1
|
Silva I, Alípio C, Pinto R, Mateus V. Potential anti-inflammatory effect of erythropoietin in non-clinical studies in vivo: A systematic review. Biomed Pharmacother 2021; 139:111558. [PMID: 33894624 DOI: 10.1016/j.biopha.2021.111558] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/19/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin (EPO) is a hypoxia-induced hormone produced in adult kidneys with erythropoietic and non-erythropoietic effects. In vivo studies represent an important role to comprehend the efficacy and safety in the early phase of repurposing drugs. The aim is to evaluate the potential anti-inflammatory effect of EPO observed in animal models of disease. Following PRISMA statements, electronic database Medline via PubMed platform was used to search articles with the research expression ((erythropoietin [MeSH Terms]) AND (inflammation [MeSH Terms]) AND (disease models, animal [MeSH Terms])). The inclusion criteria were original articles, studies where EPO was administered, studies where inflammation was studied and/or evaluated, non-clinical studies in vivo with rodents, and articles published in English. Thirty-six articles met the criteria for qualitative analysis. Exogenous EPO was used in models of sepsis, traumatic brain injury, and autoimmune neuritis, with an average of 3000 IU/Kg for single and multiple doses, using mice and rats. Biomarkers such as immune-related effectors, cytokines, reactive oxygen species, prostaglandins, and other biomarkers were assessed. EPO has been recognized as a multifunctional cytokine with anti-inflammatory properties, showing its significant effect both in acute and chronic models of inflammation. Further non-clinical studies are suggested for the enlightenment of anti-inflammatory mechanisms of EPO in lower doses, allowing us to understand the translational data for humans.
Collapse
Affiliation(s)
- Inês Silva
- H&TRC-Health and Technology Research Center, ESTeSL-Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Carolina Alípio
- H&TRC-Health and Technology Research Center, ESTeSL-Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
| | - Rui Pinto
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal; JCS, Dr. Joaquim Chaves, Laboratório de Análises Clínicas, Miraflores, 1495-069 Algés, Portugal
| | - Vanessa Mateus
- H&TRC-Health and Technology Research Center, ESTeSL-Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
2
|
Cabrini G, Rimessi A, Borgatti M, Lampronti I, Finotti A, Pinton P, Gambari R. Role of Cystic Fibrosis Bronchial Epithelium in Neutrophil Chemotaxis. Front Immunol 2020; 11:1438. [PMID: 32849500 PMCID: PMC7427443 DOI: 10.3389/fimmu.2020.01438] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
A hallmark of cystic fibrosis (CF) chronic respiratory disease is an extensive neutrophil infiltrate in the mucosa filling the bronchial lumen, starting early in life for CF infants. The genetic defect of the CF Transmembrane conductance Regulator (CFTR) ion channel promotes dehydration of the airway surface liquid, alters mucus properties, and decreases mucociliary clearance, favoring the onset of recurrent and, ultimately, chronic bacterial infection. Neutrophil infiltrates are unable to clear bacterial infection and, as an adverse effect, contribute to mucosal tissue damage by releasing proteases and reactive oxygen species. Moreover, the rapid cellular turnover of lumenal neutrophils releases nucleic acids that further alter the mucus viscosity. A prominent role in the recruitment of neutrophil in bronchial mucosa is played by CF bronchial epithelial cells carrying the defective CFTR protein and are exposed to whole bacteria and bacterial products, making pharmacological approaches to regulate the exaggerated neutrophil chemotaxis in CF a relevant therapeutic target. Here we revise: (a) the major receptors, kinases, and transcription factors leading to the expression, and release of neutrophil chemokines in bronchial epithelial cells; (b) the role of intracellular calcium homeostasis and, in particular, the calcium crosstalk between endoplasmic reticulum and mitochondria; (c) the epigenetic regulation of the key chemokines; (d) the role of mutant CFTR protein as a co-regulator of chemokines together with the host-pathogen interactions; and (e) different pharmacological strategies to regulate the expression of chemokines in CF bronchial epithelial cells through novel drug discovery and drug repurposing.
Collapse
Affiliation(s)
- Giulio Cabrini
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Department of Neurosciences, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Alessandro Rimessi
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Ilaria Lampronti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessia Finotti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
3
|
Maintenance of Pulmonary Therapies. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Velino C, Carella F, Adamiano A, Sanguinetti M, Vitali A, Catalucci D, Bugli F, Iafisco M. Nanomedicine Approaches for the Pulmonary Treatment of Cystic Fibrosis. Front Bioeng Biotechnol 2019; 7:406. [PMID: 31921811 PMCID: PMC6927921 DOI: 10.3389/fbioe.2019.00406] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease affecting today nearly 70,000 patients worldwide and characterized by a hypersecretion of thick mucus difficult to clear arising from the defective CFTR protein. The over-production of the mucus secreted in the lungs, along with its altered composition and consistency, results in airway obstruction that makes the lungs susceptible to recurrent and persistent bacterial infections and endobronchial chronic inflammation, which are considered the primary cause of bronchiectasis, respiratory failure, and consequent death of patients. Despite the difficulty of treating the continuous infections caused by pathogens in CF patients, various strategies focused on the symptomatic therapy have been developed during the last few decades, showing significant positive impact on prognosis. Moreover, nowadays, the discovery of CFTR modulators as well as the development of gene therapy have provided new opportunity to treat CF. However, the lack of effective methods for delivery and especially targeted delivery of therapeutics specifically to lung tissues and cells limits the efficiency of the treatments. Nanomedicine represents an extraordinary opportunity for the improvement of current therapies and for the development of innovative treatment options for CF previously considered hard or impossible to treat. Due to the peculiar environment in which the therapies have to operate characterized by several biological barriers (pulmonary tract, mucus, epithelia, bacterial biofilm) the use of nanotechnologies to improve and enhance drug delivery or gene therapies is an extremely promising way to be pursued. The aim of this review is to revise the currently used treatments and to outline the most recent progresses about the use of nanotechnology for the management of CF.
Collapse
Affiliation(s)
- Cecilia Velino
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Faenza, Italy
| | - Francesca Carella
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Faenza, Italy
| | - Alessio Adamiano
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Faenza, Italy
| | - Maurizio Sanguinetti
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Dipartimento di Scienze di Laboratorio e Infettivologiche, Rome, Italy
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alberto Vitali
- Institute for the Chemistry of Molecular Recognition (ICRM), National Research Council (CNR), c/o Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - Daniele Catalucci
- Humanitas Clinical and Research Center, Rozzano, Italy
- Institute of Genetic and Biomedical Research (IRGB) - UOS Milan, National Research Council (CNR), Milan, Italy
| | - Francesca Bugli
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Dipartimento di Scienze di Laboratorio e Infettivologiche, Rome, Italy
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Faenza, Italy
| |
Collapse
|
5
|
McElvaney OJ, Wade P, Murphy M, Reeves EP, McElvaney NG. Targeting airway inflammation in cystic fibrosis. Expert Rev Respir Med 2019; 13:1041-1055. [PMID: 31530195 DOI: 10.1080/17476348.2019.1666715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: The major cause of morbidity and mortality in patients with cystic fibrosis (CF) is lung disease. Inflammation in the CF airways occurs from a young age and contributes significantly to disease progression and shortened life expectancy. Areas covered: In this review, we discuss the key immune cells involved in airway inflammation in CF, the contribution of the intrinsic genetic defect to the CF inflammatory phenotype, and anti-inflammatory strategies designed to overcome what is a critical factor in the pathogenesis of CF lung disease. Review of the literature was carried out using the MEDLINE (from 1975 to 2018), Google Scholar and The Cochrane Library databases. Expert opinion: Therapeutic interventions specifically targeting the defective CF transmembrane conductance regulator (CFTR) protein have changed the clinical landscape and significantly improved the outlook for CF. As survival estimates for people with CF increase, long-term management has become an important focus, with an increased need for therapies targeted at specific elements of inflammation, to complement CFTR modulator therapies.
Collapse
Affiliation(s)
- Oliver J McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| | - Patricia Wade
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| | - Mark Murphy
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| | - Emer P Reeves
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| |
Collapse
|
6
|
Balakrishnan A, Karki R, Berwin B, Yamamoto M, Kanneganti TD. Guanylate binding proteins facilitate caspase-11-dependent pyroptosis in response to type 3 secretion system-negative Pseudomonas aeruginosa. Cell Death Discov 2018; 4:3. [PMID: 30062052 PMCID: PMC6060091 DOI: 10.1038/s41420-018-0068-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/03/2018] [Indexed: 01/10/2023] Open
Abstract
Detection of bacterial ligands is a pre-requisite for inflammasome activation. During Pseudomonas aeruginosa infection, flagellin which is secreted through the T3SS is detected by the NLRC4 inflammasome. Activation of the NLRC4 inflammasome is believed to contribute to high IL-1β production and pathogenicity in cystic fibrosis patients with chronic P. aeruginosa infection. Interestingly, the majority of P. aeruginosa isolated from cystic fibrosis patients with chronic airway infection are non-motile and T3SS-negative, suggesting that yet un-characterized inflammasome pathways regulate IL-1β production in cystic fibrosis patients. Here we demonstrate the role of guanylate-binding proteins (GBPs) in regulating bacterial proliferation and inflammasome activation in response to T3SS-negative P. aeruginosa. Bacterial ligands liberated by the action of GBP2 and IRGB10 activate caspase-11 and regulate non-canonical NLRP3 inflammasome activation and IL-1β release. Overall, our results reveal the role of caspase-11 in inhibiting bacterial proliferation and promoting IL-1β secretion during T3SS-negative P. aeruginosa infection. This study suggests that non canonical inflammasomes might have co-evolved to detect Gram-negative bacterial pathogens that have evolved to bypass detection by canonical NLRs.
Collapse
Affiliation(s)
- Arjun Balakrishnan
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Rajendra Karki
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Brent Berwin
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 USA
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | | |
Collapse
|
7
|
Abstract
Cystic fibrosis (CF) is the most common life-limiting inherited illness of whites. Most of the morbidity and mortality in CF stems from impaired mucociliary clearance leading to chronic, progressive airways obstruction and damage. Significant progress has been made in the care of patients with CF, with advances focused on improving mucociliary clearance, minimizing inflammatory damage, and managing infections; these advances include new antimicrobial therapies, mucolytic and osmotic agents, and antiinflammatory treatments. More recently, researchers have targeted disease-causing mutations using therapies to promote gene transcription and improve channel function, which has led to impressive physiologic changes in some patients. As we develop more advanced, allele-directed therapies for the management of CF, it will become increasingly important to understand the specific genetic and environmental interactions that cause the significant heterogeneity of lung disease seen in the CF population. This understanding of CF endotypes will allow for more targeted, personalized therapies for future patients. This article reviews the genetic and molecular basis of CF lung disease, the treatments currently available, and novel therapies that are in development.
Collapse
Affiliation(s)
| | - Thomas W Ferkol
- Department of Pediatrics; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
8
|
Use of ibuprofen to assess inflammatory biomarkers in induced sputum: Implications for clinical trials in cystic fibrosis. J Cyst Fibros 2015; 14:720-6. [PMID: 25869324 DOI: 10.1016/j.jcf.2015.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND High-dose ibuprofen (HDI) is a clinically beneficial anti-inflammatory regimen that may be a useful reagent to study induced sputum inflammatory marker changes over short study periods appropriate for early-phase CF clinical trials. METHODS We conducted a 28-day, open-label, randomized, controlled trial among 72 clinically stable CF subjects (FEV1≥40% predicted) randomized to HDI or routine care that assessed IL-6, IL-8, TNF-α, IL-1-β, free neutrophil elastase, and white cell counts with differentials change from baseline in induced sputum. RESULTS IL-6 was the only biomarker with significant within-group change: 0.13 log10 pg/mL mean reduction among ibuprofen-treated subjects (p=0.04); and no change in the control group. IL-6 change between groups was statistically significant (p=0.024). No other inflammatory biomarker differences were observed between groups after 28 days. CONCLUSION Although we studied only one agent, HDI, these results suggest that one month may be inadequate to assess anti-inflammatory candidates using markers from induced sputum.
Collapse
|
9
|
McElvaney OJ, O'Reilly N, White M, Lacey N, Pohl K, Gerlza T, Bergin DA, Kerr H, McCarthy C, O'Brien ME, Adage T, Kungl AJ, Reeves EP, McElvaney NG. The effect of the decoy molecule PA401 on CXCL8 levels in bronchoalveolar lavage fluid of patients with cystic fibrosis. Mol Immunol 2014; 63:550-8. [PMID: 25453468 DOI: 10.1016/j.molimm.2014.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/01/2014] [Accepted: 10/18/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND The chemokine interleukin-8 (CXCL8) is a key mediator of inflammation in airways of patients with cystic fibrosis (CF). Glycosaminoglycans (GAGs) possess the ability to influence the chemokine profile of the CF lung by binding CXCL8 and protecting it from proteolytic degradation. CXCL8 is maintained in an active state by this glycan interaction thus increasing infiltration of immune cells such as neutrophils into the lungs. As the CXCL8-based decoy PA401 displays no chemotactic activity, yet demonstrates glycan binding affinity, the aim of this study was to investigate the anti-inflammatory effect of PA401 on CXCL8 levels, and activity, in CF airway samples in vitro. METHODS Bronchoalveolar lavage fluid (BALF) was collected from patients with CF homozygous for the ΔF508 mutation (n=13). CXCL8 in CF BALF pre and post exposure to PA401 was quantified by ELISA. Western blot analysis was used to determine PA401 degradation in CF BALF. The ex vivo chemotactic activity of purified neutrophils in response to CF airway secretions was evaluated post exposure to PA401 by use of a Boyden chamber-based motility assay. RESULTS Exposure of CF BALF to increasing concentrations of PA401 (50-1000pg/ml) over a time course of 2-12h in vitro, significantly reduced the level of detectable CXCL8 (P<0.05). Interestingly, PA401 engendered release of CXCL8 from GAGs exposing the chemokine susceptible to proteolysis. Subsequently, a loss of PA401 was observed (P<0.05) due to proteolytic degradation by elastase like proteases. A 25% decrease in neutrophil chemotactic efficiency towards CF BALF samples incubated with PA401 was also observed (P<0.05). CONCLUSION PA401 can disrupt CXCL8:GAG complexes, rendering the chemokine susceptible to proteolytic degradation. Clinical application of a CXCL8 decoy, such as PA401, may serve to decrease the inflammatory burden in the CF lung in vivo.
Collapse
Affiliation(s)
- Oliver J McElvaney
- Respiratory Research Division, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin 9, Ireland
| | - Niamh O'Reilly
- Respiratory Research Division, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin 9, Ireland
| | - Michelle White
- Respiratory Research Division, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin 9, Ireland
| | - Noreen Lacey
- Respiratory Research Division, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin 9, Ireland
| | - Kerstin Pohl
- Respiratory Research Division, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin 9, Ireland
| | - Tanja Gerlza
- ProtAffin Biotechnologie AG, Impulszentrum Graz-West, Reininghausstraße 13a, 8020 Graz, Austria
| | - David A Bergin
- Respiratory Research Division, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin 9, Ireland
| | - Hilary Kerr
- Respiratory Research Division, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin 9, Ireland
| | - Cormac McCarthy
- Respiratory Research Division, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin 9, Ireland
| | - M Emmet O'Brien
- Respiratory Research Division, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin 9, Ireland
| | - Tiziana Adage
- ProtAffin Biotechnologie AG, Impulszentrum Graz-West, Reininghausstraße 13a, 8020 Graz, Austria
| | - Andreas J Kungl
- ProtAffin Biotechnologie AG, Impulszentrum Graz-West, Reininghausstraße 13a, 8020 Graz, Austria
| | - Emer P Reeves
- Respiratory Research Division, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin 9, Ireland.
| | - Noel G McElvaney
- Respiratory Research Division, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin 9, Ireland
| |
Collapse
|
10
|
Acidosis potentiates the host proinflammatory interleukin-1β response to Pseudomonas aeruginosa infection. Infect Immun 2014; 82:4689-97. [PMID: 25156732 DOI: 10.1128/iai.02024-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Infection by Pseudomonas aeruginosa, and bacteria in general, frequently promotes acidification of the local microenvironment, and this is reinforced by pulmonary exertion and exacerbation. However, the consequence of an acidic environment on the host inflammatory response to P. aeruginosa infection is poorly understood. Here we report that the pivotal cellular and host proinflammatory interleukin-1β (IL-1β) response, which enables host clearance of the infection but can produce collateral inflammatory damage, is increased in response to P. aeruginosa infection within an acidic environment. Synergistic mechanisms that promote increased IL-1β release in response to P. aeruginosa infection in an acidic environment are increased pro-IL-1β induction and increased caspase-1 activity, the latter being dependent upon a functional type III secretion system of the bacteria and the NLRC4 inflammasome of the host. Using an in vivo peritonitis model, we have validated that the IL-1β inflammatory response is increased in mice in response to P. aeruginosa infection within an acidic microenvironment. These data reveal novel insights into the regulation and exacerbation of inflammatory responses to P. aeruginosa.
Collapse
|
11
|
Affiliation(s)
- Shruti M Paranjape
- Eudowood Division of Pediatric Respiratory Sciences and The Johns Hopkins Cystic Fibrosis Center, The Johns Hopkins Medical Institutions, Baltimore, MD
| | | |
Collapse
|
12
|
Lovewell RR, Patankar YR, Berwin B. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 2014; 306:L591-603. [PMID: 24464809 DOI: 10.1152/ajplung.00335.2013] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for a high incidence of acute and chronic pulmonary infection. These infections are particularly prevalent in patients with chronic obstructive pulmonary disease and cystic fibrosis: much of the morbidity and pathophysiology associated with these diseases is due to a hypersusceptibility to bacterial infection. Innate immunity, primarily through inflammatory cytokine production, cellular recruitment, and phagocytic clearance by neutrophils and macrophages, is the key to endogenous control of P. aeruginosa infection. In this review, we highlight recent advances toward understanding the innate immune response to P. aeruginosa, with a focus on the role of phagocytes in control of P. aeruginosa infection. Specifically, we summarize the cellular and molecular mechanisms of phagocytic recognition and uptake of P. aeruginosa, and how current animal models of P. aeruginosa infection reflect clinical observations in the context of phagocytic clearance of the bacteria. Several notable phenotypic changes to the bacteria are consistently observed during chronic pulmonary infections, including changes to mucoidy and flagellar motility, that likely enable or reflect their ability to persist. These traits are likewise examined in the context of how the bacteria avoid phagocytic clearance, inflammation, and sterilizing immunity.
Collapse
Affiliation(s)
- Rustin R Lovewell
- Dept. of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr., Lebanon, NH 03756.
| | | | | |
Collapse
|
13
|
Venkatakrishnan V, Packer NH, Thaysen-Andersen M. Host mucin glycosylation plays a role in bacterial adhesion in lungs of individuals with cystic fibrosis. Expert Rev Respir Med 2014; 7:553-76. [DOI: 10.1586/17476348.2013.837752] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Intracellular secretory leukoprotease inhibitor modulates inositol 1,4,5-triphosphate generation and exerts an anti-inflammatory effect on neutrophils of individuals with cystic fibrosis and chronic obstructive pulmonary disease. BIOMED RESEARCH INTERNATIONAL 2013; 2013:560141. [PMID: 24073410 PMCID: PMC3773400 DOI: 10.1155/2013/560141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/01/2013] [Accepted: 07/15/2013] [Indexed: 02/01/2023]
Abstract
Secretory leukoprotease inhibitor (SLPI) is an anti-inflammatory protein present in respiratory secretions. Whilst epithelial cell SLPI is extensively studied, neutrophil associated SLPI is poorly characterised. Neutrophil function including chemotaxis and degranulation of proteolytic enzymes involves changes in cytosolic calcium (Ca2+) levels which is mediated by production of inositol 1,4,5-triphosphate (IP3) in response to G-protein-coupled receptor (GPCR) stimuli. The aim of this study was to investigate the intracellular function of SLPI and the mechanism-based modulation of neutrophil function by this antiprotease. Neutrophils were isolated from healthy controls (n = 10), individuals with cystic fibrosis (CF) (n = 5) or chronic obstructive pulmonary disease (COPD) (n = 5). Recombinant human SLPI significantly inhibited fMet-Leu-Phe (fMLP) and interleukin(IL)-8 induced neutrophil chemotaxis (P < 0.05) and decreased degranulation of matrix metalloprotease-9 (MMP-9), hCAP-18, and myeloperoxidase (MPO) (P < 0.05). The mechanism of inhibition involved modulation of cytosolic IP3 production and downstream Ca2+ flux. The described attenuation of Ca2+ flux was overcome by inclusion of exogenous IP3 in electropermeabilized cells. Inhibition of IP3 generation and Ca2+ flux by SLPI may represent a novel anti-inflammatory mechanism, thus strengthening the attractiveness of SLPI as a potential therapeutic molecule in inflammatory airway disease associated with excessive neutrophil influx including CF, non-CF bronchiectasis, and COPD.
Collapse
|
15
|
Whey protein hydrolysates decrease IL-8 secretion in lipopolysaccharide (LPS)-stimulated respiratory epithelial cells by affecting LPS binding to Toll-like receptor 4. Br J Nutr 2013; 110:58-68. [PMID: 23286514 DOI: 10.1017/s0007114512004655] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
UNLABELLED Whey proteins (WP) exert anti-inflammatory and antioxidant effects. Hyperbaric pressurisation of whey increases its digestibility and changes the spectrum of peptides released during digestion. We have shown that dietary supplementation with pressurised whey improves nutritional status and systemic inflammation in patients with cystic fibrosis (CF). Both clinical indices are largely affected by airway processes, to which respiratory epithelial cells actively contribute. Here, we tested whether peptides released from the digestion of pressurised whey can attenuate the inflammatory responses of CF respiratory epithelial cells. Hydrolysates of pressurised WP (pWP) and native WP (nWP, control) were generated in vitro and tested for anti-inflammatory properties judged by the suppression of IL-8 production in CF and non-CF respiratory epithelial cell lines (CFTE29o- and 1HAEo-, respectively). We observed that, in both cell lines, pWP hydrolysate suppressed IL-8 production stimulated by lipopolysaccharide (LPS) to a greater magnitude compared with nWP hydrolysate. Neither hydrolysate suppressed IL-8 production induced by TNF-α or IL-1β, suggesting an effect on the Toll-like receptor (TLR) 4 pathway, the cellular sensor for LPS. Further, neither hydrolysate affected TLR4 expression or neutralised LPS. Both pWP and nWP hydrolysates similarly reduced LPS binding to surface TLR4, while pWP tended to more potently increase extracellular antioxidant capacity. IN CONCLUSION (1) anti-inflammatory properties of whey are enhanced by pressurisation; (2) suppression of IL-8 production may contribute to the clinical effects of pressurised whey supplementation on CF; (3) this effect may be partly explained by a combination of reduced LPS binding to TLR4 and enhanced extracellular antioxidant capacity.
Collapse
|
16
|
Doxycycline exhibits anti-inflammatory activity in CF bronchial epithelial cells. Pulm Pharmacol Ther 2012; 25:377-82. [DOI: 10.1016/j.pupt.2012.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 06/24/2012] [Accepted: 06/26/2012] [Indexed: 11/21/2022]
|
17
|
Bui S, Boisserie-Lacroix V, Ceccato F, Clouzeau H, Debeleix S, Fayon M. L'inflammation pulmonaire dans la mucoviscidose. Arch Pediatr 2012; 19 Suppl 1:S8-12. [DOI: 10.1016/s0929-693x(12)71100-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Monterisi S, Favia M, Guerra L, Cardone RA, Marzulli D, Reshkin SJ, Casavola V, Zaccolo M. CFTR regulation in human airway epithelial cells requires integrity of the actin cytoskeleton and compartmentalized cAMP and PKA activity. J Cell Sci 2012; 125:1106-17. [PMID: 22302988 DOI: 10.1242/jcs.089086] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) mutation ΔF508CFTR still causes regulatory defects when rescued to the apical membrane, suggesting that the intracellular milieu might affect its ability to respond to cAMP regulation. We recently reported that overexpression of the Na(+)/H(+) exchanger regulatory factor NHERF1 in the cystic fibrosis (CF) airway cell line CFBE41o-rescues the functional expression of ΔF508CFTR by promoting F-actin organization and formation of the NHERF1-ezrin-actin complex. Here, using real-time FRET reporters of both PKA activity and cAMP levels, we find that lack of an organized subcortical cytoskeleton in CFBE41o-cells causes both defective accumulation of cAMP in the subcortical compartment and excessive cytosolic accumulation of cAMP. This results in reduced subcortical levels and increased cytosolic levels of PKA activity. NHERF1 overexpression in CFBE41o-cells restores chloride secretion, subcortical cAMP compartmentalization and local PKA activity, indicating that regulation of ΔF508CFTR function requires not only stable expression of the mutant CFTR at the cell surface but also depends on both generation of local cAMP signals of adequate amplitude and activation of PKA in proximity of its target. Moreover, we found that the knockdown of wild-type CFTR in the non-CF 16HBE14o-cells results in both altered cytoskeletal organization and loss of cAMP compartmentalization, whereas stable overexpression of wt CFTR in CF cells restores cytoskeleton organization and re-establishes the compartmentalization of cAMP at the plasma membrane. This suggests that the presence of CFTR on the plasma membrane influences the cytoskeletal organizational state and, consequently, cAMP distribution. Our data show that a sufficiently high concentration of cAMP in the subcortical compartment is required to achieve PKA-mediated regulation of CFTR activity.
Collapse
Affiliation(s)
- Stefania Monterisi
- Department of General and Environmental Physiology, University of Bari, Bari, 70125, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Dauletbaev N, Eklove D, Mawji N, Iskandar M, Di Marco S, Gallouzi IE, Lands LC. Down-regulation of cytokine-induced interleukin-8 requires inhibition of p38 mitogen-activated protein kinase (MAPK) via MAPK phosphatase 1-dependent and -independent mechanisms. J Biol Chem 2011; 286:15998-6007. [PMID: 21454676 DOI: 10.1074/jbc.m110.205724] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Down-regulation of overabundant interleukin (IL)-8 present in cystic fibrosis (CF) airways could ease excessive neutrophil burden and its deleterious consequences for the lung. IL-8 production in airway epithelial cells, stimulated with e.g. inflammatory cytokines IL-1β and tumor necrosis factor (TNF)-α, is regulated by several signaling pathways including nuclear factor (NF)-κB and p38 mitogen-activated protein kinase (MAPK). We previously demonstrated that the anti-inflammatory drugs dexamethasone and ibuprofen suppress NF-κB; however, only dexamethasone down-regulates cytokine-induced IL-8, highlighting the importance of non-NF-κB mechanisms. Here, we tested the hypothesis that down-regulation of cytokine-induced IL-8 requires modulation of the MAPK phosphatase (MKP)-1/p38 MAPK/mRNA stability pathway. The effects of dexamethasone (5 nm) and ibuprofen (480 μm) on this pathway and IL-8 were studied in CF (CFTE29o-, CFBE41o-) and non-CF (1HAEo-) airway epithelial cells. We observed that dexamethasone, but not ibuprofen, destabilizes IL-8 mRNA and up-regulates MKP-1 mRNA. Further, siRNA silencing of MKP-1, via p38 MAPK, leads to IL-8 overproduction and diminishes the anti-IL-8 potential of dexamethasone. However, MKP-1 overexpression does not significantly alter IL-8 production. By contrast, direct inhibition of p38 MAPK (inhibitor SB203580) efficiently suppresses IL-8 with potency comparable with dexamethasone. Similar to dexamethasone, SB203580 decreases IL-8 mRNA stability. Dexamethasone does not affect p38 MAPK activation, which excludes its effects upstream of p38 MAPK. In conclusion, normal levels of MKP-1 are necessary for a full anti-IL-8 potential of pharmacological agents; however, efficient pharmacological down-regulation of cytokine-induced IL-8 also requires direct effects on p38 MAPK and mRNA stability independently of MKP-1.
Collapse
Affiliation(s)
- Nurlan Dauletbaev
- Research Institute of McGill University Health Centre, Montreal, Quebec, Canada.
| | | | | | | | | | | | | |
Collapse
|
20
|
Mi Q, Li NYK, Ziraldo C, Ghuma A, Mikheev M, Squires R, Okonkwo DO, Verdolini-Abbott K, Constantine G, An G, Vodovotz Y. Translational systems biology of inflammation: potential applications to personalized medicine. Per Med 2010; 7:549-559. [PMID: 21339856 PMCID: PMC3041597 DOI: 10.2217/pme.10.45] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A central goal of industrialized nations is to provide personalized, preemptive and predictive medicine, while maintaining healthcare costs at a minimum. To do so, we must confront and gain an understanding of inflammation, a complex, nonlinear process central to many diseases that affect both industrialized and developing nations. Herein, we describe the work aimed at creating a rational, engineering-oriented and evidence-based synthesis of inflammation geared towards rapid clinical application. This comprehensive approach, which we call 'Translational Systems Biology', to date has been utilized for in silico studies of sepsis, trauma/hemorrhage/traumatic brain injury, acute liver failure and wound healing. This framework has now allowed us to suggest how to modulate acute inflammation in a rational and individually optimized fashion using engineering principles applied to a biohybrid device. We suggest that we are on the cusp of fulfilling the promise of in silico modeling for personalized medicine for inflammatory disease.
Collapse
Affiliation(s)
- Qi Mi
- Center for Inflammation & Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Sports Medicine & Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicole Yee-Key Li
- Center for Inflammation & Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Communication Science & Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cordelia Ziraldo
- Center for Inflammation & Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Computational Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ali Ghuma
- Center for Inflammation & Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maxim Mikheev
- Center for Inflammation & Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert Squires
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, PA, USA
| | - Katherine Verdolini-Abbott
- Center for Inflammation & Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Communication Science & Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregory Constantine
- Center for Inflammation & Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Departments of Mathematics & Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gary An
- Center for Inflammation & Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Yoram Vodovotz
- Center for Inflammation & Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Banner KH, De Jonge H, Elborn S, Growcott E, Gulbins E, Konstan M, Moss R, Poll C, Randell SH, Rossi AG, Thomas L, Waltz D. Highlights of a workshop to discuss targeting inflammation in cystic fibrosis. J Cyst Fibros 2009; 8:1-8. [PMID: 19022708 PMCID: PMC4133129 DOI: 10.1016/j.jcf.2008.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 10/08/2008] [Accepted: 10/09/2008] [Indexed: 12/17/2022]
Abstract
A workshop to discuss anti-inflammatory approaches in the treatment of CF was held at Novartis Institutes for Biomedical Research (NIBR, Horsham, UK) in March 2008. Key opinion leaders in the field (Hugo De Jonge, Stuart Elborn, Erich Gulbins, Mike Konstan, Rick Moss, Scott Randell and Adriano Rossi), and NIBR scientists were brought together to collectively address three main aims: (i) to identify anti-inflammatory targets in CF, (ii) to evaluate the pros and cons of targeting specific cell types and (iii) to discuss model systems to profile potential therapeutic agents. The highlights of the workshop are captured in this review.
Collapse
Affiliation(s)
- Katharine H Banner
- Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex, RH12 5AB, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The lung disease of cystic fibrosis (CF) is characterized by a vicious cycle of airway obstruction, chronic bacterial infection, and vigorous inflammation, which ultimately results in bronchiectasis. Recognition that excessive and persistent inflammation is a key factor in lung destruction has prompted investigation into anti-inflammatory therapies. Although effective, the use of systemic corticosteroids has been limited by the unacceptable adverse effect profile. Inhaled corticosteroids (ICS) are a widely prescribed anti-inflammatory agent in CF, likely as a result of clinicians' familiarity with these agents and their excellent safety profile at low doses in asthmatic patients. However, while multiple studies are limited by small sample size and short duration, they consistently failed to demonstrate statistically or clinically significant benefits of ICS use in CF. This review provides an overview of the inflammatory response in CF, the mechanisms of action of corticosteroids, the safety of ICS, and the literature relevant to the use of ICS in CF.
Collapse
Affiliation(s)
- Kristie R Ross
- Department of Pediatrics, Division of Pulmonology, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA.
| | | | | |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Ibuprofen was first advocated as a chronic therapy for cystic fibrosis lung disease in 1995, following a favorable report of a 4-year controlled trial. However, clinical use has been limited primarily by the concern about adverse effects. Additional clinical studies were advocated to better assess the risk-benefit profile. The results of several studies have been published within the last couple of years. RECENT FINDINGS Results from a 2-year multicenter trial were consistent with the 4-year trial in demonstrating a beneficial effect of ibuprofen on lung function in children with mild to moderate lung disease. The drug also showed a favorable safety profile. Results from an analysis of observational data from the Cystic Fibrosis Foundation Patient Registry collected over 7 years revealed that 'real world' clinical use of ibuprofen was also associated with a beneficial effect. The occurrence of gastrointestinal bleeding was higher in those treated with ibuprofen, but the incidence was very low. SUMMARY Ibuprofen has now been shown in two long-term clinical trials to slow disease progression, with real-world clinical use supporting its effectiveness. Although the therapy is not without adverse effects, the benefits appear to outweigh the risks.
Collapse
|
24
|
Abstract
Synthetic polymer coatings are used extensively in modern medical devices and implants because of their material versatility and processability. These coatings are designed for specific applications by controlling composition and physical and chemical properties, and they can be formed into a variety of complex structures and shapes. However, implantation of these materials into the body elicits a strong inflammatory host response that significantly limits the integration and biological performance of devices. Biomaterial-mediated inflammation is a complex reaction involving protein adsorption, leukocyte recruitment and activation, secretion of inflammatory mediators, and fibrous encapsulation of the implant. Significant research efforts have focused on modifying material properties using various anti-inflammatory polymeric surface coatings to generate more biocompatible implants. This minireview provides a brief background on the events of biomaterial-mediated inflammation and highlights various approaches used for modifying material surfaces to modulate inflammatory responses. These include both passive and active strategies, such as nonfouling surface treatments and delivery of anti-inflammatory agents, respectively. Novel approaches will be needed to extend the in vivo lifetime and performance of devices and reduce the need for multiple implantation surgeries.
Collapse
Affiliation(s)
- Amanda W. Bridges
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Andrés J. García
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
25
|
Abstract
Cystic fibrosis pulmonary disease is characterized by excessive and prolonged inflammation. CF Pulmonary disease severity exhibits considerable variation that, to some extent, appears to be due to the presence of modifier genes. Several components of the inflammatory response are known to have altered regulation in the CF lung. Genetic variants in 52 inflammatory genes were tested for associations with lung disease indices in a CF patient population (n=737) homozygous for the DeltaF508 cystic fibrosis transmembrane conductance regulator mutation. Variants in three inflammatory genes showed significant genotypic associations with CF lung disease severity, including IL8 and previously reported TGFbeta1 (P< or =0.05). When analyzed by gender, it was apparent that IL8 variant associations were predominantly due to males. The IL8 variants were tested in an additional CF population (n=385) and the association in males verified (P< or =0.01). The IL8 variants were in strong linkage disequilibrium with each other (R2> or =0.82), while variants in neighboring genes CXCL6, RASSF6 and PF4V1 did not associate (P> or =0.26) and were in weaker LD with each other and with the IL8 variants (0.01< or =R2< or =0.49). Studies revealed differential expression between the IL8 promoter variant alleles (P<0.001). These results suggest that IL8 variants modify CF lung disease severity and have functional consequences.
Collapse
|
26
|
Nichols D, Chmiel J, Berger M. Chronic inflammation in the cystic fibrosis lung: alterations in inter- and intracellular signaling. Clin Rev Allergy Immunol 2008; 34:146-62. [PMID: 17960347 DOI: 10.1007/s12016-007-8039-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A vicious cycle of airway obstruction, infection, and inflammation continues to cause most of the morbidity and mortality in cystic fibrosis (CF). Mutations that result in decreased expression or function of the membrane Cl(-) channel, cystic fibrosis transmembrane regulator (CFTR), result in a decrease in the volume (and hence the depth) of liquid on the airway surface, impaired ciliary function, and dehydrated glandular secretions. In turn, these abnormalities contribute to a milieu, which promotes chronic infection with a limited but unique spectrum of microorganisms. Defects in CFTR also perturb regulation of several intracellular signaling pathways including signal transducers and activator of transcription, I-kappaB and nuclear factor-kappa B, and low molecular weight GTPases. Together, these abnormalities result in excessive production of NF-kappaB dependent cytokines such as interleukin (IL)-1, tumor necrosis factor (TNF), IL-6, and IL-8. There are decreased responses to interferon gamma and transforming growth factor beta leading to decreased production of iNOS and NO. Abnormalities of lipid mediators and decreased secretion of counter/regulatory cytokines have also been reported. Together, these effects combine to create a chronic inflammatory process, which damages and obstructs the airways, and eventually claims the life of the patient.
Collapse
Affiliation(s)
- David Nichols
- Pulmonology and Allergy-Immunology Divisions, Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow, Babies and Children's Hospital, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
27
|
Bezzerri V, Borgatti M, Nicolis E, Lampronti I, Dechecchi MC, Mancini I, Rizzotti P, Gambari R, Cabrini G. Transcription factor oligodeoxynucleotides to NF-kappaB inhibit transcription of IL-8 in bronchial cells. Am J Respir Cell Mol Biol 2008; 39:86-96. [PMID: 18258920 DOI: 10.1165/rcmb.2007-0176oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chronic pulmonary inflammation in patients affected by cystic fibrosis (CF) is characterized by massive bronchial infiltrates of neutrophils, which is sustained by the interaction of pathogens (e.g., Pseudomonas aeruginosa) with surface bronchial cells. To explore new treatment options focused on the reduction of neutrophil chemotaxis, we applied the transcription factor (TF) decoy approach, based on the intracellular delivery of double-stranded oligodeoxynucleotides (ODNs) causing inhibition of the binding of TF-related proteins to the different consensus sequences in the promoter of specific genes. In CF bronchial IB3-1 cells, P. aeruginosa induced transcription of the neutrophil chemokines IL-8 and GRO-gamma, of the adhesion molecule intercellular adhesion molecule (ICAM)-1, and of the cytokines IL-1beta and IL-6. Since consensus sequences for the TF, NF-kappaB, are contained in the promoters of all these genes, IB3-1, CuFi-1, Beas-2B, and CaLu-3 cells were transfected with double-stranded TF "decoy" ODNs mimicking different NF-kappaB consensus sequences. IL-8 NF-kappaB decoy ODN partially inhibited the P. aeruginosa-dependent transcription of IL-8, GRO-gamma, and IL-6, whereas decoy ODNs to both HIV-1 long terminal repeat and Igk produced a strong, 80 to 85% inhibition of transcription of IL-8, without reducing that of GRO-gamma, ICAM-1, IL-1beta, and IL-6. In conclusion, intracellular delivery of "decoy" molecules aimed to compete with the TF, NF-kappaB, is a promising strategy to obtain inhibition of IL-8 gene transcription.
Collapse
Affiliation(s)
- Valentino Bezzerri
- Laboratory of Molecular Pathology, Laboratory of Clinical Chemistry and Haematology, University Hospital of Verona, Piazzale Stefani 1, I-37126 Verona, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Therapy aimed at combating excessive lung inflammation should benefit patients with cystic fibrosis. This article reviews anti-inflammatory strategies, focusing on new evidence published since 2006. RECENT FINDINGS Use of oral corticosteroids was associated with benefit in an epidemiological study but they are still not recommended; high dose inhaled corticosteroids may cause harm (effect on growth), but they can safely be withdrawn in many patients. Some small beneficial effect of ibuprofen was seen in a multicentre study, but it is unlikely that this will change practice. Altering the imbalance seen in fatty acid metabolism with omega3 polyunsaturated fatty acid supplementation may be helpful but therapeutic benefit is not yet proven. Combating cysteinyl leukotrienes has potential but benefit remains to be proved. The beneficial effect of macrolides has been confirmed in patients with milder disease, but caution is needed because of emerging resistance patterns. Renewed research interest in antiproteases has not demonstrated any significant benefit. SUMMARY The ideal therapeutic drug, with the optimal balance of benefit and harm, is not yet available.
Collapse
Affiliation(s)
- Ian M Balfour-Lynn
- Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, UK.
| |
Collapse
|
29
|
Konstan MW, Schluchter MD, Xue W, Davis PB. Clinical use of Ibuprofen is associated with slower FEV1 decline in children with cystic fibrosis. Am J Respir Crit Care Med 2007; 176:1084-9. [PMID: 17872492 PMCID: PMC2176097 DOI: 10.1164/rccm.200702-181oc] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE High-dose ibuprofen in a 4-year controlled trial slowed FEV(1) decline in young subjects with cystic fibrosis, but the effectiveness of ibuprofen has not been assessed in a large group of patients treated clinically with this therapy. OBJECTIVES To assess the effect of ibuprofen therapy on FEV(1) decline in children and adolescents with cystic fibrosis, using observational data from the Cystic Fibrosis Foundation Patient Registry. METHODS The rate of decline in FEV(1) percent predicted over 2-7 years among patients age 6-17 years with FEV(1) > 60% predicted, and who were treated with ibuprofen (1,365), was compared with patients of similar age and disease severity who were not treated with this therapy (8,960). Multilevel repeated-measures mixed-regression models were used to estimate rates of decline, adjusting for characteristics and therapies that influenced FEV(1) decline. Adverse effects were compared among those treated versus not treated with ibuprofen. MEASUREMENTS AND MAIN RESULTS FEV(1) declined less rapidly among patients treated with ibuprofen (difference, 0.60% predicted per year; 95% confidence interval, 0.31 to 0.89; P < 0.0001); a 29% reduction in slope based on an average decline of 2.08% predicted per year for patients not treated. Those treated with ibuprofen were more likely to have an episode of gastrointestinal bleeding requiring hospitalization, but the occurrence was rare in both groups (annual incidence, 0.37 vs. 0.14%; relative risk, 2.72; P < 0.001). CONCLUSIONS Slower rates of FEV(1) decline are seen in children and adolescents with cystic fibrosis who are treated with ibuprofen. The apparent benefits of ibuprofen therapy outweigh the small risk of gastrointestinal bleeding.
Collapse
Affiliation(s)
- Michael W Konstan
- Rainbow Babies and Children's Hospital, 11100 Euclid Avenue, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
30
|
Davis PB. Pacing the marathon: rate of decline of pulmonary function in cystic fibrosis. J Pediatr 2007; 151:111-3. [PMID: 17643757 DOI: 10.1016/j.jpeds.2007.03.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 03/26/2007] [Indexed: 11/28/2022]
|
31
|
Sagel SD, Chmiel JF, Konstan MW. Sputum biomarkers of inflammation in cystic fibrosis lung disease. PROCEEDINGS OF THE AMERICAN THORACIC SOCIETY 2007; 4:406-17. [PMID: 17652508 PMCID: PMC2647605 DOI: 10.1513/pats.200703-044br] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 05/11/2007] [Indexed: 11/20/2022]
Abstract
Pulmonary biomarkers are being used more frequently to monitor disease activity and evaluate response to treatment in individuals with cystic fibrosis (CF). This article summarizes the current state of knowledge of biomarkers of inflammation relevant to CF lung disease, and the tools to measure inflammation, with specific emphasis on sputum. Sputum is a rich, noninvasive source of biomarkers of inflammation and infection. Sputum induction, through the inhalation of hypertonic saline, has expanded the possibilities for monitoring airway inflammation and infection, especially in individuals who do not routinely expectorate sputum. We critically examine the existing data supporting the validity of sputum biomarkers in CF, with an eye toward their application as surrogate endpoints or outcome measures in CF clinical trials. Further validation studies are needed regarding the variability of inflammatory biomarker measurements, and to evaluate how these biomarkers relate to disease severity, and to longitudinal changes in lung function and other clinical endpoints. We highlight the need to incorporate sputum collection, by induction if necessary, and measurement of sputum biomarkers into routine CF clinical care. In the future, pulmonary biomarkers will likely be useful in predicting disease progression, indicating the onset and resolution of a pulmonary exacerbation, and assessing response to current therapies or candidate therapeutics.
Collapse
Affiliation(s)
- Scott D Sagel
- Department of Pediatrics, The Children's Hospital and University of Colorado at Denver and Health Sciences Center, Denver, Colorado 80218, USA.
| | | | | |
Collapse
|
32
|
Chmiel JF, Konstan MW. Inflammation and anti-inflammatory therapies for cystic fibrosis. Clin Chest Med 2007; 28:331-46. [PMID: 17467552 DOI: 10.1016/j.ccm.2007.02.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cystic fibrosis lung disease is characterized by a self-propagating cycle of obstruction, infection, and inflammation. The inflammatory response, which accounts for the majority of the morbidity and mortality of the disease, begins early in life, becomes persistent, and is excessive relative to the bacterial burden. Therapies aimed at decreasing the inflammatory response represent a relatively new strategy for treatment. This article reviews the current state of the art of anti-inflammatory therapy in cystic fibrosis and introduces clinical trials that are underway.
Collapse
Affiliation(s)
- James F Chmiel
- Division of Pediatric Pulmonology, Department of Pediatrics, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | | |
Collapse
|
33
|
Schulz BL, Sloane AJ, Robinson LJ, Prasad SS, Lindner RA, Robinson M, Bye PT, Nielson DW, Harry JL, Packer NH, Karlsson NG. Glycosylation of sputum mucins is altered in cystic fibrosis patients. Glycobiology 2007; 17:698-712. [PMID: 17392389 DOI: 10.1093/glycob/cwm036] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cystic fibrosis (CF) is characterized by chronic lung infection and inflammation, with periods of acute exacerbation causing severe and irreversible lung tissue damage. We used protein and glycosylation analysis of high-molecular mass proteins in saline-induced sputum from CF adults with and without an acute exacerbation, CF children with stable disease and preserved lung function, and healthy non-CF adult and child controls to identify potential biomarkers of lung condition. While the main high-molecular mass proteins in the sputum from all subjects were the mucins MUC5B and MUC5AC, these appeared degraded in CF adults with an exacerbation. The glycosylation of these mucins also showed reduced sulfation, increased sialylation, and reduced fucosylation in CF adults compared with controls. Despite improvements in pulmonary function after hospitalization, these differences remained. Two CF children showed glycoprotein profiles similar to those of CF adults with exacerbations and also presented with pulmonary flares shortly after sampling, while the remaining CF children had profiles indistinguishable from those of healthy non-CF controls. Sputum mucin glycosylation and degradation are therefore not inherently different in CF, and may also be useful predictive biomarkers of lung condition.
Collapse
Affiliation(s)
- Benjamin L Schulz
- Proteome Systems Ltd, Unit 1, 35-41 Waterloo Road, North Ryde, Sydney, NSW 2113, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Over the past four decades, outcomes for patients with cystic fibrosis have improved dramatically. Major contributors to this improvement are a better understanding of disease pathogenesis and the systematic conduct of clinical trials evaluating new therapies designed to address these defects. This review describes recent developments in cystic fibrosis pulmonary therapies intended to treat various facets of the disease, including several treatments currently in development. RECENT FINDINGS The mainstays of therapy for cystic fibrosis, such as nutritional support and mechanical mucus clearance, are now supplemented with aggressive antibiotic regimens intended to suppress or eradicate bacterial colonization, anti-inflammatory agents, and new approaches that improve mucociliary clearance. Therapies in development address the underlying ion transport defect found in cystic fibrosis airways and also include small-molecule agents that restore function to the mutant cystic fibrosis transmembrane conductance regulator. SUMMARY Recent advances in therapies for cystic fibrosis offer the promise of improved outcomes and longer lives for patients with cystic fibrosis.
Collapse
Affiliation(s)
- Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | |
Collapse
|
35
|
Abstract
The lack of functional cystic fibrosis (CF) transmembrane conductance regulator (CFTR) in the apical membranes of CF airway epithelial cells abolishes cAMP-stimulated anion transport, and bacteria, eventually including Pseudomonas aeruginosa, bind to and accumulate in the mucus. Flagellin released from P. aeruginosa triggers airway epithelial Toll-like receptor 5 and subsequent NF-kappaB signaling and production and release of proinflammatory cytokines that recruit neutrophils to the infected region. This response has been termed hyperinflammatory because so many neutrophils accumulate; a response that damages CF lung tissue. We first review the contradictory data both for and against the idea that epithelial cells exhibit larger-than-normal proinflammatory signaling in CF compared with non-CF cells and then review proposals that might explain how reduced CFTR function could activate such proinflammatory signaling. It is concluded that apparent exaggerated innate immune response of CF airway epithelial cells may have resulted not from direct effects of CFTR on cellular signaling or inflammatory mediator production but from indirect effects resulting from the absence of CFTRs apical membrane channel function. Thus, loss of Cl-, HCO3-, and glutathione secretion may lead to reduced volume and increased acidification and oxidation of the airway surface liquid. These changes concentrate proinflammatory mediators, reduce mucociliary clearance of bacteria and subsequently activate cellular signaling. Loss of apical CFTR will also hyperpolarize basolateral membrane potentials, potentially leading to increases in cytosolic [Ca2+], intracellular Ca2+, and NF-kappaB signaling. This hyperinflammatory effect of CF on intracellular Ca2+ and NF-kappaB signaling would be most prominently expressed during exposure to both P. aeruginosa and also endocrine, paracrine, or nervous agonists that activate Ca2+ signaling in the airway epithelia.
Collapse
Affiliation(s)
- Terry E Machen
- Dept. of Molecular and Cell Biology, 231 LSA, Univ. of California at Berkeley, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
36
|
Attucci S, Gauthier A, Korkmaz B, Delépine P, Martino MFD, Saudubray F, Diot P, Gauthier F. EPI-hNE4, a proteolysis-resistant inhibitor of human neutrophil elastase and potential anti-inflammatory drug for treating cystic fibrosis. J Pharmacol Exp Ther 2006; 318:803-9. [PMID: 16627747 DOI: 10.1124/jpet.106.103440] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
EPI-hNE4 (depelstat) is a potent inhibitor of human neutrophil elastase derived from human inter-alpha-trypsin inhibitor and designed to control the excess proteolytic activity in the sputum of cystic fibrosis patients. We analyzed its resistance to the proteolysis it is likely to encounter at inflammatory sites in vivo. EPI-hNE4 resisted hydrolysis by neutrophil matrix metalloproteases (MMPs) and serine proteases that are released from activated neutrophils in inflammatory lung secretions, including MMP-8 and MMP-9, and the elastase-related protease 3 and cathepsin G. It also resisted degradation by epithelial lung cell MMP-7 but was broken down by the Pseudomonas aeruginosa metalloelastase pseudolysin, when used in a purified system, but not when this protease competed with equimolar amounts of neutrophil elastase. We also investigated the inhibitory properties of EPI-hNE4 at the surface of purified blood neutrophils and in the sputum of cystic fibrosis patients where neutrophil elastase is in both a soluble and a gel phase. The elastase at the neutrophil surface was fully inhibited by EPI-hNE4 and formed soluble complexes. The elastase in cystic fibrosis sputum supernatants was inhibited by stoichiometric amounts of EPI-hNE4, allowing titration of the protease. But the percentage of inhibition in whole sputum homogenates varied from 50 to 100%, depending on the sample tested. EPI-hNE4 was rapidly cleaved by the digestive protease pepsin in vitro. Therefore, EPI-hNE4 seems to be an elastase inhibitor suitable for use in aerosols to treat patients with cystic fibrosis.
Collapse
Affiliation(s)
- Sylvie Attucci
- Institut National de la Santé et de la Recherche Médicale U618 (Protéases et Vectorisation Pulmonaires), Université François Rabelais, 10 Bd Tonnellé, 37032 Tours Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Balfour-Lynn IM, Lees B, Hall P, Phillips G, Khan M, Flather M, Elborn JS. Multicenter randomized controlled trial of withdrawal of inhaled corticosteroids in cystic fibrosis. Am J Respir Crit Care Med 2006; 173:1356-62. [PMID: 16556691 DOI: 10.1164/rccm.200511-1808oc] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Lung inflammation and injury is critical in cystic fibrosis. An ideal antiinflammatory agent has not been identified but inhaled corticosteroids are widely used despite lack of evidence. OBJECTIVES To test the safety of withdrawal of inhaled corticosteroids with the hypothesis this would not be associated with an earlier onset of acute chest exacerbations. METHODS Multicenter randomized double-blind placebo-controlled trial in 18 pediatric and adult UK centers. Eligibility criteria included age>6.0 yr, FEV1>or=40% predicted, and corticosteroid use>3 mo. During the 2-mo run-in period, all patients received fluticasone; they then took either fluticasone or placebo for 6 mo. MEASUREMENTS AND MAIN RESULTS Fluticasone group: n=84, median age 14.6 yr, mean (SD) FEV1 76% (18); placebo group: n=87, median age 15.8 yr, mean (SD) FEV1 76% (18). There was no difference in time to first exacerbation (primary outcome) with hazard ratio (95% confidence interval) of 1.07 (0.68 to 1.70) for fluticasone versus placebo. There was no effect of age, atopy, corticosteroid dose, FEV1, or Pseudomonas aeruginosa status. There was no change in lung function or differences in antibiotic or rescue bronchodilator use. Fewer patients in the fluticasone group withdrew from the study due to lung-related adverse events (9 vs. 15%); with a relative risk (95% confidence interval) of 0.59 (0.23-1.48) fluticasone versus placebo. CONCLUSIONS In this study population (applicable to 40% of patients with cystic fibrosis in the UK), it appears safe to consider stopping inhaled corticosteroids. Potential advantages will be to reduce the drug burden on patients, reduce adverse effects, and make financial savings.
Collapse
Affiliation(s)
- Ian M Balfour-Lynn
- Department of Paediatric Respiratory Medicine, Royal Brompton & Harefield NHS Trust, and National Heart & Lung Institute, Imperial College London, SW3 6NP, UK.
| | | | | | | | | | | | | |
Collapse
|
38
|
Tirouvanziam R, Conrad CK, Bottiglieri T, Herzenberg LA, Moss RB, Herzenberg LA. High-dose oral N-acetylcysteine, a glutathione prodrug, modulates inflammation in cystic fibrosis. Proc Natl Acad Sci U S A 2006; 103:4628-33. [PMID: 16537378 PMCID: PMC1450222 DOI: 10.1073/pnas.0511304103] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neutrophilic airway inflammation is a hallmark of cystic fibrosis (CF). As high oxidant producers, airway neutrophils contribute largely to the systemic redox imbalance seen in CF. In turn, this chronic and profound imbalance can impact circulating neutrophils before their migration into airways. Indeed, in 18 CF patients with stable disease, blood neutrophils were readily deficient in the pivotal antioxidant glutathione (P = 0.003, compared with 9 healthy controls). In a phase 1 study, this deficiency was improved (P = 0.025) by the glutathione prodrug N-acetylcysteine, given orally in high doses (0.6 to 1.0 g three times daily, for 4 weeks). This treatment was safe and markedly decreased sputum elastase activity (P = 0.006), the strongest predictor of CF pulmonary function. Consistently, neutrophil burden in CF airways was decreased upon treatment (P = 0.003), as was the number of airway neutrophils actively releasing elastase-rich granules (P = 0.005), as measured by flow cytometry. Pulmonary function measures were not improved, as expected with short-term treatment. After excluding data from subjects without baseline airway inflammation, positive treatment effects were more pronounced and included decreased sputum IL-8 levels (P = 0.032). Thus, high-dose oral N-acetylcysteine has the potential to counter the intertwined redox and inflammatory imbalances in CF.
Collapse
Affiliation(s)
| | - Carol K. Conrad
- Pediatrics, Stanford University School of Medicine, Stanford, CA 94305; and
| | | | | | - Richard B. Moss
- Pediatrics, Stanford University School of Medicine, Stanford, CA 94305; and
| | | |
Collapse
|
39
|
Li Y, Wang W, Parker W, Clancy JP. Adenosine regulation of cystic fibrosis transmembrane conductance regulator through prostenoids in airway epithelia. Am J Respir Cell Mol Biol 2006; 34:600-8. [PMID: 16399952 PMCID: PMC2644223 DOI: 10.1165/rcmb.2005-0421oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis is caused by dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, leading to altered ion transport, chronic infection, and excessive inflammation. Here we investigated regulation of CFTR in airway cell monolayers by adenosine, adenosine receptors, and arachidonic acid. Our studies demonstrate that the A2B adenosine receptor is expressed at high levels relative to the other adenosine receptor subtypes, with a characteristic low-affinity profile for adenosine-stimulated CFTR Cl- currents in both Calu-3 cells and CFBE41o- airway cell monolayers stably transduced with wild-type CFTR. The levels of adenosine found in sputum from patients with cystic fibrosis with moderate to severe lung disease stimulated apical prostaglandin release in Calu-3 and CFBE41o- cells, implicating adenosine regulation of phospholipase A2 (PLA2) activity. A2B adenosine receptor and arachidonic acid stimulation produced CFTR-dependent currents in airway monolayers and increased cAMP levels that were sensitive to cyclooxygenase inhibition. Arachidonic acid demonstrated dual regulation of CFTR, stimulating CFTR and Cl- currents in intact airway monolayers, and potently inhibiting PKA-activated Cl- currents in excised membrane patches. Cl- currents produced by arachidonic acid were sensitive to inhibition of PKA, cyclooxygenase, and 5-lipoxygenase. Together, the results provide a converging mechanism to link regulation of CFTR and airway cell inflammation through adenosine and adenosine receptors.
Collapse
Affiliation(s)
- Yao Li
- Department of Pediatrics and Physiology and Biophysics, and Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham; and Southern Research Institute, Birmingham, AL 35233, USA
| | | | | | | |
Collapse
|
40
|
Lee RL, Rancourt RC, del Val G, Pack K, Pardee C, Accurso FJ, White CW. Thioredoxin and dihydrolipoic acid inhibit elastase activity in cystic fibrosis sputum. Am J Physiol Lung Cell Mol Physiol 2005; 289:L875-82. [PMID: 16214824 DOI: 10.1152/ajplung.00103.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Excessive neutrophil elastase activity within airways of cystic fibrosis (CF) patients results in progressive lung damage. Disruption of disulfide bonds on elastase by reducing agents may modify its enzymatic activity. Three naturally occurring dithiol reducing systems were examined for their effects on elastase activity: 1) Escherichia coli thioredoxin (Trx) system, 2) recombinant human thioredoxin (rhTrx) system, and 3) dihydrolipoic acid (DHLA). The Trx systems consisted of Trx, Trx reductase, and NADPH. As shown by spectrophotometric assay of elastase activity, the two Trx systems and DHLA inhibited purified human neutrophil elastase as well as the elastolytic activity present in the soluble phase (sol) of CF sputum. Removal of any of the three Trx system constituents prevented inhibition. Compared with the monothiols N-acetylcysteine and reduced glutathione, the dithiols displayed greater elastase inhibition. To streamline Trx as an investigational tool, a stable reduced form of rhTrx was synthesized and used as a single component. Reduced rhTrx inhibited purified elastase and CF sputum sol elastase without NADPH or Trx reductase. Because Trx and DHLA have mucolytic effects, we investigated changes in elastase activity after mucolytic treatment. Unprocessed CF sputum was directly treated with reduced rhTrx, the Trx system, DHLA, or DNase. The Trx system and DHLA did not increase elastase activity, whereas reduced rhTrx treatment increased sol elastase activity by 60%. By contrast, the elastase activity after DNase treatment increased by 190%. The ability of Trx and DHLA to limit elastase activity combined with their mucolytic effects makes these compounds potential therapies for CF.
Collapse
Affiliation(s)
- Rees L Lee
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Raia V, Maiuri L, Ciacci C, Ricciardelli I, Vacca L, Auricchio S, Cimmino M, Cavaliere M, Nardone M, Cesaro A, Malcolm J, Quaratino S, Londei M. Inhibition of p38 mitogen activated protein kinase controls airway inflammation in cystic fibrosis. Thorax 2005; 60:773-80. [PMID: 15994249 PMCID: PMC1747526 DOI: 10.1136/thx.2005.042564] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Cystic fibrosis (CF) airways are characterised by chronic inflammation, increased interleukin (IL)-8 secretion, and neutrophil activation which are considered the principal factors of morbidity and mortality in CF patients. Optimising management of this chronic inflammatory response is therefore a key issue of basic and clinical CF research. Several reports have addressed ways to manage CF airways inflammation, and an attractive therapeutic strategy may be the inhibition of the p38-mitogen activated protein kinase (p38-MAP-k) pathway. METHODS A new ex vivo model was used to study the mucosal inflammatory response to environmental airways stimuli. Nasal biopsy tissues from CF patients and controls were cultured ex vivo for 20 minutes, 4 hours, and 24 hours in the presence of lipopolysaccharide (LPS) from Pseudomonas aeruginosa (PA) with and without the p38-MAP-k inhibitor SB203580. Quantitative mRNA assessment, immunohistochemistry, and Western blots were used to detect the expression and modulation of inflammatory markers. RESULTS PA-LPS challenge induced a time dependent mucosal inflammation indicated by rapid epithelial activation, IL-8 release, COX-2 upregulation, and neutrophil migration to the upper mucosal layers. Some of these LPS induced changes (IL-8 release and neutrophil migration) were specific to CF tissues. SB203580 significantly controlled all LPS induced mucosal changes in CF tissues. CONCLUSION These findings provide a rationale and proof of principle for the potential use of p38-MAP-k inhibitors to control inflammation in patients with CF.
Collapse
Affiliation(s)
- V Raia
- Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
43
|
Konstan MW, Davis PB, Wagener JS, Hilliard KA, Stern RC, Milgram LJH, Kowalczyk TH, Hyatt SL, Fink TL, Gedeon CR, Oette SM, Payne JM, Muhammad O, Ziady AG, Moen RC, Cooper MJ. Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution. Hum Gene Ther 2005; 15:1255-69. [PMID: 15684701 DOI: 10.1089/hum.2004.15.1255] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A double-blind, dose escalation gene transfer trial was conducted in subjects with cystic fibrosis (CF), among whom placebo (saline) or compacted DNA was superfused onto the inferior turbinate of the right or left nostril. The vector consisted of single molecules of plasmid DNA carrying the cystic fibrosis transmembrane regulator- encoding gene compacted into DNA nanoparticles, using polyethylene glycol-substituted 30-mer lysine peptides. Entry criteria included age greater than 18 years, FEV1 exceeding 50% predicted, and basal nasal potential difference (NPD) isoproterenol responses (> or = -5 mV) that are typical for subjects with classic CF. Twelve subjects were enrolled: 2 in dose level I (DLI) (0.8 mg DNA), 4 in DLII (2.67 mg), and 6 in DLIII (8.0 mg). The primary trial end points were safety and tolerability, and secondary gene transfer end points were assessed. In addition to routine clinical assessments and laboratory tests, subjects were serially evaluated for serum IL-6, complement, and C-reactive protein; nasal washings were taken for cell counts, protein, IL-6, and IL-8; and pulmonary function and hearing tests were performed. No serious adverse events occurred, and no events were attributed to compacted DNA. There was no association of serum or nasal washing inflammatory mediators with administration of compacted DNA. Day 14 vector polymerase chain reaction analysis showed a mean value in DLIII nasal scraping samples of 0.58 copy per cell. Partial to complete NPD isoproterenol responses were observed in eight subjects: one of two in DLI, three of four in DLII, and four of six in DLIII. Corrections persisted for as long as 6 days (1 subject to day 28) after gene transfer. In conclusion, compacted DNA nanoparticles can be safely administered to the nares of CF subjects, with evidence of vector gene transfer and partial NPD correction.
Collapse
Affiliation(s)
- Michael W Konstan
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yarden J, Radojkovic D, De Boeck K, Macek M, Zemkova D, Vavrova V, Vlietinck R, Cassiman JJ, Cuppens H. Association of tumour necrosis factor alpha variants with the CF pulmonary phenotype. Thorax 2005; 60:320-5. [PMID: 15790988 PMCID: PMC1747362 DOI: 10.1136/thx.2004.025262] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND The pulmonary phenotype in patients with cystic fibrosis (CF), even in those with the same CF transmembrane conductance regulator (CFTR) genotype, is variable and must therefore be influenced by secondary genetic factors as well as environmental factors. Possible candidate genes that modulate the CF lung phenotype may include proinflammatory cytokines. One such protein is tumour necrosis factor alpha (TNFalpha), a member of the immune system. METHODS Three polymorphic loci in the promoter (-851c/t, -308g/a, -238g/a) and one polymorphic locus in intron 1 (+691g ins/del) of the TNFalpha gene were typed by a single nucleotide primer extension assay in CF patients and healthy controls. Spirometric data and first age of infection with Pseudomonas aeruginosa were collected retrospectively from patients' medical records. RESULTS An association was found between the TNFalpha +691g ins/del polymorphic locus and severity of CF lung disease. Patients heterozygous for +691g ins and +691g del were more likely to have better pulmonary function (mean (SD) forced expiratory volume in 1 second (FEV1) 79.7 (12.8)% predicted) than patients homozygous for +691g ins (mean (SD) FEV1 67.5 (23.0)% predicted; p = 0.008, mean difference 12.2%, 95% CI 3.5 to 21.0). Also, patients heterozygous for +691g ins and +691g del were more likely to have an older first age of infection with P aeruginosa (mean (SD) 11.4 (6.0) years) than patients homozygous for +691g ins (mean (SD) 8.3 (4.6) years; p = 0.018, mean difference 3.1 years, 95% CI 0.5 to 5.6). An association was also found with the -851c/t polymorphic locus. In the group of patients with more severe FEV1% predicted, a higher proportion of patients were homozygous for the -851c allele than in the other group of patients (p = 0.04, likelihood ratio chi2, odds ratio = 2.4). CONCLUSION TNFalpha polymorphisms are associated with the severity of CF lung disease in Czech and Belgian patients with CF.
Collapse
Affiliation(s)
- J Yarden
- Department for Human Genetics, KULeuven, Herestraat 49, O&N6, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Prescott WA, Johnson CE. Antiinflammatory Therapies for Cystic Fibrosis: Past, Present, and Future. Pharmacotherapy 2005; 25:555-73. [PMID: 15977917 DOI: 10.1592/phco.25.4.555.61025] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Inflammation is a major component of the vicious cycle characterizing cystic fibrosis pulmonary disease. If untreated, this inflammatory process irreversibly damages the airways, leading to bronchiectasis and ultimately respiratory failure. Antiinflammatory drugs for cystic fibrosis lung disease appear to have beneficial effects on disease parameters. These agents include oral corticosteroids and ibuprofen, as well as azithromycin, which, in addition to its antimicrobial effects, also possesses antiinflammatory properties. Inhaled corticosteroids, colchicine, methotrexate, montelukast, pentoxifylline, nutritional supplements, and protease replacement have not had a significant impact on the disease. Therapy with oral corticosteroids, ibuprofen, and fish oil is limited by adverse effects. Azithromycin appears to be safe and effective, and is thus the most promising antiinflammatory therapy available for patients with cystic fibrosis. Pharmacologic therapy with antiinflammatory agents should be started early in the disease course, before extensive irreversible lung damage has occurred.
Collapse
Affiliation(s)
- William A Prescott
- School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York 14260, USA.
| | | |
Collapse
|
46
|
Abstract
Cystic fibrosis (CF) is one of the most common life-shortening inherited disorders. Mutations in the cystic fibrosis transmembrane regulator (CFTR) gene disrupt the localisation and function of the cAMP-mediated chloride channel. Most of the morbidity and mortality arise from the lung disease which is characterised by excessive inflammation and chronic infection. Research into the mechanisms of wild-type and mutant CFTR biogenesis suggest that multiple drug targets can be identified. This review explores the current understanding of the nature of the different mutant CFTR forms and the potential for repair of the chloride channel defect. High-throughput screening, pharmacogenomics and proteomics bring recent technological advances to the field.
Collapse
Affiliation(s)
- Pamela L Zeitlin
- Park 316, Department of Pediatrics, Johns Hopkins Hospital, 600 N. Wolfe St., Baltimore, MD 21209, USA.
| |
Collapse
|
47
|
Ostedgaard LS, Rokhlina T, Karp PH, Lashmit P, Afione S, Schmidt M, Zabner J, Stinski MF, Chiorini JA, Welsh MJ. A shortened adeno-associated virus expression cassette for CFTR gene transfer to cystic fibrosis airway epithelia. Proc Natl Acad Sci U S A 2005; 102:2952-7. [PMID: 15703296 PMCID: PMC549485 DOI: 10.1073/pnas.0409845102] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adeno-associated viruses (AAVs) such as AAV5 that transduce airway epithelia from the apical surface are attractive vectors for gene transfer in cystic fibrosis (CF). However, their utility in CF has been limited because packaging of the insert becomes inefficient when its length exceeds approximately 4,900-5,000 bp. To partially circumvent this size constraint, we previously developed a CF transmembrane conductance regulator (CFTR) transgene that deleted a portion of the R domain (CFTRDeltaR). In this study, we focused on shortening the other elements in the AAV expression cassette. We found that portions of the CMV immediate/early (CMVie) enhancer/promoter could be deleted without abolishing activity. We also tested various intervening sequences, poly(A) signals, and an intron to develop an expression cassette that meets the size restrictions imposed by AAV. We then packaged these shortened elements with the CFTRDeltaR transgene into AAV5 and applied them to the apical surface of differentiated CF airway epithelia. Two to 4 weeks later, the AAV5 vectors partially corrected the CF Cl(-) transport defect. These results demonstrate that a single AAV vector can complement the CF defect in differentiated airway epithelia and thereby further the development of effective CF gene transfer.
Collapse
Affiliation(s)
- Lynda S Ostedgaard
- Howard Hughes Medical Institute and Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Caldwell RA, Boucher RC, Stutts MJ. Neutrophil elastase activates near-silent epithelial Na+ channels and increases airway epithelial Na+ transport. Am J Physiol Lung Cell Mol Physiol 2005; 288:L813-9. [PMID: 15640288 DOI: 10.1152/ajplung.00435.2004] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neutrophil elastase is a serine protease that is abundant in the airways of individuals with cystic fibrosis (CF), a genetic disease manifested by excessive airway Na(+) absorption and consequent depletion of the airway surface liquid layer. Although endogenous epithelium-derived serine proteases regulate epithelial Na(+) transport, the effects of neutrophil elastase on epithelial Na(+) transport and epithelial Na(+) channel (ENaC) activity are unknown. Low micromolar concentrations of human neutrophil elastase (hNE) applied to the apical surface of a human bronchial cell line (16HBE14o-/beta gamma) increased Na(+) transport about twofold. Similar effects were observed with trypsin, also a serine protease. Proteolytic inhibitors of hNE or trypsin selectively abolished the enzyme-induced increase of epithelial Na(+) transport. At the level of the single channel, submicromolar concentrations of hNE increased activity of near-silent ENaC approximately 108-fold in patches from NIH-3T3 cells expressing rat alpha-, beta-, and gamma-ENaC subunits. However, no enzyme effects were observed on basally active ENaCs. Trypsin exposure following hNE revealed no additional increase in amiloride-sensitive short-circuit current or in ENaC activity, suggesting these enzymes share a common mode of action for increasing Na(+) transport, likely through proteolytic activation of ENaC. The hNE-induced increase of near-silent ENaC activity in CF airways could contribute to Na(+) hyperabsorption, reduced airway surface liquid height, and dehydrated mucus culminating in inefficient mucociliary clearance.
Collapse
Affiliation(s)
- Ray A Caldwell
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC 27599-7248, USA.
| | | | | |
Collapse
|
49
|
Salinas D, Haggie PM, Thiagarajah JR, Song Y, Rosbe K, Finkbeiner WE, Nielson DW, Verkman AS. Submucosal gland dysfunction as a primary defect in cystic fibrosis. FASEB J 2004; 19:431-3. [PMID: 15596485 DOI: 10.1096/fj.04-2879fje] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It has been proposed that defective submucosal gland function in CF airways is a major determinant of CF airway disease. We tested the hypothesis that submucosal gland function is defective early in CF subjects with minimal clinical disease. Functional assays of gland fluid secretion rate and viscosity were performed on freshly obtained nasal biopsies from 6 CF subjects and 5 non-CF controls (age range 2-22 years). Secretions from individual submucosal glands were visualized by light/fluorescence microscopy after orienting and immobilizing biopsy specimens in a custom chamber. The viscosity of freshly secreted gland fluid after pilocarpine, measured by fluorescence recovery after photobleaching of microinjected FITC-dextran, was 4.9 +/- 0.2- vs. 2.2 +/- 0.2-fold greater than water viscosity in CF vs. non-CF specimens, respectively (SE, P<10(-4)). Gland fluid secretion rate in CF specimens, measured by video imaging (4.5+/-0.5 nL/min/gland, n=6), was 2.7-fold reduced compared to non-CF specimens (n=3, P<0.05). Quantitative histology revealed similar size and morphology of submucosal glands in CF and non-CF specimens. Our results suggest that defective airway submucosal gland function is an early, primary defect in CF. Therapies directed at normalizing gland fluid secretion early in CF may thus reduce lung disease.
Collapse
Affiliation(s)
- Danieli Salinas
- Department of Medicine, University of California, San Francisco, California 94143-0521, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Konstan MW, Davis PB, Wagener JS, Hilliard KA, Stern RC, Milgram LJ, Kowalczyk TH, Hyatt SL, Fink TL, Gedeon CR, Oette SM, Payne JM, Muhammad O, Ziady AG, Moen RC, Cooper MJ. Compacted DNA Nanoparticles Administered to the Nasal Mucosa of Cystic Fibrosis Subjects Are Safe and Demonstrate Partial to Complete Cystic Fibrosis Transmembrane Regulator Reconstitution. Hum Gene Ther 2004. [DOI: 10.1089/hum.2004.15.ft-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|