-75. [PMID: 16919609 PMCID: PMC3074257 DOI: 10.1016/j.brainres.2006.04.121] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 04/28/2006] [Accepted: 04/29/2006] [Indexed: 11/19/2022]
Abstract
We test the hypothesis that quantitative electroencephalogram (qEEG) can be used to objectively assess functional electrophysiological recovery of brain after hypothermia in an asphyxial cardiac arrest rodent model. Twenty-eight rats were randomly subjected to 7-min (n = 14) and 9-min (n = 14) asphyxia times. One half of each group (n = 7) was randomly subjected to hypothermia (T = 33 degrees C for 12 h) and the other half (n = 7) to normothermia (T = 37 degrees C). Continuous physiologic monitoring of blood pressure, EEG, and core body temperature monitoring and intermittent arterial blood gas (ABG) analysis was undertaken. Neurological recovery after resuscitation was monitored using serial Neurological Deficit Score (NDS) calculation and qEEG analysis. Information Quantity (IQ), a previously validated measure of relative EEG entropy, was employed to monitor electrical recovery. The experiment demonstrated greater recovery of IQ in rats treated with hypothermia compared to normothermic controls in both injury groups (P < 0.05). The 72-h NDS of the hypothermia group was also significantly improved compared to the normothermia group (P < 0.05). IQ values measured at 4 h had a strong correlation with the primary neurological outcome measure, 72-h NDS score (Pearson correlation 0.746, 2-tailed significance <0.001). IQ is sensitive to the acceleration of neurological recovery as measured NDS after asphyxial cardiac arrest known to occur with induced hypothermia. These results demonstrate the potential utility of qEEG-IQ to track the response to neuroprotective hypothermia during the early phase of recovery from cardiac arrest.
Collapse
Affiliation(s)
- Xiaofeng Jia
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- Romergryko G Geocadin
- Division of Neurosciences Critical Care, Department of Neurology, Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | |
Collapse
|
10
|
Truettner JS, Suzuki T, Dietrich WD. The effect of therapeutic hypothermia on the expression of inflammatory response genes following moderate traumatic brain injury in the rat. ACTA ACUST UNITED AC 2005; 138:124-34. [PMID: 15922484 DOI: 10.1016/j.molbrainres.2005.04.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 03/11/2005] [Accepted: 04/17/2005] [Indexed: 11/26/2022]
Abstract
Traumatic brain injury (TBI) initiates a cascade of cellular and molecular responses including both pro- and anti-inflammatory. Although post-traumatic hypothermia has been shown to improve outcome in various models of brain injury, the underlying mechanisms responsible for these effects have not been clarified. In this study, inflammation cDNA arrays and semi-quantitative RT-PCR were used to detect genes that are differentially regulated after TBI. In addition, the effect of post-traumatic hypothermia on the expression of selective genes was also studied. Rats (n = 6-8 per group) underwent moderate fluid-percussion (F-P) brain injury with and without hypothermic treatment (33 degrees C/3 h). RNA from 3-h or 24-h survival was analyzed for the expression of IL1-beta, IL2, IL6, TGF-beta2, growth-regulated oncogene (GRO), migration inhibitory factor (MIF), and MCP (a transcription factor). The interleukins IL-1beta, IL-2, and IL-6 and TGF-beta and GRO were strongly upregulated early and transiently from 2- to 30-fold over sham at 3 h, with normalization by 24 h. In contrast, the expressions of MIF and MCP were both reduced by TBI compared to sham. Post-traumatic hypothermia had no significant effect on the acute expression of the majority of genes investigated. However, the expression of TGF-beta2 at 24 h was significantly reduced by temperature manipulation. The mechanism by which post-traumatic hypothermia is protective may not involve a general genetic response of the inflammatory genes. However, specific genes, including TGF-beta2, may be altered and effect cell death mechanisms after TBI. Hypothermia differentially regulates certain genes and may target more delayed responses underlying the secondary damage following TBI.
Collapse
Affiliation(s)
- Jessie S Truettner
- Department of Neurological Surgery, The Neurotrauma Research Center, The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | |
Collapse
|
11
|
Pabello NG, Tracy SJ, Snyder-Keller A, Keller RW. Regional expression of constitutive and inducible transcription factors following transient focal ischemia in the neonatal rat: influence of hypothermia. Brain Res 2005; 1038:11-21. [PMID: 15748868 DOI: 10.1016/j.brainres.2004.12.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 12/13/2004] [Accepted: 12/17/2004] [Indexed: 10/25/2022]
Abstract
Ischemia is a potent modulator of gene expression. Differential expression of transcription factors after focal ischemia may reflect the potential for neuronal recovery in peri-ischemic regions. Previously, we demonstrated that hypothermia reduces the volume of damage in a model of neonatal focal ischemia. In the present study, immunocytochemistry was used to assess the temporal and spatial profiles of the transcription factors Fos and pCREB under normal and hypothermic conditions in this neonatal model of focal ischemia. At 7 days of age, rat pups underwent a permanent middle cerebral artery occlusion (MCAo) coupled with a temporary 1-h occlusion of the common carotid artery (CCAo). They were maintained at 37 degrees C throughout ischemia and reperfusion (Normothermic), or given 1 h of hypothermic conditions (28 degrees C) either during the occlusion (Intraischemic Hypothermia) or during the second hour of reperfusion (postischemic hypothermia). In normothermic pups, Fos immunoreactivity peaked at early time points (4-8 h post-ischemia) in a narrow band in peri-ischemic regions. By later stages of reperfusion (12-24 h), there was a more widespread induction in peri-ischemic regions including the ipsilateral cortex. In contrast with Fos, the constitutive transcription factor pCREB was reduced in core regions at all time points examined. Both the c-fos induction in peri-ischemic regions and the reduction of pCREB in the core were attenuated by intraischemic hypothermia. Postischemic hypothermia altered the distribution of Fos immunoreactivity without significantly changing the number of Fos- and pCREB-immunoreactive cells compared to normothermic rats. Both intra- and postischemic hypothermia reduced the number of caspase-immunoreactive cells. Thus, focal ischemia in the P7 rat produces different distributions of Fos and pCREB than what has been observed in adult rats subjected to focal ischemia, and expression of these transcription factors can be altered by hypothermia.
Collapse
Affiliation(s)
- Nina G Pabello
- Center for Neuropharmacology and Neuroscience, MC-136, Albany Medical College, Albany, NY 12208, USA
| | | | | | | |
Collapse
|
12
|
Zhao H, Yenari MA, Cheng D, Sapolsky RM, Steinberg GK. Biphasic cytochrome c release after transient global ischemia and its inhibition by hypothermia. J Cereb Blood Flow Metab 2005; 25:1119-29. [PMID: 15789032 DOI: 10.1038/sj.jcbfm.9600111] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hypothermia is effective in preventing ischemic damage. A caspase-dependent apoptotic pathway is involved in ischemic damage, but how hypothermia inhibits this pathway after global cerebral ischemia has not been well explored. It was determined whether hypothermia protects the brain by altering cytochrome c release and caspase activity. Cerebral ischemia was produced by two-vessel occlusion plus hypotension for 10 mins. Body temperature in hypothermic animals was reduced to 33 degrees C before ischemia onset and maintained for 3 h after reperfusion. Western blots of subcellular fractions revealed biphasic cytosolic cytochrome c release, with an initial peak at about 5 h after ischemia, which decreased at 12 to 24 h, and a second, larger peak at 48 h. Caspase-3 and -9 activity increased at 12 and 24 h. A caspase inhibitor, Z-DEVD-FMK, administered 5 and 24 h after ischemia onset, protected hippocampal CA1 neurons from injury and blocked the second cytochrome c peak, suggesting that caspases mediate this second phase. Hypothermia (33 degrees C), which prevented CA1 injury, did not inhibit cytochrome c release at 5 h, but reduced cytochrome c release at 48 h. Caspase-3 and -9 activity was markedly attenuated by hypothermia at 12 and 24 h. Thus, biphasic cytochrome c release occurs after transient global ischemia and mild hypothermia protects against ischemic damage by blocking the second phase of cytochrome c release, possibly by blocking caspase activity.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Neurosurgery, Stanford University, Stanford, California 94305-5327, USA
| | | | | | | | | |
Collapse
|
13
|
Suzuki T, Bramlett HM, Ruenes G, Dietrich WD. The Effects of Early Post-Traumatic Hyperthermia in Female and Ovariectomized Rats. J Neurotrauma 2004; 21:842-53. [PMID: 15307897 DOI: 10.1089/0897715041526186] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Episodes of post-traumatic hyperthermia commonly occur in the head-injured patient population. Although post-traumatic hyperthermia has been shown to worsen outcome in experimental studies using male rats, the consequences of secondary hyperthermia following traumatic brain injury (TBI) have not been investigated in female animals. Thus, the purpose of this study was to examine the effects of post-traumatic hyperthermia after fluid-percussion (F-P) brain injury in intact and ovariectomized female rats. Thirty-eight female Sprague-Dawley rats were used in these experiments. Intact female rats underwent TBI followed 30 min later by a 4-h period of normothermia (37 degrees C) or brain hyperthermia (40 degrees C). Female rats that had been ovariectomized 10 days prior to TBI were also traumatized and followed by a period of normothermia or hyperthermia. At 72 h after TBI, rats were perfusion-fixed for quantitative histopathological and immunocytochemical evaluation. Following normothermic TBI, intact female rats demonstrated significantly smaller contusion volumes, decreased frequency of axonal beta-amyloid precursor protein (beta-APP) profiles, and greater numbers of NeuN-positive cortical neurons compared to traumatized ovariectomized females. Although post-traumatic hyperthermia increased contusion volume, cortical neuronal cell death and axonal damage in both intact and ovariectomized female groups, the effects of the induced hyperthermic period were more pronounced in ovariectomized animals. These findings demonstrate for the first time that post-traumatic hyperthermia worsens histopathological outcome in female rats, and that neural hormones, including estrogen and progesterone, may protect against secondary hyperthermic insults.
Collapse
Affiliation(s)
- Takamoto Suzuki
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | | | |
Collapse
|
14
|
Abstract
Hypothermia to mitigate ischemic brain tissue damage has a history of about six decades. Both in clinical and experimental studies of hypothermia, two principal arbitrary patterns of core temperature lowering have been defined: mild (32-35 degrees C) and moderate hypothermia (30-33 degrees C). The neuroprotective effectiveness of postischemic hypothermia is typically viewed with skepticism because of conflicting experimental data. The questions to be resolved include the: (i) postischemic delay; (ii) depth; and (iii) duration of hypothermia. However, more recent experimental data have revealed that a protected reduction in brain temperature can provide sustained behavioral and histological neuroprotection, especially when thermoregulatory responses are suppressed by sedation or anesthesia. Conversely, brief or very mild hypothermia may only delay neuronal damage. Accordingly, protracted hypothermia of 32-34 degrees C may be beneficial following acute cerebral ischemia. But the pathophysiological mechanism of this protection remains yet unclear. Although reduction of metabolism could explain protection by deep hypothermia, it does not explain the robust protection connected with mild hypothermia. A thorough understanding of the experimental data of postischemic hypothermia would lead to a more selective and effective clinical therapy. For this reason, we here summarize recent experimental data on the application of hypothermia in cerebral ischemia, discuss problems to be solved in the experimental field, and try to draw parallels to therapeutic potentials and limitations.
Collapse
Affiliation(s)
- B Schaller
- Max-Planck-Institute for Neurological Research, Cologne, Germany
| | | |
Collapse
|
15
|
Akaji K, Suga S, Fujino T, Mayanagi K, Inamasu J, Horiguchi T, Sato S, Kawase T. Effect of intra-ischemic hypothermia on the expression of c-Fos and c-Jun, and DNA binding activity of AP-1 after focal cerebral ischemia in rat brain. Brain Res 2003; 975:149-57. [PMID: 12763603 DOI: 10.1016/s0006-8993(03)02622-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It is unknown whether immediate early gene (IEG) induction and subsequent late gene regulation after ischemia is beneficial or deleterious. The aim of this study was to examine the effect of hypothermia on expression of c-Fos and c-Jun, and AP-1 DNA binding activity, after transient focal cerebral ischemia in rat brain, and clarify the role of IEGs and AP-1 after insults. Male Wistar rats underwent right middle cerebral artery occlusion for 1 h with the intraluminal suture method. During ischemia, animals were assigned to either normothermic (NT) or hypothermic (HT) groups. In the NT group, brain temperature was observed to spontaneously increase to 40 degrees C during ischemia. In the HT group, brain temperature decreased to 30 degrees C. Infarct volume in cortex was decreased in the HT group, compared with that in the NT group (P<0.001). Increased c-Fos immunoreactivity in the cortex was observed at 3 h after reperfusion in the HT, but not the NT group, while c-Jun expression was not affected by HT treatment. There was also a significant increase in AP-1 DNA binding activity at 3 h in the HT group when compared to the NT group (P<0.01). In conclusion, hypothermia decreased cerebral infarction in association with early increases in c-Fos expression and AP-1 DNA binding activity in peri-infarct cortex. It remains to be established whether such responses are a cause or consequence of cell survival, but these results clearly establish that altered transcription is a key feature of tissue spared following hypothermic focal ischemia.
Collapse
Affiliation(s)
- Kazunori Akaji
- Department of Neurosurgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhang Z, Sobel RA, Cheng D, Steinberg GK, Yenari MA. Mild hypothermia increases Bcl-2 protein expression following global cerebral ischemia. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 95:75-85. [PMID: 11687278 DOI: 10.1016/s0169-328x(01)00247-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mild hypothermia protects the brain against experimental ischemia, but the reasons are not well known. We examined whether the protective effects of mild hypothermia could be correlated with alterations in expression of Bcl-2, an anti-apoptotic protein in a rat model of transient global ischemia. Following 10 min of forebrain ischemia, hippocampal neurons were examined 72 h later for survival, expression of Bcl-2 family proteins and apoptosis. Intraischemic mild hypothermia was applied for 3 h (33 degrees C, isch-33) or normal body temperature was maintained (37 degrees C, isch-37). Survival of CA1 neurons was significantly improved in the isch-33 group compared to the isch-37 group (90 vs. 53% survival; P<0.01). The proportion of Bcl-2-positive cells among surviving CA1 neurons in the isch-33 group was increased compared to that of sham and isch-37 groups (P<0.01). Bax expression in CA1 was no different between sham and isch-33 groups, but was significantly decreased in isch-37 (P<0.05). TUNEL staining was positive in many isch-37 CA1 neurons, but absent in isch-33. Utilizing electron microscopy, more cells meeting criteria for apoptosis were observed in the isch-37 than isch-33. These data suggest that mild hypothermia attenuates apoptotic death, and that this protection may be related to increases in Bcl-2.
Collapse
Affiliation(s)
- Z Zhang
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Rd. MSLS Building, P304, Stanford, CA 94305-5487, USA
| | | | | | | | | |
Collapse
|
17
|
Mancuso A, Derugin N, Hara K, Sharp FR, Weinstein PR. Mild hypothermia decreases the incidence of transient ADC reduction detected with diffusion MRI and expression of c-fos and hsp70 mRNA during acute focal ischemia in rats. Brain Res 2000; 887:34-45. [PMID: 11134587 DOI: 10.1016/s0006-8993(00)02963-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of mild hypothermia on the apparent diffusion coefficient of water (ADC) and expression of c-fos and hsp70 mRNA were examined during acute focal cerebral ischemia. Young adult rats were subjected to 60-min middle cerebral artery occlusion under either normothermia (37.5 degrees C) or hypothermia (33 degrees C). Diffusion-weighted echo-planar magnetic resonance imaging was used to monitor changes in ADC throughout the ischemic period. Perfusion MRI with dysprosium contrast was used at the end of the ischemic period to verify that the occlusion was successful. C-fos and hsp70 mRNA expression were examined with in situ hybridization at the end of the ischemic period. The results indicate that the size of the region that exhibited reduced ADC was smaller during hypothermia than during normothermia. Hypothermia also decreased the frequency of occurrence of transient ADC reductions, especially in dorsal aspects of cortex. Expression of both c-fos and hsp70 mRNA were markedly reduced by hypothermia. Transient ADC reduction and c-fos expression are associated with spreading depression, which is believed to contribute to lesion expansion during acute focal ischemia. The results suggest that part of the neuroprotective effect of hypothermia may be due to a reduced incidence of spreading depression.
Collapse
Affiliation(s)
- A Mancuso
- Department of Neurological Surgery, University of California at San Francisco, 94121, USA.
| | | | | | | | | |
Collapse
|
18
|
Ouyang YB, He QP, Zhang XH, Wang GX, Siesjö BK, Hu BR. Alteration of cyclic adenosine monophosphate response element binding protein in rat brain after hypoglycemic coma. J Cereb Blood Flow Metab 2000; 20:1550-6. [PMID: 11083229 DOI: 10.1097/00004647-200011000-00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the current study, the temporal and regional changes of the transcription factor cyclic adenosine monophosphate response element binding protein (CREB) were investigated in rat brains subjected to 30 minutes of hypoglycemic coma followed by varied periods of recovery using Western blot and confocal microscopy. The total amount of CREB was not altered in any area examined after coma. The level of the phosphorylated form of CREB decreased during coma but rebounded after recovery. In the relatively resistant areas, such as the inner layers of the neocortex and the inner and outer blades of the dentate gyms (DG), phospho-CREB increased greater than the control level after 30 minutes of recovery and continued to increase up to 3 hours of recovery. In contrast, little or no increase of phospho-CREB was observed during the recovery period in the outer layers of the neocortex and at the tip of the DG, that is, regions that are selectively vulnerable to hypoglycemic insults. The current findings suggest that a neuroprotective signaling pathway may be more activated in the resistant regions than in the vulnerable ones after hypoglycemic coma.
Collapse
Affiliation(s)
- Y B Ouyang
- Center for the Study of Neurological Disease, The Queen's Medical Center, Honolulu, Hawaii, USA
| | | | | | | | | | | |
Collapse
|
19
|
Yamamoto H, Mitani A, Cui Y, Takechi S, Irita J, Suga T, Arai T, Kataoka K. Neuroprotective effect of mild hypothermia cannot be explained in terms of a reduction of glutamate release during ischemia. Neuroscience 1999; 91:501-9. [PMID: 10366007 DOI: 10.1016/s0306-4522(98)00648-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An exogenous glutamate injection into the hypothermic hippocampal CA1 during 5-min ischemia produced the same extent of extracellular glutamate levels as observed in the normothermic CA1 during 5-min ischemia; however, neuronal death was not induced in the hypothermic CA1. Glutamate is released excessively into the extracellular space during ischemia, and is thought to induce brain injury by its neurotoxicity. It has been reported that the massive glutamate release is reduced by mild hypothermia, and it has been proposed that the reduction of ischemia-induced glutamate release exerts the neuroprotective effect on postischemic neuronal death. In the present study, to determine whether the neuroprotective effect of mild hypothermia on postischemic hippocampal CA1 neuronal death is due to the reduction of ischemia-induced glutamate release, gerbils were subjected to 5-min ischemia under hypothermic condition at 31 degrees C and were simultaneously injected exogenously with L-glutamate, so that the hypothermic CA1 around a microdialysis probe was exposed to the same extracellular glutamate levels as seen during normothermic ischemia, and the histological outcome was examined. An injection with 1 mM L-glutamate into the hypothermic CA1 during 5-min ischemia produced a similar extent of increased glutamate (17-fold increase) to that observed in the normothermic CA1 during 5-min ischemia (16-fold increase). However, neuronal death was not induced in the hypothermic CA1. This result indicates that the neuroprotective effect of mild hypothermia cannot be explained in terms of a reduction of glutamate release during ischemia.
Collapse
Affiliation(s)
- H Yamamoto
- Department of Physiology, School of Medicine, Ehime University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Tanaka K, Nagata E, Suzuki S, Dembo T, Nogawa S, Fukuuchi Y. Immunohistochemical analysis of cyclic AMP response element binding protein phosphorylation in focal cerebral ischemia in rats. Brain Res 1999; 818:520-6. [PMID: 10082840 DOI: 10.1016/s0006-8993(98)01263-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphorylation of cyclic AMP response element binding protein (CREB) is one of the most important mechanisms controlling various gene transcriptions. In the present study, the phosphorylation of CREB was examined immunohistochemically at 24 h of recirculation following 1.5 h of middle cerebral artery occlusion (MCAO) in rats. MCAO was induced by the intraluminal suture method. The infarct core revealed a significant reduction in the number of immunoreactive cells with the anti-phosphorylated CREB and with the anti-CREB antibody, which binds to both unphosphorylated and phosphorylated CREB. In contrast, the peri-infarct area exhibited a marked increase in the number of immunopositive cells as well as in the intensity of nuclear staining with each antibody, so that almost all of the cells expressing CREB demonstrated phosphorylation of CREB. On the other hand, about half of the CREB immunopositive cells reacted weakly with the anti-phosphorylated CREB antibody in the sham group. These findings indicated that the expression as well as phosphorylation of CREB protein was significantly activated in the regions surrounding the infarct area. Since phosphorylation of CREB has recently been implicated in signal transductions that promote the survival and differentiation of neurons, the present data suggest that tissue repair mechanisms may be markedly activated in the peri-infarct area.
Collapse
Affiliation(s)
- K Tanaka
- Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
Boris-Möller F, Kamme F, Wieloch T. The effect of hypothermia on the expression of neurotrophin mRNA in the hippocampus following transient cerebral ischemia in the rat. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 63:163-73. [PMID: 9838092 DOI: 10.1016/s0169-328x(98)00286-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The expression of the mRNAs of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3) and the neurotrophin receptor, TrkB, was studied in the rat hippocampus by in situ hybridization following normothermic (37 degreesC) and protective hypothermic (33 degreesC) transient cerebral ischemia of 15 min duration. In the resistant dentate gyrus, normothermic ischemia transiently induced NGF mRNA at around 8 h of recovery, while the NT3 mRNA levels were depressed over at least a 24-h recovery period. The levels of BDNF and TrkB were transiently and markedly elevated with a maximal expression at 24 h of recovery. Intraischemic hypothermia reduced the induction of NGF mRNA, while the increase of BDNF mRNA expression occurred earlier during recovery, and the post-ischemic NT3 mRNA depression was not affected. Also, the expression of TrkB mRNA was enhanced, and occurred concomitantly with the elevation of BDNF mRNA. In contrast, there were no changes in neurotrophin and TrkB mRNA in the CA3 and CA1 regions. The expression of BDNF mRNA at 24 h after normothermic ischemia, was attenuated by intraischemic hypothermia. We conclude that, the expressions of NGF, BDNF, NT3 or TrkB mRNA in ischemia-sensitive hippocampal subregions are not increased by protective hypothermia. In contrast, hypothermia induces neurotrophin mRNA alterations in the ischemia-resistant dentate gyrus that may convey protection to sensitive regions.
Collapse
Affiliation(s)
- F Boris-Möller
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund University Hospital, S-22185, Lund, Sweden.
| | | | | |
Collapse
|
22
|
Lin SH, Miyata S, Weng W, Matsunaga W, Ichikawa J, Furuya K, Nakashima T, Kiyohara T. Comparison of the expression of two immediate early gene proteins, FosB and Fos in the rat preoptic area, hypothalamus and brainstem during pregnancy, parturition and lactation. Neurosci Res 1998; 32:333-41. [PMID: 9950060 DOI: 10.1016/s0168-0102(98)00100-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Medial preoptic area (MPA), supraoptic nucleus (SON), magnocellular (MaPVN) and parvocellular (PaPVN) paraventricular hypothalamic nuclei, and mesencephalic lateral tegmentum (MLT) are involved in maternal behavior, parturition and lactation. This study investigated the FosB and Fos immunoreactivity in these regions of virgin, pregnant, parturient, lactating, and lactating-arrested rats. The patterns of FosB and Fos expression were compared between the sections taken from the same animals. Quantitative immunohistochemistry revealed a significant increase in the numbers of FosB-positive neurons in the MPA, SON, MaPVN, and MLT of parturient and lactating females as compared with pregnant or virgin animals. In lactating rats, the numbers of FosB-positive neurons in the MPA, PaPVN, and MLT were increased, but the numbers in the SON and MaPVN were decreased as compared with parturient females. Many Fos-positive neurons were also seen in parturient and lactating rats, and the patterns of Fos expression in each region were quite similar to those of FosB. Moreover, double-labeling immunohistochemistry revealed that: (1) many FosB-positive nuclei were observed in oxytocin and vasopressin neurons of the SON and PVN in parturient rats; (2) within FosB-positive neurons, 89.5% in the MPA, 86.8% in the MLT of parturient rats, and 92% in the MPA and 90.8% in the MLT of lactating animals were also Fos-positive. Only a small number of FosB and Fos-positive neurons were seen in females that were killed in the early stage of parturition. Removal of the litters immediately after parturition completely eliminated FosB and Fos expression in each region in the dams. Taken together, the present results suggest that FosB expression is co-involved with Fos in the neural activation during parturition and lactation in rats.
Collapse
Affiliation(s)
- S H Lin
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Although hypothermia as a means of cerebral protection against and resuscitation from ischemic damage has a history of approximately six decades, extensive studies, both in basic and clinical fields, on the mechanisms, effects and methods of mild hypothermia at temperatures no less than 31 degrees C have started only in the last decade. In experiments on rodents, hypothermia in the postischemic period that is introduced up to several hours after reperfusion and is maintained for one day followed by a slow rewarming, significantly protects hippocampal neurons against damage. The mode of action of hypothermia is apparently non-specific and multi-focal in widely progressing cascade reactions in ischemic cells; namely, suppressing: (1) glutamate surge followed by; (2) intraneuronal calcium mobilization; (3) sustained activation of glutamate receptors; (4) dysfunction of blood brain barrier; (5) proliferation of microglial cells; and (6) production of superoxide anions and nitric oxide. In addition, mild hypothermia modulates processes in ischemic condition at the level of cell nucleus, such as the binding of transcription factor AP-1 to DNA, and ameliorates the depression of protein synthesis. This non-specific and widely affecting manner might explain why hypothermia is superior to any medicine developed. Recent clinical trials of mild hypothermia in various individual institutions have revealed significantly beneficial outcomes in some cases, along with an accumulation of practical knowledge of techniques and treatments. Large scale randomized studies involving multiple institutions as well as exchange of informations and ideas are needed for further development of hypothermia treatment.
Collapse
Affiliation(s)
- K Kataoka
- Department of Physiology, Ehime University, School of Medicine, Japan
| | | |
Collapse
|