1
|
Shaw K, Lu C, Liu X, Trudeau VL. Arginine vasopressin injection rescues delayed oviposition in cyp19a1b-/- mutant female zebrafish. Front Endocrinol (Lausanne) 2023; 14:1308675. [PMID: 38144569 PMCID: PMC10739748 DOI: 10.3389/fendo.2023.1308675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
In zebrafish, estrogens produced in the ovaries via Cyp19a1a activity are required for both sexual differentiation of the ovary during early development as well as maintenance of the ovarian state during adulthood. The importance of Cyp19a1b that is highly expressed in the brain for female reproduction is still under study. We previously reported that female cyp19a1b -/- mutant zebrafish have significantly lower brain estradiol levels and impaired spawning behavior characterized by an increased latency to oviposition during dyadic sexual behavior encounters. In the current study, we provide evidence that the delayed oviposition in female cyp19a1b -/- mutants is linked to impaired arginine vasopressin (Avp) signaling. Droplet digital PCR experiments revealed that levels of the estrogen receptors, avp, and oxytocin (oxt) are lower in the hypothalamus of mutant females compared to wildtype fish. We then used acute intraperitoneal injections of Avp and Oxt, along with mixtures of their respective receptor antagonists, to determine that Avp can uniquely rescue the delayed oviposition in female cyp19a1b -/- mutants. Using immunohistochemistry, we demonstrated that Cyp19a1b-expressing radial glial cell (RGC) fibers surround and are in contact with Avp-immunopositive neurons in the preoptic areas of the brain. This could provide the neuroanatomical proximity for RGC-derived estrogens to diffuse to and activate estrogen receptors and regulate avp expression levels. Together these findings identify a positive link between Cyp19a1b and Avp for female zebrafish sexual behavior. They also suggest that the female cyp19a1b -/- mutant behavioral phenotype is likely a consequence of impaired processing of Avp-dependent social cues important for mate identification and assessment.
Collapse
Affiliation(s)
- Katherine Shaw
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Chunyu Lu
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | | |
Collapse
|
2
|
Shaw K, Therrien M, Lu C, Liu X, Trudeau VL. Mutation of brain aromatase disrupts spawning behavior and reproductive health in female zebrafish. Front Endocrinol (Lausanne) 2023; 14:1225199. [PMID: 37435485 PMCID: PMC10332311 DOI: 10.3389/fendo.2023.1225199] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
Aromatase (Cyp19a1) is the steroidogenic enzyme that converts androgens into bioactive estrogens, and hence is in a pivotal position to mediate reproduction and sexual behavior. In teleosts, there are two aromatase paralogs: cyp19a1a that is highly expressed in granulosa and Leydig cells in the gonads with critical function in sexual differentiation of the ovary, and cyp19a1b that is highly expressed in radial glial cells in the brain with unknown roles in reproduction. Cyp19a1 -/- mutant zebrafish lines were used to investigate the importance of the cyp19a1 paralogs for spawning behavior and offspring survival and early development. Mutation of cyp19a1b was found to increase the latency to the first oviposition in females. Mutation of cyp19a1b in females also increased the number of eggs spawned; however, significantly more progeny died during early development resulting in no net increase in female fecundity. This finding suggests a higher metabolic cost of reproduction in cyp19a1b -/- mutant females. In males, the combined mutation of both cyp19a1 paralogs resulted in significantly lower progeny survival rates, indicating a critical function of cyp19a1 during early larval development. These data establish the specific importance of cyp19a1b for female spawning behavior and the importance of the cyp19a1 paralogs for early larval survival.
Collapse
Affiliation(s)
- Katherine Shaw
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Mylène Therrien
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Chunyu Lu
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | | |
Collapse
|
3
|
Ji X, Bu S, Zhu Y, Wang Y, Wen X, Song F, Luo J. Identification of SF-1 and FOXL2 and Their Effect on Activating P450 Aromatase Transcription via Specific Binding to the Promoter Motifs in Sex Reversing Cheilinus undulatus. Front Endocrinol (Lausanne) 2022; 13:863360. [PMID: 35620392 PMCID: PMC9127060 DOI: 10.3389/fendo.2022.863360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
The giant wrasse Cheilinus undulatus is a protogynous socially hermaphroditic fish. However, the physiological basis of its sex reversal remains largely unknown. cyp19 is a key gender-related gene encoding P450 aromatase, which converts androgens to estrogens. cyp19 transcription regulation is currently unknown in socially sexually reversible fish. We identified NR5A1 by encoding SF-1, and FOXL2 from giant wrasse cDNA and cyp19a1a and cyp19a1b promoter regions were cloned from genomic DNA to determine the function of both genes in cyp19a1 regulation. Structural analysis showed that SF-1 contained a conserved DNA-binding domain (DBD) and a C-terminal ligand-binding domain (LBD). FOXL2 was comprised of an evolutionarily conserved Forkhead domain. In vitro transfection assays showed that SF-1 could upregulate cyp19a1 promoter activities, but FOXL2 could only enhance cyp19a1b promoter transcriptional activity in the HEK293T cell line. Furthermore, HEK293T and COS-7 cell lines showed that co-transfecting the two transcription factors significantly increased cyp19a1 promoter activity. The -120 to -112 bp (5'-CAAGGGCAC-3') and -890 to -872 bp (5'-AGAGGAGAACAAGGGGAG-3') regions of the cyp19a1a promoter were the core regulatory elements for SF-1 and FOXL2, respectively, to regulate cyp19a1b promoter transcriptional activity. Collectively, these results suggest that both FOXL2 and SF-1 are involved in giant wrasse sex reversal.
Collapse
|
4
|
Honda SI, Harada N. ARP-1 Regulates the Transcriptional Activity of the Aromatase Gene in the Mouse Brain. Front Endocrinol (Lausanne) 2020; 11:306. [PMID: 32582022 PMCID: PMC7283458 DOI: 10.3389/fendo.2020.00306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/22/2020] [Indexed: 11/17/2022] Open
Abstract
An important function of aromatase in the brain is conversion of testosterone secreted from the testis into estradiol. Estradiol produced in the brain is thought to be deeply involved in the formation of sexually dimorphic nuclei and sexual behavior as a neurosteroid. We analyzed the brain-specific promoter to elucidate the control mechanisms of brain aromatase expression that may be highly involved in sexual differentiation of the brain. The 202-bp upstream region of the brain-specific exon 1 has three types of cis-acting elements, aro-AI, AII, and B. We isolated ARP-1 as an aro-AII-binding protein by yeast one-hybrid screening from a cDNA library of mouse fetal brains. ARP-1 is a member of the nuclear receptor superfamily and functions as an orphan-type transcription factor. ARP-1 protein synthesized in vitro showed the same binding property to the aro-AII site as nuclear extract from fetal brains. To determine how the promoter is involved in brain-specific transcription of the aromatase gene, we first detected the in vivo occupancy of the aro-AII site by ARP-1 using chromatin immunoprecipitation assays. Diencephalic regions of fetal brains at embryonic day 16 were analyzed, which revealed ARP-1 recruitment to the aro-AII site. To analyze the effects of ARP-1 on transcriptional regulation of the brain-specific aromatase promoter, a luciferase reporter plasmid driven by the brain-specific promoter was transfected into CV-1 cells together with a plasmid expressing ARP-1 protein. These analyses revealed that ARP-1 induced promoter activity in a dose-dependent manner. Furthermore, to determine whether ARP-1 is required for aromatase expression in neurons, ARP-1 knockdown was conducted in neuronal cell primary culture. Knockdown of ARP-1 significantly suppressed the increase in aromatase mRNA observed in cultured neurons. These results indicate that ARP-1 is involved in the transcriptional regulation of the brain-specific promoter of the aromatase gene.
Collapse
Affiliation(s)
- Shin-ichiro Honda
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
- *Correspondence: Shin-ichiro Honda
| | - Nobuhiro Harada
- Department of Biochemistry, School of Medicine, Fujita Health University, Toyoake, Japan
| |
Collapse
|
5
|
Aromatase expression and function in the brain and behavior: A comparison across communication systems in teleosts. J Chem Neuroanat 2018; 94:139-153. [DOI: 10.1016/j.jchemneu.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/09/2018] [Accepted: 10/14/2018] [Indexed: 11/18/2022]
|
6
|
Honda S, Kozako T, Shimeno H, Soeda S, Harada N. LIM-homeodomain transcription factor, Lhx2, is involved in transcriptional control of brain-specific promoter/exon 1f of the mouse aromatase gene. J Neuroendocrinol 2012; 24:1367-74. [PMID: 22734700 DOI: 10.1111/j.1365-2826.2012.02356.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Neurosteroidal oestrogen has been proposed to play important roles in a variety of reproductive behaviours. Aromatase, a key enzyme in oestrogen synthesis, is localised in neural nuclei of specific brain regions and is developmentally regulated, with a transient expression peak at the perinatal period. The brain-specific promoter of the aromatase gene was analysed aiming to determine the transcriptional control mechanisms that could help explain the spatiotemporal expression. We previously reported that a 202-bp sequence, which is upstream from the transcriptional initiation site, is essential for the basal transcriptional activity. The 202-bp upstream region of brain-specific exon 1 comprises at least three types of cis-acting elements: aro-AI (Arom-Aα), aro-AII (Arom-Aβ) and aro-B (Arom-B). To identify the binding proteins for the cis-acting elements, a yeast one-hybrid screen was performed with these cis-element sequences using a mouse foetal cDNA library. Lhx2, a LIM-homeodomain protein, was identified as one of the aro-B binding proteins. The identification was further confirmed using the gel shift assay, which demonstrated binding competition of nuclear proteins to the aro-B element with a typical Lhx2-binding element. In addition, a chromatin immunoprecipitation assay with an anti-Lhx2 antibody demonstrated that Lhx2 bound to the aro-B site in vivo. A reporter assay of the brain-specific promoter demonstrated increased Lhx2-dependent promoter activity. Furthermore, the time-dependent increase in aromatase mRNA in primary cultured foetal neurones was suppressed by an small-interfering RNA-mediated knockdown of Lhx2 expression. These results show that Lhx2 is involved in the transcriptional regulation of aromatase in the rodent brain.
Collapse
Affiliation(s)
- S Honda
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
7
|
Nakagawa T, Iwabuchi J. Brain-specific promoter/exon I.f of the cyp19a1 (aromatase) gene in Xenopus laevis. J Steroid Biochem Mol Biol 2012; 132:247-55. [PMID: 22659284 DOI: 10.1016/j.jsbmb.2012.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/11/2012] [Accepted: 05/14/2012] [Indexed: 12/11/2022]
Abstract
Aromatase, encoded by the cyp19a1 gene, is the key enzyme for estrogen biosynthesis. Exon I.f of aromatase transcripts in the Xenopus brain is driven in a brain-specific manner. In this study, we cloned brain aromatase with a 5'-end of various lengths by 5'-RACE and detected the expression pattern of the aromatase mRNA. In Xenopus at the larval stage, the brain aromatase mRNA expression was five-fold higher than those in the gonad and liver, and was upregulated from stage 42 to stage 50. After isolating the brain-specific promoter I.f, which was located ∼6.5 kb upstream from gonad-specific exon PII, we observed this promoter in a potential cis-elements for several transcriptional factors, such as Oct-1, c-Myc, the GATA gene family, C/EBPalpha, Sox5, p300, XFD-1, AP1, the STAT gene family, FOXD3, and the Smad gene family. In addition, the core promoter elements of two initiators and an atypical TATA box were found around the 5'-RACE products. In the 5'-flanking region of exon I.f, the binding sites for nuclear extracts suggested that the followings are important: the STAT gene family, a 38-bp conserved region among five species, FOXD3, and the Smad gene family within the region 200 bp upstream from the transcription initiation site. Real-time RT-PCR analysis showed that the foxd3, smad2 and smad4.1/4.2 mRNAs are specifically expressed in the brain. Furthermore, the expression change of foxd3, which has been reported as a repressor, indicated that expression decreased to stage 50 from stage 42, contrary to that of aromatase mRNA. These results may imply that foxd3 expression decreases and aromatase expression increases as a result of the contribution to promoter I.f by transcriptional activators such as smads. However, since these putative cis-elements and transcription initiation sites are not conserved in the brain-specific promoter of other species, this transcriptional regulatory mechanism of exon I.f may be characteristic of Xenopus.
Collapse
Affiliation(s)
- Tadahiko Nakagawa
- Laboratory of Biochemistry, Department of Chemistry, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | | |
Collapse
|
8
|
Brooks DC, Zhao H, Yilmaz MB, Coon V JS, Bulun SE. Glucocorticoid-induction of hypothalamic aromatase via its brain-specific promoter. Mol Cell Endocrinol 2012; 362:85-90. [PMID: 22705581 PMCID: PMC3434699 DOI: 10.1016/j.mce.2012.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/18/2012] [Accepted: 05/25/2012] [Indexed: 11/24/2022]
Abstract
In the brain, a 36-kb distal promoter (I.f) regulates the Cyp19a1 gene that encodes aromatase, the key enzyme for estrogen biosynthesis. Local estrogen production in the brain regulates critical functions such as gonadotropin secretion and sexual behavior. The mechanisms that control brain aromatase production are not well understood. Here we show that the glucocorticoid dexamethasone robustly increases aromatase mRNA and protein by up to 98-fold in mouse hypothalamic cell lines in a dose- and time-dependent fashion. Using deletion mutants of the brain-specific promoter I.f and chromatin immunoprecipitation-PCR, we isolated a distinct region (-500/-200 bp) which becomes enriched in bound glucocorticoid receptor upon dexamethasone stimulation. A glucocorticoid antagonist or siRNA based knockdown of glucocorticoid receptor ablated dexamethasone stimulation of aromatase expression. Our findings demonstrate how glucocorticoids alter aromatase expression in the hypothalamus and might indicate a mechanism whereby glucocorticoid action modifies gonadotropin pulses and the menstrual cycle.
Collapse
Affiliation(s)
- D C Brooks
- Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL 60611, United States
| | | | | | | | | |
Collapse
|
9
|
Abstract
Sex differences in many behaviors such as cognition, mood, and motor skills are well-documented in animals and humans and are regulated by many neural circuits. Sexual dimorphisms within cell populations in these circuits play critical roles in the production of these behavioral dichotomies. Here we focus on three proteins that have well described sexual dimorphisms; calbindin-D28k, a calcium binding protein, tyrosine hydroxylase, the rate limiting enzyme involved in dopamine synthesis and vasopressin, a neuropeptide with central and peripheral sites of action. We describe the sex differences in subpopulations of these proteins, with particular emphasis on laboratory mice. Our thrust is to examine genetic bases of sex differences and how the use of genetically modified models has advanced our understanding of this topic. Regional sex differences in the expression of these three proteins are driven by sex chromosome complement, steroid receptors or in some instances both. While studies of sex differences attributable to sex chromosome genes are still few in number it is exciting to note that this variable factors into expression differences for all three of these proteins. Different genetic mechanisms, which elaborate sex differences, may be employed stochastically in different cell populations. Alternately, general patterns involving the timing of differentiation of the sex differences, relative to the "critical period" in hormonal differences between males and female neonates may emerge. In conclusion, future directions in this area should include examination of the importance of location, timing, steroidal receptor/sex chromosome gene synergy and epigenetics in molding neural sex differences.
Collapse
Affiliation(s)
- Jean LeBeau Abel
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, PO Box 800733, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
10
|
Yilmaz MB, Wolfe A, Zhao H, Brooks DC, Bulun SE. Aromatase promoter I.f is regulated by progesterone receptor in mouse hypothalamic neuronal cell lines. J Mol Endocrinol 2011; 47:69-80. [PMID: 21628418 PMCID: PMC4130222 DOI: 10.1530/jme-10-0149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aromatase catalyzes the conversion of C(19) steroids to estrogens. Aromatase and progesterone, both of which function at different steps of steroidogenesis, are crucial for the sexually dimorphic development of the fetal brain and the regulation of gonadotropin secretion and sexual interest in adults. The aromatase gene (Cyp19a1) is selectively expressed in distinct neurons of the mouse hypothalamus through a distal brain-specific promoter, I.f, located ∼40 kb upstream of the coding region. However, the regulation of aromatase expression in the brain is not well understood. In this study, we investigated a short feedback effect of progesterone analogues on aromatase mRNA expression and enzyme activity in estrogen receptor α (Esr1)-positive or -negative mouse embryonic hypothalamic neuronal cell lines that express aromatase via promoter I.f. In a hypothalamic neuronal cell line that highly expresses aromatase, progesterone receptor (Pgr), and Esr1, a progesterone agonist, R5020, inhibited aromatase mRNA level and enzyme activity. The inhibitory effect of R5020 was reversed by its antagonist, RU486. Deletion mutants of promoter I.f suggested that inhibition of aromatase expression by progesterone is conferred by the nt -1000/-500 region, and R5020 enhanced binding of Pgr to the nt -800/-600 region of promoter I.f. Small interfering RNA knockdown of Pgr eliminated progesterone-dependent inhibition of aromatase mRNA and enzyme activity. Taken together, progesterone enhances recruitment of Pgr to specific regions of the promoter I.f of Cyp19a1 and regulates aromatase expression in hypothalamic neurons.
Collapse
Affiliation(s)
- M Bertan Yilmaz
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
11
|
O'Grady SP, Caprau D, Ke XR, Contreras Y, Haley S, Ermini F, Penn A, Moyer-Mileur L, McKnight R, Lane R. Intrauterine growth restriction alters hippocampal expression and chromatin structure of Cyp19a1 variants. Syst Biol Reprod Med 2010; 56:292-302. [PMID: 20662593 DOI: 10.3109/19396368.2010.490871] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We evaluated the impact of uteroplacental insufficiency (UPI), and subsequent intrauterine growth restriction (IUGR), on serum testosterone and hippocampal expression of Cyp19a1 variants and aromatase in rats. Additionally, we determined UPI induced histone modification of the promoter regions of Cyp19a1 variants using chromatin immunoprecipitation. Cyp19a1 is the gene encoding the protein aromatase, that catalyzes the biosynthesis of estrogens from androgens and is necessary for masculinization of the brain. IUGR was induced via bilateral uterine artery. UPI increased serum testosterone in day of life 0 (D(0)) and day of life 21 (D(21)) IUGR males to 224% and 299% of control values, respectively. While there was no significant impact of UPI on testosterone in D(0) females, testosterone in D(21) IUGR females was 187% of controls. Cyp19a1 variant 1.f and variant II are expressed in the rat hippocampus at D(0) and D(21). UPI significantly reduced expression of Cyp19a1 variant 1.f in D(0) males, with no impact in females. Similarly at D(0), UPI reduced expression of aromatase, the protein encoded by Cyp19a1, in males. Dimethylation of H3K4 was increased in the promoter region of variant 1.f (P1.f) and trimethylation of H3K4 was decreased in the promoter region of variant II (PII). At D(21), dimethylation of H3K4 is significantly reduced in PII of IUGR males. We conclude that UPI increases serum testosterone and reduces Cyp19a1 variant 1.f expression in the hippocampus of D(0) IUGR males. Additionally, UPI alters the chromatin structure of CYP19a1 at both D(0) and D(21).
Collapse
|
12
|
Yilmaz MB, Wolfe A, Cheng YH, Glidewell-Kenney C, Jameson JL, Bulun SE. Aromatase promoter I.f is regulated by estrogen receptor alpha (ESR1) in mouse hypothalamic neuronal cell lines. Biol Reprod 2009; 81:956-65. [PMID: 19605792 DOI: 10.1095/biolreprod.109.077206] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Aromatase (CYP19A1) catalyzes the conversion of C(19) steroids to estrogens. Aromatase and its product estradiol (E(2)) are crucial for the sexually dimorphic development of the fetal brain and the regulation of gonadotropin secretion and sexual interest in adults. The regulation of aromatase expression in the brain is not well understood. The aromatase (Cyp19a1) gene is selectively expressed in distinct neurons of the hypothalamus through a distal brain-specific promoter I.f located approximately 36 kb upstream of the coding region. Here, we investigated a short feedback effect of E(2) on aromatase mRNA expression and enzyme activity using estrogen receptor alpha (ESR1; also known as ER alpha)-positive or ESR1-negative mouse embryonic hypothalamic neuronal cell lines that express aromatase via promoter I.f. Estradiol regulated aromatase mRNA expression and enzyme activity in a time- and dose-dependent manner, whereas an E(2) antagonist reversed these effects. The nucleotide -200/-1 region of promoter I.f conferred E(2) responsiveness. Two activator protein 1 (AP-1) elements in this region were essential for induction of promoter activity by E(2). ESR1 and JUN (c-Jun) bound to these AP-1 motifs in intact cells and under cell-free conditions. The addition of an ESR1 mutant that interacts with JUN but not directly with DNA enhanced E(2)-dependent promoter I.f activity. Independently, we demonstrated an interaction between ESR1 and JUN in hypothalamic cells. Knockdown of ESR1 abolished E(2)-induced aromatase mRNA and enzyme activity. Taken together, E(2) regulates Cyp19a1 expression via promoter I.f by enhanced binding of an ESR1/JUN complex to distinct AP-1 motifs in hypothalamic cells. We speculate that this mechanism may, in part, regulate gonadotropin secretion and sexual activity.
Collapse
Affiliation(s)
- M Bertan Yilmaz
- Division of Reproductive Biology Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
13
|
Harada N, Wakatsuki T, Aste N, Yoshimura N, Honda SI. Functional analysis of neurosteroidal oestrogen using gene-disrupted and transgenic mice. J Neuroendocrinol 2009; 21:365-9. [PMID: 19226348 DOI: 10.1111/j.1365-2826.2009.01857.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The brain aromatase (oestrogen synthase) hypothesis predicts that oestrogen plays important roles in both sexual behaviours and brain sexual differentiation. To elucidate the functions of oestrogen in the brain, we generated aromatase knockout (ArKO) mice, which showed undetectable oestrogen and enhanced androgen levels in blood. These ArKO mice exhibited an enhanced appetite and disorders in sexual motivation, sexual partnership preference, sexual performance, aggressive behaviour, parental behaviour, infanticide behaviour and exploratory (anxiety) behaviour. We characterised the brain-specific promoter of the mouse aromatase gene, and identified several crucial cis-acting elements and the minimal essential promoter region for brain-specific expression. Next, we introduced a transgene of human aromatase, controlled by the minimal promoter region, into the ArKO mouse. The resulting mouse (ArKO/hArom), whose preoptic area, hypothalamus and amygdala were exposed to oestrogens only in the perinatal period, and then to enhanced androgens and no oestrogens in adulthood, showed near recovery from behavioural disorders. These results suggest that local oestrogens acting in specific brain regions are involved in the organisation of sex-specific neural networks during the perinatal period. Finally, we examined effects of oestrogens on gene expression within specific brain regions in mice during the perinatal period using DNA microarray analysis. This assay revealed both up-regulated and down-regulated brain-specific genes, including those related to neuronal function. Specifically, genes involved in energy metabolism, cell proliferation/apoptosis and secretory/transport system were altered in ArKO mice compared to wild mice. These results suggest that brain oestrogens participate in the sexual differentiation of the brain by influencing gene expression.
Collapse
Affiliation(s)
- N Harada
- Department of Biochemistry, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan.
| | | | | | | | | |
Collapse
|
14
|
Cheshenko K, Pakdel F, Segner H, Kah O, Eggen RIL. Interference of endocrine disrupting chemicals with aromatase CYP19 expression or activity, and consequences for reproduction of teleost fish. Gen Comp Endocrinol 2008; 155:31-62. [PMID: 17459383 DOI: 10.1016/j.ygcen.2007.03.005] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 03/05/2007] [Accepted: 03/09/2007] [Indexed: 11/28/2022]
Abstract
Many natural and synthetic compounds present in the environment exert a number of adverse effects on the exposed organisms, leading to endocrine disruption, for which they were termed endocrine disrupting chemicals (EDCs). A decrease in reproduction success is one of the most well-documented signs of endocrine disruption in fish. Estrogens are steroid hormones involved in the control of important reproduction-related processes, including sexual differentiation, maturation and a variety of others. Careful spatial and temporal balance of estrogens in the body is crucial for proper functioning. At the final step of estrogen biosynthesis, cytochrome P450 aromatase, encoded by the cyp19 gene, converts androgens into estrogens. Modulation of aromatase CYP19 expression and function can dramatically alter the rate of estrogen production, disturbing the local and systemic levels of estrogens. In the present review, the current progress in CYP19 characterization in teleost fish is summarized and the potential of several classes of EDCs to interfere with CYP19 expression and activity is discussed. Two cyp19 genes are present in most teleosts, cyp19a and cyp19b, primarily expressed in the ovary and brain, respectively. Both aromatase CYP19 isoforms are involved in the sexual differentiation and regulation of the reproductive cycle and male reproductive behavior in diverse teleost species. Alteration of aromatase CYP19 expression and/or activity, be it upregulation or downregulation, may lead to diverse disturbances of the above mentioned processes. Prediction of multiple transcriptional regulatory elements in the promoters of teleost cyp19 genes suggests the possibility for several EDC classes to affect cyp19 expression on the transcriptional level. These sites include cAMP responsive elements, a steroidogenic factor 1/adrenal 4 binding protein site, an estrogen-responsive element (ERE), half-EREs, dioxin-responsive elements, and elements related to diverse other nuclear receptors (peroxisome proliferator activated receptor, retinoid X receptor, retinoic acid receptor). Certain compounds including phytoestrogens, xenoestrogens, fungicides and organotins may modulate aromatase CYP19 activity on the post-transcriptional level. As is shown in this review, diverse EDCs may affect the expression and/or activity of aromatase cyp19 genes through a variety of mechanisms, many of which need further characterization in order to improve the prediction of risks posed by a contaminated environment to teleost fish population.
Collapse
Affiliation(s)
- Ksenia Cheshenko
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, Postfach 611, CH 8600 Dübendorf, Switzerland
| | | | | | | | | |
Collapse
|
15
|
Nausch N, Manteuffel G, Vanselow J. 0.2kb promoter sequence of the murine Cyp19 gene target beta-galactosidase expression to specific brain areas of transgenic mice. J Steroid Biochem Mol Biol 2007; 103:119-28. [PMID: 17079138 DOI: 10.1016/j.jsbmb.2006.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 08/22/2006] [Indexed: 11/23/2022]
Abstract
Cyp19 encodes the key enzyme of estrogen biosynthesis, aromatase cytochrome P450. In mice it is mainly expressed in the ovary and brain, where transcription is directed by a distal, brain-specific promoter (P(br)). In order to map functional sequence elements of P(br), portions of various length (0.2, 1.0, and 1.7[kb]) were fused to a lacZ reporter gene and analyzed in transgenic mice. Numbers of integrated reporter genes varied from 1 to 23 copies in different transgenic lines. These copy numbers however did not show any correlation to the levels of transgene expression. All of the constructs were found being expressed in the olfactory bulb, limbic cortex, amygdala, and hypothalamus. Additional expression in thalamic nuclei, bed nucleus of stria terminalis, and dorsal mesencephalon was found in transgenic lines with constructs 1.0 and 1.7, and expression in septal and preoptic nuclei was only found with construct 1.7. The data demonstrate that 0.2kb of P(br) target reporter gene expression to specific brain areas. The data also strongly suggest that the sequence between 0.2 and 1.7kb upstream, is necessary for expression in additional areas. However even 1.7kb of P(br) are not sufficient to consistently mimic the accurate expression pattern of Cyp19.
Collapse
Affiliation(s)
- Norman Nausch
- Division of Innate Immunity, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
16
|
Kanda H, Okubo T, Omori N, Niihara H, Matsumoto N, Yamada K, Yoshimoto S, Ito M, Yamashita S, Shiba T, Takamatsu N. Transcriptional regulation of the rainbow trout CYP19a gene by FTZ-F1 homologue. J Steroid Biochem Mol Biol 2006; 99:85-92. [PMID: 16621513 DOI: 10.1016/j.jsbmb.2005.12.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Accepted: 12/06/2005] [Indexed: 11/27/2022]
Abstract
In rainbow trout, there are at least two CYP19 genes (CYP19a and CYP19b). They encode distinct P450arom isozymes that are differentially expressed in the ovary and brain. To understand the transcriptional regulation of the rainbow trout CYP19a (rtCYP19a) gene in the ovary, we isolated its 5'-flanking region. The presence of potential FTZ-F1-binding sites prompted us to isolate the cDNA encoding a rainbow trout FTZ-F1 homologue (rtFTZ-F1) and analyze its effect on the rtCYP19a gene transcriptional activity. RT-PCR analysis showed overlapping expression of the rtCYP19a and rtFTZ-F1 genes in the ovary. Transient transfection studies in Chinese hamster ovary-derived CHO-K1 cells revealed that the region from -247 to -105, which contains three potential FTZ-F1-binding sites, was required for rtFTZ-F1-mediated transcriptional activation of the rtCYP19a gene. Among the three potential binding sites, the two from -150 to -142 and from -118 to -110 showed strong affinities for rtFTZ-F1 in gel shift assays, and base substitutions in either site almost abolished the transcriptional activation by rtFTZ-F1. Taken together, these results demonstrate that rtFTZ-F1 plays an important role in the transcriptional regulation of the rtCYP19a gene in the ovary.
Collapse
Affiliation(s)
- Hiromi Kanda
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa 228-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Harada N, Honda SI. Analysis of spatiotemporal regulation of aromatase in the brain using transgenic mice. J Steroid Biochem Mol Biol 2005; 95:49-55. [PMID: 15955692 DOI: 10.1016/j.jsbmb.2005.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Brain aromatase is widely distributed in the vertebrates, from fish to mammals, and plays important roles in functional reproductive behavior through production of estrogen as a neurosteroid. It is expressed only in the nerve cells of specific brain regions with a transient peak in the neonatal period when sexual behavior becomes organized, and therefore provides a good model system to study regulatory mechanism of cell-specific, brain region-specific, and developmental stage-specific expression. To elucidate spatiotemporal regulation of brain aromatase, we prepared transgenic mice carrying a reporter gene under the promoter of brain-specific exon 1f of the mouse aromatase gene. The reporter transgene carrying a 6.5 kb upstream region of the brain-specific promoter accurately reproduced the spatiotemporal expression patterns of aromatase in mouse brain, whereas transgenes carrying smaller fragments of the promoter showed ambiguous or inconsistent expression patterns. The binding sites of Aro-AI, Aro-AII, and Aro-B for nuclear factors were also identified in the proximal region of the exon 1f brain-specific promoter. Introduction of a mutation into the Aro-AII site in the reporter transgene carrying -6.5 kb promoter region of exon 1f caused complete alteration of the spatiotemporal expression pattern of the reporter gene in the transgenic mice. These results indicate that the -6.5 kb promoter region of exon 1f is the minimal essential element for brain-specific regulation, with both proximal and distal promoter regions required for accurate spatiotemporal expression of aromatase in the mouse brain.
Collapse
Affiliation(s)
- Nobuhiro Harada
- Department of Biochemistry, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| | | |
Collapse
|
18
|
Abstract
Cyp19 encodes P450 aromatase, the key enzyme catalyzing the conversion of androgens into estrogens. Estrogens play a crucial role in the anatomical, functional and behavioral characteristics of sexually dimorphic development. In zebrafish, two cyp19 genes, cyp19a and cyp19b, expressed in ovary and brain, respectively, were found. We have isolated the promoter regions of the zebrafish cyp19 genes from a bacterial artificial chromosome library to search for regulatory sequences that bind to transcription factors. Sequences like arylhydrocarbon receptor (AhR) recognition site, estrogen receptor recognition half sites (1/2ERE) and c-AMP responsive elements were found in the 5'-flanking regions of both cyp19 genes. For ovarian-specific expression, we found binding sites for steroidogenic factor-1 (SF-1), GATA transcription factor 4 (GATA-4) and Wilm tumor 1 (WT1-KTS) on the promoter region of cyp19a but not cyp19b. For brain-specific expression of the cyp19b gene, sequences for recognition of chicken ovalbumin upstream promoter-transcription factor (COUP) and Ptx-1 were detected in the promoter. The importance of these putative control elements in ovary and brain-specific promoter has been assessed by sequence comparison among various species.
Collapse
Affiliation(s)
- Sok-Keng Tong
- Institute of Molecular Biology 48, Academia Sinica, Nankang, Taipei 115, Taiwan, ROC
| | | |
Collapse
|
19
|
Azcoitia I, DonCarlos LL, Garcia-Segura LM. Are gonadal steroid hormones involved in disorders of brain aging? Aging Cell 2003; 2:31-7. [PMID: 12882332 DOI: 10.1046/j.1474-9728.2003.00013.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human aging is associated with a decrease of circulating gonadal steroid hormones. Since these hormones act as trophic factors for neurones and glia, it is possible that the decrease in sex steroid levels may contribute to the increased risk of neurodegenerative disorders with advanced age. Sex steroids are neuroprotective in several animal models of central and peripheral neurodegenerative diseases, and clinical data suggest that these hormones may reduce the risk of neural pathology in aged humans. Potential therapeutic approaches for aged-associated neural disorders may emerge from studies conducted to understand the mechanisms of action of sex steroids in the nervous system of aged animals. Alterations in the endogenous capacity of the aged brain to synthesize and metabolize sex steroids, as well as possible aged-associated modifications in the signalling of sex steroid receptors in the nervous system, are important areas for future investigation.
Collapse
Affiliation(s)
- Iñigo Azcoitia
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, E-28040 Madrid, Spain
| | | | | |
Collapse
|
20
|
Callard GV, Tchoudakova AV, Kishida M, Wood E. Differential tissue distribution, developmental programming, estrogen regulation and promoter characteristics of cyp19 genes in teleost fish. J Steroid Biochem Mol Biol 2001; 79:305-14. [PMID: 11850237 DOI: 10.1016/s0960-0760(01)00147-9] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Teleost fish are characterized by exceptionally high levels of brain estrogen biosynthesis when compared to the brains of other vertebrates or to the ovaries of the same fish. Goldfish (Carassius auratus) and zebrafish (Danio rerio) have utility as complementary models for understanding the molecular basis and functional significance of exaggerated neural estrogen biosynthesis. Multiple cytochrome P450 aromatase (P450arom) cDNAs that derive from separate gene loci (cyp19a and cyp19b) are differentially expressed in brain (P450aromB>>A) and ovary (P450aromA>>B) and have a different developmental program (B>>A) and response to estrogen upregulation (B only). As measured by increased P450aromB mRNA, a functional estrogen response system is first detected 24-48 h post-fertilization (hpf), consistent with the onset of estrogen receptor (ER) expression (alpha, beta, and gamma). The 5'-flanking region of the cyp19b gene has a TATA box, two estrogen response elements (EREs), an ERE half-site (ERE1/2), a nerve growth factor inducible-B protein (NGFI-B)/Nur77 responsive element (NBRE) binding site, and a sequence identical to the zebrafish GATA-2 gene neural specific enhancer. The cyp19a promoter region has TATA and CAAT boxes, a steroidogenic factor-1 (SF-1) binding site, and two aryl hydrocarbon receptor (AhR)/AhR nuclear translocator factor (ARNT) binding motifs. Both genes have multiple potential SRY/SOX binding sites (16 and 8 in cyp19b and cyp19a, respectively). Luciferase reporters have basal promoter activity in GH3 cells, but differences (a>>b) are opposite to fish pituitary (b>>a). When microinjected into fertilized zebrafish eggs, a cyp19b promoter-driven green fluorescent protein (GFP) reporter (but not cyp19a) is expressed in neurons of 30-48 hpf embryos, most prominently in retinal ganglion cells (RGCs) and their projections to optic tectum. Further studies are required to identify functionally relevant cis-elements and cellular factors, and to determine the regulatory role of estrogen in neurodevelopment.
Collapse
Affiliation(s)
- G V Callard
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
21
|
Honda SI, Matsumoto T, Harada N. Characterization and purification of a protein binding to the cis-acting element for brain-specific exon 1 of the mouse aromatase gene. J Steroid Biochem Mol Biol 2001; 79:255-60. [PMID: 11850232 DOI: 10.1016/s0960-0760(01)00142-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The functional differences between male and female brains commit to the existence of androgen that the testis secretes during the perinatal period. Androgen exerts its action on the brain after conversion to estrogen by brain aromatase. The aromatase appears in some neural nuclei such as in the hypothalamus and amygdala, and has been indicated to be involved in the expression of sexuality by the results of neurobehavioral analyses involving aromatase-knockout mice. We analyzed the brain-specific promoter in order to clarify the control mechanism for the expression of brain aromatase, which is deeply concerned in the sexual differentiation of the brain. The 202bp upstream region of brain-specific exon 1 contains at least three kinds of cis-acting elements, Arom-Aalpha, -Abeta and -B. In particular, the binding activities as to the Abeta sequence show a tissue-specific pattern. Gel shift analysis revealed that the Abeta binding factor recognizes the TTGGCCCCT sequence. Abeta binding activity is detectable at the perinatal stage, but is undetectable at the adult stage in the brain. Furthermore, a protein which binds to the Abeta sequence was purified from the fetal mouse brain. The molecular mass of the Abeta binding protein was estimated to be 49kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- S I Honda
- Department of Biochemistry, School of Medicine, Fujita Health University, Kutsukake-cho, Toyoake, 470-1192, Aichi, Japan.
| | | | | |
Collapse
|
22
|
Harada N, Matsumoto T, Yoshimura N, Sakamoto H, Honda S. Analysis of transcriptional regulation of human breast aromatase by in vitro and in vivo studies. J Steroid Biochem Mol Biol 2001; 79:151-6. [PMID: 11850219 DOI: 10.1016/s0960-0760(01)00153-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aromatase mRNA in normal breast tissues is mainly transcribed from exon 1b (I.4) of the gene. However, in breast cancer tissues, it is often transcribed from exon 1c/1d (I.3/PII). Such a switching from exon 1b to exon 1c/1d has often found concomitantly with elevated levels of aromatase mRNA. To elucidate the molecular mechanism of a switching of multiple exons 1 and enhanced expression of aromatase in the breast tissues, we identified essential elements responsible for transcription from exon 1b. Gel shift assays indicated that there are two essential elements for transcription from exon 1b between -300 and -500 bp in the promoter region. The two unique elements have homologous consensus DNA sequences, and competed for binding of the specific nuclear protein with each other. We next generated transgenic mouse expressing a reporter gene controlled by multiple promoters in the human aromatase gene. The mouse gave tissue-specific expression of the reporter gene and tissue-specific utilization of the alternative promoter regions. These results show that this transgenic mouse is a good model animal for the study of tissue-specific regulation of human aromatase gene.
Collapse
Affiliation(s)
- N Harada
- Department of Biochemistry, School of Medicine, Fujita Health University, Toyoake, 470-1192, Aichi, Japan.
| | | | | | | | | |
Collapse
|
23
|
Tchoudakova A, Kishida M, Wood E, Callard GV. Promoter characteristics of two cyp19 genes differentially expressed in the brain and ovary of teleost fish. J Steroid Biochem Mol Biol 2001; 78:427-39. [PMID: 11738553 DOI: 10.1016/s0960-0760(01)00120-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Teleost fish are characterized by exceptionally high levels of neural estrogen biosynthesis when compared with the brains of other vertebrates or to the ovaries of the same fish. Two P450arom mRNAs which derive from separate gene loci (cyp19a and cyp19b) are differentially expressed in brain (b>>a) and ovary (a>>b) and have a different developmental program (b>>a) and estrogen upregulation (b only). A polymerase chain reaction (PCR)-based genomic walking strategy was used to isolate the 5'-flanking regions of the goldfish (Carassius auratus) cyp19 genes. Sequence analysis of the cyp19b gene approximately 1.8 kb upstream of the transcription start site revealed a TATA box at nucleotide (nt) -30, two estrogen responsive elements (EREs; nt -351 and -211) and a consensus binding site (NBRE) for nerve growth factor inducible-B protein (NGFI-B/Nur77) at -286, which includes another ERE half-site. Also present were a sequence at nt -399 (CCCTCCT) required for neural specificity of the zebrafish GATA-2 gene, and 16 copies of an SRY/SOX binding motif. The 5'-flanking region ( approximately 1.0 kb) of the cyp19a gene had TATA (nt -48) and CAAT (nt -71) boxes, a steroidogenic factor-1 (SF-1) binding site (nt -265), eight copies of the SRY/SOX motif, and two copies of a recognition site for binding the arylhydrocarbon receptor (AhR)/AhR nuclear translocator factor (ARNT) heterodimer. Both genes had elements previously identified in the brain specific exon I promoter of the mouse aromatase gene. Cyp19a- and -b/luciferase constructs showed basal promoter activity in aromatase-expressing rodent pituitary (GH3) cells, but differences (a>>b) did not reflect expression in fish pituitary in vivo (b>>a), implying a lack of appropriate cell factors. Consistent with the onset of cyp19b expression in zebrafish embryos, microinjection of a green fluorescent protein (GFP) reporter plasmid into fertilized eggs revealed labeling in neural tissues at 30-48 h post-fertilization (hpf), most prominently in retinal ganglion cells (RGC) and axon-like projections to the optic tectum. Expression of a cyp19a/GFP reporter was not detectable up to 72 hpf. Tandem analysis of cyp19a and cyp19b promoters in living zebrafish embryos can be a useful approach for identifying cis-elements and cellular factors involved in the correct tissue-specific, spatial, temporal and estrogen regulated expression of aromatase genes during CNS and gonadal development.
Collapse
Affiliation(s)
- A Tchoudakova
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
24
|
Lephart ED, Lund TD, Horvath TL. Brain androgen and progesterone metabolizing enzymes: biosynthesis, distribution and function. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 37:25-37. [PMID: 11744072 DOI: 10.1016/s0165-0173(01)00111-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This review summarizes the biosynthesis, cell type-distribution and function of brain aromatase cytochrome P450 (P450aro) and 5alpha-reductase enzymes. This overview covers the impact of the steroid products of the P450aro and 5alpha-reductase enzymes in establishing sexually dimorphic brain structures, specifically the sexually dimorphic nucleus of the preoptic area (SDN) and the anteroventral periventricular nucleus (AVPV). Additionally, since metabolites of the P450aro and 5alpha-reductase enzymes are known to regulate the calcium-binding protein, calbindin (CALB), CALB is reviewed in relationship to its potential role in determining sexually dimorphic brain structures. Finally, recent reports indicate that phytoestrogens inhibit P450aro and 5alpha-reductase activities in peripheral tissue sites, therefore, the effects of phytoestrogens on brain P450aro and 5alpha-reductase are briefly considered and the impact of consuming a high vs. a low phytoestrogen diet on visual spatial memory in male and female rats is presented.
Collapse
Affiliation(s)
- E D Lephart
- Neuroscience Center, Brigham Young University, 633 WIDB, Provo, UT 84602, USA.
| | | | | |
Collapse
|
25
|
Silverin B, Baillien M, Foidart A, Balthazart J. Distribution of aromatase activity in the brain and peripheral tissues of passerine and nonpasserine avian species. Gen Comp Endocrinol 2000; 117:34-53. [PMID: 10620422 DOI: 10.1006/gcen.1999.7383] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Many behavioral effects of testosterone on hypothalamic and limbic brain areas are mediated by the action, at the cellular level, of estrogens derived from local testosterone aromatization. Aromatase activity and cells containing the aromatase protein and mRNA have accordingly been identified in the brain areas involved in the control of behavior. The presence of an unusually high level of aromatase activity has been detected in the telencephalon of one songbird species, the zebra finch (Taeniopygia guttata), and it is suspected that this high telencephalic aromatase may be a specific feature of songbirds but this idea is supported only by few experimental data. The distribution of aromatase activity in the brain of zebra finches and of one nonsongbird species, the Japanese quail (Coturnix japonica), was compared with the distribution of aromatase activity in the brain of four species of free-living European songbirds, the chaffinch (Fringilla coelebs, Fringillidae), willow warbler (Phylloscopus trochilus, Sylviidae), great tit (Parus major, Paridae), and pied flycatcher (Ficedula hypoleuca, Muscicapidae). High levels of enzyme activity were observed in the diencephalon of all species. The high levels of aromatase activity that had been observed in the zebra finch telencephalon and were thought to be typical of songbirds were also present in the four wild oscine species but not in quail. None of these songbird species had, however, a telencephalic aromatase activity as high as that in the zebra finch, which may represent an extreme as far as the activity of this enzyme in the telencephalon is concerned. Measurable levels of aromatase activity were also detected in all songbird species in the liver and in the three other brain areas that were assayed, the optic lobes, cerebellum, and brain stem, with the exception of the cerebellum in willow warblers and quail, but no detectable activity was observed in the testes, muscle, and adrenals of all species. Additional studies will be needed to identify the functional significance of estrogen synthesis in areas that are not classically known to be implicated in the control of reproduction. Within a given species, the birds that had the highest plasma testosterone levels also displayed the highest levels of diencephalic aromatase activity and the interspecies differences in the two variables were positively related. This raises the possibility that the absolute level of diencephalic aromatase represents a species-specific characteristic under the control of plasma testosterone levels. There was, in contrast, no correlation between the aromatase activity in the telencephalon and the plasma testosterone levels but the enzyme activity was correlated with the plasma levels of luteinizing hormone. These data bring additional support to the idea that the diencephalic and telencephalic aromatases are controlled by independent mechanisms.
Collapse
Affiliation(s)
- B Silverin
- Department of Zoology, University of Göteborg, Göteborg, SE 405 30, Sweden
| | | | | | | |
Collapse
|