1
|
Saha S, Tandon R, Sanku J, Kumari A, Shukla R, Srivastava N. siRNA-based Therapeutics in Hormone-driven Cancers: Advancements and benefits over conventional treatments. Int J Pharm 2025; 674:125463. [PMID: 40081431 DOI: 10.1016/j.ijpharm.2025.125463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/10/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Hormone-related cancers, also known as hormone-sensitive or hormone-dependent cancers, rely on hormones such as estrogen, testosterone, and progesterone for growth. These malignancies, including breast, pituitary, thyroid, ovarian, uterine, cervical, and prostate cancers, often exhibit accelerated progression in response to hormonal signaling. Small interfering RNA (siRNA) has emerged as a groundbreaking gene suppression therapy since the FDA approval of its first product in 2018. With over 200 ongoing clinical trials, siRNA is being actively explored as a targeted treatment for hormone-related cancers. Its ability to silence specific oncogenes offers significant advantages over conventional therapies, which are often associated with toxicity, resistance, and non-specific targeting. However, challenges in siRNA delivery remain a major barrier to its clinical translation, limiting its ability to reach target cells effectively. This review evaluates the potential of siRNA in hormone-related cancers, addressing the shortcomings of traditional treatments while examining novel strategies to enhance siRNA delivery and overcome tumor microenvironment obstacles. Notably, no existing literature comprehensively consolidates siRNA-based therapies for these cancers, emphasizing the importance of this manuscript in bridging current knowledge gaps and advancing the translational application of siRNA therapeutics.
Collapse
Affiliation(s)
- Sayani Saha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Reetika Tandon
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Jhansi Sanku
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Anchala Kumari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India.
| |
Collapse
|
2
|
Ramírez-Cortés F, Ménová P. Hepatocyte targeting via the asialoglycoprotein receptor. RSC Med Chem 2025; 16:525-544. [PMID: 39628900 PMCID: PMC11609720 DOI: 10.1039/d4md00652f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
This review highlights the potential of asialoglycoprotein receptor (ASGPR)-mediated targeting in advancing liver-specific treatments and underscores the ongoing progress in the field. First, we provide a comprehensive examination of the nature of ASGPR ligands, both natural and synthetic. Next, we explore various drug delivery strategies leveraging ASGPR, with a particular emphasis on the delivery of therapeutic nucleic acids such as small interfering RNAs (siRNAs) and antisense oligonucleotides (ASOs). An in-depth analysis of the current status of RNA interference (RNAi) and ASO-based therapeutics is included, detailing approved therapies and those in various stages of clinical development (phases 1 to 3). Afterwards, we give an overview of other ASGPR-targeted conjugates, such as those with peptide nucleic acids or aptamers. Finally, targeted protein degradation of extracellular proteins through ASGPR is briefly discussed.
Collapse
Affiliation(s)
| | - Petra Ménová
- University of Chemistry and Technology, Prague Technická 5 16628 Prague 6 Czech Republic
| |
Collapse
|
3
|
Izadiyan Z, Misran M, Kalantari K, Webster TJ, Kia P, Basrowi NA, Rasouli E, Shameli K. Advancements in Liposomal Nanomedicines: Innovative Formulations, Therapeutic Applications, and Future Directions in Precision Medicine. Int J Nanomedicine 2025; 20:1213-1262. [PMID: 39911259 PMCID: PMC11794392 DOI: 10.2147/ijn.s488961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/01/2025] [Indexed: 02/07/2025] Open
Abstract
Liposomal nanomedicines have emerged as a pivotal approach for the treatment of various diseases, notably cancer and infectious diseases. This manuscript provides an in-depth review of recent advancements in liposomal formulations, highlighting their composition, targeted delivery strategies, and mechanisms of action. We explore the evolution of liposomal products currently in clinical trials, emphasizing their potential in addressing diverse medical challenges. The integration of immunotherapeutic agents within liposomes marks a paradigm shift, enabling the design of 'immuno-modulatory hubs' capable of orchestrating precise immune responses while facilitating theranostic applications. The recent COVID-19 pandemic has accelerated research in liposomal-based vaccines and antiviral therapies, underscoring the need for improved delivery mechanisms to overcome challenges like rapid clearance and organ toxicity. Furthermore, we discuss the potential of "smart" liposomes, which can respond to specific disease microenvironments, enhancing treatment efficacy and precision. The integration of artificial intelligence and machine learning in optimizing liposomal designs promises to revolutionize personalized medicine, paving the way for innovative strategies in disease detection and therapeutic interventions. This comprehensive review underscores the significance of ongoing research in liposomal technologies, with implications for future clinical applications and enhanced patient outcomes.
Collapse
Affiliation(s)
- Zahra Izadiyan
- Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Misni Misran
- Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Katayoon Kalantari
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Thomas J Webster
- Biomedical Engineering, Hebei University of Technology, Tianjin, People’s Republic of China
- School of Engineering, Saveetha University, Chennai, India
| | - Pooneh Kia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Elisa Rasouli
- Department of Electrical and Electronics Engineering, Nanyang Technological University, Nanyang, Singapore
| | - Kamyar Shameli
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
| |
Collapse
|
4
|
Zhou Q, Xiang J, Qiu N, Wang Y, Piao Y, Shao S, Tang J, Zhou Z, Shen Y. Tumor Abnormality-Oriented Nanomedicine Design. Chem Rev 2023; 123:10920-10989. [PMID: 37713432 DOI: 10.1021/acs.chemrev.3c00062] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Anticancer nanomedicines have been proven effective in mitigating the side effects of chemotherapeutic drugs. However, challenges remain in augmenting their therapeutic efficacy. Nanomedicines responsive to the pathological abnormalities in the tumor microenvironment (TME) are expected to overcome the biological limitations of conventional nanomedicines, enhance the therapeutic efficacies, and further reduce the side effects. This Review aims to quantitate the various pathological abnormalities in the TME, which may serve as unique endogenous stimuli for the design of stimuli-responsive nanomedicines, and to provide a broad and objective perspective on the current understanding of stimuli-responsive nanomedicines for cancer treatment. We dissect the typical transport process and barriers of cancer drug delivery, highlight the key design principles of stimuli-responsive nanomedicines designed to tackle the series of barriers in the typical drug delivery process, and discuss the "all-into-one" and "one-for-all" strategies for integrating the needed properties for nanomedicines. Ultimately, we provide insight into the challenges and future perspectives toward the clinical translation of stimuli-responsive nanomedicines.
Collapse
Affiliation(s)
- Quan Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Nasha Qiu
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yechun Wang
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Glycomimetics for the inhibition and modulation of lectins. Chem Soc Rev 2023; 52:3663-3740. [PMID: 37232696 PMCID: PMC10243309 DOI: 10.1039/d2cs00954d] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 05/27/2023]
Abstract
Carbohydrates are essential mediators of many processes in health and disease. They regulate self-/non-self- discrimination, are key elements of cellular communication, cancer, infection and inflammation, and determine protein folding, function and life-times. Moreover, they are integral to the cellular envelope for microorganisms and participate in biofilm formation. These diverse functions of carbohydrates are mediated by carbohydrate-binding proteins, lectins, and the more the knowledge about the biology of these proteins is advancing, the more interfering with carbohydrate recognition becomes a viable option for the development of novel therapeutics. In this respect, small molecules mimicking this recognition process become more and more available either as tools for fostering our basic understanding of glycobiology or as therapeutics. In this review, we outline the general design principles of glycomimetic inhibitors (Section 2). This section is then followed by highlighting three approaches to interfere with lectin function, i.e. with carbohydrate-derived glycomimetics (Section 3.1), novel glycomimetic scaffolds (Section 3.2) and allosteric modulators (Section 3.3). We summarize recent advances in design and application of glycomimetics for various classes of lectins of mammalian, viral and bacterial origin. Besides highlighting design principles in general, we showcase defined cases in which glycomimetics have been advanced to clinical trials or marketed. Additionally, emerging applications of glycomimetics for targeted protein degradation and targeted delivery purposes are reviewed in Section 4.
Collapse
Affiliation(s)
- Steffen Leusmann
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Elena Shanin
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
6
|
Panahi HKS, Dehhaghi M, Amiri H, Guillemin GJ, Gupta VK, Rajaei A, Yang Y, Peng W, Pan J, Aghbashlo M, Tabatabaei M. Current and emerging applications of saccharide-modified chitosan: a critical review. Biotechnol Adv 2023; 66:108172. [PMID: 37169103 DOI: 10.1016/j.biotechadv.2023.108172] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/15/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
Chitin, as the main component of the exoskeleton of Arthropoda, is a highly available natural polymer that can be processed into various value-added products. Its most important derivative, i.e., chitosan, comprising β-1,4-linked 2-amino-2-deoxy-β-d-glucose (deacetylated d-glucosamine) and N-acetyl-d-glucosamine units, can be prepared via alkaline deacetylation process. Chitosan has been used as a biodegradable, biocompatible, non-antigenic, and nontoxic polymer in some in-vitro applications, but the recently found potentials of chitosan for in-vivo applications based on its biological activities, especially antimicrobial, antioxidant, and anticancer activities, have upgraded the chitosan roles in biomaterials. Chitosan approval, generally recognized as a safe compound by the United States Food and Drug Administration, has attracted much attention toward its possible applications in diverse fields, especially biomedicine and agriculture. Even with some favorable characteristics, the chitosan's structure should be customized for advanced applications, especially due to its drawbacks, such as low drug-load capacity, low solubility, high viscosity, lack of elastic properties, and pH sensitivity. In this context, derivatization with relatively inexpensive and highly available mono- and di-saccharides to soluble branched chitosan has been considered a "game changer". This review critically reviews the emerging technologies based on the synthesis and application of lactose- and galactose-modified chitosan as two important chitosan derivatives. Some characteristics of chitosan derivatives and biological activities have been detailed first to understand the value of these natural polymers. Second, the saccharide modification of chitosan has been discussed briefly. Finally, the applications of lactose- and galactose-modified chitosan have been scrutinized and compared to native chitosan to provide an insight into the current state-of-the research for stimulating new ideas with the potential of filling research gaps.
Collapse
Affiliation(s)
- Hamed Kazemi Shariat Panahi
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Mona Dehhaghi
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran
| | - Gilles J Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Ahmad Rajaei
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Yadong Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wanxi Peng
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Mortaza Aghbashlo
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| |
Collapse
|
7
|
Ohashi M, Tamura A, Yui N. Exploring Receptor Binding Affinities and Hepatic Cell Association of N-Acetyl-d-Galactosamine-Modified β-Cyclodextrin-Based Polyrotaxanes for Liver-Targeted Therapies. Biomacromolecules 2023; 24:2327-2341. [PMID: 37036902 DOI: 10.1021/acs.biomac.3c00194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Acid-degradable polyrotaxanes (PRXs) containing threading β-cyclodextrins (β-CDs) are promising candidates for therapeutic applications of β-CDs in metabolic diseases with cholesterol overload or imbalance. To improve cellular uptake specificity and efficiency of PRXs in hepatocytes, N-acetyl-d-galactosamine (GalNAc)-modified PRXs were developed to facilitate asialoglycoprotein receptor (ASGR)-mediated endocytosis. Binding affinity studies revealed that the dissociation constant (KD) values between recombinant ASGR and GalNAc-PRXs decreased with an increase in the number of modified GalNAc units. Additionally, the KD values for GalNAc-PRXs were smaller than those for GalNAc-modified β-CD and amylose, suggesting that the PRX backbone structure improves the binding affinity with ASGR. However, the intracellular uptake levels of GalNAc-PRXs in HepG2 cells increased with a decrease in the number of modified GalNAc units, which was opposite to the trend observed in the binding affinity study. We found that GalNAc-PRXs had a large number of GalNAc units localized in recycling endosomes, resulting in the low intracellular uptake. The cholesterol-reducing abilities of GalNAc-PRXs were assessed using cholesterol-overloaded HepG2 cells. GalNAc-PRXs with a small number of GalNAc units were demonstrated to show superior cholesterol-reducing effects compared to previously designed acid-degradable PRX and clinically tested β-CD derivatives. Thus, we conclude that GalNAc modification is a promising molecular design for the therapeutic application of β-CD-threaded PRXs in various metabolic diseases with cholesterol overload or imbalance in the liver.
Collapse
Affiliation(s)
- Moe Ohashi
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
8
|
Allahyari E, Velaei K, Sanaat Z, Jalilzadeh N, Mehdizadeh A, Rahmati M. RNA interference: Promising approach for breast cancer diagnosis and treatment. Cell Biol Int 2022; 47:833-847. [PMID: 36571107 DOI: 10.1002/cbin.11979] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/15/2022] [Accepted: 12/11/2022] [Indexed: 12/27/2022]
Abstract
Today, cancer is one of the main health-related challenges, and in the meantime, breast cancer (BC) is one of the most common cancers among women, with an alarming number of incidences and deaths every year. For this reason, the discovery of novel and more effective approaches for the diagnosis, treatment, and monitoring of the disease are very important. In this regard, scientists are looking for diagnostic molecules to achieve the above-mentioned goals with higher accuracy and specificity. RNA interference (RNAi) is a posttranslational regulatory process mediated by microRNA intervention and small interfering RNAs. After transcription and edition, these two noncoding RNAs are integrated and activated with the RNA-induced silencing complex (RISC) and AGO2 to connect the target mRNA by their complementary sequence and suppress their translation, thus reducing the expression of their target genes. These two RNAi categories show different patterns in different BC types and stages compared to healthy cells, and hence, these molecules have high diagnostic, monitoring, and therapeutic potentials. This article aims to review the RNAi pathway and diagnostic and therapeutic potentials with a special focus on BC.
Collapse
Affiliation(s)
- Elham Allahyari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical, Sciences, Tabriz, Iran
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Huang M, Wang R, Li M, Cai H, Tian R. Peptide-Based [ 68Ga]Ga Labeled PET Tracer for Tumor Imaging by Targeting Tumor-Associated Macrophages. Pharmaceutics 2022; 14:pharmaceutics14112511. [PMID: 36432702 PMCID: PMC9697189 DOI: 10.3390/pharmaceutics14112511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are known to promote cancer development and metastasis. In this study, a TAMs-targeting peptide named M2pep was selected to investigate the feasibility of [68Ga]Ga-labeled M2pep as a noninvasive probe in targeted TAMs imaging. The peptide M2pep was conjugated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and radiolabeled with 68Ga. The cellular uptake and binding assay were assessed in M2 macrophages and in the B16F10 cell line. Micro-PET imaging and a biodistribution study were performed on B16F10 tumor-bearing mice. High radiochemical purity [68Ga]Ga-DOTA-M2pep (>95%) was prepared and was stabilized in saline and bovine serum at 37 °C for 2 h. In vitro studies demonstrated high uptake of [68Ga]Ga-DOTA-M2pep in M2 macrophages, which was effectively blocked by the “cold” M2pep (free peptide). The micro-PET imaging and biodistribution study revealed that [68Ga]Ga-DOTA-M2pep reached the tumor site rapidly and showed high accumulation in the tumor at 1 h post-injection. In addition, the probe was rapidly cleared from the blood and mainly excreted via the kidneys, resulting in a high tumor/background ratio. Preclinical studies have shown that [68Ga]Ga-DOTA-M2pep specifically targets TAMs and might be a promising molecular probe for the noninvasive visualization of TAMs expression.
Collapse
|
10
|
Warrier DU, Dhanabalan AK, Krishnasamy G, Kolge H, Ghormade V, Gupta CR, Ambre PK, Shinde UA. Novel derivatives of arabinogalactan, pullulan & lactobionic acid for targeting asialoglycoprotein receptor: Biomolecular interaction, synthesis & evaluation. Int J Biol Macromol 2022; 207:683-699. [PMID: 35248606 DOI: 10.1016/j.ijbiomac.2022.02.176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/19/2022] [Accepted: 02/27/2022] [Indexed: 11/19/2022]
Abstract
Targeted-drug administration to liver reduces side effects by minimising drug distribution to non-target organs and increases therapeutic efficacy by boosting drug concentration in target cells. In this study, arabinogalactan-(AG), pullulan-(PL) and lactobionic acid-(LA) were selected as natural ligands to target asialoglycoprotein receptor-(ASGPR-1) present on hepatocytes. In silico docking studies were performed and binding affinities of novel ligands viz. palmitoylated AG-(PAG), lauroylated AG-(LAG), palmitoylated PL-(PPL), lauroylated PL-(LPL) and lactobionic acid-adipic acid dihydrazide conjugate-(LAD) were compared with AG, PL and LA. These novel ligands were successfully synthesized and characterized. The ligands were incorporated into drug loaded nanostructured lipid carriers-(NLCs) for surface functionalization. HepG2 cellular internalization of hepatocyte-targeted NLCs was studied using fluorescence microscopy and LAD-decorated-drug loaded NLCs giving maximum cellular uptake were studied using confocal microscopy. Toxicity potential of LAD-decorated NLCs was assessed in vivo. Molecular docking results suggested that among the ligands, order of binding affinity was found to be LAD>PAG > PPL > LPL > LAG. Acute toxicity studies revealed hemocompatibility and absence of organ toxicity for ligand LAD. Additionally, the results establish proof-of-concept of enhanced targeting efficacy of novel ASGPR targeting ligands. These ligands can be used for surface modification of nanocarriers for future targeted delivery in treating various liver disorders.
Collapse
Affiliation(s)
- Deepa U Warrier
- Bombay College of Pharmacy, Kalina, Santacruz, Mumbai 400098, Maharashtra, India
| | - Anantha K Dhanabalan
- Centre of Advance study in Crystallography and Biophysics, University of Madras, Guindy campus, Chennai 600025, India
| | - Gunasekaran Krishnasamy
- Centre of Advance study in Crystallography and Biophysics, University of Madras, Guindy campus, Chennai 600025, India
| | - Henry Kolge
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India
| | - Vandana Ghormade
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India
| | - Chandan R Gupta
- Bombay College of Pharmacy, Kalina, Santacruz, Mumbai 400098, Maharashtra, India
| | - Premlata K Ambre
- Bombay College of Pharmacy, Kalina, Santacruz, Mumbai 400098, Maharashtra, India
| | - Ujwala A Shinde
- Bombay College of Pharmacy, Kalina, Santacruz, Mumbai 400098, Maharashtra, India.
| |
Collapse
|
11
|
Chen Y, Jiang Z, Xu J, Zhang J, Sun R, Zhou J, Lu Y, Gong Z, Huang J, Shen X, Du Q, Peng J. Improving the ameliorative effects of berberine and curcumin combination via dextran-coated bilosomes on non-alcohol fatty liver disease in mice. J Nanobiotechnology 2021; 19:230. [PMID: 34348707 PMCID: PMC8336351 DOI: 10.1186/s12951-021-00979-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Background The combination of berberine (BER) and curcumin (CUR) has been verified with ameliorative effects on non-alcohol fatty liver disease (NAFLD). However, discrepant bioavailability and biodistribution of BER and CUR remained an obstacle to achieve synergistic effects. Multilayer nanovesicles have great potential for the protection and oral delivery of drug combinations. Therein lies bile salts inserted liposomes, named as bilosomes, that possesses long residence time in the gastrointestinal tract (GIT) and permeability across the small intestine. Diethylaminoethyl dextran (DEAE-DEX) is generally used as an outside layer on the nanovesicles to increase the mucinous stability and promote oral absorption. Herein, we developed a DEAE-DEX-coated bilosome with BER and CUR encapsulated (DEAE-DEX@LSDBC) for the treatment of NAFLD. Results DEAE-DEX@LSDBC with 150 nm size exhibited enhanced permeation across mucus and Caco-2 monolayer. In vivo pharmacokinetics study demonstrated that DEAE-DEX@LSDBC profoundly prolonged the circulation time and improved the oral absorption of both BER and CUR. Intriguingly, synchronized biodistribution of BER and CUR and highest biodistribution at liver was achieved by DEAE-DEX@LSDBC, which contributed to the optimal ameliorative effects on NAFLD. It was further verified to be mainly mediated by anti-oxidation and anti-inflammation related pathways Conclusion DEAE-DEX coated bilosome displayed promoted oral absorption, prolonged circulation and synchronized biodistribution of BER and CUR, leading to improved ameliorative effects on NAFLD in mice, which provided a promising strategy for oral administration of drug combinations. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00979-1.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.,Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Zhaohui Jiang
- Department of Clinical Laboratory, The First People's Hospital of Guiyang, Guiyang, 550002, China
| | - Jinzhuan Xu
- Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Jiyuan Zhang
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Runbin Sun
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jia Zhou
- Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Yuan Lu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Jing Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Xiangchun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.,Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China. .,Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jianqing Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China. .,Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
12
|
Simple and feasible design of a polymeric nanoparticle for efficient anticancer drug delivery. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01589-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Ramanathan R, Delvaux NA, Rice KG. Gene transfection of primary mouse hepatocytes in 384-well plates. Anal Biochem 2020; 644:113911. [PMID: 32910973 PMCID: PMC7936984 DOI: 10.1016/j.ab.2020.113911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 11/19/2022]
Abstract
We report the development of an improved in vitro transfection assay to test the efficiency of non-viral vector DNA nanoparticle transfection of primary hepatocytes. The protocol describes the isolation of viable hepatocytes from a mouse by collagenous perfusion. Primary mouse hepatocytes are plated in 384-well plates and cultured for 24 h prior to transfection with polyethylenimine (PEI) or peptide DNA nanoparticles. Luciferase expression is measured after 24 h following the addition of ONE-Glo substrate. The gene transfer assay for primary hepatocytes was optimized for cell plating number, DNA dose, and PEI to DNA ratio. The assay was applied to compare the expression mediated by mRNA relative to two plasmids possessing different promoters. The reported assay provides reliable in vitro expression results that allow direct comparison of the efficiency of different non-viral gene delivery vectors.
Collapse
Affiliation(s)
- Raghu Ramanathan
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - Nathan A Delvaux
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - Kevin G Rice
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
14
|
Dehshahri A, Sadeghpour H, Mohazzabieh E, Saatchi Avval S, Mohammadinejad R. Targeted double domain nanoplex based on galactosylated polyethylenimine enhanced the delivery ofIL‐12 plasmid. Biotechnol Prog 2020; 36:e3002. [DOI: 10.1002/btpr.3002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/08/2020] [Accepted: 04/08/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Ali Dehshahri
- Department of Pharmaceutical Biotechnology, Shiraz School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
- Pharmaceutical Sciences Research Center, Shiraz School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
| | - Hossein Sadeghpour
- Pharmaceutical Sciences Research Center, Shiraz School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
- Department of Medicinal Chemistry, Shiraz School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
| | - Erfaneh Mohazzabieh
- Department of Pharmaceutical Biotechnology, Shiraz School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
- Pharmaceutical Sciences Research Center, Shiraz School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
| | - Sara Saatchi Avval
- Department of Pharmaceutical Biotechnology, Shiraz School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
- Pharmaceutical Sciences Research Center, Shiraz School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology Kerman University of Medical Sciences Kerman Iran
| |
Collapse
|
15
|
Adokoh CK, Keter FK, Kinfe HH, Tshikhudo R, Darkwa J. Development and characterization of functionalized glyco thiolate capped gold nanoparticles for biological applications. RSC Med Chem 2020; 11:283-292. [PMID: 33479635 PMCID: PMC7485141 DOI: 10.1039/c9md00493a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/12/2020] [Indexed: 12/24/2022] Open
Abstract
Glyco-gold nanoparticles (AuNPs) in aqueous dispersions were prepared by two approaches, namely direct reduction and ligand substitution methods. In the direct method, potassium salts of glyco thiols, with the general formula (C6H11O6)NH(CH2) n CH2SK (where L1, n = 1; L2, n = 2; L3, n = 3, L4, n = 4; L5, n = 5), were used as reducing and capping agents to give the glyco thiolate capped gold nanoparticles (AuNPs G1-G5); meanwhile in the ligand exchange experiments, L1-L5 and their acetylated forms (L6-L8) replaced citrate ions in citrate-capped gold nanoparticles to give additional AuNPs G6-G11. UV-visible spectroscopy, surface charge (ζ-potential,) measurements and transmission electron microscopy (TEM) were used for physical and chemical characterization of all the resultant AuNPs. The ζ-potential studies of AuNPs prepared through the direct method revealed that the surface charge is dependent on the length of the alkyl unit of (C6H11O6)NH(CH2) n CH2S- ligands. TEM images of the acetylated and non-acetylated glyco thiolate capped gold nanoparticles (AuNPs G6-G11) prepared via the ligand exchange method indicate that the size and shape of the gold nanoparticles remained the same as those of the citrate-capped gold nanoparticles used to prepare them. Selected AuNPs were tested on peripheral blood mononuclear cells (PBMCs) and the A549 cancer cell line to investigate their respective toxicity and cytotoxicity profiles. All AuNPs showed indiscriminate activity against both PBMCs and A4549 cells, although the gold nanoparticles having an acetylated glyco moiety with an amino propyl thiol linker as the ligand (G10) prepared via the citrate exchange method had better selectivity (PBMCs >59 mg mL-1 and for A549 ∼7 μg mL-1).
Collapse
Affiliation(s)
- Christian K Adokoh
- Department of Chemistry , University of Johannesburg , P. O. Box 524 , Auckland Park , 2006 , South Africa . ;
| | - Frankline K Keter
- Nanotechnology Innovation Center , Advanced Materials Division , Mintek , 200 Malibongwe Drive , Randburg , 2125 , South Africa
| | - Henok H Kinfe
- Department of Chemistry , University of Johannesburg , P. O. Box 524 , Auckland Park , 2006 , South Africa . ;
| | - Robert Tshikhudo
- Nanotechnology Innovation Center , Advanced Materials Division , Mintek , 200 Malibongwe Drive , Randburg , 2125 , South Africa
| | - James Darkwa
- Department of Chemistry , University of Johannesburg , P. O. Box 524 , Auckland Park , 2006 , South Africa . ;
| |
Collapse
|
16
|
Blakney AK, Liu R, Yilmaz G, Abdouni Y, McKay PF, Bouton CR, Shattock RJ, Becer CR. Precisely targeted gene delivery in human skin using supramolecular cationic glycopolymers. Polym Chem 2020. [DOI: 10.1039/d0py00449a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Gene delivery has become the focus of clinical treatments, thus motivating delivery strategies that are capable of targeting certain cell types in the context of both vaccines and therapeutics.
Collapse
Affiliation(s)
- Anna K. Blakney
- Department of Medicine
- Division of Infectious Diseases
- Section of Immunology of infection
- Imperial College London
- London W21PG
| | - Renjie Liu
- School of Engineering and Materials Science
- Queen Mary University of London
- London
- UK
- J. Crayton Pruitt Family Department of Biomedical Engineering
| | - Gokhan Yilmaz
- School of Pharmacy
- University of Nottingham
- Nottingham
- UK
- Department of Chemistry
| | - Yamin Abdouni
- School of Engineering and Materials Science
- Queen Mary University of London
- London
- UK
| | - Paul F. McKay
- Department of Medicine
- Division of Infectious Diseases
- Section of Immunology of infection
- Imperial College London
- London W21PG
| | - Clément R. Bouton
- Department of Medicine
- Division of Infectious Diseases
- Section of Immunology of infection
- Imperial College London
- London W21PG
| | - Robin J. Shattock
- Department of Medicine
- Division of Infectious Diseases
- Section of Immunology of infection
- Imperial College London
- London W21PG
| | - C. Remzi Becer
- School of Engineering and Materials Science
- Queen Mary University of London
- London
- UK
- Department of Chemistry
| |
Collapse
|
17
|
Hashida M. Role of pharmacokinetic consideration for the development of drug delivery systems: A historical overview. Adv Drug Deliv Rev 2020; 157:71-82. [PMID: 32565225 DOI: 10.1016/j.addr.2020.06.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/09/2020] [Accepted: 06/13/2020] [Indexed: 12/13/2022]
Abstract
Drug delivery system is defined as a system or technology to achieve optimum therapeutic effects of drugs through precise control of their movements in the body. In order to optimize function of drug delivery systems aiming at targeting, their whole-body distribution profiles should be systematically evaluated and analyzed, where pharmacokinetic analysis based on the clearance concepts plays important role. Organ perfusion experiments combined with statistical moment analysis further supply detailed information on drug disposition at organ and cellular levels. Based on general relationship between physicochemical properties and distribution profile, macromolecular prodrugs or polymer conjugates of proteins are rationally designed and further introduction of ligand structure brings cell-specific delivery for them. These approaches are also applicable for particulate carriers such as liposomes and offer various opportunities for biological drugs such as nucleic acid drugs for their delivery. Mechanistic approach for dermal absorption analysis based on physiological skin model offers another opportunity in rational design of drug delivery. Potential of drug delivery technology in future medicines such as cell therapy and nanomaterial platform application is further discussed in relation to pharmacokinetic consideration.
Collapse
|
18
|
Kamimura K, Yokoo T, Abe H, Terai S. Gene Therapy for Liver Cancers: Current Status from Basic to Clinics. Cancers (Basel) 2019; 11:cancers11121865. [PMID: 31769427 PMCID: PMC6966544 DOI: 10.3390/cancers11121865] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023] Open
Abstract
The liver is a key organ for metabolism, protein synthesis, detoxification, and endocrine function, and among liver diseases, including hepatitis, cirrhosis, malignant tumors, and congenital disease, liver cancer is one of the leading causes of cancer-related deaths worldwide. Conventional therapeutic options such as embolization and chemotherapy are not effective against advanced-stage liver cancer; therefore, continuous efforts focus on the development of novel therapeutic options, including molecular targeted agents and gene therapy. In this review, we will summarize the progress toward the development of gene therapies for liver cancer, with an emphasis on recent clinical trials and preclinical studies.
Collapse
Affiliation(s)
- Kenya Kamimura
- Correspondence: ; Tel.: +81-25-227-2207; Fax: +81-25-227-0776
| | | | | | | |
Collapse
|
19
|
Saw PE, Song EW. Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell 2019; 10:787-807. [PMID: 31140150 PMCID: PMC6834755 DOI: 10.1007/s13238-019-0639-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/21/2019] [Indexed: 12/14/2022] Open
Abstract
Recently, phage display technology has been announced as the recipient of Nobel Prize in Chemistry 2018. Phage display technique allows high affinity target-binding peptides to be selected from a complex mixture pool of billions of displayed peptides on phage in a combinatorial library and could be further enriched through the biopanning process; proving to be a powerful technique in the screening of peptide with high affinity and selectivity. In this review, we will first discuss the modifications in phage display techniques used to isolate various cancer-specific ligands by in situ, in vitro, in vivo, and ex vivo screening methods. We will then discuss prominent examples of solid tumor targeting-peptides; namely peptide targeting tumor vasculature, tumor microenvironment (TME) and over-expressed receptors on cancer cells identified through phage display screening. We will also discuss the current challenges and future outlook for targeting peptide-based therapeutics in the clinics.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Er-Wei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
20
|
Boseila AA, Rashed HM, Sakr TM, Abdel-Reheem AY, Basalious EB. Superiority of DEAE-Dx-Stabilized Cationic Bile-Based Vesicles over Conventional Vesicles for Enhanced Hepatic Delivery of Daclatasvir. Mol Pharm 2019; 16:4190-4199. [DOI: 10.1021/acs.molpharmaceut.9b00517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Amira A. Boseila
- Department of Pharmaceutics, National Organization for Drug Control and Research (NODCAR), 12611 Cairo, Egypt
| | - Hassan M. Rashed
- Labeled Compounds Department, Hot Labs Center, Atomic Energy Authority, Cairo, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Kantara, Egypt
| | - Tamer M. Sakr
- Radioactive Isotopes and Generator Department, Hot Labs Center, Atomic Energy Authority, Cairo, Egypt
| | - Amal Y. Abdel-Reheem
- Department of Pharmaceutics, National Organization for Drug Control and Research (NODCAR), 12611 Cairo, Egypt
| | - Emad B. Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| |
Collapse
|
21
|
Reda A, Hosseiny S, El-Sherbiny IM. Next-generation nanotheranostics targeting cancer stem cells. Nanomedicine (Lond) 2019; 14:2487-2514. [PMID: 31490100 DOI: 10.2217/nnm-2018-0443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is depicted as the most aggressive malignancy and is one the major causes of death worldwide. It originates from immortal tumor-initiating cells called 'cancer stem cells' (CSCs). This devastating subpopulation exhibit potent self-renewal, proliferation and differentiation characteristics. Dynamic DNA repair mechanisms can sustain the immortality phenotype of cancer to evade all treatment strategies. To date, current conventional chemo- and radio-therapeutic strategies adopted against cancer fail in tackling CSCs. However, new advances in nanotechnology have paved the way for creating next-generation nanotheranostics as multifunctional smart 'all-in-one' nanoparticles. These particles integrate diagnostic, therapeutic and targeting agents into one single biocompatible and biodegradable carrier, opening up new avenues for breakthroughs in early detection, diagnosis and treatment of cancer through efficient targeting of CSCs.
Collapse
Affiliation(s)
- Asmaa Reda
- Nanomedicine Division, Center for Materials Science, Zewail City of Science & Technology, 12578, Giza, Egypt.,Molecular & Cellular Biology division, Zoology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Salma Hosseiny
- Nanomedicine Division, Center for Materials Science, Zewail City of Science & Technology, 12578, Giza, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Division, Center for Materials Science, Zewail City of Science & Technology, 12578, Giza, Egypt
| |
Collapse
|
22
|
Tunki L, Kulhari H, Vadithe LN, Kuncha M, Bhargava S, Pooja D, Sistla R. Modulating the site-specific oral delivery of sorafenib using sugar-grafted nanoparticles for hepatocellular carcinoma treatment. Eur J Pharm Sci 2019; 137:104978. [DOI: 10.1016/j.ejps.2019.104978] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/07/2019] [Accepted: 06/25/2019] [Indexed: 12/19/2022]
|
23
|
Oligo-guanidyl targeted bioconjugates forming rod shaped polyplexes as a new nanoplatform for oligonucleotide delivery. J Control Release 2019; 310:58-73. [PMID: 31400381 DOI: 10.1016/j.jconrel.2019.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/04/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022]
Abstract
Novel bioconjugates (Agm6-M-PEG-FA) for active oligonucleotide (ON) delivery have been developed by conjugating a cationic oligo-guanidyl star-like shaped "head" (Agm6-M) to a polymeric "tail" (PEG) terminating with folic acid (FA) as targeting agent or methoxy group (Agm6-M-PEG-FA and Agm6-M-PEG-OCH3, respectively). Gel electrophoresis showed that the bioconjugates completely associated with ONs at 3 nitrogen/phosphate (N/P) ratio. Studies performed with folate receptor (FR)-overexpressing HeLa cells, showed that optimal cell up-take was obtained with the 75:25 w/w Agm6-M-PEG-OCH3:Agm6-M-PEG-FA mixture. Dynamic light scattering and transmission electron microscopy showed that the polyplexes had size <80 nm with narrow polydispersity and rod-shaped morphology. The polyplexes were stable for several hours in plasma while ON was released in the presence of heparin concentration 16-times higher than the physiological one. The polyplexes displayed negligible cytotoxicity, hemolysis and low pro-inflammatory TNF-α release. Studies performed with FR-overexpressing HeLa and MDA-MB-231 cells using siRac1 revealed that the folated polyplexes caused significantly higher gene silencing (86.1 ± 9.6%) and inhibition of cell migration (40%) than the non-folated polyplexes obtained with Agm6-M-PEG-OCH3 only. Although cytofluorimetric analyses showed similar cell uptake for both folated and non-folated polyplexes, confocal, TEM and competition studies showed that the folated polyplexes were taken-up by lysosome escaping caveolin-mediated pathway with final polyplex localization within cytosol, while non-folated polyplexes were preferentially taken-up via clathrin-mediated pathway to localize in the lysosomes. Finally, preliminary in vivo studies carried out in mice revealed that the folated polyplexes dispose in the tumor mass.
Collapse
|
24
|
Boseila AA, Abdel-Reheem AY, Basalious EB. Design of bile-based vesicles (BBVs) for hepatocytes specific delivery of Daclatasvir: Comparison of ex-vivo transenterocytic transport, in-vitro protein adsorption resistance and HepG2 cellular uptake of charged and β-sitosterol decorated vesicles. PLoS One 2019; 14:e0219752. [PMID: 31310613 PMCID: PMC6634393 DOI: 10.1371/journal.pone.0219752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/01/2019] [Indexed: 01/04/2023] Open
Abstract
Daclatasvir is a new direct acting antiviral used in treatment of Hepatitis C virus, in an attempt to increase its hepatocytes specificity and uptake. It was encapsulated within bile based vesicles (BBVs) containing egg phosphatidyl choline, cholesterol and sodium deoxycholate fabricated by thin-film hydration method. A D-optimal mixture design was applied to study the effect of formulation variables on vesicular characteristics. The dependent variables picked were the particle size, polydispersity index, zeta potential and entrapment efficiency. The optimized bile based vesicles were subjected for further modifications to prepare miniaturized anionic (ABBVs), cationic (CBBVs) and Sito-G decorated BBVs (Sito-GBBVs) to be capable to penetrate liver fenestrae (<200 nm). The aim of the current work is to compare the potential of the ABBVs, CBBVs and Sito-GBBVs loaded with Daclatasvir for stability in simulated biological fluids, ex-vivo intestinal transenterocytic transport, HepG2 cellular uptake and resistance to blood protein adsorption. The miniaturized ABBVs, CBBVs and Sito-GBBVs showed acceptable stability in simulated biological fluids. CBBVs had the highest transenterocytic transport through intestinal membrane. The internalization of CBBVs into HepG2 cells was about 2.1 folds that of ABBVs and 1.45 folds that of Sito-GBBVs. ABBVs and Sito-GBBVs showed superior resistance to opsonization compared to CBBVs which showed significant increase in particle size (p˃0.05) due to protein adsorption. The miniaturized Sito-GBBVs constitute a promising strategy to overcome key biological barriers facing hepatocytes specific delivery of Daclatasvir.
Collapse
Affiliation(s)
- Amira A. Boseila
- Department of Pharmaceutics, National Organization for Drug Control and Research, Cairo, Egypt
- * E-mail:
| | - Amal Y. Abdel-Reheem
- Department of Pharmaceutics, National Organization for Drug Control and Research, Cairo, Egypt
| | - Emad B. Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
25
|
Nishikawa M, Tan M, Liao W, Kusamori K. Nanostructured DNA for the delivery of therapeutic agents. Adv Drug Deliv Rev 2019; 147:29-36. [PMID: 31614168 DOI: 10.1016/j.addr.2019.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 01/16/2023]
Abstract
DNA and RNA, the nucleic acids found in every living organism, are quite crucial, because not only do they store the genetic information, but also they are used as signals through interaction with various molecules within the body. The nature of nucleic acids, especially DNA, to form double-helix makes it possible to design nucleic acid-based nanostructures with various shapes. Because the shapes as well as the physicochemical properties determine their interaction with proteins or cells, nanostructured DNAs will have different features in the interaction compared with single- or double-stranded DNA. Some of these unique features of nanostructured DNA make ways for efficient delivery of therapeutic agents to specific targets. In this review, we begin with the factors affecting the properties of nanostructured DNA, followed by summarizing the methods for the development of nanostructured DNA. Further, we discuss the characteristics of nanostructured DNA and their applications for the delivery of bioactive compounds.
Collapse
Affiliation(s)
- Makiya Nishikawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Japan.
| | - Mengmeng Tan
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | - Wenqing Liao
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | - Kosuke Kusamori
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Japan
| |
Collapse
|
26
|
Xia X, Zhou Z, DeSantis C, Rossi JJ, Bong D. Triplex Hybridization of siRNA with Bifacial Glycopolymer Nucleic Acid Enables Hepatocyte-Targeted Silencing. ACS Chem Biol 2019; 14:1310-1318. [PMID: 31141333 PMCID: PMC7001860 DOI: 10.1021/acschembio.9b00273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Herein, we describe a versatile non-covalent strategy for packaging nucleic acid cargo with targeting modalities, based on triplex hybridization of oligo-uridylate RNA with bifacial polymer nucleic acid (bPoNA). Polyacrylate bPoNA was prepared and side chain-functionalized with N-acetylgalactosamine (GalNAc), which is known to enable delivery to hepatocytes and liver via binding to the asialoglycoprotein receptor (ASGPR). Polymer binding resulted in successful delivery of both native and synthetically modified siRNAs to HepG2 cells in culture, yielding in low nanomolar IC50 silencing of the endogenous ApoB target, in line with observations of expected Dicer processing of the polymer-siRNA targeting complex. Indeed, in vitro Dicer treatment of the polymer complex indicated that triplex hybridization does not impede RNA processing and release from the polymer. The complex itself elicited a quiescent immunostimulation profile relative to free RNA in a cytokine screen, setting the stage for a preliminary in vivo study in a high-calorie-diet mouse model. Gratifyingly, we observed significant ApoB silencing in a preliminary animal study, validating bPoNA as an in vivo carrier platform for systemic siRNA delivery. Thus, this new siRNA carrier platform exhibits generally useful function and is accessible through scalable synthesis. In addition to its utility as a carrier, the triplex-hybridizing synthetic platform could be useful for optimization screens of siRNA sequences using the identical polymer carriers, thus alleviating the need for covalent ligand modification of each RNA substrate.
Collapse
Affiliation(s)
- Xin Xia
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| | - Zhun Zhou
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Chris DeSantis
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - John J. Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| | - Dennis Bong
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
27
|
Sousa D, Ferreira D, Rodrigues JL, Rodrigues LR. Nanotechnology in Targeted Drug Delivery and Therapeutics. APPLICATIONS OF TARGETED NANO DRUGS AND DELIVERY SYSTEMS 2019:357-409. [DOI: 10.1016/b978-0-12-814029-1.00014-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
28
|
Damen M, Groenen AJJ, van Dongen SFM, Nolte RJM, Scholte BJ, Feiters MC. Transfection by cationic gemini lipids and surfactants. MEDCHEMCOMM 2018; 9:1404-1425. [PMID: 30288217 PMCID: PMC6148748 DOI: 10.1039/c8md00249e] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/11/2018] [Indexed: 12/13/2022]
Abstract
Diseases that are linked to defective genes or mutations can in principle be cured by gene therapy, in which damaged or absent genes are either repaired or replaced by new DNA in the nucleus of the cell. Related to this, disorders associated with elevated protein expression levels can be treated by RNA interference via the delivery of siRNA to the cytoplasm of cells. Polynucleotides can be brought into cells by viruses, but this is not without risk for the patient. Alternatively, DNA and RNA can be delivered by transfection, i.e. by non-viral vector systems such as cationic surfactants, which are also referred to as cationic lipids. In this review, recent progress on cationic lipids as transfection vectors will be discussed, with special emphasis on geminis, surfactants with 2 head groups and 2 tails connected by a spacer.
Collapse
Affiliation(s)
- M Damen
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| | - A J J Groenen
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| | - S F M van Dongen
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| | - R J M Nolte
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| | - B J Scholte
- Departments of Pediatric pulmonology and Cell Biology , Erasmus MC, P. O. Box 2040 , 3000 CA Rotterdam , The Netherlands
| | - M C Feiters
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| |
Collapse
|
29
|
Seidi F, Jenjob R, Phakkeeree T, Crespy D. Saccharides, oligosaccharides, and polysaccharides nanoparticles for biomedical applications. J Control Release 2018; 284:188-212. [DOI: 10.1016/j.jconrel.2018.06.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/16/2022]
|
30
|
Recent advances in galactose-engineered nanocarriers for the site-specific delivery of siRNA and anticancer drugs. Drug Discov Today 2018; 23:960-973. [DOI: 10.1016/j.drudis.2017.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/17/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022]
|
31
|
Degli Esposti L, Carella F, Adamiano A, Tampieri A, Iafisco M. Calcium phosphate-based nanosystems for advanced targeted nanomedicine. Drug Dev Ind Pharm 2018. [PMID: 29528248 DOI: 10.1080/03639045.2018.1451879] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Synthetic calcium phosphates (CaPs) are the most widely accepted bioceramics for the repair and reconstruction of bone tissue defects. The recent advancements in materials science have prompted a rapid progress in the preparation of CaPs with nanometric dimensions, tailored surface characteristics, and colloidal stability opening new perspectives in their use for applications not strictly related to bone. In particular, the employment of CaPs nanoparticles as carriers of therapeutic and imaging agents has recently raised great interest in nanomedicine. CaPs nanoparticles, as well as other kinds of nanoparticles, can be engineered to specifically target the site of the disease (cells or organs), thus minimizing their dispersion in the body and undesired organism-nanoparticles interactions. The most promising and efficient approach to improve their specificity is the 'active targeting', where nanoparticles are conjugated with a targeting moiety able to recognize and bind with high efficacy and selectivity to receptors that are highly expressed only in the therapeutic site. The aim of this review is to give an overview on advanced targeted nanomedicine with a focus on the most recent reports on CaP nanoparticles-based systems, specifically designed for the active targeting. The distinctive characteristics of CaP nanoparticles with respect to the other kinds of nanomaterials used in nanomedicine are also discussed.
Collapse
Affiliation(s)
- Lorenzo Degli Esposti
- a Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR) , Faenza , Italy
| | - Francesca Carella
- a Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR) , Faenza , Italy
| | - Alessio Adamiano
- a Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR) , Faenza , Italy
| | - Anna Tampieri
- a Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR) , Faenza , Italy
| | - Michele Iafisco
- a Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR) , Faenza , Italy
| |
Collapse
|
32
|
Yuan SS, Li ML, Chen JS, Zhou L, Zhou W. Application of Mono- and Disaccharides in Drug Targeting and Efficacy. ChemMedChem 2018; 13:764-778. [DOI: 10.1002/cmdc.201700762] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/10/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Si S. Yuan
- School of Pharmaceutical Sciences; Guangzhou University of Chinese Medicine; E. 232 University Town, Waihuan Road Panyu Guangzhou 510006 China
| | - Mao L. Li
- School of Pharmaceutical Sciences; Guangzhou University of Chinese Medicine; E. 232 University Town, Waihuan Road Panyu Guangzhou 510006 China
| | - Jian S. Chen
- College of Horticulture; South China Agricultural University; 483 Wushan Road Guangzhou 510642 China
| | - Li Zhou
- College of Science; Hunan Agricultural University; Furong Road Changsha 410128 China
| | - Wen Zhou
- School of Pharmaceutical Sciences; Guangzhou University of Chinese Medicine; E. 232 University Town, Waihuan Road Panyu Guangzhou 510006 China
| |
Collapse
|
33
|
Mullis AS, Schlichtmann BW, Narasimhan B, Cademartiri R, Mallapragada SK. Ligand-cascading nano-delivery devices to enable multiscale targeting of anti-neurodegenerative therapeutics. Biomed Mater 2018; 13:034102. [DOI: 10.1088/1748-605x/aaa778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Saravanan V, Rajakumar P. Synthesis, characterization, optical and electrochemical properties and antibacterial activity of novel BODIPY glycoconjugated dendrimers. NEW J CHEM 2018. [DOI: 10.1039/c7nj04412g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new class of novel BODIPY glycoconjugated dendrimers with optical, electrochemical and antibacterial properties is reported.
Collapse
Affiliation(s)
| | - Perumal Rajakumar
- Department of Organic Chemistry
- University of Madras
- Chennai 600 025
- India
| |
Collapse
|
35
|
Dehaini D, Fang RH, Zhang L. Biomimetic strategies for targeted nanoparticle delivery. Bioeng Transl Med 2016; 1:30-46. [PMID: 29313005 PMCID: PMC5689512 DOI: 10.1002/btm2.10004] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/02/2023] Open
Abstract
Nanoparticle‐based drug delivery and imaging platforms have become increasingly popular over the past several decades. Among different design parameters that can affect their performance, the incorporation of targeting functionality onto nanoparticle surfaces has been a widely studied subject. Targeted formulations have the ability to improve efficacy and function by positively modulating tissue localization. Many methods exist for creating targeted nanoformulations, including the use of custom biomolecules such as antibodies or aptamers. More recently, a great amount of focus has been placed on biomimetic targeting strategies that leverage targeting interactions found directly in nature. Such strategies, which have been painstakingly selected over time by the process of evolution to maximize functionality, oftentimes enable scientists to forgo the specialized discovery processes associated with many traditional ligands and help to accelerate development of novel nanoparticle formulations. In this review, we categorize and discuss in‐depth recent works in this growing field of bioinspired research.
Collapse
Affiliation(s)
- Diana Dehaini
- Dept. of NanoEngineering and Moores Cancer Center University of California San Diego, La Jolla CA 92093
| | - Ronnie H Fang
- Dept. of NanoEngineering and Moores Cancer Center University of California San Diego, La Jolla CA 92093
| | - Liangfang Zhang
- Dept. of NanoEngineering and Moores Cancer Center University of California San Diego, La Jolla CA 92093
| |
Collapse
|
36
|
Conjugates of small targeting molecules to non-viral vectors for the mediation of siRNA. Acta Biomater 2016; 36:21-41. [PMID: 27045350 DOI: 10.1016/j.actbio.2016.03.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 01/08/2023]
Abstract
UNLABELLED To use siRNA (small interfering RNA) for gene therapy, a gene delivery system is often necessary to overcome several challenging requirements including rapid excretion, low stability in blood serum, non-specific accumulation in tissues, poor cellular uptake and inefficient intracellular release. Active and/or passive targeting should help the delivery system to reach the desired tissue or cell, to be internalized, and to deliver siRNA to the cytoplasm so that siRNA can inhibit protein synthesis. This review covers conjugates of small targeting molecules and non-viral delivery systems for the mediation of siRNA, with a focus on their transfection properties in order to help the development of new and efficient siRNA delivery systems, as the therapeutic solutions of tomorrow. STATEMENT OF SIGNIFICANCE The delivery of siRNA into cells or tissues remains to be a challenge for its applications, an alternative strategy for siRNA delivery systems is direct conjugation of non-viral vectors with targeting moieties for cellular delivery. In comparison to macromolecules, small targeting molecules have attracted great attention due to their many potential advantages including significant simplicity and ease of production, good repeatability and biodegradability. This review will focus on the most recent advances in the delivery of siRNA using conjugates of small targeting molecules and non-viral delivery systems. Based the editor's suggestions, we hope the revised manuscript could provide more profound understanding to the conjugates of targeting molecules to vectors for mediation of siRNA.
Collapse
|
37
|
Williford JM, Archang MM, Minn I, Ren Y, Wo M, Vandermark J, Fisher PB, Pomper MG, Mao HQ. Critical Length of PEG Grafts on lPEI/DNA Nanoparticles for Efficient in Vivo Delivery. ACS Biomater Sci Eng 2016; 2:567-578. [PMID: 27088129 PMCID: PMC4829937 DOI: 10.1021/acsbiomaterials.5b00551] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/02/2016] [Indexed: 12/03/2022]
Abstract
![]()
Nanoparticle-mediated
gene delivery is a promising alternative
to viral methods; however, its use in vivo, particularly following
systemic injection, has suffered from poor delivery efficiency. Although
PEGylation of nanoparticles has been successfully demonstrated as
a strategy to enhance colloidal stability, its success in improving
delivery efficiency has been limited, largely due to reduced cell
binding and uptake, leading to poor transfection efficiency. Here
we identified an optimized PEGylation scheme for DNA micellar nanoparticles
that delivers balanced colloidal stability and transfection activity.
Using linear polyethylenimine (lPEI)-g-PEG as a carrier,
we characterized the effect of graft length and density of polyethylene
glycol (PEG) on nanoparticle assembly, micelle stability, and gene
delivery efficiency. Through variation of PEG grafting degree, lPEI
with short PEG grafts (molecular weight, MW 500–700 Da) generated
micellar nanoparticles with various shapes including spherical, rodlike,
and wormlike nanoparticles. DNA micellar nanoparticles prepared with
short PEG grafts showed comparable colloidal stability in salt and
serum-containing media to those prepared with longer PEG grafts (MW
2 kDa). Corresponding to this trend, nanoparticles prepared with short
PEG grafts displayed significantly higher in vitro transfection efficiency
compared to those with longer PEG grafts. More importantly, short
PEG grafts permitted marked increase in transfection efficiency following
ligand conjugation to the PEG terminal in metastatic prostate cancer-bearing
mice. This study identifies that lPEI-g-PEG with
short PEG grafts (MW 500–700 Da) is the most effective to ensure
shape control and deliver high colloidal stability, transfection activity,
and ligand effect for DNA nanoparticles in vitro and in vivo following
intravenous administration.
Collapse
Affiliation(s)
- John-Michael Williford
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, United States; Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Maani M Archang
- Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States; Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Il Minn
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions , 601 N. Caroline Street, Baltimore, Maryland 21287, United States
| | - Yong Ren
- Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States; Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Mark Wo
- Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States; Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - John Vandermark
- Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States; Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, 1101 East Marshall Street, Richmond, Virginia 23298, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, 1220 East Broad Street, Richmond, Virginia 23298, United States; VCU Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23298, United States
| | - Martin G Pomper
- Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States; Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States; Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, 601 N. Caroline Street, Baltimore, Maryland 21287, United States
| | - Hai-Quan Mao
- Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States; Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States; Translational Tissue Engineering Center and Whitaker Biomedical Engineering Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, Maryland 21287, United States
| |
Collapse
|
38
|
Xun MM, Zhang JH, Liu YH, Zhang J, Xiao YP, Guo Q, Li S, Yu XQ. Polyethylenimine analogs for improved gene delivery: effect of the type of amino groups. RSC Adv 2016. [DOI: 10.1039/c5ra23715g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The 1°, 2° and 3° amine composition of PEI analogs could be easily adjusted by special synthetic method, and their effects on the gene transfection were studied.
Collapse
Affiliation(s)
- Miao-Miao Xun
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Ju-Hui Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Ya-Ping Xiao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Qian Guo
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Shuo Li
- School of Chemical Engineering
- Chongqing University of Technology
- Chongqing 400054
- PR China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| |
Collapse
|
39
|
Ji W, Liu G, Wang F, Zhu Z, Feng C. Galactose-decorated light-responsive hydrogelator precursors for selectively killing cancer cells. Chem Commun (Camb) 2016; 52:12574-12577. [DOI: 10.1039/c6cc05707a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multi-functional gelator precursor with high photosensitivity is rationally designed for selectively inhibiting liver cancer cells.
Collapse
Affiliation(s)
- Wei Ji
- State Key Lab of Metal Matrix Composites
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Guofeng Liu
- State Key Lab of Metal Matrix Composites
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Fang Wang
- State Key Lab of Metal Matrix Composites
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Zhu Zhu
- Department of Nephrology
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai
- China
| |
Collapse
|
40
|
Ahmad MU, Ali SM, Ahmad A, Sheikh S, Chen P, Ahmad I. Carbohydrate - lipid conjugates for targeted drug and gene delivery. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/lite.201500047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Moghis U. Ahmad
- Jina Pharmaceuticals; Inc., 28100 N. Ashley Circle; Suite 103 Libertyville IL 60048 USA
| | - Shoukath M. Ali
- Jina Pharmaceuticals; Inc., 28100 N. Ashley Circle; Suite 103 Libertyville IL 60048 USA
| | - Ateeq Ahmad
- Jina Pharmaceuticals; Inc., 28100 N. Ashley Circle; Suite 103 Libertyville IL 60048 USA
| | - Saifuddin Sheikh
- Jina Pharmaceuticals; Inc., 28100 N. Ashley Circle; Suite 103 Libertyville IL 60048 USA
| | - Paul Chen
- Nia Life Sciences; 28100 N. Ashley Circle; Suite 102 Libertyville IL 60048, USA
| | - Imran Ahmad
- Jina Pharmaceuticals; Inc., 28100 N. Ashley Circle; Suite 103 Libertyville IL 60048 USA
| |
Collapse
|
41
|
Zhang C, Qu X, Li J, Hong H, Li J, Ren J, Payne GF, Liu C. Biofabricated nanoparticle coating for liver-cell targeting. Adv Healthc Mater 2015; 4:1972-81. [PMID: 26138108 DOI: 10.1002/adhm.201500202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/04/2015] [Indexed: 11/08/2022]
Abstract
Biology routinely uses noncovalent interactions to perform complex functions that range from the molecular recognition of ligand-receptor binding to the reversible self-assembly/disassembly of hierarchical nanostructures (e.g., virus particles). Potentially, biological materials that offer such recognition and reversible self-assembly functionality can be applied to nanomedicine. Here, polysaccharides with the multifunctional polysaccharide-binding protein Concanavalin A (Con A) are coupled to create a functional nanoparticle coating. This coating is self-assembled in a layer-by-layer format by sequentially contacting a nanoparticle with Con A and the polysaccharide glycogen. In the final assembly step, a galactomannan targeting ligand is self-assembled into the coating. Evidence indicates that the mannose residues of the galactomannan backbone are responsible for assembly into the coating by Con A binding, while the galactose side chain residues are responsible for targeting to the liver-specific asialoglycoprotein receptor (ASGP-R). Binding to ASGP-R induces endocytic uptake, while the low endosomal pH triggers disassembly of the coating and release of the nanoparticle-entrapped drug. In vitro cell studies indicate that the coating confers liver-cell-specific function for both nanoparticle uptake and drug delivery. These studies extend the use of Con A to sugar-mediated and organ-specific targeting, and further illustrate the potential of biologically based fabrication for generating functional materials.
Collapse
Affiliation(s)
- Cheng Zhang
- The State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai 200237 China
- Key Laboratory for Ultrafine Materials of Ministry of Education; East China University of Science and Technology; Shanghai 200237 China
| | - Xue Qu
- The State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai 200237 China
- Key Laboratory for Ultrafine Materials of Ministry of Education; East China University of Science and Technology; Shanghai 200237 China
| | - Jinyang Li
- The State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai 200237 China
- Key Laboratory for Ultrafine Materials of Ministry of Education; East China University of Science and Technology; Shanghai 200237 China
| | - Hua Hong
- The State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai 200237 China
- Key Laboratory for Ultrafine Materials of Ministry of Education; East China University of Science and Technology; Shanghai 200237 China
| | - Jianbo Li
- Institute of Nano and Bio-polymeric Materials; School of Materials Science and Engineering; Tongji University; 4800 Caoan Road Shanghai 201804 China
| | - Jie Ren
- Institute of Nano and Bio-polymeric Materials; School of Materials Science and Engineering; Tongji University; 4800 Caoan Road Shanghai 201804 China
| | - Gregory F. Payne
- Institute for Biosystems and Biotechnology Research and Fischell Department of Engineering; 5115 Plant Sciences Building College Park MD 20742 USA
| | - Changsheng Liu
- The State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai 200237 China
- Key Laboratory for Ultrafine Materials of Ministry of Education; East China University of Science and Technology; Shanghai 200237 China
| |
Collapse
|
42
|
|
43
|
Thapa B, Kumar P, Zeng H, Narain R. Asialoglycoprotein Receptor-Mediated Gene Delivery to Hepatocytes Using Galactosylated Polymers. Biomacromolecules 2015; 16:3008-20. [PMID: 26258607 DOI: 10.1021/acs.biomac.5b00906] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Highly efficient, specific, and nontoxic gene delivery vector is required for gene therapy to the liver. Hepatocytes exclusively express asialoglycoprotein receptor (ASGPR), which can recognize and bind to galactose or N-acetylgalactosamine. Galactosylated polymers are therefore explored for targeted gene delivery to the liver. A library of safe and stable galactose-based glycopolymers that can specifically deliver genes to hepatocytes were synthesized having different architectures, compositions, and molecular weights via the reversible addition-fragmentation chain transfer process. The physical and chemical properties of these polymers have a great impact on gene delivery efficacy into hepatocytes, as such block copolymers are found to form more stable complexes with plasmid and have high gene delivery efficiency into ASGPR expressing hepatocytes. Transfection efficiency and uptake of polyplexes with these polymers decreased significantly by preincubation of hepatocytes with free asialofetuin or by adding free asialofetuin together with polyplexes into hepatocytes. The results confirmed that polyplexes with these polymers were taken up specifically by hepatocytes via ASGPR-mediated endocytosis. The results from transfection efficiency and uptake of these polymers in cells without ASGPR, such as SK Hep1 and HeLa cells, further support this mechanism. Since in vitro cytotoxicity assays prove these glycopolymers to be nontoxic, they may be useful for delivery of clinically important genes specifically to the liver.
Collapse
Affiliation(s)
- Bindu Thapa
- Department of Chemical and Materials Engineering, University of Alberta , 116 Street and 85 Avenue, Edmonton, AB T6G 2G6, Canada
| | - Piyush Kumar
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta , 116 Street and 85 Avenue, Edmonton, AB T6G 2G6, Canada
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta , 116 Street and 85 Avenue, Edmonton, AB T6G 2G6, Canada
| |
Collapse
|
44
|
An J, Dai X, Wu Z, Zhao Y, Lu Z, Guo Q, Zhang X, Li C. An Acid-Triggered Degradable and Fluorescent Nanoscale Drug Delivery System with Enhanced Cytotoxicity to Cancer Cells. Biomacromolecules 2015. [PMID: 26213802 DOI: 10.1021/acs.biomac.5b00693] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
To reduce side-effects of anticancer drugs, development of nanocarriers with precise biological functions is a critical requirement. In this study, the multifunctional nanoparticles combining imaging and therapy for tumor-targeted delivery of hydrophobic anticancer drugs were prepared via self-assembly of amphiphilic copolymers obtained using RAFT polymerization, specifically, acid-labile ortho ester and galactose. First, boron-dipyrromethene dye-conjugated chain transfer agent provides fluorescent imaging capability for diagnostic application. Second, nanoparticles were stable under physiological conditions but degraded in acidic tumor microenvironment, leading to enhanced anticancer efficacy. Third, the application of biocompatible glycopolymers efficiently increased the target-to-background ratio through carbohydrate-protein interactions. Data from cell viability, cellular internalization, flow cytometry, biodistribution and anticancer efficacy tests showed that the drug-loaded nanoparticles were capable of inhibiting cancer cell proliferation with significantly enhanced capacity. Our newly developed multifunctional nanoparticles may thus facilitate the development of effective drug delivery systems for application in diagnosis and therapy of cancer.
Collapse
Affiliation(s)
- Jinxia An
- †Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaomei Dai
- †Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China
| | - Zhongming Wu
- ‡2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, The Ministry of Health Key Laboratory of Hormone and Development, Metabolic Diseases Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Yu Zhao
- †Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China
| | - Zhentan Lu
- †Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China
| | - Qianqian Guo
- †Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China
| | - Xinge Zhang
- †Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China
| | - Chaoxing Li
- †Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
45
|
Crucho CI, Barros MT. Formulation of functionalized PLGA polymeric nanoparticles for targeted drug delivery. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.04.083] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Asialoglycoprotein receptor mediated hepatocyte targeting — Strategies and applications. J Control Release 2015; 203:126-39. [DOI: 10.1016/j.jconrel.2015.02.022] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/14/2015] [Accepted: 02/16/2015] [Indexed: 02/07/2023]
|
47
|
Carbohydrate mediated drug delivery: synthesis and characterization of new lipid-conjugates. Chem Phys Lipids 2014; 186:30-8. [PMID: 25444975 DOI: 10.1016/j.chemphyslip.2014.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/16/2014] [Accepted: 10/19/2014] [Indexed: 11/23/2022]
Abstract
A new synthetic methodology for cationic glycolipids using p-aminophenyl-α-D-mannopyranoside (PAPM) and p-aminophenyl-α-D-galactopyranoside (PAPG) with spacer in between the quaternary nitrogen atom and the sugar unit is developed. In addition, a new class of neutral glycolipid conjugates, such as PAPM-lipids or PAPG-lipids conjugates was also synthesized for targeting drugs to receptors. The precipitation-inhibition assay showed that conjugate of PAPM inhibited the concanavalin A and invertase aggregation. This binding inhibition study of a synthesized compound suggests that conjugates of PAPM can be potentially used to target mannose receptors. In addition, a higher transfection was obtained by mixing PAPM with pSV-β-gal reporter gene and incubating with mannose binding protein/receptor expressing A549 cells. The coexistence of both mannose group and a net positive charge may result in improved transfection efficiency in cells expressing mannose binding proteins/receptors.
Collapse
|
48
|
Magalhães M, Farinha D, Pedroso de Lima MC, Faneca H. Increased gene delivery efficiency and specificity of a lipid-based nanosystem incorporating a glycolipid. Int J Nanomedicine 2014; 9:4979-89. [PMID: 25368518 PMCID: PMC4216029 DOI: 10.2147/ijn.s69822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of death related to cancer diseases worldwide. The current treatment options have many limitations and reduced success rates. In this regard, advances in gene therapy have shown promising results in novel therapeutic strategies. However, the success of gene therapy depends on the efficient and specific delivery of genetic material into target cells. In this regard, the main goal of this work was to develop a new lipid-based nanosystem formulation containing the lipid lactosyl-PE for specific and efficient gene delivery into HCC cells. The obtained results showed that incorporation of 15% of lactosyl-PE into liposomes induces a strong potentiation of lipoplex biological activity in HepG2 cells, not only in terms of transgene expression levels but also in terms of percentage of transfected cells. In the presence of galactose, which competes with lactosyl-PE for the binding to the asialoglycoprotein receptor (ASGP-R), a significant reduction in biological activity was observed, showing that the potentiation of transfection induced by the presence of lactosyl-PE could be due to its specific interaction with ASGP-R, which is overexpressed in HCC. In addition, it was found that the incorporation of lactosyl-PE in the nanosystems promotes an increase in their cell binding and uptake. Regarding the physicochemical properties of lipoplexes, the presence of lactosyl-PE resulted in a significant increase in DNA protection and in a substantial decrease in their mean diameter and zeta potential, conferring them suitable characteristics for in vivo application. Overall, the results obtained in this study suggest that the potentiation of the biological activity induced by the presence of lactosyl-PE is due to its specific binding to the ASGP-R, showing that this novel formulation could constitute a new gene delivery nanosystem for application in therapeutic strategies in HCC.
Collapse
Affiliation(s)
- Mariana Magalhães
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal ; Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Dina Farinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Maria Conceição Pedroso de Lima
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal ; Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Henrique Faneca
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
49
|
Akhtar MJ, Ahamed M, Alhadlaq HA, Alrokayan SA, Kumar S. Targeted anticancer therapy: Overexpressed receptors and nanotechnology. Clin Chim Acta 2014; 436:78-92. [DOI: 10.1016/j.cca.2014.05.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/07/2014] [Accepted: 05/10/2014] [Indexed: 01/05/2023]
|
50
|
Williford JM, Ren Y, Huang K, Pan D, Mao HQ. Shape Transformation Following Reduction-Sensitive PEG Cleavage of Polymer/DNA Nanoparticles. J Mater Chem B 2014; 2:8106-8109. [PMID: 25530853 DOI: 10.1039/c4tb00967c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PEGylated polycation/DNA micellar nanoparticles have been developed that can undergo shape transformation upon cleavage of the PEG grafts in response to an environmental cue. As a proof-of-principle, DNA nanoparticles with higher PEG grafting density adopting long, worm- and rod-like morphologies, transition to more condensed nanoparticles with spherical and short-rod morphologies upon cleavage of a fraction of the PEG grafts from the copolymer. This shape transformation leads to increased surface charges, correlating with improved transfection efficiency.
Collapse
Affiliation(s)
- John-Michael Williford
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 ; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218 ; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21287
| | - Yong Ren
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218 ; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218 ; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21287
| | - Kevin Huang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218D
| | - Deng Pan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Hai-Quan Mao
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218 ; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218 ; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21287
| |
Collapse
|