1
|
Quadros-Mennella PS, Lucin KM, White RE. What can the common fruit fly teach us about stroke?: lessons learned from the hypoxic tolerant Drosophila melanogaster. Front Cell Neurosci 2024; 18:1347980. [PMID: 38584778 PMCID: PMC10995290 DOI: 10.3389/fncel.2024.1347980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
Stroke, resulting in hypoxia and glucose deprivation, is a leading cause of death and disability worldwide. Presently, there are no treatments that reduce neuronal damage and preserve function aside from tissue plasminogen activator administration and rehabilitation therapy. Interestingly, Drosophila melanogaster, the common fruit fly, demonstrates robust hypoxic tolerance, characterized by minimal effects on survival and motor function following systemic hypoxia. Due to its organized brain, conserved neurotransmitter systems, and genetic similarity to humans and other mammals, uncovering the mechanisms of Drosophila's tolerance could be a promising approach for the development of new therapeutics. Interestingly, a key facet of hypoxic tolerance in Drosophila is organism-wide metabolic suppression, a response involving multiple genes and pathways. Specifically, studies have demonstrated that pathways associated with oxidative stress, insulin, hypoxia-inducible factors, NFκB, Wnt, Hippo, and Notch, all potentially contribute to Drosophila hypoxic tolerance. While manipulating the oxidative stress response and insulin signaling pathway has similar outcomes in Drosophila hypoxia and the mammalian middle cerebral artery occlusion (MCAO) model of ischemia, effects of Notch pathway manipulation differ between Drosophila and mammals. Additional research is warranted to further explore how other pathways implicated in hypoxic tolerance in Drosophila, such as NFκB, and Hippo, may be utilized to benefit mammalian response to ischemia. Together, these studies demonstrate that exploration of the hypoxic response in Drosophila may lead to new avenues of research for stroke treatment in humans.
Collapse
Affiliation(s)
| | - Kurt M. Lucin
- Department of Biology, Eastern Connecticut State University, Willimantic, CT, United States
| | - Robin E. White
- Department of Biology, Westfield State University, Westfield, MA, United States
| |
Collapse
|
2
|
Hampton-Smith RJ, Davenport BA, Nagarajan Y, Peet DJ. The conservation and functionality of the oxygen-sensing enzyme Factor Inhibiting HIF (FIH) in non-vertebrates. PLoS One 2019; 14:e0216134. [PMID: 31034531 PMCID: PMC6488082 DOI: 10.1371/journal.pone.0216134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/15/2019] [Indexed: 12/30/2022] Open
Abstract
The asparaginyl hydroxylase, Factor Inhibiting HIF (FIH), is a cellular dioxygenase. Originally identified as oxygen sensor in the cellular response to hypoxia, where FIH acts as a repressor of the hypoxia inducible transcription factor alpha (HIF-α) proteins through asparaginyl hydroxylation, FIH also hydroxylates many proteins that contain ankyrin repeat domains (ARDs). Given FIH's promiscuity and the unclear functional effects of ARD hydroxylation, the biological relevance of HIF-α and ARD hydroxylation remains uncertain. Here, we have employed evolutionary and enzymatic analyses of FIH, and both HIF-α and ARD-containing substrates, in a broad range of metazoa to better understand their conservation and functional importance. Utilising Tribolium castaneum and Acropora millepora, we provide evidence that FIH from both species are able to hydroxylate HIF-α proteins, supporting conservation of this function beyond vertebrates. We further demonstrate that T. castaneum and A. millepora FIH homologs can also hydroxylate specific ARD proteins. Significantly, FIH is also conserved in several species with inefficiently-targeted or absent HIF, supporting the hypothesis of important HIF-independent functions for FIH. Overall, these data show that while oxygen-dependent HIF-α hydroxylation by FIH is highly conserved in many species, HIF-independent roles for FIH have evolved in others.
Collapse
Affiliation(s)
| | - Briony A. Davenport
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Yagnesh Nagarajan
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Daniel J. Peet
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
3
|
Lundquist TA, Kittilson JD, Ahsan R, Greenlee KJ. The effect of within-instar development on tracheal diameter and hypoxia-inducible factors α and β in the tobacco hornworm, Manduca sexta. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:199-208. [PMID: 29246704 PMCID: PMC5960420 DOI: 10.1016/j.jinsphys.2017.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 05/10/2023]
Abstract
As insects grow within an instar, body mass increases, often more than doubling. The increase in mass causes an increase in metabolic rate and hence oxygen demand. However, the insect tracheal system is hypothesized to increase only after molting and may be compressed as tissues grow within an instar. The increase in oxygen demand in the face of a potentially fixed or decreasing supply could result in hypoxia as insects near the end of an instar. To test these hypotheses, we first used synchrotron X-ray imaging to determine how diameters of large tracheae change within an instar and after molting to the next instar in the tobacco hornworm, Manduca sexta. Large tracheae did not increase in diameter within the first, second, third, and fourth instars, but increased upon molting. To determine if insects are hypoxic at the end of instars, we used the presence of hypoxia-inducible factors (HIFs) as an index. HIF-α and HIF-β dimerize in hypoxia and act as a transcription factor that turns on genes that will increase oxygen delivery. We sequenced both of these genes and measured their mRNA levels at the beginning and end of each larval instar. Finally, we obtained an antibody to HIF-α and measured protein expression during the same time. Both mRNA and protein levels of HIFs were increased at the end of most instars. These data support the hypothesis that some insects may experience hypoxia at the end of an instar, which could be a signal for molting. SUMMARY STATEMENT As caterpillars grow within an instar, major tracheae do not increase in size, while metabolic demand increases. At the same life stages, caterpillars increased expression of hypoxia inducible factors, suggesting that they become hypoxic near the end of an instar.
Collapse
Affiliation(s)
- Taylor A Lundquist
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108-6050, United States
| | - Jeffrey D Kittilson
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108-6050, United States
| | - Rubina Ahsan
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108-6050, United States
| | - Kendra J Greenlee
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108-6050, United States.
| |
Collapse
|
4
|
Harrison JF, Greenlee KJ, Verberk WCEP. Functional Hypoxia in Insects: Definition, Assessment, and Consequences for Physiology, Ecology, and Evolution. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:303-325. [PMID: 28992421 DOI: 10.1146/annurev-ento-020117-043145] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Insects can experience functional hypoxia, a situation in which O2 supply is inadequate to meet oxygen demand. Assessing when functional hypoxia occurs is complex, because responses are graded, age and tissue dependent, and compensatory. Here, we compare information gained from metabolomics and transcriptional approaches and by manipulation of the partial pressure of oxygen. Functional hypoxia produces graded damage, including damaged macromolecules and inflammation. Insects respond by compensatory physiological and morphological changes in the tracheal system, metabolic reorganization, and suppression of activity, feeding, and growth. There is evidence for functional hypoxia in eggs, near the end of juvenile instars, and during molting. Functional hypoxia is more likely in species with lower O2 availability or transport capacities and when O2 need is great. Functional hypoxia occurs normally during insect development and is a factor in mediating life-history trade-offs.
Collapse
Affiliation(s)
- Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501;
| | - Kendra J Greenlee
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota 58108-6050;
| | - Wilco C E P Verberk
- Department of Animal Ecology and Ecophysiology, Radboud University, Nijmegen, Netherlands;
| |
Collapse
|
5
|
Mortimer NT, Moberg KH. The archipelago ubiquitin ligase subunit acts in target tissue to restrict tracheal terminal cell branching and hypoxic-induced gene expression. PLoS Genet 2013; 9:e1003314. [PMID: 23459416 PMCID: PMC3573119 DOI: 10.1371/journal.pgen.1003314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 12/22/2012] [Indexed: 12/20/2022] Open
Abstract
The Drosophila melanogaster gene archipelago (ago) encodes the F-box/WD-repeat protein substrate specificity factor for an SCF (Skp/Cullin/F-box)-type polyubiquitin ligase that inhibits tumor-like growth by targeting proteins for degradation by the proteasome. The Ago protein is expressed widely in the fly embryo and larva and promotes degradation of pro-proliferative proteins in mitotically active cells. However the requirement for Ago in post-mitotic developmental processes remains largely unexplored. Here we show that Ago is an antagonist of the physiologic response to low oxygen (hypoxia). Reducing Ago activity in larval muscle cells elicits enhanced branching of nearby tracheal terminal cells in normoxia. This tracheogenic phenotype shows a genetic dependence on sima, which encodes the HIF-1α subunit of the hypoxia-inducible transcription factor dHIF and its target the FGF ligand branchless (bnl), and is enhanced by depletion of the Drosophila Von Hippel Lindau (dVHL) factor, which is a subunit of an oxygen-dependent ubiquitin ligase that degrades Sima/HIF-1α protein in metazoan cells. Genetic reduction of ago results in constitutive expression of some hypoxia-inducible genes in normoxia, increases the sensitivity of others to mild hypoxic stimulus, and enhances the ability of adult flies to recover from hypoxic stupor. As a molecular correlate to these genetic data, we find that Ago physically associates with Sima and restricts Sima levels in vivo. Collectively, these findings identify Ago as a required element of a circuit that suppresses the tracheogenic activity of larval muscle cells by antagonizing the Sima-mediated transcriptional response to hypoxia.
Collapse
Affiliation(s)
- Nathan T. Mortimer
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- ¤ Current address: Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Kenneth H. Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
6
|
van Uden P, Kenneth NS, Webster R, Müller HA, Mudie S, Rocha S. Evolutionary conserved regulation of HIF-1β by NF-κB. PLoS Genet 2011; 7:e1001285. [PMID: 21298084 PMCID: PMC3029248 DOI: 10.1371/journal.pgen.1001285] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 12/22/2010] [Indexed: 01/06/2023] Open
Abstract
Hypoxia Inducible Factor-1 (HIF-1) is essential for mammalian development and is the principal transcription factor activated by low oxygen tensions. HIF-α subunit quantities and their associated activity are regulated in a post-translational manner, through the concerted action of a class of enzymes called Prolyl Hydroxylases (PHDs) and Factor Inhibiting HIF (FIH) respectively. However, alternative modes of HIF-α regulation such as translation or transcription are under-investigated, and their importance has not been firmly established. Here, we demonstrate that NF-κB regulates the HIF pathway in a significant and evolutionary conserved manner. We demonstrate that NF-κB directly regulates HIF-1β mRNA and protein. In addition, we found that NF-κB-mediated changes in HIF-1β result in modulation of HIF-2α protein. HIF-1β overexpression can rescue HIF-2α protein levels following NF-κB depletion. Significantly, NF-κB regulates HIF-1β (tango) and HIF-α (sima) levels and activity (Hph/fatiga, ImpL3/ldha) in Drosophila, both in normoxia and hypoxia, indicating an evolutionary conserved mode of regulation. These results reveal a novel mechanism of HIF regulation, with impact in the development of novel therapeutic strategies for HIF-related pathologies including ageing, ischemia, and cancer.
Collapse
Affiliation(s)
- Patrick van Uden
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Niall S. Kenneth
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ryan Webster
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - H. Arno Müller
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sharon Mudie
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sonia Rocha
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
7
|
Centanin L, Dekanty A, Romero N, Irisarri M, Gorr TA, Wappner P. Cell Autonomy of HIF Effects in Drosophila: Tracheal Cells Sense Hypoxia and Induce Terminal Branch Sprouting. Dev Cell 2008; 14:547-58. [DOI: 10.1016/j.devcel.2008.01.020] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 11/06/2007] [Accepted: 01/10/2008] [Indexed: 01/23/2023]
|
8
|
Walmsley SR, McGovern NN, Whyte MKB, Chilvers ER. The HIF/VHL pathway: from oxygen sensing to innate immunity. Am J Respir Cell Mol Biol 2007; 38:251-5. [PMID: 17932373 DOI: 10.1165/rcmb.2007-0331tr] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In aerobic organisms, all cells have the capacity to respond to changes in oxygenation through the stabilization and transcriptional activation of hypoxia-inducible factor (HIF). At sites of tissue injury, oxygen delivery to individual cells may be compromised or insufficient due to increased metabolic demands, and it is to these areas that immune cells, including neutrophils, must migrate and operate effectively. In addition to the role of HIF to regulate the adaptive metabolic and survival responses of these cells at sites of reduced oxygenation, more complex interactions between HIF and pro-inflammatory pathways are now emerging. The mechanisms by which HIF modulates pro-inflammatory myeloid cell lifespan and function remain to be fully characterized, but roles for the oxygen-sensing hydroxylase enzymes through direct hydroxylation of NF-kappaB and its repressor protein IkappaBalpha have been suggested. The ability of HIF to modulate cellular glucose utilization is also thought to be important, with the maintenance of intracellular ATP pools linked to enhanced myeloid cell aggregation, motility, invasiveness, and bacterial killing. Additional non-hypoxia-mediated routes to up-regulate HIF are also now recognized. In this review we describe the role of HIF in the oxygen-sensing response, and the oxygen-dependent and -independent regulation of myeloid cell function and longevity. Understanding these processes and the role they play in regulating innate immune responses within inflamed sites, both hypoxic and normoxic, may offer new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Sarah R Walmsley
- Academic Unit of Respiratory Medicine, School of Medicine and Biomedical Sciences, University of Sheffield, Royal Hallamshire Hospital, Sheffield, UK
| | | | | | | |
Collapse
|
9
|
Lighton JR. Hot hypoxic flies: Whole-organism interactions between hypoxic and thermal stressors in Drosophila melanogaster. J Therm Biol 2007. [DOI: 10.1016/j.jtherbio.2007.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
|
11
|
Gorr TA, Gassmann M, Wappner P. Sensing and responding to hypoxia via HIF in model invertebrates. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:349-64. [PMID: 16500673 DOI: 10.1016/j.jinsphys.2006.01.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 01/04/2006] [Accepted: 01/05/2006] [Indexed: 05/06/2023]
Abstract
This past decade has brought considerable progress towards elucidating the molecular mechanisms of oxygen sensing pathways by which mammalian cells are able to detect and adjust, or succumb, to hypoxia. In contrast, far less is known about the protein and DNA constituents that endow many invertebrate species to withstand and recover from even more severe and prolonged O2 limitations. In spite of these differences in hypoxia tolerance, inadequacy in oxygen supply is, from mammals to insects to nematodes, signaled onto the DNA level predominantly by hypoxia-inducible factors (HIFs). Across the animal kingdom, HIF accumulates in hypoxic, but not normoxic, cells and functions in a remarkably conserved pathway. Using crustacean (Daphnia magna) and insect (Drosophila melanogaster) models, work by us and others has implicated HIF in restoring O2 delivery via stimulated hemoglobin synthesis (Daphnia) or tracheal remodeling (Drosophila). HIF is essential for these arthropods to adapt and survive during moderate O2 limitations. A similar life-preserving role for HIF-signaling in hypoxic, but not anoxic, environments had previously been established for another stress-tolerant invertebrate model, the nematode Caenorhabditis elegans. Exploring regulations of oxygen-dependent Daphnia and Drosophila genes in cell culture and in vivo have furthermore aided in uncovering novel HIF-targeting mechanisms that might operate to fine-tune the activity of this transcription factor under steadily hypoxic, rather than changing, oxygen tensions. We conclude our review with yet another addition to the growing list of HIF's many functions: the control of cellular growth during fly development.
Collapse
Affiliation(s)
- Thomas A Gorr
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland.
| | | | | |
Collapse
|
12
|
Harrison J, Frazier MR, Henry JR, Kaiser A, Klok CJ, Rascón B. Responses of terrestrial insects to hypoxia or hyperoxia. Respir Physiol Neurobiol 2006; 154:4-17. [PMID: 16595193 DOI: 10.1016/j.resp.2006.02.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 02/09/2006] [Accepted: 02/10/2006] [Indexed: 11/20/2022]
Abstract
Oxygen is critically important for catabolic ATP generation but is also a dangerous source of reactive oxygen species. Insects respond to short-term exposure to hypoxia or hyperoxia with compensatory changes in spiracular opening and ventilation that reduce variation in internal Po2. Below critical Po2 values (Pc), nitric oxide and hypoxia inducible factor (HIF)-mediated pathways induce long-term responses such as compensatory tracheal growth, suppressed development, and acclimation of ventilation. Pc values are strongly affected by activity and ontogeny, due to changes in the ratio of tracheal conductance to metabolic rate. Although growth rates and development are suppressed by significant hypoxia in all species studied to date, adult body size is only affected in some species. Severe hyperoxia causes major oxidative stress and reduces survival, while moderate hyperoxia increases development times and body sizes in some species by unknown mechanisms.
Collapse
Affiliation(s)
- Jon Harrison
- Section of Organismal, Integrative and Systems Biology, School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | | | | | | | | | | |
Collapse
|
13
|
Liu G, Roy J, Johnson EA. Identification and function of hypoxia-response genes in Drosophila melanogaster. Physiol Genomics 2006; 25:134-41. [PMID: 16403841 DOI: 10.1152/physiolgenomics.00262.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxia, an insufficient level of oxygen in the cell, occurs during normal activity and also in pathological conditions such as ischemia and tumorigenesis. Although many hypoxia-response genes have been identified, an understanding of the functional role for these genes in the living animal is lacking. Here we present a genome-wide study of gene expression changes during hypoxia and then functionally test a subset of these genes for roles in survival and recovery from hypoxia. We found 79 genes with increased mRNA levels when adult flies were treated with 0.5% O2 for 6 h. A subset of these genes had detectably increased levels in as short as 1 h of low-oxygen treatment. Mild hypoxia levels resulted in an increase in transcription levels for only 20 genes. Viability during hypoxia and recovery time from hypoxia-induced paralysis was examined in flies with a reduction in activity in hypoxia-response genes. The observed decreased viability and increased recovery time from paralysis in many of the lines demonstrate that the increased transcript levels seen after hypoxia are important for the response to low oxygen.
Collapse
Affiliation(s)
- Guowen Liu
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | | | |
Collapse
|
14
|
Morin P, McMullen DC, Storey KB. HIF-1α involvement in low temperature and anoxia survival by a freeze tolerant insect. Mol Cell Biochem 2005; 280:99-106. [PMID: 16311910 DOI: 10.1007/s11010-005-8236-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Accepted: 06/01/2005] [Indexed: 12/01/2022]
Abstract
Winter survival for many insect species relies on the ability to endure the freezing of extracellular body fluids. Because freezing impedes oxygen delivery to tissues, one component of natural freeze tolerance is a well-developed anoxia/ischemia resistance. The present study explores the responses of the hypoxia-inducible factor-1alpha (HIF-1alpha) to cold, freezing and anoxia exposures in the freeze tolerant goldenrod gall fly larva, Eurosta solidaginis. Reverse transcription-PCR was used to quantify hif-1alpha transcript levels; transcripts were significantly elevated by approximately 70% in chilled (3 ( composite function)C), frozen (-16 ( composite function)C) and thawed (returned to 3 ( composite function)C) insects, compared with 15 ( composite function)C controls. Transcripts also rose by approximately 3-fold in insects given anoxia exposure under a nitrogen gas atmosphere. Cold and freezing exposure also elevated HIF-1alpha protein content in the larvae and HIF-1alpha levels increased over the winter months in insects sampled from an outdoor population; levels peaked in February at 2.1-fold higher than in September. A partial sequence of HIF-1alpha that covers the bHLH and PAS domains of the protein was obtained from E. solidaginis and sequence analysis revealed that this segment shared 62% identity overall with Drosophila melanogaster HIF-1alpha and higher percent identities within specific domains: 76% within the bHLH domain and 70% within the PAS domain. The data provide the first documentation of a potential role for HIF-1 in regulating the expression of genes that can aid freezing survival in a cold-hardy animal.
Collapse
Affiliation(s)
- Pier Morin
- Institute of Biochemistry and Department of Chemistry, College of Natural Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
15
|
Gorr TA, Cahn JD, Yamagata H, Bunn HF. Hypoxia-induced Synthesis of Hemoglobin in the Crustacean Daphnia magna Is Hypoxia-inducible Factor-dependent. J Biol Chem 2004; 279:36038-47. [PMID: 15169764 DOI: 10.1074/jbc.m403981200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Of the four known globin genes that exist in the fresh-water crustacean Daphnia magna, several are individually induced by hypoxia, lending pale normoxic animals a visible red color when challenged by oxygen deprivation. The promoter regions of the Daphnia globin genes each contain numerous hypoxia response elements (HREs) as potential binding sites for hypoxia-inducible factors (HIFs). Daphnia HIF, bound to human HRE sequences, was detected in extracts from hypoxic (red), but not normoxic (pale), animals. Taking advantage of the phylogenetically conserved HIF/HRE recognition, we employed heterologous transfections of HIF-expressing human and Drosophila cells to model HIF signaling in Daphnia. These experiments revealed that three functional HREs within the promoter of the D. magna globin-2 gene cooperate for maximal hypoxic induction of a downstream luciferase reporter gene. Two of these three cis-elements, at promoter positions -258 and -107, are able to specifically bind human, Drosophila, or Daphnia HIF complexes in vitro. The same two sites are also necessary for maximal induction of reporter transcription under low oxygen tension in the presence of either endogenous human or overexpressed Drosophila HIF proteins. The third motif of the globin-2 gene promoter, a CACGTG palindrome at position -146, functions as a docking site for an unknown constitutive transcription factor. In human cells, this -146 complex interferes with HIF occupancy at the adjacent -107 HRE and thus controls the extent of HIF-mediated hypoxic activation of the downstream target.
Collapse
Affiliation(s)
- Thomas A Gorr
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
16
|
Gorr TA, Tomita T, Wappner P, Bunn HF. Regulation of Drosophila hypoxia-inducible factor (HIF) activity in SL2 cells: identification of a hypoxia-induced variant isoform of the HIFalpha homolog gene similar. J Biol Chem 2004; 279:36048-58. [PMID: 15169765 DOI: 10.1074/jbc.m405077200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although hypoxia-inducible factor-alpha (HIFalpha) subunit-specific hydroxylation and proteolytic breakdown explain the binary switch between the presence (hypoxia) and absence (normoxia) of HIFs, little is known of the mechanisms that fine-tune HIF activity under constant, rather than changing, oxygen tensions. Here, we report that the Drosophila HIFalpha homolog, the basic helix-loop-helix/PAS protein Sima (Similar), in hypoxic cultures of SL2 cells is expressed in full-length (fl) and splice variant (sv) isoforms. The following evidence supports the role of flSima as functional HIFalpha and the role of SL2 HIF as a transcriptional activator or suppressor. The pO(2) dependence of Sima abundance matched that of HIF activity. HIF-dependent changes in candidate target gene expression were detected through variously effective stimuli: hypoxia (strong) > iron chelation, e.g. desferrioxamine (moderate) >> transition metals, e.g. cobalt approximately normoxia (ineffective). Sima overexpression augmented hypoxic induction or suppression of different targets. In addition to the full-length exon 1-12 transcript yielding the 1510-amino acid HIFalpha homolog, the sima gene also expressed, specifically under hypoxia, an exon 1-7/12 splice variant, which translated into a 426-amino acid Sima truncation termed svSima. svSima contains basic helix-loop-helix and PAS sequences identical to those of flSima, but, because of deletion of exons 8-11, lacks the oxygen-dependent degradation domain and nuclear localization signals. Overexpressed svSima failed to transactivate reporter genes. However, it attenuated HIF (Sima.Tango)-stimulated reporter expression in a dose-dependent manner. Thus, svSima has the potential to regulate Drosophila HIF function under steady and hypoxic pO(2) by creating a cytosolic sink for the Sima partner protein Tango.
Collapse
Affiliation(s)
- Thomas A Gorr
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
17
|
Frei C, Edgar BA. Drosophila Cyclin D/Cdk4 Requires Hif-1 Prolyl Hydroxylase to Drive Cell Growth. Dev Cell 2004; 6:241-51. [PMID: 14960278 DOI: 10.1016/s1534-5807(03)00409-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Revised: 12/16/2003] [Accepted: 12/19/2003] [Indexed: 01/06/2023]
Abstract
The Drosophila cyclin-dependent protein kinase complex Cyclin D/Cdk4 induces cell growth (accumulation of mass) as well as proliferation (cell cycle progression). To understand how CycD/Cdk4 promotes growth, we performed a screen for modifiers of CycD/Cdk4-driven overgrowth in the eye. Loss-of-function mutations in Hif-1 prolyl hydroxylase (Hph), an enzyme involved in the cellular response to hypoxic stress, dominantly suppress the growth but not the proliferation function of CycD/Cdk4. hph mutant cells are defective for growth, and, remarkably, ectopic expression of Hph is sufficient to increase cellular growth. Epistasis analysis places Hph downstream of CycD/Cdk4. Overexpressed CycD/Cdk4 causes an increase in Hph protein in tissues where Hph induces growth, suggesting a mechanism whereby Hph levels are regulated posttranscriptionally in response to CycD/Cdk4. Our data suggest that Hph, in addition to its function in hypoxic response, is a regulator of cellular growth and that it is a key mediator for CycD/Cdk4.
Collapse
Affiliation(s)
- Christian Frei
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, P.O. Box 19024, Seattle, WA 98109, USA.
| | | |
Collapse
|
18
|
Farahani R, Haddad GG. Understanding the molecular responses to hypoxia using Drosophila as a genetic model. Respir Physiol Neurobiol 2003; 135:221-9. [PMID: 12809621 DOI: 10.1016/s1569-9048(03)00049-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have previously discovered that Drosophila melanogaster could recover from extended periods of anoxia (0% oxygen) with no apparent consequential injuries. We have since employed forward and reverse genetic approaches to decipher the molecular basis for anoxia tolerance. In so doing, we have identified several independent mutant lines that demonstrated increased sensitivity to anoxia. Characterization of one of these mutants resulted in the identification of a dADAR gene that plays a role in the sensitivity to low levels of oxygen. We have also used microarrays to study all known Drosophila genes, the expression of which may be altered by hyoxia. Microarrays experiments have generated a large body of information that is being currently analyzed. We believe that these undertakings will provide insight into the genetic mechanisms of hypoxia tolerance and ischemic injuries.
Collapse
Affiliation(s)
- Reza Farahani
- Department of Pediatrics, Albert Einstein College of Medicine of Yeshiva University, The Children's Hospital at Montefiore, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|
19
|
Shaw PJ, Tononi G, Greenspan RJ, Robinson DF. Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature 2002; 417:287-91. [PMID: 12015603 DOI: 10.1038/417287a] [Citation(s) in RCA: 328] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sleep is controlled by two processes: a homeostatic drive that increases during waking and dissipates during sleep, and a circadian pacemaker that controls its timing. Although these two systems can operate independently, recent studies indicate a more intimate relationship. To study the interaction between homeostatic and circadian processes in Drosophila, we examined homeostasis in the canonical loss-of-function clock mutants period (per(01)), timeless (tim(01)), clock (Clk(jrk)) and cycle (cyc(01)). cyc(01) mutants showed a disproportionately large sleep rebound and died after 10 hours of sleep deprivation, although they were more resistant than other clock mutants to various stressors. Unlike other clock mutants, cyc(01) flies showed a reduced expression of heat-shock genes after sleep loss. However, activating heat-shock genes before sleep deprivation rescued cyc(01) flies from its lethal effects. Consistent with the protective effect of heat-shock genes, was the observation that flies carrying a mutation for the heat-shock protein Hsp83 (Hsp83(08445)) showed exaggerated homeostatic response and died after sleep deprivation. These data represent the first step in identifying the molecular mechanisms that constitute the sleep homeostat.
Collapse
Affiliation(s)
- Paul J Shaw
- The Neurosciences Institute, 10640 John J. Hopkins Drive, San Diego, California 92121, USA
| | | | | | | |
Collapse
|
20
|
Haddad GG, Ma E. Neuronal tolerance to O2 deprivation in drosophila: novel approaches using genetic models. Neuroscientist 2001; 7:538-50. [PMID: 11765131 DOI: 10.1177/107385840100700610] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In spite of many advances in monitoring oxygenation and preventing cerebro-vascular accidents, there is still considerable morbidity and mortality from conditions with cerebral blood flow impairment and O2 deprivation leading to hypoxic/ischemic brain injury. Part of this failure is related to the complexity of the cascade of events that ensue after hypoxia or ischemia, but also part of it may be related to the fact that most research in the previous few decades has focused, justifiably, on cerebral vessel disease. However, an important aspect of the cascade is dependent on many factors that are inherent to the nature and response of the tissue itself. Hence, there is more need now for a two-pronged approach to hypoxic/ischemic brain injury, one focusing on vessel disease, its prevention, and treatment, and the other centering on the brain tissue itself and the factors that render neurons and glia more susceptible or more tolerant to a lack of oxygenation. In the past several years, a number of methods, techniques, and animal models have been used to address the response of neurons and glia to lack of oxygen. In this review, we highlight some novel ideas and some results that we and others have obtained, mostly pertaining to the genetic endowment and responses of the central nervous system to O2 deprivation. The role and importance of genetic models, such as the Drosophila melanogaster, are discussed, and an example illustrating how to harness the power of Drosophila genetics is detailed.
Collapse
Affiliation(s)
- G G Haddad
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticutt 06520, USA
| | | |
Collapse
|
21
|
Abstract
Mammalian cells respond to changes in oxygen availability through a conserved pathway that is regulated by the hypoxia-inducible factor (HIF). The alpha subunit of HIF is targeted for degradation under normoxic conditions by a ubiquitin-ligase complex that recognizes a hydroxylated proline residue in HIF. We identified a conserved family of HIF prolyl hydoxylase (HPH) enzymes that appear to be responsible for this posttranslational modification. In cultured mammalian cells, inappropriate accumulation of HIF caused by forced expression of the HIF-1alpha subunit under normoxic conditions was attenuated by coexpression of HPH. Suppression of HPH in cultured Drosophila melanogaster cells by RNA interference resulted in elevated expression of a hypoxia-inducible gene (LDH, encoding lactate dehydrogenase) under normoxic conditions. These findings indicate that HPH is an essential component of the pathway through which cells sense oxygen.
Collapse
Affiliation(s)
- R K Bruick
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard L3.124, Dallas, TX 75390-9152, USA
| | | |
Collapse
|
22
|
Haddad GG. Enhancing our understanding of the molecular responses to hypoxia in mammals using Drosophila melanogaster. J Appl Physiol (1985) 2000; 88:1481-7. [PMID: 10749845 DOI: 10.1152/jappl.2000.88.4.1481] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Drosophila melanogaster has been used as a genetic model, especially in the past decade, to examine normative biological processes and disease conditions very effectively. These span a wide range of major issues such as aging, cancer, embryogenesis, neural development, apoptosis, and alcohol intoxication. Here, we detail how the Drosophila melanogaster can be used as a genetic model to study the molecular and genetic underpinnings of the response to hypoxia. In our study of the basis of anoxia tolerance, one of the potent approaches that we use is a mutagenesis screen to identify loss-of-function mutants that are anoxia sensitive. The major advantage of this approach is that it is not biased for any particular gene or gene product. Although our screen is in progress, we already have evidence that this approach is useful.
Collapse
Affiliation(s)
- G G Haddad
- Departments of Pediatrics, Section of Respiratory Medicine, and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| |
Collapse
|