1
|
Structure-based design, synthesis and evaluation of a novel family of PEX5-PEX14 interaction inhibitors against Trypanosoma. Eur J Med Chem 2022; 243:114778. [DOI: 10.1016/j.ejmech.2022.114778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
|
2
|
Gomes MT, Paes-Vieira L, Gomes-Vieira AL, Cosentino-Gomes D, da Silva APP, Giarola NLL, Da Silva D, Sola-Penna M, Galina A, Meyer-Fernandes JR. 3-Bromopyruvate: A new strategy for inhibition of glycolytic enzymes in Leishmania amazonensis. Exp Parasitol 2021; 229:108154. [PMID: 34481863 DOI: 10.1016/j.exppara.2021.108154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/14/2021] [Accepted: 08/28/2021] [Indexed: 11/29/2022]
Abstract
The compound 3-bromopyruvate (3-BrPA) is well-known and studies from several researchers have demonstrated its involvement in tumorigenesis. It is an analogue of pyruvic acid that inhibits ATP synthesis by inhibiting enzymes from the glycolytic pathway and oxidative phosphorylation. In this work, we investigated the effect of 3-BrPA on energy metabolism of L. amazonensis. In order to verify the effect of 3-BrPA on L. amazonensis glycolysis, we measured the activity level of three glycolytic enzymes located at different points of the pathway: (i) glucose kinases, step 1, (ii) glyceraldehyde 3-phosphate dehydrogenase (GAPDH), step 6, and (iii) enolase, step 9. 3-BrPA, in a dose-dependent manner, significantly reduced the activity levels of all the enzymes. In addition, 3-BrPA treatment led to a reduction in the levels of phosphofruto-1-kinase (PFK) protein, suggesting that the mode of action of 3-BrPA involves the downregulation of some glycolytic enzymes. Measurement of ATP levels in promastigotes of L. amazonensis showed a significant reduction in ATP generation. The O2 consumption was also significantly inhibited in promastigotes, confirming the energy depletion effect of 3-BrPA. When 3-BrPA was added to the cells at the beginning of growth cycle, it significantly inhibited L. amazonensis proliferation in a dose-dependent manner. Furthermore, the ability to infect macrophages was reduced by approximately 50% when promastigotes were treated with 3-BrPA. Taken together, these studies corroborate with previous reports which suggest 3-BrPA as a potential drug against pathogenic microorganisms that are reliant on glucose catabolism for ATP supply.
Collapse
Affiliation(s)
- Marta Teixeira Gomes
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN, USA; Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Lisvane Paes-Vieira
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - André Luiz Gomes-Vieira
- Instituto de Química, Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Daniela Cosentino-Gomes
- Instituto de Química, Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Ana Paula Pereira da Silva
- Instituto de Química, Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Naira Ligia Lima Giarola
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daniel Da Silva
- Laboratório de Enzimologia e Controle do Metabolismo, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mauro Sola-Penna
- Laboratório de Enzimologia e Controle do Metabolismo, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antonio Galina
- Laboratorio de Bioenergética e Fisiologia Mitocondrial, Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Medica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
3
|
Michels PAM, Villafraz O, Pineda E, Alencar MB, Cáceres AJ, Silber AM, Bringaud F. Carbohydrate metabolism in trypanosomatids: New insights revealing novel complexity, diversity and species-unique features. Exp Parasitol 2021; 224:108102. [PMID: 33775649 DOI: 10.1016/j.exppara.2021.108102] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
The human pathogenic trypanosomatid species collectively called the "TriTryp parasites" - Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. - have complex life cycles, with each of these parasitic protists residing in a different niche during their successive developmental stages where they encounter diverse nutrients. Consequently, they adapt their metabolic network accordingly. Yet, throughout the life cycles, carbohydrate metabolism - involving the glycolytic, gluconeogenic and pentose-phosphate pathways - always plays a central role in the biology of these parasites, whether the available carbon and free energy sources are saccharides, amino acids or lipids. In this paper, we provide an updated review of the carbohydrate metabolism of the TriTryps, highlighting new data about this metabolic network, the interconnection of its pathways and the compartmentalisation of its enzymes within glycosomes, cytosol and mitochondrion. Differences in the expression of the branches of the metabolic network between the successive life-cycle stages of each of these parasitic trypanosomatids are discussed, as well as differences between them. Recent structural and kinetic studies have revealed unique regulatory mechanisms for some of the network's key enzymes with important species-specific variations. Furthermore, reports of multiple post-translational modifications of trypanosomal glycolytic enzymes suggest that additional mechanisms for stage- and/or environmental cues that regulate activity are operational in the parasites. The detailed comparison of the carbohydrate metabolism of the TriTryps has thus revealed multiple differences and a greater complexity, including for the reduced metabolic network in bloodstream-form T. brucei, than previously appreciated. Although these parasites are related, share many cytological and metabolic features and are grouped within a single taxonomic family, the differences highlighted in this review reflect their separate evolutionary tracks from a common ancestor to the extant organisms. These differences are indicative of their adaptation to the different insect vectors and niches occupied in their mammalian hosts.
Collapse
Affiliation(s)
- Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom.
| | - Oriana Villafraz
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, France
| | - Erika Pineda
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, France
| | - Mayke B Alencar
- Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela.
| | - Ariel M Silber
- Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil.
| | - Frédéric Bringaud
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, France.
| |
Collapse
|
4
|
Barazandeh AF, Mou Z, Ikeogu N, Mejia EM, Edechi CA, Zhang WW, Alizadeh J, Hatch GM, Ghavami S, Matlashewski G, Marshall AJ, Uzonna JE. The Phosphoenolpyruvate Carboxykinase Is a Key Metabolic Enzyme and Critical Virulence Factor of Leishmania major. THE JOURNAL OF IMMUNOLOGY 2021; 206:1013-1026. [PMID: 33462138 DOI: 10.4049/jimmunol.2000517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/14/2020] [Indexed: 11/19/2022]
Abstract
There is currently no effective vaccine against leishmaniasis because of the lack of sufficient knowledge about the Ags that stimulate host-protective and long-lasting T cell-mediated immunity. We previously identified Leishmania phosphoenolpyruvate carboxykinase (PEPCK, a gluconeogenic enzyme) as an immunodominant Ag that is expressed by both the insect (promastigote) and mammalian (amastigote) stages of the parasite. In this study, we investigated the role of PEPCK in metabolism, virulence, and immunopathogenicity of Leishmania major We show that targeted loss of PEPCK results in impaired proliferation of L. major in axenic culture and bone marrow-derived macrophages. Furthermore, the deficiency of PEPCK results in highly attenuated pathology in vivo. BALB/c mice infected with PEPCK-deficient parasites failed to develop any cutaneous lesions despite harboring parasites at the cutaneous site of infection. This was associated with a dramatic reduction in the frequency of cytokine (IFN-γ, IL-4, and IL-10)-producing CD4+ T cells in spleens and lymph nodes draining the infection site. Cells from mice infected with PEPCK-deficient parasites also produced significantly low levels of these cytokines into the culture supernatant following in vitro restimulation with soluble Leishmania Ag. PEPCK-deficient parasites exhibited significantly greater extracellular acidification rate, increased proton leak, and decreased ATP-coupling efficiency and oxygen consumption rates in comparison with their wild-type and addback counterparts. Taken together, these results show that PEPCK is a critical metabolic enzyme for Leishmania, and its deletion results in altered metabolic activity and attenuation of virulence.
Collapse
Affiliation(s)
- Aida Feiz Barazandeh
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3T 0T5, Canada
| | - Zhirong Mou
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3T 0T5, Canada
| | - Nnamdi Ikeogu
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3T 0T5, Canada
| | - Edgard M Mejia
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3T 0T5, Canada
| | - Chidalu A Edechi
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Wen-Wei Zhang
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 0F4, Canada
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Grant M Hatch
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada; and.,Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 0F4, Canada
| | - Aaron J Marshall
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3T 0T5, Canada
| | - Jude E Uzonna
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3T 0T5, Canada;
| |
Collapse
|
5
|
Shakya AK, Pratap JV. The coiled-coil domain of glycosomal membrane-associated Leishmania donovani PEX14: cloning, overexpression, purification and preliminary crystallographic analysis. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2020; 76:464-468. [PMID: 33006573 DOI: 10.1107/s2053230x20011127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/12/2020] [Indexed: 12/29/2022]
Abstract
The glycosomal membrane-associated Leishmania donovani protein PEX14, which plays a crucial role in protein import from the cytosol to the glycosomal matrix, consists of three domains: an N-terminal domain where the signalling molecule binds, a transmembrane domain and an 84-residue coiled-coil domain (CC) that is responsible for oligomerization. CCs are versatile domains that participate in a variety of functions including supramolecular assembly, cellular signalling and transport. Recombinant PEX14 CC was cloned, overexpressed, affinity-purified with in-column thrombin cleavage and further purified by size-exclusion chromatography. Crystals that diffracted to 1.98 Å resolution were obtained from a condition consisting of 1.4 M sodium citrate tribasic dihydrate, 0.1 M HEPES buffer pH 7.5. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 143.98, b = 32.62, c = 95.62 Å, β = 94.68°. Structure determination and characterization are in progress.
Collapse
Affiliation(s)
- Anil Kumar Shakya
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | - J Venkatesh Pratap
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| |
Collapse
|
6
|
Comparative mitochondrial proteomics of Leishmania tropica clinical isolates resistant and sensitive to meglumine antimoniate. Parasitol Res 2020; 119:1857-1871. [DOI: 10.1007/s00436-020-06671-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 03/18/2020] [Indexed: 01/20/2023]
|
7
|
Le T, Žárský V, Nývltová E, Rada P, Harant K, Vancová M, Verner Z, Hrdý I, Tachezy J. Anaerobic peroxisomes in Mastigamoeba balamuthi. Proc Natl Acad Sci U S A 2020; 117:2065-2075. [PMID: 31932444 PMCID: PMC6994998 DOI: 10.1073/pnas.1909755117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The adaptation of eukaryotic cells to anaerobic conditions is reflected by substantial changes to mitochondrial metabolism and functional reduction. Hydrogenosomes belong among the most modified mitochondrial derivative and generate molecular hydrogen concomitant with ATP synthesis. The reduction of mitochondria is frequently associated with loss of peroxisomes, which compartmentalize pathways that generate reactive oxygen species (ROS) and thus protect against cellular damage. The biogenesis and function of peroxisomes are tightly coupled with mitochondria. These organelles share fission machinery components, oxidative metabolism pathways, ROS scavenging activities, and some metabolites. The loss of peroxisomes in eukaryotes with reduced mitochondria is thus not unexpected. Surprisingly, we identified peroxisomes in the anaerobic, hydrogenosome-bearing protist Mastigamoeba balamuthi We found a conserved set of peroxin (Pex) proteins that are required for protein import, peroxisomal growth, and division. Key membrane-associated Pexs (MbPex3, MbPex11, and MbPex14) were visualized in numerous vesicles distinct from hydrogenosomes, the endoplasmic reticulum (ER), and Golgi complex. Proteomic analysis of cellular fractions and prediction of peroxisomal targeting signals (PTS1/PTS2) identified 51 putative peroxisomal matrix proteins. Expression of selected proteins in Saccharomyces cerevisiae revealed specific targeting to peroxisomes. The matrix proteins identified included components of acyl-CoA and carbohydrate metabolism and pyrimidine and CoA biosynthesis, whereas no components related to either β-oxidation or catalase were present. In conclusion, we identified a subclass of peroxisomes, named "anaerobic" peroxisomes that shift the current paradigm and turn attention to the reductive evolution of peroxisomes in anaerobic organisms.
Collapse
Affiliation(s)
- Tien Le
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic
| | - Vojtěch Žárský
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic
| | - Eva Nývltová
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic
| | - Petr Rada
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic
| | - Karel Harant
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic
| | - Marie Vancová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Zdeněk Verner
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic;
| |
Collapse
|
8
|
Zheng F, Colasante C, Voncken F. Characterisation of a mitochondrial iron transporter of the pathogen Trypanosoma brucei. Mol Biochem Parasitol 2019; 233:111221. [DOI: 10.1016/j.molbiopara.2019.111221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 12/25/2022]
|
9
|
Mitochondrial proteome profiling of Leishmania tropica. Microb Pathog 2019; 133:103542. [DOI: 10.1016/j.micpath.2019.103542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/17/2019] [Accepted: 05/14/2019] [Indexed: 12/24/2022]
|
10
|
Acosta H, Burchmore R, Naula C, Gualdrón-López M, Quintero-Troconis E, Cáceres AJ, Michels PAM, Concepción JL, Quiñones W. Proteomic analysis of glycosomes from Trypanosoma cruzi epimastigotes. Mol Biochem Parasitol 2019; 229:62-74. [PMID: 30831156 PMCID: PMC7082770 DOI: 10.1016/j.molbiopara.2019.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022]
Abstract
In Trypanosoma cruzi, the causal agent of Chagas disease, the first seven steps of glycolysis are compartmentalized in glycosomes, which are authentic but specialized peroxisomes. Besides glycolysis, activity of enzymes of other metabolic processes have been reported to be present in glycosomes, such as β-oxidation of fatty acids, purine salvage, pentose-phosphate pathway, gluconeogenesis and biosynthesis of ether-lipids, isoprenoids, sterols and pyrimidines. In this study, we have purified glycosomes from T. cruzi epimastigotes, collected the soluble and membrane fractions of these organelles, and separated peripheral and integral membrane proteins by Na2CO3 treatment and osmotic shock. Proteomic analysis was performed on each of these fractions, allowing us to confirm the presence of enzymes involved in various metabolic pathways as well as identify new components of this parasite's glycosomes.
Collapse
Affiliation(s)
- Héctor Acosta
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Richard Burchmore
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Christina Naula
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Melisa Gualdrón-López
- Instituto Salud Global, Hospital Clinic-Universitat de Barcelona, and Institute for Health Sciences Trias i Pujol, Barcelona, Spain
| | - Ender Quintero-Troconis
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, The University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela.
| |
Collapse
|
11
|
Buechner GS, Millington ME, Perry K, D'Antonio EL. The crystal structure of glucokinase from Leishmania braziliensis. Mol Biochem Parasitol 2018; 227:47-52. [PMID: 30571993 DOI: 10.1016/j.molbiopara.2018.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 11/30/2022]
Abstract
Glucokinase from pathogenic protozoa of the genus Leishmania is a potential drug target for the chemotherapeutic treatment against leishmaniasis because this enzyme is located at a nodal point between two critically important metabolic pathways, glycolysis and the pentose phosphate pathway (PPP). L. braziliensis glucokinase (LbGlcK) was evaluated for its structural characterization and enzymatic performance. The enzyme catalyzes the phosphorylation of d-glucose with co-substrate ATP to yield the products G6P and ADP. LbGlcK had KM values determined as 6.61 ± 2.63 mM and 0.338 ± 0.080 mM for d-glucose and ATP, respectively. The 1.85 Å resolution X-ray crystal structure of the apo form of LbGlcK was determined and a homodimer was revealed where each subunit (both in open conformations) included the typical small and large domains. Structural comparisons were assessed in relationship to Homo sapiens hexokinase IV and Trypanosoma cruzi glucokinase. Comparisons revealed that all residues important for making hydrogen bonding interactions with d-glucose in the active site and catalysis were strictly conserved. LbGlcK was screened against four glucosamine analogue inhibitors and the stronger inhibitor of the series, HPOP-GlcN, had a Ki value of 56.9 ± 16.6 μM that exhibited competitive inhibition. For the purpose of future structure-based drug design experimentation, L. braziliensis glucokinase was observed to be very similar to T. cruzi glucokinase even though there was a 44% protein sequence identity between the two enzymes.
Collapse
Affiliation(s)
- Gregory S Buechner
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC, 29909, USA
| | - Matthew E Millington
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC, 29909, USA
| | - Kay Perry
- NE-CAT, Department of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL, 60439, USA
| | - Edward L D'Antonio
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC, 29909, USA.
| |
Collapse
|
12
|
Negreiros RS, Lander N, Huang G, Cordeiro CD, Smith SA, Morrissey JH, Docampo R. Inorganic polyphosphate interacts with nucleolar and glycosomal proteins in trypanosomatids. Mol Microbiol 2018; 110:973-994. [PMID: 30230089 DOI: 10.1111/mmi.14131] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2018] [Indexed: 12/11/2022]
Abstract
Inorganic polyphosphate (polyP) is a polymer of three to hundreds of phosphate units bound by high-energy phosphoanhydride bonds and present from bacteria to humans. Most polyP in trypanosomatids is concentrated in acidocalcisomes, acidic calcium stores that possess a number of pumps, exchangers, and channels, and are important for their survival. In this work, using polyP as bait we identified > 25 putative protein targets in cell lysates of both Trypanosoma cruzi and Trypanosoma brucei. Gene ontology analysis of the binding partners found a significant over-representation of nucleolar and glycosomal proteins. Using the polyphosphate-binding domain (PPBD) of Escherichia coli exopolyphosphatase (PPX), we localized long-chain polyP to the nucleoli and glycosomes of trypanosomes. A competitive assay based on the pre-incubation of PPBD with exogenous polyP and subsequent immunofluorescence assay of procyclic forms (PCF) of T. brucei showed polyP concentration-dependent and chain length-dependent decrease in the fluorescence signal. Subcellular fractionation experiments confirmed the presence of polyP in glycosomes of T. brucei PCF. Targeting of yeast PPX to the glycosomes of PCF resulted in polyP hydrolysis, alteration in their glycolytic flux and increase in their susceptibility to oxidative stress.
Collapse
Affiliation(s)
- Raquel S Negreiros
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Noelia Lander
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.,Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Guozhong Huang
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Ciro D Cordeiro
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.,Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Stephanie A Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - James H Morrissey
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.,Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
13
|
Colasante C, Zheng F, Kemp C, Voncken F. A plant-like mitochondrial carrier family protein facilitates mitochondrial transport of di- and tricarboxylates in Trypanosoma brucei. Mol Biochem Parasitol 2018; 221:36-51. [PMID: 29581011 DOI: 10.1016/j.molbiopara.2018.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/22/2018] [Accepted: 03/21/2018] [Indexed: 12/31/2022]
Abstract
The procyclic form of the human parasite Trypanosoma brucei harbors one single, large mitochondrion containing all tricarboxylic acid (TCA) cycle enzymes and respiratory chain complexes present also in higher eukaryotes. Metabolite exchange among subcellular compartments such as the cytoplasm, the mitochondrion, and the peroxisomes is crucial for redox homeostasis and for metabolic pathways whose enzymes are dispersed among different organelles. In higher eukaryotes, mitochondrial carrier family (MCF) proteins transport TCA-cycle intermediates across the inner mitochondrial membrane. Previously, we identified several MCF members that are essential for T. brucei survival. Among these, only one MCF protein, TbMCP12, potentially could transport dicarboxylates and tricarboxylates. Here, we conducted phylogenetic and sequence analyses and functionally characterised TbMCP12 in vivo. Our results suggested that similarly to its homologues in plants, TbMCP12 transports both dicarboxylates and tricarboxylates across the mitochondrial inner membrane. Deleting this carrier in T. brucei was not lethal, while its overexpression was deleterious. Our results suggest that the intracellular abundance of TbMCP12 is an important regulatory element for the NADPH balance and mitochondrial ATP-production.
Collapse
Affiliation(s)
- Claudia Colasante
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Aulweg 123, University of Giessen, 35392, Giessen, Germany.
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, 1 Xue Yuan Road, Fu Zhou, Fujian, PR China
| | - Cordula Kemp
- Department of Biomedical Sciences, School of Life Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Frank Voncken
- Department of Biomedical Sciences, School of Life Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| |
Collapse
|
14
|
Fresh insights into the pyrimidine metabolism in the trypanosomatids. Parasit Vectors 2018; 11:87. [PMID: 29422065 PMCID: PMC5803862 DOI: 10.1186/s13071-018-2660-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/18/2018] [Indexed: 11/26/2022] Open
Abstract
The trypanosomatid parasites continue their killing spree resulting in significant annual mortality due to the lack of effective treatments and the prominence of these diseases in poorer countries. These dimorphic parasites thrive unchecked in the host system, outsmarting the immune mechanisms. An understanding of biology of these parasitic forms will help in the management and elimination of these fatal diseases. Investigation of various metabolic pathways in these parasites has shed light in the understanding of the unique biology of the trypansomatids. An understanding of these pathways have helped in tracing the soft targets in the metabolic pathways, which could be used as effective drug targets which would further impact the therupeutic implications. Pyrimidine pathway is a vital metabolic pathway which yields in the formation of pyrimidines, which are then integrated in nucleic acids (DNA and RNA) in sugars (UDP sugars) and lipids (CDP lipids). A wealth of data and information has been generated in the past decades by in-depth analyses of pyrimidine pathway in the trypanosomatid parasites, which can aid in the identification of anomalies between the parasitic and host counterpart which could be further harnessed to develop therapeutic interventions for the treatment of parasitic diseases. This review presents an updated and comprehensive detailing of the pyrimidine metabolism in the trypansomatids, their uniqueness and their distinctions, and its possible outcomes that would aid in the eradication of these parasitic diseases.
Collapse
|
15
|
Rondón-Mercado R, Acosta H, Cáceres AJ, Quiñones W, Concepción JL. Subcellular localization of glycolytic enzymes and characterization of intermediary metabolism of Trypanosoma rangeli. Mol Biochem Parasitol 2017. [PMID: 28645481 DOI: 10.1016/j.molbiopara.2017.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Trypanosoma rangeli is a hemoflagellate protist that infects wild and domestic mammals as well as humans in Central and South America. Although this parasite is not pathogenic for human, it is being studied because it shares with Trypanosoma cruzi, the etiological agent of Chagas' disease, biological characteristics, geographic distribution, vectors and vertebrate hosts. Several metabolic studies have been performed with T. cruzi epimastigotes, however little is known about the metabolism of T. rangeli. In this work we present the subcellular distribution of the T. rangeli enzymes responsible for the conversion of glucose to pyruvate, as determined by epifluorescense immunomicroscopy and subcellular fractionation involving either selective membrane permeabilization with digitonin or differential and isopycnic centrifugation. We found that in T. rangeli epimastigotes the first six enzymes of the glycolytic pathway, involved in the conversion of glucose to 1,3-bisphosphoglycerate are located within glycosomes, while the last four steps occur in the cytosol. In contrast with T. cruzi, where three isoenzymes (one cytosolic and two glycosomal) of phosphoglycerate kinase are expressed simultaneously, only one enzyme with this activity is detected in T. rangeli epimastigotes, in the cytosol. Consistent with this latter result, we found enzymes involved in auxiliary pathways to glycolysis needed to maintain adenine nucleotide and redox balances within glycosomes such as phosphoenolpyruvate carboxykinase, malate dehydrogenase, fumarate reductase, pyruvate phosphate dikinase and glycerol-3-phosphate dehydrogenase. Glucokinase, galactokinase and the first enzyme of the pentose-phosphate pathway, glucose-6-phosphate dehydrogenase, were also located inside glycosomes. Furthermore, we demonstrate that T. rangeli epimastigotes growing in LIT medium only consume glucose and do not excrete ammonium; moreover, they are unable to survive in partially-depleted glucose medium. The velocity of glucose consumption is about 40% higher than that of procyclic Trypanosoma brucei, and four times faster than by T. cruzi epimastigotes under the same culture conditions.
Collapse
Affiliation(s)
- Rocío Rondón-Mercado
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Héctor Acosta
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela.
| |
Collapse
|
16
|
Boitz JM, Jardim A, Ullman B. GMP reductase and genetic uncoupling of adenylate and guanylate metabolism in Leishmania donovani parasites. Mol Biochem Parasitol 2016; 208:74-83. [PMID: 27343371 DOI: 10.1016/j.molbiopara.2016.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 11/26/2022]
Abstract
Purine acquisition is an essential nutritional process for Leishmania. Although purine salvage into adenylate nucleotides has been investigated in detail, little attention has been focused on the guanylate branch of the purine pathway. To characterize guanylate nucleotide metabolism in Leishmania and create a cell culture model in which the pathways for adenylate and guanylate nucleotide synthesis can be genetically uncoupled for functional studies in intact cells, we created and characterized null mutants of L. donovani that were deficient in either GMP reductase alone (Δgmpr) or in both GMP reductase and its paralog IMP dehydrogenase (Δgmpr/Δimpdh). Whereas wild type parasites were capable of utilizing virtually any purine nucleobase/nucleoside, the Δgmpr and Δgmpr/Δimpdh null lines exhibited highly restricted growth phenotypes. The Δgmpr single mutant could not grow in xanthine, guanine, or their corresponding nucleosides, while no purine on its own could support the growth of Δgmpr/Δimpdh cells. Permissive growth conditions for the Δgmpr/Δimpdh necessitated both xanthine, guanine, or the corresponding nucleosides, and additionally, a second purine that could serve as a source for adenylate nucleotide synthesis. Interestingly, GMPR, like its paralog IMPDH, is compartmentalized to the leishmanial glycosome, a process mediated by its COOH-terminal peroxisomal targeting signal. The restricted growth phenotypes displayed by the L. donovani Δgmpr and Δgmpr/Δimpdh null mutants confirms the importance of GMPR in the purine interconversion processes of this parasite.
Collapse
Affiliation(s)
- Jan M Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Mail Code L224, Portland, OR 97239, USA
| | - Armando Jardim
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X3V9, Canada
| | - Buddy Ullman
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Mail Code L224, Portland, OR 97239, USA.
| |
Collapse
|
17
|
Trypanosoma evansi contains two auxiliary enzymes of glycolytic metabolism: Phosphoenolpyruvate carboxykinase and pyruvate phosphate dikinase. Exp Parasitol 2016; 165:7-15. [PMID: 26968775 DOI: 10.1016/j.exppara.2016.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/11/2016] [Accepted: 03/03/2016] [Indexed: 11/22/2022]
Abstract
Trypanosoma evansi is a monomorphic protist that can infect horses and other animal species of economic importance for man. Like the bloodstream form of the closely related species Trypanosoma brucei, T. evansi depends exclusively on glycolysis for its free-energy generation. In T. evansi as in other kinetoplastid organisms, the enzymes of the major part of the glycolytic pathway are present within organelles called glycosomes, which are authentic but specialized peroxisomes. Since T. evansi does not undergo stage-dependent differentiations, it occurs only as bloodstream forms, it has been assumed that the metabolic pattern of this parasite is identical to that of the bloodstream form of T. brucei. However, we report here the presence of two additional enzymes, phosphoenolpyruvate carboxykinase and PPi-dependent pyruvate phosphate dikinase in T. evansi glycosomes. Their colocalization with glycolytic enzymes within the glycosomes of this parasite has not been reported before. Both enzymes can make use of PEP for contributing to the production of ATP within the organelles. The activity of these enzymes in T. evansi glycosomes drastically changes the model assumed for the oxidation of glucose by this parasite.
Collapse
|
18
|
Glycosomal bromodomain factor 1 from Trypanosoma cruzi enhances trypomastigote cell infection and intracellular amastigote growth. Biochem J 2015; 473:73-85. [DOI: 10.1042/bj20150986] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/23/2015] [Indexed: 12/16/2022]
Abstract
We characterized bromodomain factor 1 from Trypanosoma cruzi (TcBDF1), a developmentally regulated protein that localizes in the glycosomes of epimastigotes. The overexpression of wild-type TcBDF1 is detrimental for epimastigotes, but favours trypomastigote infection, whereas mutant TcBDF1 diminishes the infectivity rate.
Collapse
|
19
|
Quiñones W, Cáceres AJ, Ruiz MT, Concepción JL. Glycosomal membrane proteins and lipids from Leishmania mexicana. Comp Biochem Physiol B Biochem Mol Biol 2015; 182:27-36. [DOI: 10.1016/j.cbpb.2014.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/18/2014] [Accepted: 11/29/2014] [Indexed: 11/29/2022]
|
20
|
Shameer S, Logan-Klumpler FJ, Vinson F, Cottret L, Merlet B, Achcar F, Boshart M, Berriman M, Breitling R, Bringaud F, Bütikofer P, Cattanach AM, Bannerman-Chukualim B, Creek DJ, Crouch K, de Koning HP, Denise H, Ebikeme C, Fairlamb AH, Ferguson MAJ, Ginger ML, Hertz-Fowler C, Kerkhoven EJ, Mäser P, Michels PAM, Nayak A, Nes DW, Nolan DP, Olsen C, Silva-Franco F, Smith TK, Taylor MC, Tielens AGM, Urbaniak MD, van Hellemond JJ, Vincent IM, Wilkinson SR, Wyllie S, Opperdoes FR, Barrett MP, Jourdan F. TrypanoCyc: a community-led biochemical pathways database for Trypanosoma brucei. Nucleic Acids Res 2014; 43:D637-44. [PMID: 25300491 PMCID: PMC4384016 DOI: 10.1093/nar/gku944] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The metabolic network of a cell represents the catabolic and anabolic reactions that interconvert small molecules (metabolites) through the activity of enzymes, transporters and non-catalyzed chemical reactions. Our understanding of individual metabolic networks is increasing as we learn more about the enzymes that are active in particular cells under particular conditions and as technologies advance to allow detailed measurements of the cellular metabolome. Metabolic network databases are of increasing importance in allowing us to contextualise data sets emerging from transcriptomic, proteomic and metabolomic experiments. Here we present a dynamic database, TrypanoCyc (http://www.metexplore.fr/trypanocyc/), which describes the generic and condition-specific metabolic network of Trypanosoma brucei, a parasitic protozoan responsible for human and animal African trypanosomiasis. In addition to enabling navigation through the BioCyc-based TrypanoCyc interface, we have also implemented a network-based representation of the information through MetExplore, yielding a novel environment in which to visualise the metabolism of this important parasite.
Collapse
Affiliation(s)
- Sanu Shameer
- Institut National de la Recherche Agronomique (INRA), UMR1331, TOXALIM (Research Centre in Food Toxicology), Université de Toulouse, Toulouse, France
| | | | - Florence Vinson
- Institut National de la Recherche Agronomique (INRA), UMR1331, TOXALIM (Research Centre in Food Toxicology), Université de Toulouse, Toulouse, France
| | - Ludovic Cottret
- Institut National de la Recherche Agronomique (INRA), UMR441, Laboratoire des Interactions Plantes-Microorganismes (LIPM), Auzeville, France
| | - Benjamin Merlet
- Institut National de la Recherche Agronomique (INRA), UMR1331, TOXALIM (Research Centre in Food Toxicology), Université de Toulouse, Toulouse, France
| | - Fiona Achcar
- University of Glasgow, Glasgow, Scotland, G12 8QQ, UK
| | - Michael Boshart
- Ludwig-Maximilians-Universität München, Biocenter, 82152-Martinsried, Germany
| | - Matthew Berriman
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Rainer Breitling
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | | | | | - Darren J Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
| | | | | | - Hubert Denise
- European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, UK
| | | | | | | | - Michael L Ginger
- Divisionof Biomedical and Life Sciences, Lancaster University, Bailrigg, Lancaster, LA1 4YG, UK
| | | | - Eduard J Kerkhoven
- Chalmers University of Technology, Kemivägen 10, 412 96, Göteborg, Sweden
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstr. 57, Basel 4051, Switzerland
| | | | - Archana Nayak
- University of Glasgow, Glasgow, Scotland, G12 8QQ, UK
| | | | | | | | | | - Terry K Smith
- University of St Andrews, St Andrews, Scotland, KY16 9ST, UK
| | | | - Aloysius G M Tielens
- Utrecht University, Utrecht, 3508 TD, The Netherlands Erasmus University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Michael D Urbaniak
- Divisionof Biomedical and Life Sciences, Lancaster University, Bailrigg, Lancaster, LA1 4YG, UK
| | | | | | | | - Susan Wyllie
- University of Dundee, Dundee, Scotland, DD1 4HN, UK
| | | | | | - Fabien Jourdan
- Institut National de la Recherche Agronomique (INRA), UMR1331, TOXALIM (Research Centre in Food Toxicology), Université de Toulouse, Toulouse, France
| |
Collapse
|
21
|
Rodriguez-Contreras D, Hamilton N. Gluconeogenesis in Leishmania mexicana: contribution of glycerol kinase, phosphoenolpyruvate carboxykinase, and pyruvate phosphate dikinase. J Biol Chem 2014; 289:32989-3000. [PMID: 25288791 DOI: 10.1074/jbc.m114.569434] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gluconeogenesis is an active pathway in Leishmania amastigotes and is essential for their survival within the mammalian cells. However, our knowledge about this pathway in trypanosomatids is very limited. We investigated the role of glycerol kinase (GK), phosphoenolpyruvate carboxykinase (PEPCK), and pyruvate phosphate dikinase (PPDK) in gluconeogenesis by generating the respective Leishmania mexicana Δgk, Δpepck, and Δppdk null mutants. Our results demonstrated that indeed GK, PEPCK, and PPDK are key players in the gluconeogenesis pathway in Leishmania, although stage-specific differences in their contribution to this pathway were found. GK participates in the entry of glycerol in promastigotes and amastigotes; PEPCK participates in the entry of aspartate in promastigotes, and PPDK is involved in the entry of alanine in amastigotes. Furthermore, the majority of alanine enters into the pathway via decarboxylation of pyruvate in promastigotes, whereas pathway redundancy is suggested for the entry of aspartate in amastigotes. Interestingly, we also found that l-lactate, an abundant glucogenic precursor in mammals, was used by Leishmania amastigotes to synthesize mannogen, entering the pathway through PPDK. On the basis of these new results, we propose a revision in the current model of gluconeogenesis in Leishmania, emphasizing the differences between amastigotes and promastigotes. This work underlines the importance of studying the trypanosomatid intracellular life cycle stages to gain a better understanding of the pathologies caused in humans.
Collapse
Affiliation(s)
- Dayana Rodriguez-Contreras
- From the Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon 97239
| | - Nicklas Hamilton
- From the Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon 97239
| |
Collapse
|
22
|
Bauer S, Conlon M, Morris M. Using fluorescent proteins to monitor glycosome dynamics in the African trypanosome. J Vis Exp 2014:e51647. [PMID: 25177828 DOI: 10.3791/51647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Trypanosoma brucei is a kinetoplastid parasite that causes human African trypanosomiasis (HAT), or sleeping sickness, and a wasting disease, nagana, in cattle. The parasite alternates between the bloodstream of the mammalian host and the tsetse fly vector. The composition of many cellular organelles changes in response to these different extracellular conditions. Glycosomes are highly specialized peroxisomes in which many of the enzymes involved in glycolysis are compartmentalized. Glycosome composition changes in a developmental and environmentally regulated manner. Currently, the most common techniques used to study glycosome dynamics are electron and fluorescence microscopy; techniques that are expensive, time and labor intensive, and not easily adapted to high throughput analyses. To overcome these limitations, a fluorescent-glycosome reporter system in which enhanced yellow fluorescent protein (eYFP) is fused to a peroxisome targeting sequence (PTS2), which directs the fusion protein to glycosomes, has been established. Upon import of the PTS2eYFP fusion protein, glycosomes become fluorescent. Organelle degradation and recycling results in the loss of fluorescence that can be measured by flow cytometry. Large numbers of cells (5,000 cells/sec) can be analyzed in real-time without extensive sample preparation such as fixation and mounting. This method offers a rapid way of detecting changes in organelle composition in response to fluctuating environmental conditions.
Collapse
Affiliation(s)
- Sarah Bauer
- Department of Genetics and Biochemistry, Clemson University Eukaryotic Pathogens Innovation Center
| | - Meghan Conlon
- Department of Genetics and Biochemistry, Clemson University Eukaryotic Pathogens Innovation Center
| | - Meredith Morris
- Department of Genetics and Biochemistry, Clemson University Eukaryotic Pathogens Innovation Center;
| |
Collapse
|
23
|
Barros-Álvarez X, Cáceres AJ, Michels PA, Concepción JL, Quiñones W. The phosphoglycerate kinase isoenzymes have distinct roles in the regulation of carbohydrate metabolism in Trypanosoma cruzi. Exp Parasitol 2014; 143:39-47. [DOI: 10.1016/j.exppara.2014.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/04/2014] [Accepted: 05/07/2014] [Indexed: 12/01/2022]
|
24
|
Deramchia K, Morand P, Biran M, Millerioux Y, Mazet M, Wargnies M, Franconi JM, Bringaud F. Contribution of pyruvate phosphate dikinase in the maintenance of the glycosomal ATP/ADP balance in the Trypanosoma brucei procyclic form. J Biol Chem 2014; 289:17365-78. [PMID: 24794874 DOI: 10.1074/jbc.m114.567230] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma brucei belongs to a group of protists that sequester the first six or seven glycolytic steps inside specialized peroxisomes, named glycosomes. Because of the glycosomal membrane impermeability to nucleotides, ATP molecules consumed by the first glycolytic steps need to be regenerated in the glycosomes by kinases, such as phosphoenolpyruvate carboxykinase (PEPCK). The glycosomal pyruvate phosphate dikinase (PPDK), which reversibly converts phosphoenolpyruvate into pyruvate, could also be involved in this process. To address this question, we analyzed the metabolism of the main carbon sources used by the procyclic trypanosomes (glucose, proline, and threonine) after deletion of the PPDK gene in the wild-type (Δppdk) and PEPCK null (Δppdk/Δpepck) backgrounds. The rate of acetate production from glucose is 30% reduced in the Δppdk mutant, whereas threonine-derived acetate production is not affected, showing that PPDK function in the glycolytic direction with production of ATP in the glycosomes. The Δppdk/Δpepck mutant incubated in glucose as the only carbon source showed a 3.8-fold reduction of the glycolytic rate compared with the Δpepck mutant, as a consequence of the imbalanced glycosomal ATP/ADP ratio. The role of PPDK in maintenance of the ATP/ADP balance was confirmed by expressing the glycosomal phosphoglycerate kinase (PGKC) in the Δppdk/Δpepck cell line, which restored the glycolytic flux. We also observed that expression of PGKC is lethal for procyclic trypanosomes, as a consequence of ATP depletion, due to glycosomal relocation of cytosolic ATP production. This illustrates the key roles played by glycosomal and cytosolic kinases, including PPDK, to maintain the cellular ATP/ADP homeostasis.
Collapse
Affiliation(s)
- Kamel Deramchia
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Pauline Morand
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Marc Biran
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Yoann Millerioux
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Muriel Mazet
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Marion Wargnies
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Jean-Michel Franconi
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Frédéric Bringaud
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| |
Collapse
|
25
|
Sanchez LM, Knudsen GM, Hartmann C, De Muylder G, Mascuch SM, Mackey ZB, Gerwick L, Clayton C, McKerrow JH, Linington RG. Examination of the mode of action of the almiramide family of natural products against the kinetoplastid parasite Trypanosoma brucei. JOURNAL OF NATURAL PRODUCTS 2013; 76:630-41. [PMID: 23445522 PMCID: PMC3971013 DOI: 10.1021/np300834q] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Almiramide C is a marine natural product with low micromolar activity against Leishmania donovani, the causative agent of leishmaniasis. We have now shown that almiramide C is also active against the related parasite Trypanosoma brucei, the causative agent of human African trypanosomiasis. A series of activity-based probes have been synthesized to explore both the molecular target of this compound series in T. brucei lysates and site localization through epifluorescence microscopy. These target identification studies indicate that the almiramides likely perturb glycosomal function through disruption of membrane assembly machinery. Glycosomes, which are organelles specific to kinetoplastid parasites, house the first seven steps of glycolysis and have been shown to be essential for parasite survival in the bloodstream stage. There are currently no reported small-molecule disruptors of glycosome function, making the almiramides unique molecular probes for this understudied parasite-specific organelle. Additionally, examination of toxicity in an in vivo zebrafish model has shown that these compounds have little effect on organism development, even at high concentrations, and has uncovered a potential side effect through localization of fluorescent derivatives to zebrafish neuromast cells. Combined, these results further our understanding of the potential value of this lead series as development candidates against T. brucei.
Collapse
Affiliation(s)
- Laura M. Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
| | - Giselle M. Knudsen
- Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, CA 94143
| | - Claudia Hartmann
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Heidelberg, Heidelberg, Germany D-69120
| | - Geraldine De Muylder
- Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, CA 94143
| | - Samantha M. Mascuch
- Center for Marine Biotechnology and Biomedicine, Scripps Institute of Oceanography, University of California San Diego, San Diego, CA 92093
| | - Zachary B. Mackey
- Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, CA 94143
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institute of Oceanography, University of California San Diego, San Diego, CA 92093
| | - Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Heidelberg, Heidelberg, Germany D-69120
| | - James H. McKerrow
- Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, CA 94143
| | - Roger G. Linington
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
26
|
Boitz JM, Strasser R, Yates PA, Jardim A, Ullman B. Adenylosuccinate synthetase and adenylosuccinate lyase deficiencies trigger growth and infectivity deficits in Leishmania donovani. J Biol Chem 2013; 288:8977-90. [PMID: 23404497 DOI: 10.1074/jbc.m112.431486] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leishmania are auxotrophic for purines, and consequently purine acquisition from the host is a requisite nutritional function for the parasite. Both adenylosuccinate synthetase (ADSS) and adenylosuccinate lyase (ASL) have been identified as vital components of purine salvage in Leishmania donovani, and therefore Δadss and Δasl null mutants were constructed to test this hypothesis. Unlike wild type L. donovani, Δadss and Δasl parasites in culture exhibited a profoundly restricted growth phenotype in which the only permissive growth conditions were a 6-aminopurine source in the presence of 2'-deoxycoformycin, an inhibitor of adenine aminohydrolase activity. Although both knock-outs showed a diminished capacity to infect murine peritoneal macrophages, only the Δasl null mutant was profoundly incapacitated in its ability to infect mice. The enormous discrepancy in parasite loads observed in livers and spleens from mice infected with either Δadss or Δasl parasites can be explained by selective accumulation of adenylosuccinate in the Δasl knock-out and consequent starvation for guanylate nucleotides. Genetic complementation of a Δasl lesion in Escherichia coli implied that the L. donovani ASL could also recognize 5-aminoimidazole-(N-succinylocarboxamide) ribotide as a substrate, and purified recombinant ASL displayed an apparent Km of ∼24 μm for adenylosuccinate. Unlike many components of the purine salvage pathway of L. donovani, both ASL and ADSS are cytosolic enzymes. Overall, these data underscore the paramount importance of ASL to purine salvage by both life cycle stages of L. donovani and authenticate ASL as a potential drug target in Leishmania.
Collapse
Affiliation(s)
- Jan M Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
27
|
Serricchio M, Bütikofer P. Phosphatidylglycerophosphate synthase associates with a mitochondrial inner membrane complex and is essential for growth ofTrypanosoma brucei. Mol Microbiol 2012. [DOI: 10.1111/mmi.12116] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mauro Serricchio
- Institute of Biochemistry & Molecular Medicine; University of Bern; Bern; Switzerland
| | - Peter Bütikofer
- Institute of Biochemistry & Molecular Medicine; University of Bern; Bern; Switzerland
| |
Collapse
|
28
|
Role of cytosolic glyceraldehyde-3-phosphate dehydrogenase in visceral organ infection by Leishmania donovani. EUKARYOTIC CELL 2012; 12:70-7. [PMID: 23125352 DOI: 10.1128/ec.00263-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The initial 7 steps of the glycolytic pathway from glucose to 3-phosphoglycerate are localized in the glycosomes in Leishmania, including step 6, catalyzed by the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In L. donovani and L. mexicana, there exists a second GAPDH enzyme present in the cytosol that is absent in L. braziliensis and that has become a pseudogene in L. major. To investigate the role of the cytosolic GAPDH (cGAPDH), an L. donovani cGAPDH-null mutant was generated, and conversely, the functional L. donovani cGAPDH was introduced into L. major and the resulting engineered parasites were characterized. The L. donovani cGAPDH-null mutant was able to proliferate at the same rate as the wild-type parasite in glucose-deficient medium. However, in the presence of glucose, the L. donovani cGAPDH-null mutant consumed less glucose and proliferated more slowly than the wild-type parasite and displayed reduced infectivity in visceral organs of experimentally infected mice. This demonstrates that cGAPDH is functional in L. donovani and is required for survival in visceral organs. Restoration of cGAPDH activity in L. major, in contrast, had an adverse effect on L. major proliferation in glucose-containing medium, providing a possible explanation of why it has evolved into a pseudogene in L. major. This study indicates that there is a difference in glucose metabolism between L. donovani and L. major, and this may represent an important factor in the ability of L. donovani to cause visceral disease.
Collapse
|
29
|
Developments in diagnosis and antileishmanial drugs. Interdiscip Perspect Infect Dis 2012; 2012:626838. [PMID: 23118748 PMCID: PMC3483814 DOI: 10.1155/2012/626838] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/07/2012] [Accepted: 09/11/2012] [Indexed: 01/19/2023] Open
Abstract
Leishmaniasis ranks the third in disease burden in disability-adjusted life years caused by neglected tropical diseases and is the second cause of parasite-related deaths after malaria; but for a variety of reasons, it is not receiving the attention that would be justified seeing its importance. Leishmaniasis is a diverse group of clinical syndromes caused by protozoan parasites of the genus Leishmania. It is estimated that 350 million people are at risk in 88 countries, with a global incidence of 1–1.5 million cases of cutaneous and 500,000 cases of visceral leishmaniasis. Improvements in diagnostic methods for early case detection and latest combitorial chemotherapeutic methods have given a new hope for combating this deadly disease. The cell biology of Leishmania and mammalian cells differs considerably and this distinctness extends to the biochemical level. This provides the promise that many of the parasite's proteins should be sufficiently different from hosts and can be successfully exploited as drug targets. This paper gives a brief overview of recent developments in the diagnosis and approaches in antileishmanial drug discovery and development.
Collapse
|
30
|
Theoretical and in vitro studies of a C-terminal peptide from PGKC of Leishmania mexicana mexicana. Mol Biochem Parasitol 2012; 185:27-35. [PMID: 22710389 DOI: 10.1016/j.molbiopara.2012.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 11/20/2022]
Abstract
Trypanosomatids cause deadly diseases in humans. Of the various biochemical pathways in trypanosomatids, glycolysis, has received special attention because of being sequestered in peroxisome like organelles critical for the survival of the parasites. This study focuses on phosphoglycerate kinase (PGK) from Leishmania spp. which, exists in two isoforms, the cytoplasmic PGKB and glycosomal PGKC differing in their biochemical properties. Computational analysis predicted the likelihood of a transmembrane helix only in the glycosomal isoform PGKC, of approximate length 20 residues in the 62-residue extension, ending at, arginine residues R471 and R472. From experimental studies using circular dichroism and NMR with deuterated sodium dodecyl sulfate, we find that the transmembrane helix spans residues 448±2 to 476 in Leishmania mexicana PGKC. The significance of this observation is discussed in the context of glycosomal transport and substrate tunneling.
Collapse
|
31
|
Cliffe LJ, Hirsch G, Wang J, Ekanayake D, Bullard W, Hu M, Wang Y, Sabatini R. JBP1 and JBP2 proteins are Fe2+/2-oxoglutarate-dependent dioxygenases regulating hydroxylation of thymidine residues in trypanosome DNA. J Biol Chem 2012; 287:19886-95. [PMID: 22514282 DOI: 10.1074/jbc.m112.341974] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have recently demonstrated that O-linked glucosylation of thymine in trypanosome DNA (base J) regulates polymerase II transcription initiation. In vivo analysis has indicated that base J synthesis is initiated by the hydroxylation of thymidine by proteins (JBP1 and JBP2) homologous to the Fe(2+)/2-oxoglutarate (2-OG)-dependent dioxygenase superfamily where hydroxylation is driven by the oxidative decarboxylation of 2-OG, forming succinate and CO(2). However, no direct evidence for hydroxylase activity has been reported for the JBP proteins. We now demonstrate recombinant JBP1 hydroxylates thymine specifically in the context of dsDNA in a Fe(2+)-, 2-OG-, and O(2)-dependent manner. Under anaerobic conditions, the addition of Fe(2+) to JBP1/2-OG results in the formation of a broad absorption spectrum centered at 530 nm attributed to metal chelation of 2-OG bound to JBP, a spectroscopic signature of Fe(2+)/2-OG-dependent dioxygenases. The N-terminal thymidine hydroxylase domain of JBP1 is sufficient for full activity and mutation of residues involved in coordinating Fe(2+) inhibit iron binding and thymidine hydroxylation. Hydroxylation in vitro and J synthesis in vivo is inhibited by known inhibitors of Fe(2+)/2-OG-dependent dioxygenases. The data clearly demonstrate the JBP enzymes are dioxygenases acting directly on dsDNA, confirming the two-step J synthesis model. Growth of trypanosomes in hypoxic conditions decreases JBP1 and -2 activity, resulting in reduced levels of J and changes in parasite virulence previously characterized in the JBP KO. The influence of environment upon J biosynthesis via oxygen-sensitive regulation of JBP1/2 has exciting implications for the regulation of gene expression and parasite adaptation to different host niches.
Collapse
Affiliation(s)
- Laura J Cliffe
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Newman JA, Hewitt L, Rodrigues C, Solovyova AS, Harwood CR, Lewis RJ. Dissection of the network of interactions that links RNA processing with glycolysis in the Bacillus subtilis degradosome. J Mol Biol 2012; 416:121-36. [PMID: 22198292 DOI: 10.1016/j.jmb.2011.12.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/07/2011] [Accepted: 12/12/2011] [Indexed: 11/16/2022]
Abstract
The RNA degradosome is a multiprotein macromolecular complex that is involved in the degradation of messenger RNA in bacteria. The composition of this complex has been found to display a high degree of evolutionary divergence, which may reflect the adaptation of species to different environments. Recently, a degradosome-like complex identified in Bacillus subtilis was found to be distinct from those found in proteobacteria, the degradosomes of which are assembled around the unstructured C-terminus of ribonuclease E, a protein not present in B. subtilis. In this report, we have investigated in vitro the binary interactions between degradosome components and have characterized interactions between glycolytic enzymes, RNA-degrading enzymes, and those that appear to link these two cellular processes. The crystal structures of the glycolytic enzymes phosphofructokinase and enolase are presented and discussed in relation to their roles in the mediation of complex protein assemblies. Taken together, these data provide valuable insights into the structure and dynamics of the RNA degradosome, a fascinating and complex macromolecular assembly that links RNA degradation with central carbon metabolism.
Collapse
Affiliation(s)
- Joseph A Newman
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | | | |
Collapse
|
33
|
Boitz JM, Strasser R, Hartman CU, Jardim A, Ullman B. Adenine aminohydrolase from Leishmania donovani: unique enzyme in parasite purine metabolism. J Biol Chem 2012; 287:7626-39. [PMID: 22238346 DOI: 10.1074/jbc.m111.307884] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenine aminohydrolase (AAH) is an enzyme that is not present in mammalian cells and is found exclusively in Leishmania among the protozoan parasites that infect humans. AAH plays a paramount role in purine metabolism in this genus by steering 6-aminopurines into 6-oxypurines. Leishmania donovani AAH is 38 and 23% identical to Saccharomyces cerevisiae AAH and human adenosine deaminase enzymes, respectively, catalyzes adenine deamination to hypoxanthine with an apparent K(m) of 15.4 μM, and does not recognize adenosine as a substrate. Western blot analysis established that AAH is expressed in both life cycle stages of L. donovani, whereas subcellular fractionation and immunofluorescence studies confirmed that AAH is localized to the parasite cytosol. Deletion of the AAH locus in intact parasites established that AAH is not an essential gene and that Δaah cells are capable of salvaging the same range of purine nucleobases and nucleosides as wild type L. donovani. The Δaah null mutant was able to infect murine macrophages in vitro and in mice, although the parasite loads in both model systems were modestly reduced compared with wild type infections. The Δaah lesion was also introduced into a conditionally lethal Δhgprt/Δxprt mutant in which viability was dependent on pharmacologic ablation of AAH by 2'-deoxycoformycin. The Δaah/Δhgprt/Δxprt triple knock-out no longer required 2'-deoxycoformycin for growth and was avirulent in mice with no persistence after a 4-week infection. These genetic studies underscore the paramount importance of AAH to purine salvage by L. donovani.
Collapse
Affiliation(s)
- Jan M Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
34
|
Lavorato SN, Andrade SF, Silva THA, Alves RJ, Oliveira RB. Phosphofructokinase: structural and functional aspects and design of selective inhibitors. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20122d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Enlightening the molecular basis of trypanothione specificity in trypanosomatids: Mutagenesis of Leishmania infantum glyoxalase II. Exp Parasitol 2011; 129:402-8. [DOI: 10.1016/j.exppara.2011.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 08/03/2011] [Accepted: 08/08/2011] [Indexed: 11/24/2022]
|
36
|
Mabiala-Bassiloua CG, Arthus-Cartier G, Hannaert V, Thérisod H, Sygusch J, Thérisod M. Mannitol Bis-phosphate Based Inhibitors of Fructose 1,6-Bisphosphate Aldolases. ACS Med Chem Lett 2011; 2:804-8. [PMID: 24900268 DOI: 10.1021/ml200129s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 09/02/2011] [Indexed: 11/29/2022] Open
Abstract
Several 5-O-alkyl- and 5-C-alkyl-mannitol bis-phosphates were synthesized and comparatively assayed as inhibitors of fructose bis-phosphate aldolases (Fbas) from rabbit muscle (taken as surrogate model of the human enzyme) and from Trypanosoma brucei. A limited selectivity was found in several instances. Crystallographic studies confirm that the 5-O-methyl derivative binds competitively with substrate and the 5-O-methyl moiety penetrating deeper into a shallow hydrophobic pocket at the active site. This observation can lead to the preparation of selective competitive or irreversible inhibitors of the parasite Fba.
Collapse
Affiliation(s)
| | | | - Véronique Hannaert
- Research Unit for Tropical Diseases, de Duve Institute, TROP 74.39, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | - Hélène Thérisod
- ECBB, ICMMO (UMR 8182), LabEx LERMIT, Université Paris-Sud, UMR 8182, F-91405 Orsay, France
| | - Jurgen Sygusch
- Biochimie, Université de Montréal, CP 6128, Stn Centre-Ville Montréal, PQ H3C 3J7 Canada
| | - Michel Thérisod
- ECBB, ICMMO (UMR 8182), LabEx LERMIT, Université Paris-Sud, UMR 8182, F-91405 Orsay, France
| |
Collapse
|
37
|
Bassarak B, Uzcátegui NL, Schönfeld C, Duszenko M. Functional characterization of three aquaglyceroporins from Trypanosoma brucei in osmoregulation and glycerol transport. Cell Physiol Biochem 2011; 27:411-20. [PMID: 21471730 DOI: 10.1159/000327968] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2011] [Indexed: 11/19/2022] Open
Abstract
Previous studies using bloodstream form Trypanosoma brucei have shown that glycerol transport in this parasite occurs via specific membrane proteins, namely a glycerol transporter and glycerol channels [1]. Later, we cloned, expressed and characterized the transport properties of all three aquaglyceroporins (AQP1-3) [2], which were found permeable for water, glycerol and other small uncharged solutes like dihydroxyacetone [3]. Here, we report on the cellular localization of TbAQP1 and TbAQP3 in bloodstream form trypanosomes. Indirect immunofluorescence analysis showed that TbAQP1 is exclusively localized in the flagellar membrane, whereas TbAQP3 was found in the plasma membrane.In addition, we analyzed the functions of all 3 AQPs, using an inducible inheritable double-stranded RNA interference methodology. All AQP knockdown cell lines were still able to survive hypo-osmotic stress conditions, except AQP2 knockdown parasites. Depleted TbAQP2 negatively impacted cell growth and the regulatory volume recovery, whereas AQP1 und 3 knockdown trypanosomes displayed phenotypes consistent with their localization in external membranes. A simultaneous knockdown of all 3 AQPs showed that the cells were able to substitute the missing glycerol uptake capability through a putative glycerol transporter.
Collapse
Affiliation(s)
- Björn Bassarak
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | | | | | | |
Collapse
|
38
|
Makiuchi T, Annoura T, Hashimoto M, Hashimoto T, Aoki T, Nara T. Compartmentalization of a glycolytic enzyme in Diplonema, a non-kinetoplastid euglenozoan. Protist 2011; 162:482-9. [PMID: 21377422 DOI: 10.1016/j.protis.2010.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 11/23/2010] [Indexed: 11/18/2022]
Abstract
Glycosomes are peroxisome-related organelles containing glycolytic enzymes that have been found only in kinetoplastids. We show here that a glycolytic enzyme is compartmentalized in diplonemids, the sister group of kinetoplastids. We found that, similar to kinetoplastid aldolases, the fructose 1,6-bisphosphate aldolase of Diplonema papillatum possesses a type 2-peroxisomal targeting signal. Western blotting showed that this aldolase was present predominantly in the membrane/organellar fraction. Immunofluorescence analysis showed that this aldolase had a scattered distribution in the cytosol, suggesting its compartmentalization. In contrast, orotidine-5'-monophosphate decarboxylase, a non-glycolytic glycosomal enzyme in kinetoplastids, was shown to be a cytosolic enzyme in D. papillatum. Since euglenoids, the earliest diverging branch of Euglenozoa, do not possess glycolytic compartments, these findings suggest that the routing of glycolytic enzymes into peroxisomes may have occurred in a common ancestor of diplonemids and kinetoplastids, followed by diversification of these newly established organelles in each of these euglenozoan lineages.
Collapse
Affiliation(s)
- Takashi Makiuchi
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | | | |
Collapse
|
39
|
RICHMOND GREGORYS, GIBELLINI FEDERICA, YOUNG SIMONA, MAJOR LOUISE, DENTON HELEN, LILLEY ALISON, SMITH TERRYK. Lipidomic analysis of bloodstream and procyclic form Trypanosoma brucei. Parasitology 2010; 137:1357-92. [PMID: 20602846 PMCID: PMC3744936 DOI: 10.1017/s0031182010000715] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The biological membranes of Trypanosoma brucei contain a complex array of phospholipids that are synthesized de novo from precursors obtained either directly from the host, or as catabolised endocytosed lipids. This paper describes the use of nanoflow electrospray tandem mass spectrometry and high resolution mass spectrometry in both positive and negative ion modes, allowing the identification of approximately 500 individual molecular phospholipids species from total lipid extracts of cultured bloodstream and procyclic form T. brucei. Various molecular species of all of the major subclasses of glycerophospholipids were identified including phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol as well as phosphatidic acid, phosphatidylglycerol and cardolipin, and the sphingolipids sphingomyelin, inositol phosphoceramide and ethanolamine phosphoceramide. The lipidomic data obtained in this study will aid future biochemical phenotyping of either genetically or chemically manipulated commonly used bloodstream and procyclic strains of Trypanosoma brucei. Hopefully this will allow a greater understanding of the bizarre world of lipids in this important human pathogen.
Collapse
Affiliation(s)
| | - FEDERICA GIBELLINI
- Centre for Biomolecular Sciences, The North Haugh, The University, St. Andrews, KY16 9ST, Scotland, U.K
| | - SIMON A. YOUNG
- Centre for Biomolecular Sciences, The North Haugh, The University, St. Andrews, KY16 9ST, Scotland, U.K
| | - LOUISE MAJOR
- Centre for Biomolecular Sciences, The North Haugh, The University, St. Andrews, KY16 9ST, Scotland, U.K
| | - HELEN DENTON
- Centre for Biomolecular Sciences, The North Haugh, The University, St. Andrews, KY16 9ST, Scotland, U.K
| | - ALISON LILLEY
- Centre for Biomolecular Sciences, The North Haugh, The University, St. Andrews, KY16 9ST, Scotland, U.K
| | - TERRY K. SMITH
- Centre for Biomolecular Sciences, The North Haugh, The University, St. Andrews, KY16 9ST, Scotland, U.K
| |
Collapse
|
40
|
Barata L, Sousa Silva M, Schuldt L, da Costa G, Tomás AM, Ferreira AEN, Weiss MS, Ponces Freire A, Cordeiro C. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of glyoxalase I from Leishmania infantum. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:571-4. [PMID: 20445262 DOI: 10.1107/s1744309110010754] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 03/22/2010] [Indexed: 05/26/2023]
Abstract
Glyoxalase I (GLO1) is the first of the two glyoxalase-pathway enzymes. It catalyzes the formation of S-D-lactoyltrypanothione from the non-enzymatically formed hemithioacetal of methylglyoxal and reduced trypanothione. In order to understand its substrate binding and catalytic mechanism, GLO1 from Leishmania infantum was cloned, overexpressed in Escherichia coli, purified and crystallized. Two crystal forms were obtained: a cube-shaped form and a rod-shaped form. While the cube-shaped form did not diffract X-rays at all, the rod-shaped form exhibited diffraction to about 2.0 A resolution. The crystals belonged to space group P2(1)2(1)2, with unit-cell parameters a = 130.03, b = 148.51, c = 50.63 A and three dimers of the enzyme per asymmetric unit.
Collapse
Affiliation(s)
- Lídia Barata
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Campo Grande, Edificio C8, 1149-016 Lisboa, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Balogun EO, Inaoka DK, Kido Y, Shiba T, Nara T, Aoki T, Honma T, Tanaka A, Inoue M, Matsuoka S, Michels PAM, Harada S, Kita K. Overproduction, purification, crystallization and preliminary X-ray diffraction analysis of Trypanosoma brucei gambiense glycerol kinase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:304-8. [PMID: 20208167 PMCID: PMC2833043 DOI: 10.1107/s1744309110000369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 01/05/2010] [Indexed: 11/10/2022]
Abstract
In the bloodstream forms of human trypanosomes, glycerol kinase (GK; EC 2.7.1.30) is one of the nine glycosomally compartmentalized enzymes that are essential for energy metabolism. In this study, a recombinant Trypanosoma brucei gambiense GK (rTbgGK) with an N-terminal cleavable His(6) tag was overexpressed, purified to homogeneity and crystallized by the sitting-drop vapour-diffusion method using PEG 400 as a precipitant. A complete X-ray diffraction data set to 2.75 A resolution indicated that the crystals belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 63.84, b = 121.50, c = 154.59 A. The presence of two rTbgGK molecules in the asymmetric unit gives a Matthews coefficient (V(M)) of 2.5 A(3) Da(-1), corresponding to 50% solvent content.
Collapse
Affiliation(s)
- Emmanuel Oluwadare Balogun
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasutoshi Kido
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoo Shiba
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeshi Nara
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Takashi Aoki
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Teruki Honma
- Systems and Structural Biology Center, RIKEN, Tsurumi, Yokohama 230-0045, Japan
| | - Akiko Tanaka
- Systems and Structural Biology Center, RIKEN, Tsurumi, Yokohama 230-0045, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shigeru Matsuoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Paul A. M. Michels
- Research Unit for Tropical Diseases, de Duve Institute and Laboratory of Biochemistry, Université Catholique de Louvain, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
42
|
Rodríguez E, Lander N, Ramirez JL. Molecular and biochemical characterisation of Trypanosoma cruzi phosphofructokinase. Mem Inst Oswaldo Cruz 2010; 104:745-8. [PMID: 19820836 DOI: 10.1590/s0074-02762009000500014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 06/29/2009] [Indexed: 11/21/2022] Open
Abstract
The characterisation of the gene encoding Trypanosoma cruzi CL Brener phosphofructokinase (PFK) and the biochemical properties of the expressed enzyme are reported here. In contradiction with previous reports, the PFK genes of CL Brener and YBM strain T. cruzi were found to be similar to their Leishmania mexicana and Trypanosoma brucei homologs in terms of both kinetic properties and size, with open reading frames encoding polypeptides with a deduced molecular mass of 53,483. The predicted amino acid sequence contains the C-terminal glycosome-targeting tripeptide SKL; this localisation was confirmed by immunofluorescence assays. In sequence comparisons with the genes of other eukaryotes, it was found that, despite being an adenosine triphosphate-dependent enzyme, T. cruzi PFK shows significant sequence similarity with inorganic pyrophosphate-dependent PFKs.
Collapse
Affiliation(s)
- Evelyn Rodríguez
- Centro de Biotecnología, Instituto de Estudios Avanzados, Caracas, Venezuela
| | | | | |
Collapse
|
43
|
Immunobiology of African trypanosomes: need of alternative interventions. J Biomed Biotechnol 2010; 2010:389153. [PMID: 20182644 PMCID: PMC2826769 DOI: 10.1155/2010/389153] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 10/29/2009] [Accepted: 12/23/2009] [Indexed: 02/08/2023] Open
Abstract
Trypanosomiasis is one of the major parasitic diseases for which control is still far from reality. The vaccination approaches by using dominant surface proteins have not been successful, mainly due to antigenic variation of the parasite surface coat. On the other hand, the chemotherapeutic drugs in current use for the treatment of this disease are toxic and problems of resistance are increasing (see Kennedy (2004) and Legros et al. (2002)). Therefore, alternative approaches in both treatment and vaccination against trypanosomiasis are needed at this time. To be able to design and develop such alternatives, the biology of this parasite and the host response against the pathogen need to be studied. These two aspects of this disease with few examples of alternative approaches are discussed here.
Collapse
|
44
|
Alves-Ferreira M, Guimarães ACR, Capriles PVDSZ, Dardenne LE, Degrave WM. A new approach for potential drug target discovery through in silico metabolic pathway analysis using Trypanosoma cruzi genome information. Mem Inst Oswaldo Cruz 2009; 104:1100-10. [DOI: 10.1590/s0074-02762009000800006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 10/28/2009] [Indexed: 11/22/2022] Open
|
45
|
Nowicki MW, Kuaprasert B, McNae IW, Morgan HP, Harding MM, Michels PAM, Fothergill-Gilmore LA, Walkinshaw MD. Crystal structures of Leishmania mexicana phosphoglycerate mutase suggest a one-metal mechanism and a new enzyme subclass. J Mol Biol 2009; 394:535-43. [PMID: 19781556 DOI: 10.1016/j.jmb.2009.09.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/11/2009] [Accepted: 09/16/2009] [Indexed: 01/23/2023]
Abstract
The structures of Leishmania mexicana cofactor-independent phosphoglycerate mutase (Lm iPGAM) crystallised with the substrate 3-phosphoglycerate at high and low cobalt concentrations have been solved at 2.00- and 1.90-A resolutions. Both structures are very similar and the active site contains both 3-phosphoglycerate and 2-phosphoglycerate at equal occupancies (50%). Lm iPGAM co-crystallised with the product 2-phosphoglycerate yields the same structure. Two Co(2+) are coordinated within the active site with different geometries and affinities. The cobalt at the M1 site has a distorted octahedral geometry and is present at 100% occupancy. The M2-site Co(2+) binds with distorted tetrahedral geometry, with only partial occupancy, and coordinates with Ser75, the residue involved in phosphotransfer. When the M2 site is occupied, the side chain of Ser75 adopts a position that is unfavourable for catalysis, indicating that this site may not be occupied under physiological conditions and that catalysis may occur via a one-metal mechanism. The geometry of the M2 site suggests that it is possible for Ser75 to be activated for phosphotransfer by H-bonding to nearby residues rather than by metal coordination. The 16 active-site residues of Lm iPGAM are conserved in the Mn-dependent iPGAM from Bacillus stearothermophilus (33% overall sequence identity). However, Lm iPGAM has an inserted tyrosine (Tyr210) that causes the M2 site to diminish in size, consistent with its reduced metal affinity. Tyr210 is present in trypanosomatid and plant iPGAMs, but not in the enzymes from other organisms, indicating that there are two subclasses of iPGAMs.
Collapse
Affiliation(s)
- Matthew W Nowicki
- Structural Biochemistry Group, Institute of Structural and Molecular Biology, University of Edinburgh, King's Buildings, Edinburgh, UK
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Tielens AGM, van Hellemond JJ. Surprising variety in energy metabolism within Trypanosomatidae. Trends Parasitol 2009; 25:482-90. [PMID: 19748317 DOI: 10.1016/j.pt.2009.07.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 07/02/2009] [Accepted: 07/14/2009] [Indexed: 11/19/2022]
Abstract
The metabolism of Trypanosomatidae differs significantly between distinct species and can even be completely different between various life-cycle stages of the same species. It has been proposed that differences in energy metabolism are related to differences in nutrient supply in the environments of the various trypanosomatids. However, the literature shows that availability of substrates does not dictate the type of energy metabolism of trypanosomatids, as Trypanosoma theileri, Trypanosoma lewisi and African trypanosomes all live in the bloodstream of their mammalian host, but have surprisingly large differences in metabolism. Furthermore, in trypanosomatids no obvious relationship exists between energy metabolism and phylogeny or mode of transmission. We provide an overview of the metabolic capacities in the energy metabolism of distinct trypanosomatids, and suggest that these can be divided into four different metabolic categories of increasing complexity.
Collapse
Affiliation(s)
- Aloysius G M Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, 'S Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | | |
Collapse
|
47
|
Penha LL, Sant'Anna CB, Mendonça-Previato L, Cunha-e-Silva NL, Previato JO, Lima APCA. Sorting of phosphoglucomutase to glycosomes in Trypanosoma cruzi is mediated by an internal domain. Glycobiology 2009; 19:1462-72. [PMID: 19696235 DOI: 10.1093/glycob/cwp121] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trypanosoma cruzi relies on highly galactosylated molecules as virulence factors and the enzymes involved in sugar biosynthesis are potential therapeutic targets. The synthesis of UDP-galactose in T. cruzi requires the activity of phosphoglucomutase (PGM), the enzyme that catalyzes the interconversion of glucose-6-phosphate and glucose-1-phosphate. Several enzymes that participate in carbohydrate metabolism in trypanosomes are confined to specialized peroxisome-like organelles called glycosomes. The majority of glycosomal proteins contain peroxisome-targeting signals (PTS) at the COOH- or at the amino-terminus, which drive their transport to glycosomes. We had previously identified the T. cruzi PGM gene (TcPGM) and demonstrated that it encodes a functional enzyme. Here, we show that, in contrast to yeast and mammalian cells, TcPGM resides in glycosomes of the parasite. However, no classical PTS1 or PTS2 motif is present in its sequence. We investigated glycosomal targeting by generating T. cruzi cell lines expressing different domains of TcPGM fused to the green fluorescent protein (GFP). The analysis of the subcellular localization of fusion proteins revealed that an internal targeting signal of TcPGM, residing between amino acid residues 260 and 380, is capable of targeting GFP to glycosomes. These results demonstrate that, in T. cruzi, PGM import into glycosomes is mediated by a novel non-PTS domain that is located internally in the protein.
Collapse
Affiliation(s)
- Luciana L Penha
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Bloco G, Universidade Federal do Rio de Janeiro, 21 944 970, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
48
|
Yernaux C, Fransen M, Brees C, Lorenzen S, Michels PAM. Trypanosoma bruceiglycosomal ABC transporters: identification and membrane targeting. Mol Membr Biol 2009; 23:157-72. [PMID: 16754359 DOI: 10.1080/09687860500460124] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Trypanosomes contain unique peroxisome-like organelles designated glycosomes which sequester enzymes involved in a variety of metabolic processes including glycolysis. We identified three ABC transporters associated with the glycosomal membrane of Trypanosoma brucei. They were designated GAT1-3 for Glycosomal ABC Transporters. These polypeptides are so-called half-ABC transporters containing only one transmembrane domain and a single nucleotide-binding domain, like their homologues of mammalian and yeast peroxisomes. The glycosomal localization was shown by immunofluorescence microscopy of trypanosomes expressing fusion constructs of the transporters with Green Fluorescent Protein. By expression of fluorescent deletion constructs, the glycosome-targeting determinant of two transporters was mapped to different fragments of their respective primary structures. Interestingly, these fragments share a short sequence motif and contain adjacent to it one--but not the same--of the predicted six transmembrane segments of the transmembrane domain. We also identified the T. brucei homologue of peroxin PEX19, which is considered to act as a chaperonin and/or receptor for cytosolically synthesized proteins destined for insertion into the peroxisomal membrane. By using a bacterial two-hybrid system, it was shown that glycosomal ABC transporter fragments containing an organelle-targeting determinant can interact with both the trypanosomatid and human PEX19, despite their low overall sequence identity. Mutated forms of human PEX19 that lost interaction with human peroxisomal membrane proteins also did not bind anymore to the T. brucei glycosomal transporter. Moreover, fragments of the glycosomal transporter were targeted to the peroxisomal membrane when expressed in mammalian cells. Together these results indicate evolutionary conservation of the glycosomal/peroxisomal membrane protein import mechanism.
Collapse
Affiliation(s)
- Cédric Yernaux
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | |
Collapse
|
49
|
Wendler A, Irsch T, Rabbani N, Thornalley PJ, Krauth-Siegel RL. Glyoxalase II does not support methylglyoxal detoxification but serves as a general trypanothione thioesterase in African trypanosomes. Mol Biochem Parasitol 2009; 163:19-27. [DOI: 10.1016/j.molbiopara.2008.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 09/10/2008] [Accepted: 09/12/2008] [Indexed: 10/21/2022]
|
50
|
A biochemical and genetic study of Leishmania donovani pyruvate kinase. Gene 2008; 424:25-32. [PMID: 18725273 DOI: 10.1016/j.gene.2008.07.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 06/20/2008] [Accepted: 07/29/2008] [Indexed: 11/24/2022]
Abstract
Here we present a biochemical and molecular biology study of the enzyme pyruvate kinase (PYK) from the parasitic protozoa Leishmania donovani. The PYK gene was cloned, mutagenised and over expressed and its kinetic parameters determined. Like in other kinetoplastids, L. donovani PYK is allosterically stimulated by the effector fructose 2,6 biphosphate and not by fructose 1,6 biphosphate. When the putative effector binding site of L. donovani PYK was mutagenised, we obtained two mutants with extreme kinetic behavior: Lys453Leu, which retained a sigmoidal kinetics and was little affected by the effector; and His480Gln, which deployed a hyperbolic kinetics that was not changed by the addition of the effector. Molecular Dynamics (MD) studies revealed that the mutations not only altered the effector binding site of L. donovani PYK but also changed the folding of its domain C.
Collapse
|