1
|
Molofsky J, Thom D, Keller SR, Milbrath LR. Closely related invasive species may be controlled by the same demographic life stages. NEOBIOTA 2023. [DOI: 10.3897/neobiota.82.95127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Invasive species that are closely related to each other may have similar population dynamics and, therefore, be controlled by targeting similar life stages. We studied two invasive knapweed species, spotted knapweed (Centaurea stoebe subsp. micranthos) and the hybrid meadow knapweed complex (Centaurea × moncktonii) in New York, USA, to determine their individual population growth rates (λ) across several sites over three years. Both knapweed species had growth rates that were greater than 1 (spotted knapweed λ ranged from 1.005–1.440; meadow knapweed λ ranged from 1.541–2.408), but there was high variability between years and sites. One study population of meadow knapweed was composed primarily of individuals of black knapweed ancestry (C. nigra), a species that, while introduced, is not invasive. For this population, the projected dynamics were stable (λ approximately 1). Elasticity analysis showed that the flowering-to-flowering stage contributed the most to population growth rate for six of seven sites and three additional transitions were also influential for four of seven sites of spotted and meadow knapweed: the seedling-to-vegetative stage, vegetative-to-flowering stage and flowering-to-seedling stage. We simulated how increasing vital rates would affect population growth and found that both spotted and meadow knapweed followed the same pattern. The vital rate of established seedlings maturing to flowering plants had the greatest effect on population growth, followed by the survival of new and established seedlings. In all cases, the responses were non-linear, with small initial changes having a large effect. Increases in the vital rates of later stages also tended to have a positive effect on growth rate, but the effects were more modest. Although the sensitivity analysis indicated that early vital rates had the largest effect on population growth, targeting these stages is not practical for management. Rather, reducing older life stage survival or delaying maturation of vegetative individuals would be more effective. The similarity between the population dynamics and how each life stage contributes to population growth provides support that protocols developed for one species should be effective for the other species with the caveat that any biological control agent should be directly tested on the target species before being utilised.
Collapse
|
2
|
Giaimo S. On two conjectures about perturbations of the stochastic growth rate. AUST NZ J STAT 2023. [DOI: 10.1111/anzs.12382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Stefano Giaimo
- Department of Evolutionary Theory Max Planck Institute for Evolutionary Biology August‐Thienemann‐Straße 2 24306Plön Germany
| |
Collapse
|
3
|
Population dynamics of free-roaming dogs in two European regions and implications for population control. PLoS One 2022; 17:e0266636. [PMID: 36083890 PMCID: PMC9462782 DOI: 10.1371/journal.pone.0266636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
Abstract
Changes in free-roaming dog population size are important indicators of the effectiveness of dog population management. Assessing the effectiveness of different management methods also requires estimating the processes that change population size, such as the rates of recruitment into and removal from a population. This is one of the first studies to quantify the size, rates of recruitment and removal, and health and welfare status of free-roaming dog populations in Europe. We determined the size, dynamics, and health status of free-roaming dog populations in Pescara, Italy, and Lviv, Ukraine, over a 15-month study period. Both study populations had ongoing dog population management through catch-neuter-release and sheltering programmes. Average monthly apparent survival probability was 0.93 (95% CI 0.81–1.00) in Pescara and 0.93 (95% CI 0.84–0.99) in Lviv. An average of 7 dogs km-2 were observed in Pescara and 40 dogs km-2 in Lviv. Per capita entry probabilities varied between 0.09 and 0.20 in Pescara, and 0.12 and 0.42 in Lviv. In Lviv, detection probability was lower on weekdays (odds ratio: 0.74, 95% CI 0.53–0.96) and higher on market days (odds ratio: 2.58, 95% CI 1.28–4.14), and apparent survival probability was lower in males (odds ratio: 0.25, 95% CI 0.03–0.59). Few juveniles were observed in the study populations, indicating that recruitment may be occurring by movement between dog subpopulations (e.g. from local owned or neighbouring free-roaming dog populations), with important consequences for population control. This study provides important data for planning effective dog population management and for informing population and infectious disease modelling.
Collapse
|
4
|
Fernández-Fernández P, Sanczuk P, Vanneste T, Brunet J, Ehrlén J, Hedwall PO, Hylander K, Van Den Berge S, Verheyen K, De Frenne P. Different effects of warming treatments in forests versus hedgerows on the understorey plant Geum urbanum. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:734-744. [PMID: 35322913 DOI: 10.1111/plb.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The effectiveness of hedgerows as functional corridors in the face of climate warming has been little researched. Here we investigated the effects of warming temperatures on plant performance and population growth of Geum urbanum in forests versus hedgerows in two European temperate regions. Adult individuals were transplanted in three forest-hedgerow pairs in each of two different latitudes, and an experimental warming treatment using open-top chambers was used in a full factorial design. Plant performance was analysed using mixed models and population performance was analysed using Integral Projection Models and elasticity analyses. Temperature increases due to open-top chamber installation were higher in forests than in hedgerows. In forests, the warming treatment had a significant negative effect on the population growth rate of G. urbanum. In contrast, no significant effect of the warming treatment on population dynamics was detected in hedgerows. Overall, the highest population growth rates were found in the forest control sites, which was driven by a higher fecundity rather than a higher survival probability. Effects of warming treatments on G. urbanum population growth rates differed between forests and hedgerows. In forests, warming treatments negatively affected population growth, but not in hedgerows. This could be a consequence of the overall lower warming achieved in hedgerows. We conclude that maintenance of cooler forest microclimates coul, at least temporarily, moderate the species response to climate warming.
Collapse
Affiliation(s)
- P Fernández-Fernández
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Gontrode-Melle, Belgium
| | - P Sanczuk
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Gontrode-Melle, Belgium
| | - T Vanneste
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Gontrode-Melle, Belgium
| | - J Brunet
- Southern Swedish Forest Research Centre, SLU Alnarp, Lomma, Sweden
| | - J Ehrlén
- Department of Ecology, Environment and Plan Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - P-O Hedwall
- Southern Swedish Forest Research Centre, SLU Alnarp, Lomma, Sweden
| | - K Hylander
- Department of Ecology, Environment and Plan Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - S Van Den Berge
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Gontrode-Melle, Belgium
| | - K Verheyen
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Gontrode-Melle, Belgium
| | - P De Frenne
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Gontrode-Melle, Belgium
| |
Collapse
|
5
|
Bonczek ES, Ringelman KM, Marty JR, Collins SA. Temporal variation and landcover influence survival in adult female mottled ducks. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Elizabeth S. Bonczek
- Louisiana State University AgCenter, School of Renewable Natural Resources Baton Rouge LA 70803 USA
| | - Kevin M. Ringelman
- Louisiana State University AgCenter, School of Renewable Natural Resources Baton Rouge LA 70803 USA
| | - Joseph R. Marty
- Louisiana Department of Wildlife and Fisheries Rockefeller Wildlife Refuge 5476 Grand Chenier Hwy Grand Chenier LA 70643 USA
| | - Samantha A. Collins
- Louisiana Department of Wildlife and Fisheries Rockefeller Wildlife Refuge 5476 Grand Chenier Hwy Grand Chenier LA 70643 USA
| |
Collapse
|
6
|
Large-scale changes in marine and terrestrial environments drive the population dynamics of long-tailed ducks breeding in Siberia. Sci Rep 2022; 12:12355. [PMID: 35853919 PMCID: PMC9296647 DOI: 10.1038/s41598-022-16166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 07/05/2022] [Indexed: 11/08/2022] Open
Abstract
Migratory animals experience very different environmental conditions at different times of the year, i.e., at the breeding grounds, during migration, and in winter. The long-tailed duck Clangula hyemalis breeds in the Arctic regions of the northern hemisphere and migrates to temperate climate zones, where it winters in marine environments. The breeding success of the long-tailed duck is affected by the abundances of predators and their main prey species, lemmings Lemmus sibiricus and Dicrostonyx torquatus, whose population fluctuation is subject to climate change. In the winter quarters, long-tailed ducks mainly eat the blue mussel Mytilus edulis. We examined how North-west Siberian lemming dynamics, assumed as a proxy for predation pressure, affect long-tailed duck breeding success and how nutrient availability in the Baltic Sea influences long-tailed duck population size via mussel biomass and quality. Evidence suggests that the long-tailed duck population dynamics was predator-driven on the breeding grounds and resource-driven on the wintering grounds. Nutrients from fertilizer runoff from farmland stimulate mussel stocks and quality, supporting high long-tailed duck population sizes. The applied hierarchical analysis combining several trophic levels can be used for evaluating large-scale environmental factors that affect the population dynamics and abundance of migrants from one environment to another.
Collapse
|
7
|
Davison R, Gurven M. The importance of elders: Extending Hamilton's force of selection to include intergenerational transfers. Proc Natl Acad Sci U S A 2022; 119:e2200073119. [PMID: 35867741 PMCID: PMC9282300 DOI: 10.1073/pnas.2200073119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022] Open
Abstract
In classical evolutionary models, the force of natural selection diminishes with age toward zero by last reproduction. However, intergenerational resource transfers and other late-life contributions in social species may select for postreproductive longevity. We present a formal framework for estimating indirect fitness contributions via production transfers in a skills-intensive foraging niche, reflecting kinship and cooperation among group members. Among contemporary human hunter-gatherers and horticulturalists, indirect fitness contributions from transfers exceed direct reproductive contributions from before menopause until ages when surpluses end, around the modal age of adult death (∼70 y). Under reasonable assumptions, these benefits are the equivalent to having up to several more offspring after age 50. Despite early independence, minimal production surplus, and a shorter lifespan, chimpanzees could theoretically make indirect contributions if they adopted reliable food-sharing practices. Our results for chimpanzees hypothetically adopting hunter-gatherer subsistence suggest that a skills-intensive foraging ecology with late independence and late peak production could select for human-like life histories via positive feedback between longevity and late-life transfers. In contrast, life history changes preceding subsistence shifts would not favor further life extension or subsistence shifts. Our results formalize the theory that longevity can be favored under socioecological conditions characterized by parental and alloparental care funded through transfers of mid- to late-life production surpluses. We also extend our analysis beyond food transfers to illustrate the potential for indirect fitness contributions from pedagogy, or information transfers. While we focus mostly on humans, our approach is adaptable to any context or species where transfers can affect fitness.
Collapse
Affiliation(s)
- Raziel Davison
- Department of Anthropology, University of California, Santa Barbara, CA 93106
- Broom Center for Demography, University of California, Santa Barbara, CA 93106
| | - Michael Gurven
- Department of Anthropology, University of California, Santa Barbara, CA 93106
- Broom Center for Demography, University of California, Santa Barbara, CA 93106
| |
Collapse
|
8
|
Jofré LE, de Torres Curth M, Farji-Brener AG. Unexpected costs of extended phenotypes: nest features determine the effect of fires on leaf cutter ant's demography. Proc Biol Sci 2022; 289:20212333. [PMID: 35168399 PMCID: PMC8848238 DOI: 10.1098/rspb.2021.2333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/25/2022] [Indexed: 11/12/2022] Open
Abstract
A key principle of the extended phenotype concept is that the benefit of the structures that an animal builds exceeds its cost. However, some contexts may enhance the costs of structures that often represent a benefit, reversing their adaptive nature. In leaf-cutting ant nests, thatched mounds are extended phenotypes that offer a stable microclimate for the growth of the fungus culture. We hypothesized that fires will affect the species that build external, easily flammable thatch mounds (Acromyrmex lobicornis) more than colonies that build subterranean nests in the less-flammable bare ground (Amoimyrmex striatus). We use a stochastic matrix demographic model parameterized with 4 years of data in pre- and post-fire scenarios. Before fires, Ac. lobicornis showed higher stochastic population rate (λs) than Am. striatus. However, fire frequency every 2 years completely reversed this trend, showing population decline only in Ac. lobicornis. Small nests were the stage that most contributed to λs and the most sensitive in all the species and fire scenarios. This illustrates a novel effect of disturbances; the reversion of the adaptive nature of extended phenotypes, which may have strong consequences on population dynamics and assemblage structure through the invert of dominance relationships.
Collapse
Affiliation(s)
| | - Mónica de Torres Curth
- LIHO (Research Ant Lab), INIBIOMA, CONICET-CRUB-UNCo, Bariloche, Argentina
- Departamento de Matemática, CRUB-UNCo, Río Negro, Argentina
| | | |
Collapse
|
9
|
Demography and perturbation analyses of the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae): Implications for management. PLoS One 2021; 16:e0260499. [PMID: 34905539 PMCID: PMC8670699 DOI: 10.1371/journal.pone.0260499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/10/2021] [Indexed: 11/19/2022] Open
Abstract
The coffee berry borer (CBB) Hypothenemus hampei Ferrari is the most serious pest of coffee worldwide. Management of the CBB is extremely difficult because its entire life cycle occurs inside the fruit, where it is well protected. Knowing which life stages contribute most to population growth, would shed light on the population dynamics of this pest and help to improve CBB management programs. Two staged-classified matrices were constructed for CBB populations reared in the lab on artificial diets and CBB populations from artificial infestations in the field. Matrices were used to determine demographic parameters, to conduct elasticity analyses, and to perform prospective perturbation analysis. Higher values of the intrinsic rate of natural increase (rm) and population growth rate (λ): were observed for CBB populations growing in the lab than in the field (rm: 0.058, λ: 1.74 lab; rm: 0.053, λ: 1.32 field). Sensitivity values for both CBB populations were highest for the transitions from larva to pupa (G2: 0.316 lab, 0.352 field), transition from pupa to juvenile (G3: 0.345 lab, 0.515 field) and survival of adult females (P5: 0.324 lab, 0.389 field); these three vital rates can be important targets for CBB management. Prospective perturbation analyses indicated that an effective management for the CBB should consider multiple developmental stages; perturbations of >90% for each transition are necessary to reduce λ to <1. However, when the three vital rates with highest sensitivity are impacted at the same time, the percentage of perturbation is reduced to 25% for each transition; with these reductions in survival of larvae, pupae and adult females the value of λ was reduced from 1.32 to 0.96. Management programs for CBB should be focused on the use of biological and cultural measures that are known to affect these three important targets.
Collapse
|
10
|
Bansept F, Obeng N, Schulenburg H, Traulsen A. Modeling host-associating microbes under selection. THE ISME JOURNAL 2021; 15:3648-3656. [PMID: 34158630 PMCID: PMC8630024 DOI: 10.1038/s41396-021-01039-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/28/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
The concept of fitness is often reduced to a single component, such as the replication rate in a given habitat. For species with multi-step life cycles, this can be an unjustified oversimplification, as every step of the life cycle can contribute to the overall reproductive success in a specific way. In particular, this applies to microbes that spend part of their life cycles associated to a host. In this case, there is a selection pressure not only on the replication rates, but also on the phenotypic traits associated to migrating from the external environment to the host and vice-versa (i.e., the migration rates). Here, we investigate a simple model of a microbial lineage living, replicating, migrating and competing in and between two compartments: a host and an environment. We perform a sensitivity analysis on the overall growth rate to determine the selection gradient experienced by the microbial lineage. We focus on the direction of selection at each point of the phenotypic space, defining an optimal way for the microbial lineage to increase its fitness. We show that microbes can adapt to the two-compartment life cycle through either changes in replication or migration rates, depending on the initial values of the traits, the initial distribution across the two compartments, the intensity of competition, and the time scales involved in the life cycle versus the time scale of adaptation (which determines the adequate probing time to measure fitness). Overall, our model provides a conceptual framework to study the selection on microbes experiencing a host-associated life cycle.
Collapse
Affiliation(s)
- Florence Bansept
- grid.419520.b0000 0001 2222 4708Max-Planck-Institute for Evolutionary Biology, Ploen, Germany
| | - Nancy Obeng
- grid.9764.c0000 0001 2153 9986Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel, Germany
| | - Hinrich Schulenburg
- grid.419520.b0000 0001 2222 4708Max-Planck-Institute for Evolutionary Biology, Ploen, Germany ,grid.9764.c0000 0001 2153 9986Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel, Germany
| | - Arne Traulsen
- grid.419520.b0000 0001 2222 4708Max-Planck-Institute for Evolutionary Biology, Ploen, Germany
| |
Collapse
|
11
|
Schanz FR, Sommer S, Lami A, Fontaneto D, Ozgul A. Life-history responses of a freshwater rotifer to copper pollution. Ecol Evol 2021; 11:10947-10955. [PMID: 34429893 PMCID: PMC8366851 DOI: 10.1002/ece3.7877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022] Open
Abstract
In organisms with dormant stages, life-history responses to past pollution can be studied retrospectively. Here, we study such responses in a rotifer (Brachionus calyciflorus) from the once heavily copper-polluted Lake Orta (Italy). We extracted resting eggs from sediments, established clonal lineages from hatchlings, and exposed newborns of these lineages to one of three copper concentrations that each mimicked a specific period in the lake's pollution history. For each rotifer, we daily collected life-table data. We then estimated treatment-specific vital rates and used a stage-structured population model to project population growth rate λ. We also estimated elasticities of λ to vital rates and contributions of vital rates to observed Δλ between copper treatments. As expected, λ decreased with increasing copper concentration. This decrease resulted mostly from a decline in juvenile survival rate (SJ ) and partly from a decline in the survival rate of asexually reproducing females (SA ). Maturation rate, and with one exception fecundity, also declined but did not contribute consistently to Δλ. λ was most elastic to SJ and SA , indicating that survival rates were under stronger selection than maturation rate and fecundity. Together, our results indicate that variation in juvenile survival is a key component in the rotifers' copper response. The consistent decrease in SJ with increasing copper stress and the sensitivity of λ to that decrease also suggest that juvenile survival is a useful indicator of population performance under environmental pollution.
Collapse
Affiliation(s)
- Federica R. Schanz
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Stefan Sommer
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Andrea Lami
- Water Research InstituteNational Research Council of ItalyVerbania PallanzaItaly
| | - Diego Fontaneto
- Water Research InstituteNational Research Council of ItalyVerbania PallanzaItaly
| | - Arpat Ozgul
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
12
|
James TD, Salguero-Gómez R, Jones OR, Childs DZ, Beckerman AP. Bridging gaps in demographic analysis with phylogenetic imputation. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:1210-1221. [PMID: 33068013 DOI: 10.1111/cobi.13658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 09/10/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Phylogenetically informed imputation methods have rarely been applied to estimate missing values in demographic data but may be a powerful tool for reconstructing vital rates of survival, maturation, and fecundity for species of conservation concern. Imputed vital rates could be used to parameterize demographic models to explore how populations respond when vital rates are perturbed. We used standardized vital rate estimates for 50 bird species to assess the use of phylogenetic imputation to fill gaps in demographic data. We calculated imputation accuracy for vital rates of focal species excluded from the data set either singly or in combination and with and without phylogeny, body mass, and life-history trait data. We used imputed vital rates to calculate demographic metrics, including generation time, to validate the use of imputation in demographic analyses. Covariance among vital rates and other trait data provided a strong basis to guide imputation of missing vital rates in birds, even in the absence of phylogenetic information. Mean NRMSE for null and phylogenetic models differed by <0.01 except when no vital rates were available or for vital rates with high phylogenetic signal (Pagel's λ > 0.8). In these cases, including body mass and life-history trait data compensated for lack of phylogenetic information: mean normalized root mean square error (NRMSE) for null and phylogenetic models differed by <0.01 for adult survival and <0.04 for maturation rate. Estimates of demographic metrics were sensitive to the accuracy of imputed vital rates. For example, mean error in generation time doubled in response to inaccurate estimates of maturation time. Accurate demographic data and metrics, such as generation time, are needed to inform conservation planning processes, for example through International Union for Conservation of Nature Red List assessments and population viability analysis. Imputed vital rates could be useful in this context but, as for any estimated model parameters, awareness of the sensitivities of demographic model outputs to the imputed vital rates is essential.
Collapse
Affiliation(s)
- Tamora D James
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, U.K
| | - Roberto Salguero-Gómez
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Rd, Oxford, OX1 3SZ, U.K
| | - Owen R Jones
- Interdisciplinary Centre on Population Dynamics (CPop), Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Odense, Denmark
| | - Dylan Z Childs
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, U.K
| | - Andrew P Beckerman
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, U.K
| |
Collapse
|
13
|
Hecht L. The importance of considering age when quantifying wild animals' welfare. Biol Rev Camb Philos Soc 2021; 96:2602-2616. [PMID: 34155749 DOI: 10.1111/brv.12769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/18/2023]
Abstract
Wild animals experience different challenges and opportunities as they mature, and this variety of experiences can lead to different levels of welfare characterizing the day-to-day lives of individuals of different ages. At the same time, most wild animals who are born do not survive to adulthood. Individuals who die as juveniles do not simply experience a homogeneous fraction of the lifetimes of older members of their species; rather, their truncated lives may be characterized by very different levels of welfare. Here, I propose the concept of welfare expectancy as a framework for quantifying wild animal welfare at a population level, given individual-level data on average welfare with respect to age. This concept fits conveniently alongside methods of analysis already used in population ecology, such as demographic sensitivity analysis, and is applicable to evaluating the welfare consequences of human interventions and natural pressures that disproportionately affect individuals of different ages. In order to understand better and improve the state of wild animal welfare, more attention should be directed towards young animals and the particular challenges they face.
Collapse
Affiliation(s)
- Luke Hecht
- Wild Animal Initiative, 115 Elm Street, Suite I, PMB 2321, Farmington, MN, 55024, U.S.A.,Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, U.K
| |
Collapse
|
14
|
Giaimo S, Traulsen A. Applying symmetries of elasticities in matrix population models. THEOR ECOL-NETH 2021. [DOI: 10.1007/s12080-021-00513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractElasticity analysis is a key tool in the analysis of matrix population models, which describe the dynamics of stage-structured populations in ecology and evolution. Elasticities of the dominant eigenvalue of a matrix model to matrix entries obey certain symmetries. Yet not all consequences of these symmetries are fully appreciated, as they are sometimes hidden in mathematical detail. Here, we propose a method to reason about these symmetries directly by visual inspection of the life cycle graph that corresponds to the matrix model. We present two applications of this method, one in ecology and one in evolution. First, we prove several conjectures about elasticities that were obtained from purely numerical results and that can support population managers in decision-making under scarce demographic information. Second, we show how to identify candidates for invariant trade-offs in evolutionary optimal life cycles. The method extends to the elasticity analysis of non-dominant eigenvalues, of the stochastic growth rate and, in next-generation matrices, of the basic reproduction number.
Collapse
|
15
|
Teixeira Alves M, Taylor NGH, Tidbury HJ. Understanding drivers of wild oyster population persistence. Sci Rep 2021; 11:7837. [PMID: 33837248 PMCID: PMC8035361 DOI: 10.1038/s41598-021-87418-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/26/2021] [Indexed: 02/02/2023] Open
Abstract
Persistence of wild Pacific oyster, Magallana gigas, also known as Crassostrea gigas, has been increasingly reported across Northern European waters in recent years. While reproduction is inhibited by cold waters, recent warm summer temperature has increased the frequency of spawning events. Although correlation between the increasing abundance of Pacific oyster reefs in Northern European waters and climate change is documented, persistence of wild populations may also be influenced by external recruitment from farmed populations and other wild oyster populations, as well as on competition for resources with aquaculture sites. Our understanding of the combined impact of the spawning frequency, external recruitment, and competition on wild population persistence is limited. This study applied an age-structured model, based on ordinary differential equations, to describe an oyster population under discrete temperature-related dynamics. The impact of more frequent spawning events, external recruitment, and changes in carrying capacity on Pacific oyster density were simulated and compared under theoretical scenarios and two case studies in Southern England. Results indicate that long term persistence of wild oyster populations towards carrying capacity requires a high frequency of spawning events but that in the absence of spawning, external recruitment from farmed populations and other wild oyster populations may act to prevent extinction and increase population density. However, external recruitment sources may be in competition with the wild population so that external recruitment is associated with a reduction in wild population density. The implications of model results are discussed in the context of wild oyster population management.
Collapse
Affiliation(s)
- Mickael Teixeira Alves
- grid.14332.370000 0001 0746 0155Centre for Environment, Fisheries and Aquaculture Science, International Centre of Excellence for Aquatic Animal Health, Weymouth, DT4 8UB UK
| | - Nick G. H. Taylor
- grid.14332.370000 0001 0746 0155Centre for Environment, Fisheries and Aquaculture Science, International Centre of Excellence for Aquatic Animal Health, Weymouth, DT4 8UB UK
| | - Hannah J. Tidbury
- grid.14332.370000 0001 0746 0155Centre for Environment, Fisheries and Aquaculture Science, International Centre of Excellence for Aquatic Animal Health, Weymouth, DT4 8UB UK
| |
Collapse
|
16
|
Gómez-Llano M, Germain RM, Kyogoku D, McPeek MA, Siepielski AM. When Ecology Fails: How Reproductive Interactions Promote Species Coexistence. Trends Ecol Evol 2021; 36:610-622. [PMID: 33785182 DOI: 10.1016/j.tree.2021.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/19/2022]
Abstract
That species must differ ecologically is often viewed as a fundamental condition for their stable coexistence in biological communities. Yet, recent work has shown that ecologically equivalent species can coexist when reproductive interactions and sexual selection regulate population growth. Here, we review theoretical models and highlight empirical studies supporting a role for reproductive interactions in maintaining species diversity. We place reproductive interactions research within a burgeoning conceptual framework of coexistence theory, identify four key mechanisms in intra- and interspecific interactions within and between sexes, speculate on novel mechanisms, and suggest future research. Given the preponderance of sexual reproduction in nature, our review suggests that this is a neglected path towards explaining species diversity when traditional ecological explanations have failed.
Collapse
Affiliation(s)
- Miguel Gómez-Llano
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Rachel M Germain
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Daisuke Kyogoku
- The Museum of Nature and Human Activities, Hyogo 669-1546, Japan
| | - Mark A McPeek
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Adam M Siepielski
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
17
|
Davison RJ, Gurven MD. Human uniqueness? Life history diversity among small-scale societies and chimpanzees. PLoS One 2021; 16:e0239170. [PMID: 33617556 PMCID: PMC7899333 DOI: 10.1371/journal.pone.0239170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/27/2021] [Indexed: 11/29/2022] Open
Abstract
Background Humans life histories have been described as “slow”, patterned by slow growth, delayed maturity, and long life span. While it is known that human life history diverged from that of a recent common chimpanzee-human ancestor some ~4–8 mya, it is unclear how selection pressures led to these distinct traits. To provide insight, we compare wild chimpanzees and human subsistence societies in order to identify the age-specific vital rates that best explain fitness variation, selection pressures and species divergence. Methods We employ Life Table Response Experiments to quantify vital rate contributions to population growth rate differences. Although widespread in ecology, these methods have not been applied to human populations or to inform differences between humans and chimpanzees. We also estimate correlations between vital rate elasticities and life history traits to investigate differences in selection pressures and test several predictions based on life history theory. Results Chimpanzees’ earlier maturity and higher adult mortality drive species differences in population growth, whereas infant mortality and fertility variation explain differences between human populations. Human fitness is decoupled from longevity by postreproductive survival, while chimpanzees forfeit higher potential lifetime fertility due to adult mortality attrition. Infant survival is often lower among humans, but lost fitness is recouped via short birth spacing and high peak fertility, thereby reducing selection on infant survival. Lastly, longevity and delayed maturity reduce selection on child survival, but among humans, recruitment selection is unexpectedly highest in longer-lived populations, which are also faster-growing due to high fertility. Conclusion Humans differ from chimpanzees more because of delayed maturity and lower adult mortality than from differences in juvenile mortality or fertility. In both species, high child mortality reflects bet-hedging costs of quality/quantity tradeoffs borne by offspring, with high and variable child mortality likely regulating human population growth over evolutionary history. Positive correlations between survival and fertility among human subsistence populations leads to selection pressures in human subsistence societies that differ from those in modern populations undergoing demographic transition.
Collapse
Affiliation(s)
- Raziel J. Davison
- Integrative Anthropological Sciences, Department of Anthropology, University of California, Santa Barbara, Santa Barbara, CA, United States of America
- Broom Center for Demography, University of California, Santa Barbara, Santa Barbara, CA, United States of America
- * E-mail:
| | - Michael D. Gurven
- Integrative Anthropological Sciences, Department of Anthropology, University of California, Santa Barbara, Santa Barbara, CA, United States of America
- Broom Center for Demography, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| |
Collapse
|
18
|
Roe JH, Graeter GJ, LaVere AA, Somers AB. State‐wide population characteristics and long‐term trends for eastern box turtles in North Carolina. Ecosphere 2021. [DOI: 10.1002/ecs2.3378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- John H. Roe
- Department of Biology University of North Carolina Pembroke Pembroke North Carolina28372USA
| | - Gabrielle J. Graeter
- North Carolina Wildlife Resources Commission 1701 Mail Service Center Raleigh North Carolina27699USA
| | - Ashley A. LaVere
- Department of Biology University of North Carolina at Greensboro Greensboro North Carolina27402USA
| | - Ann B. Somers
- Department of Biology University of North Carolina at Greensboro Greensboro North Carolina27402USA
| |
Collapse
|
19
|
Robustness of life histories to environmental variability in complex versus simple life cycles. THEOR ECOL-NETH 2021. [DOI: 10.1007/s12080-021-00501-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AbstractMost animal species have a complex life cycle (CLC) with metamorphosis. It is thus of interest to examine possible benefits of such life histories. The prevailing view is that CLC represents an adaptation for genetic decoupling of juvenile and adult traits, thereby allowing life stages to respond independently to different selective forces. Here I propose an additional potential advantage of CLCs that is, decreased variance in population growth rate due to habitat separation of life stages. Habitat separation of pre- and post-metamorphic stages means that the stages will experience different regimes of environmental variability. This is in contrast to species with simple life cycles (SLC) whose life stages often occupy one and the same habitat. The correlation in the fluctuations of the vital rates of life stages is therefore likely to be weaker in complex than in simple life cycles. By a theoretical framework using an analytical approach, I have (1) derived the relative advantage, in terms of long-run growth rate, of CLC over SLC phenotypes for a broad spectrum of life histories, and (2) explored which life histories that benefit most by a CLC, that is avoid correlation in vital rates between life stages. The direction and magnitude of gain depended on life history type and fluctuating vital rate. One implication of our study is that species with CLCs should, on average, be more robust to increased environmental variability caused by global warming than species with SLCs.
Collapse
|
20
|
Ridley AR, Wiley EM, Bourne AR, Cunningham SJ, Nelson-Flower MJ. Understanding the potential impact of climate change on the behavior and demography of social species: The pied babbler (Turdoides bicolor) as a case study. ADVANCES IN THE STUDY OF BEHAVIOR 2021. [DOI: 10.1016/bs.asb.2021.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Lemanski NJ, Bansal S, Fefferman NH. The sensitivity of a honeybee colony to worker mortality depends on season and resource availability. BMC Evol Biol 2020; 20:139. [PMID: 33121428 PMCID: PMC7596992 DOI: 10.1186/s12862-020-01706-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022] Open
Abstract
Background Honeybees have extraordinary phenotypic plasticity in their senescence rate, making them a fascinating model system for the evolution of aging. Seasonal variation in senescence and extrinsic mortality results in a tenfold increase in worker life expectancy in winter as compared to summer. To understand the evolution of this remarkable pattern of aging, we must understand how individual longevity scales up to effects on the entire colony. In addition, threats to the health of honey bees and other social insects are typically measured at the individual level. To predict the effects of environmental change on social insect populations, we must understand how individual effects impact colony performance. We develop a matrix model of colony demographics to ask how worker age-dependent and age-independent mortality affect colony fitness and how these effects differ by seasonal conditions. Results We find that there are seasonal differences in honeybee colony elasticity to both senescent and extrinsic worker mortality. Colonies are most elastic to extrinsic (age-independent) nurse and forager mortality during periods of higher extrinsic mortality and resource availability but most elastic to age-dependent mortality during periods of lower extrinsic mortality and lower resource availability. Conclusions These results suggest that seasonal changes in the strength of selection on worker senescence partly explain the observed pattern of seasonal differences in worker aging in honey bees. More broadly, these results extend our understanding of the role of extrinsic mortality in the evolution of senescence to social animals and improve our ability to model the effects of environmental change on social insect populations of economic or conservation concern.
Collapse
Affiliation(s)
- Natalie J Lemanski
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA. .,Department of Ecology and Evolutionary Biology, University of California, 4114 Life Sciences Building, Los Angeles, CA, 90024, USA.
| | - Siddhant Bansal
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| | - Nina H Fefferman
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
22
|
Caruso NM, Staudhammer CL, Rissler LJ. A demographic approach to understanding the effects of climate on population growth. Oecologia 2020; 193:889-901. [PMID: 32803340 DOI: 10.1007/s00442-020-04731-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 08/10/2020] [Indexed: 11/30/2022]
Abstract
Amphibian life history traits are affected by temperature and precipitation. Yet, connecting these relationships to population growth, especially for multiple populations within a species, is lacking and precludes our understanding of amphibian population dynamics and distributions. Therefore, we constructed integral projection models for five populations along an elevational gradient to determine how climate and season affect population growth of a terrestrial salamander Plethodon montanus and the importance of demographic vital rates to population growth under varying climate scenarios. We found that population growth was typically higher at the highest elevation compared to the lower elevations, whereas varying inactive season conditions, represented by the late fall, winter and early spring, produced a greater variation in population growth than varying active season conditions (late spring, summer, and early fall). Furthermore, survival and growth were consistently more important, as measured by elasticity, compared to fecundity, and large females had the greatest elasticity compared to all other body sizes. Our results suggest that changing inactive season conditions, especially those that would affect the survival of large individuals, may have the greatest impact on population growth. We recommend future experimental studies focus on the inactive season to better elucidate the mechanisms by which these conditions can affect survival.
Collapse
Affiliation(s)
- Nicholas M Caruso
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA. .,Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| | | | - Leslie J Rissler
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA.,Division of Environmental Biology, National Science Foundation, Alexandria, VA, 22314, USA
| |
Collapse
|
23
|
Rose JP, Todd BD. Targeting eradication of introduced watersnakes using integral projection models. Anim Conserv 2020. [DOI: 10.1111/acv.12590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Brian D. Todd
- Department of Wildlife, Fish, and Conservation Biology University of California Davis CA USA
| |
Collapse
|
24
|
Models suggest pathogen risks to wild fish can be mitigated by acquired immunity in freshwater aquaculture systems. Sci Rep 2020; 10:7513. [PMID: 32372052 PMCID: PMC7200699 DOI: 10.1038/s41598-020-64023-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 04/08/2020] [Indexed: 11/08/2022] Open
Abstract
The interaction of pathogens between wild and farmed aquatic animal populations is a concern that remains unclear and controversial. Ichthyophthirius multifiliis, a ciliated protozoan parasite, is a pathogen of freshwater finfish species with geographic and host range that causes significant economic losses in aquaculture. Flow-through farming systems may facilitate the transfer of such a parasite with free-living stages between farmed and wild stocks. Here, experimental and field study infection data are used to describe the infection dynamics of Ichthyophthirius multifiliis in rainbow trout using a simple macroparasite model by including host resistance. The study considered flow-through farming systems with a single or two age-class compartments and simulated the transfer of the parasite between farmed and wild fish populations. Results suggest that aquaculture can promote the prevalence of the resistance in wild stocks by increasing the parasite population in the wild environment. At the same time, acquired resistance in the farmed fish population may protect the wild fish population from lethal effects of the parasite by reducing the total parasite population. This study offers a promising mathematical basis for understanding the effects of freshwater aquaculture in disease spread in wildlife, developing risk assessment modeling, and exploring new ways of aquaculture management.
Collapse
|
25
|
Rachmansah A, Norris D, Gibbs JP. Population dynamics and biological feasibility of sustainable harvesting as a conservation strategy for tropical and temperate freshwater turtles. PLoS One 2020; 15:e0229689. [PMID: 32106260 PMCID: PMC7046234 DOI: 10.1371/journal.pone.0229689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/11/2020] [Indexed: 11/22/2022] Open
Abstract
Background Conservation strategies are urgently needed for tropical turtles that are increasingly threatened by unsustainable exploitation. Studies conducted exclusively in temperate zones have revealed that typical turtle life history traits (including delayed sexual maturity and high adult survivorship) make sustainable harvest programs an unviable strategy for turtle conservation. However, most turtles are tropical in distribution and the tropics have higher, more constant and more extended ambient temperature regimes that, in general, are more favorable for population growth. Methods To estimate the capacity of temperate and tropical turtles to sustain harvest, we synthesized life-history traits from 165 predominantly freshwater turtle species in 12 families (Carettochelydae, Chelidae, Chelydridae, Dermatemydidae, Emydidae, Geoemydidae, Kinosternidae, Pelomedusidae, Platysternidae, Podocnemididae, Staurotypidae and Trionychidae). The influence of climate variables and latitude on turtle life-history traits (clutch size, clutch frequency, age at sexual maturity, and annual adult survival) were examined using Generalized Additive Models. The biological feasibility of sustainable harvest in temperate and tropical species was evaluated using a sensitivity analysis of population growth rates obtained from stage-structured matrix population models. Results Turtles at low latitudes (tropical zones) exhibit smaller clutch sizes, higher clutch frequency, and earlier age at sexual maturity than those at high latitudes (temperate zones). Adult survival increased weakly with latitude and declined significantly with increasing bioclimatic temperature (mean temperature of warmest quarter). A modeling synthesis of these data indicates that the interplay of life-history traits does not create higher harvest opportunity in adults of tropical species. Yet, we found potential for sustainable exploitation of eggs in tropical species. Conclusions Sustainable harvest as a conservation strategy for tropical turtles appears to be as biologically problematic as in temperature zones and likely only possible if the focus is on limited harvest of eggs. Further studies are urgently needed to understand how the predicted population surplus in early life stages can be most effectively incorporated into conservation programs for tropical turtles.
Collapse
Affiliation(s)
- Angga Rachmansah
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York, United States of America
| | - Darren Norris
- Ecology and Conservation of Amazonian Vertebrates Research Group, Federal University of Amapá, Macapá, Amapá, Brazil
- Postgraduate Programme in Tropical Biodiversity, Federal University of Amapá, Macapá, Amapá, Brazil
- * E-mail:
| | - James P. Gibbs
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York, United States of America
| |
Collapse
|
26
|
Hepp GR, Gitzen RA, Kennamer RA. Relative Importance of Vital Rates to Population Dynamics of Wood Ducks. J Wildl Manage 2020. [DOI: 10.1002/jwmg.21792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gary R. Hepp
- School of Forestry and Wildlife Sciences Auburn University Auburn AL 36849 USA
| | - Robert A. Gitzen
- School of Forestry and Wildlife Sciences Auburn University Auburn AL 36849 USA
| | - Robert A. Kennamer
- University of Georgia, Savannah River Ecology Laboratory P.O. Drawer E Aiken SC 29802 USA
| |
Collapse
|
27
|
Caruso NM, Rissler LJ. Museum Specimens Reveal Life History Characteristics in Plethodon montanus. COPEIA 2019. [DOI: 10.1643/ch-18-145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Nicholas M. Caruso
- Department of Biological Sciences, Box 870345 MHB Hall, University of Alabama, Tuscaloosa, Alabama 35487
| | - Leslie J. Rissler
- Department of Biological Sciences, Box 870345 MHB Hall, University of Alabama, Tuscaloosa, Alabama 35487
| |
Collapse
|
28
|
Davison R, Stadman M, Jongejans E. Stochastic effects contribute to population fitness differences. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2019.108760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Okuyama T. Census timing alters stage duration distributions in matrix population models. Ecol Evol 2019; 9:8500-8508. [PMID: 31410257 PMCID: PMC6686339 DOI: 10.1002/ece3.5315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/20/2019] [Accepted: 05/11/2019] [Indexed: 11/22/2022] Open
Abstract
Matrix population models are widely used to study the dynamics of stage-structured populations. A census in these models is an event monitoring the number of individuals in each stage and occurs at discrete time intervals. The two most common methods used in building matrix population models are the prebreeding census and postbreeding census. Models using the prebreeding and postbreeding censuses assume that breeding occurs immediately before or immediately after the censuses, respectively. In some models such as age-structured models, the results are identical regardless of the method used, rendering the choice of method a matter of preference. However, in stage-structured models, where the duration of the first stage of life varies among newborns, a choice between the prebreeding and postbreeding censuses may result in different conclusions. This is attributed to the different first-stage duration distributions assumed by the two methods. This study investigated the difference emerging in the structures of these models and its consequence on conclusions of eigenvalue and elasticity analyses using two-stage models. Considerations required in choosing a modeling method are also discussed.
Collapse
|
30
|
Oldfather MF, Ackerly DD. Microclimate and demography interact to shape stable population dynamics across the range of an alpine plant. THE NEW PHYTOLOGIST 2019; 222:193-205. [PMID: 30372539 DOI: 10.1111/nph.15565] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
Heterogeneous terrain in montane systems results in a decoupling of climatic gradients. Population dynamics across species' ranges in these heterogeneous landscapes are shaped by relationships between demographic rates and these interwoven climate gradients. Linking demography and climate variables across species' ranges refines our understanding of the underlying mechanisms of species' current and future ranges. We explored the importance of multiple microclimatic gradients in shaping individual demographic rates and population growth rates in 16 populations across the elevational distribution of an alpine plant (Ivesia lycopodioides var. scandularis). Using integral projection modeling, we ask how each rate varies across three microclimate gradients: accumulated degree-days, growing-season soil moisture, and days of snow cover. Range-wide variation in demographic rates was best explained by the combined influence of multiple microclimatic variables. Different pairs of demographic rates exhibited both similar and inverse responses to the same microclimatic gradient, and the microclimatic effects often varied with plant size. These responses resulted in range-wide projected population persistence, with no declining populations at either elevational range edge or at the extremes of the microclimate gradients. The complex relationships between topography, microclimate and demography suggest that populations across a species' range may have unique demographic pathways to stable population dynamics.
Collapse
Affiliation(s)
- Meagan F Oldfather
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - David D Ackerly
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
- Jepson Herbarium, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
31
|
Aslan C, Beckman NG, Rogers HS, Bronstein J, Zurell D, Hartig F, Shea K, Pejchar L, Neubert M, Poulsen J, HilleRisLambers J, Miriti M, Loiselle B, Effiom E, Zambrano J, Schupp G, Pufal G, Johnson J, Bullock JM, Brodie J, Bruna E, Cantrell RS, Decker R, Fricke E, Gurski K, Hastings A, Kogan O, Razafindratsima O, Sandor M, Schreiber S, Snell R, Strickland C, Zhou Y. Employing plant functional groups to advance seed dispersal ecology and conservation. AOB PLANTS 2019; 11:plz006. [PMID: 30895154 PMCID: PMC6420810 DOI: 10.1093/aobpla/plz006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/05/2019] [Indexed: 05/06/2023]
Abstract
Seed dispersal enables plants to reach hospitable germination sites and escape natural enemies. Understanding when and how much seed dispersal matters to plant fitness is critical for understanding plant population and community dynamics. At the same time, the complexity of factors that determine if a seed will be successfully dispersed and subsequently develop into a reproductive plant is daunting. Quantifying all factors that may influence seed dispersal effectiveness for any potential seed-vector relationship would require an unrealistically large amount of time, materials and financial resources. On the other hand, being able to make dispersal predictions is critical for predicting whether single species and entire ecosystems will be resilient to global change. Building on current frameworks, we here posit that seed dispersal ecology should adopt plant functional groups as analytical units to reduce this complexity to manageable levels. Functional groups can be used to distinguish, for their constituent species, whether it matters (i) if seeds are dispersed, (ii) into what context they are dispersed and (iii) what vectors disperse them. To avoid overgeneralization, we propose that the utility of these functional groups may be assessed by generating predictions based on the groups and then testing those predictions against species-specific data. We suggest that data collection and analysis can then be guided by robust functional group definitions. Generalizing across similar species in this way could help us to better understand the population and community dynamics of plants and tackle the complexity of seed dispersal as well as its disruption.
Collapse
Affiliation(s)
- Clare Aslan
- Landscape Conservation Initiative, Northern Arizona University, Flagstaff, AZ, USA
| | | | - Haldre S Rogers
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Judie Bronstein
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Damaris Zurell
- Dynamic Macroecology, Landscape Dynamics, Swiss Federal Research Institute WSL, Zürcherstrasse, Birmensdorf, Switzerland
| | - Florian Hartig
- Faculty of Biology and Pre-Clinical Medicine, University of Regensburg, Universitätsstraße, Regensburg, Germany
| | - Katriona Shea
- Department of Biology, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, USA
| | - Liba Pejchar
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO, USA
| | - Mike Neubert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - John Poulsen
- Nicholas School of the Environment, Duke University, Durham, USA
| | | | - Maria Miriti
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Bette Loiselle
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Edu Effiom
- CRS Forestry Commission, Calabar, Nigeria
| | - Jenny Zambrano
- National Socio-Environmental Synthesis Center, 1 Park Place, Annapolis, MD, USA
| | - Geno Schupp
- Department of Biology, Utah State University, Logan, UT, USA
| | - Gesine Pufal
- Naturschutz & Landschaftsökologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Jeremy Johnson
- Department of Geography, Texas A&M University, College Station, TX, USA
| | | | - Jedediah Brodie
- Wildlife Biology Program, University of Montana, Missoula, MT, USA
| | - Emilio Bruna
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | | | | | - Evan Fricke
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Katie Gurski
- Department of Mathematics, Howard University, Washington, DC, USA
| | | | - Oleg Kogan
- Physics Department, California Polytechnic State University, San Luis Obispo, CA, USA
| | | | - Manette Sandor
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | | | - Rebecca Snell
- Environmental and Plant Biology, Ohio University, Athens, OH, USA
| | | | - Ying Zhou
- Department of Mathematics, Lafayette College, Easton, PA, USA
| |
Collapse
|
32
|
Campbell SP, Zylstra ER, Darst CR, Averill-Murray RC, Steidl RJ. A spatially explicit hierarchical model to characterize population viability. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:2055-2065. [PMID: 30187584 DOI: 10.1002/eap.1794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 06/21/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
Many of the processes that govern the viability of animal populations vary spatially, yet population viability analyses (PVAs) that account explicitly for spatial variation are rare. We develop a PVA model that incorporates autocorrelation into the analysis of local demographic information to produce spatially explicit estimates of demography and viability at relatively fine spatial scales across a large spatial extent. We use a hierarchical, spatial, autoregressive model for capture-recapture data from multiple locations to obtain spatially explicit estimates of adult survival (ϕad ), juvenile survival (ϕjuv ), and juvenile-to-adult transition rates (ψ), and a spatial autoregressive model for recruitment data from multiple locations to obtain spatially explicit estimates of recruitment (R). We combine local estimates of demographic rates in stage-structured population models to estimate the rate of population change (λ), then use estimates of λ (and its uncertainty) to forecast changes in local abundance and produce spatially explicit estimates of viability (probability of extirpation, Pex ). We apply the model to demographic data for the Sonoran desert tortoise (Gopherus morafkai) collected across its geographic range in Arizona. There was modest spatial variation in λ^ (0.94-1.03), which reflected spatial variation in ϕ^ad (0.85-0.95), ϕ^juv (0.70-0.89), and ψ^ (0.07-0.13). Recruitment data were too sparse for spatially explicit estimates; therefore, we used a range-wide estimate ( R^ = 0.32 1-yr-old females per female per year). Spatial patterns in demographic rates were complex, but ϕ^ad , ϕ^juv , and λ^ tended to be lower and ψ^ higher in the northwestern portion of the range. Spatial patterns in Pex varied with local abundance. For local abundances >500, Pex was near zero (<0.05) across most of the range after 100 yr; as abundances decreased, however, Pex approached one in the northwestern portion of the range and remained low elsewhere. When local abundances were <50, western and southern populations were vulnerable (Pex > 0.25). This approach to PVA offers the potential to reveal spatial patterns in demography and viability that can inform conservation and management at multiple spatial scales, provide insight into scale-related investigations in population ecology, and improve basic ecological knowledge of landscape-level phenomena.
Collapse
Affiliation(s)
- Steven P Campbell
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, 85721, USA
| | - Erin R Zylstra
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, 85721, USA
| | - Catherine R Darst
- Desert Tortoise Recovery Office, U. S. Fish and Wildlife Service, Ventura, California, 93003, USA
| | - Roy C Averill-Murray
- Desert Tortoise Recovery Office, U. S. Fish and Wildlife Service, Reno, Nevada, 89502, USA
| | - Robert J Steidl
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, 85721, USA
| |
Collapse
|
33
|
González-Crespo C, Serrano E, Cahill S, Castillo-Contreras R, Cabañeros L, López-Martín JM, Roldán J, Lavín S, López-Olvera JR. Stochastic assessment of management strategies for a Mediterranean peri-urban wild boar population. PLoS One 2018; 13:e0202289. [PMID: 30157225 PMCID: PMC6114779 DOI: 10.1371/journal.pone.0202289] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/31/2018] [Indexed: 11/18/2022] Open
Abstract
Wild boar (Sus scrofa) population spread into urban and periurban areas has exacerbated conflicts with humans. There is a need for planned wild boar management strategies, and Population viability analysis (PVA) combined with perturbation analyses allow the assessment of the management effort of control methods. Our study aims to develop stochastic predictive models of the increasing wild boar population of the 80 km2 peri-urban Mediterranean area of Collserola Natural Park (CNP), located near Barcelona, Spain, as well as assessing specific management measures (including reduced food availability, selective harvest, and reduction in fertility). Population parameters were estimated from previously published census and hunting data provided by the CNP and the local hunting administration. The results revealed that under the current conditions the CNP wild boar population will continue to increase. The most efficient strategy to reduce wild boar abundance was a combination of reducing supplementary anthropogenic food resources and selective removal of juvenile (<1 year) and yearling (1–2 years) wild boar. These strategies will probably be also the most efficient ones in other oversupplemented increasing wild boar populations in similar situations, although specific studies will be needed to fine-tune the best management option for each context. PVA allows the prediction of future population trends and the assessment of the efficacy and efficiency of potential management strategies before implementing management measures.
Collapse
Affiliation(s)
- Carlos González-Crespo
- Wildlife Ecology & Health Group and Servei d’ Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i CirurgiaAnimals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Emmanuel Serrano
- Wildlife Ecology & Health Group and Servei d’ Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i CirurgiaAnimals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
- Departamento de Biologia & Cesam, Universidad de Aveiro (UA), Aveiro, Portugal
| | - Seán Cahill
- Consorci del Parc Natural de la Serra de Collserola, Barcelona, Spain
| | - Raquel Castillo-Contreras
- Wildlife Ecology & Health Group and Servei d’ Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i CirurgiaAnimals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Lluís Cabañeros
- Consorci del Parc Natural de la Serra de Collserola, Barcelona, Spain
| | - José María López-Martín
- Departament d’Agricultura, Ramaderia, Pesca i Alimentació, Serveis Territorials de Barcelona, Generalitat de Catalunya, Barcelona, Spain
| | - Joan Roldán
- Forestal Catalana SA, Generalitat de Catalunya, Barcelona, Spain
| | - Santiago Lavín
- Wildlife Ecology & Health Group and Servei d’ Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i CirurgiaAnimals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Jorge Ramón López-Olvera
- Wildlife Ecology & Health Group and Servei d’ Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i CirurgiaAnimals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
- * E-mail:
| |
Collapse
|
34
|
Ergon T, Borgan Ø, Nater CR, Vindenes Y. The utility of mortality hazard rates in population analyses. Methods Ecol Evol 2018. [DOI: 10.1111/2041-210x.13059] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Torbjørn Ergon
- Department of BiosciencesCentre for Ecological and Evolutionary SynthesisUniversity of Oslo Oslo Norway
| | - Ørnulf Borgan
- Department of MathematicsUniversity of Oslo Oslo Norway
| | - Chloé Rebecca Nater
- Department of BiosciencesCentre for Ecological and Evolutionary SynthesisUniversity of Oslo Oslo Norway
| | - Yngvild Vindenes
- Department of BiosciencesCentre for Ecological and Evolutionary SynthesisUniversity of Oslo Oslo Norway
| |
Collapse
|
35
|
Menge DNL, MacPherson AC, Bytnerowicz TA, Quebbeman AW, Schwartz NB, Taylor BN, Wolf AA. Logarithmic scales in ecological data presentation may cause misinterpretation. Nat Ecol Evol 2018; 2:1393-1402. [DOI: 10.1038/s41559-018-0610-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 06/18/2018] [Indexed: 11/09/2022]
|
36
|
Manlik O, Lacy RC, Sherwin WB. Applicability and limitations of sensitivity analyses for wildlife management. J Appl Ecol 2017. [DOI: 10.1111/1365-2664.13044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Oliver Manlik
- School of Biological, Earth and Environmental Sciences; Evolution and Ecology Research Centre; University of New South Wales; Sydney NSW Australia
| | | | - William B. Sherwin
- School of Biological, Earth and Environmental Sciences; Evolution and Ecology Research Centre; University of New South Wales; Sydney NSW Australia
| |
Collapse
|
37
|
Skovgård H, Nachman G. Modeling the Temperature- and Age-Dependent Survival, Development, and Oviposition Rates of Stable Flies (Stomoxys calcitrans) (Diptera: Muscidae). ENVIRONMENTAL ENTOMOLOGY 2017; 46:1130-1142. [PMID: 28981634 DOI: 10.1093/ee/nvx118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Indexed: 06/07/2023]
Abstract
Stable flies (Stomoxys calcitrans (L.)) can be a serious pest associated with cattle facilities. In Denmark, they occur most abundantly at organic farms, where they cannot be controlled by means of insecticides. On traditional farms, where chemical control is widely used, development of resistance is of increasing concern. Therefore, interest in biological control or other alternative methods has been growing during the recent years. In order to understand the complex relationships between a pest and its natural enemies in a variable environment, it is necessary to know how temperature affects the dynamics of the involved species. In this paper, we apply data derived from several existing sources to investigate the influence of temperature on development and survival of eggs, larvae, pupae, and adult stable flies, as well as on the fecundity of adult females. We demonstrate that the same modeling framework (called SANDY), previously applied to lifetable data of the pteromalid pupal parasitoid (Spalangia cameroni Perkins), a biological control agent used against stable flies, can also be used to model S. calcitrans. However, the predicted temperature responses depend on the data sources used to parameterize the model, which is reflected by differences in estimated population growth rates obtained from American and non-American studies. Elasticity analysis shows that growth rates are more sensitive to changes in viability, in particular of adult flies, than in fecundity, which may have implications for the management of stable fly populations.
Collapse
Affiliation(s)
- Henrik Skovgård
- Department of Agroecology, Section of Pathology and Entomology, University of Aarhus, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Gösta Nachman
- Department of Biology, Section of Ecology and Evolution, Universitetsparken 15, DK 2100 Copenhagen Ø, Denmark
| |
Collapse
|
38
|
Bennett AM, Steiner J, Carstairs S, Gielens A, Davy CM. A question of scale: Replication and the effective evaluation of conservation interventions. Facets (Ott) 2017. [DOI: 10.1139/facets-2017-0010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Conservation interventions can keep critically endangered species from going extinct and stabilize threatened populations. The species-specific, case-by-case approaches and small sample sizes inherent to applied conservation measures are not well suited to scientific evaluations of outcomes. Debates about whether a method “works” become entrenched in a vote-counting framework. Furthermore, population-level replication is rare but necessary for disentangling the effects of an intervention from other drivers of population change. Turtle headstarting is a conservation tool that has attracted strong opinions but little robust data. Logistical limitations, such as those imposed by the long lives of turtles, have slowed experimental evaluation and constrained the use of replication or experimental controls. Headstarting project goals vary among projects and stakeholders, and success is not always explicitly defined. To facilitate robust evaluations, we provide direction for data collection and reporting to guide the application of conservation interventions in logistically challenging systems. We offer recommendations for standardized data collection that allow their valuable results to contribute to the development of best practices, regardless of the magnitude of the project. An evidence-based and collaborative approach will lead to improved program design and reporting, and will facilitate constructive evaluation of interventions both within and among conservation programs.
Collapse
Affiliation(s)
- Amanda M. Bennett
- Biology Department, Trent University, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Wildlife Preservation Canada, 5420 Highway 6 North, Guelph, ON N1H 6J2, Canada
| | - Jessica Steiner
- Wildlife Preservation Canada, 5420 Highway 6 North, Guelph, ON N1H 6J2, Canada
| | - Sue Carstairs
- Ontario Turtle Conservation Centre, 4-1434 Chemong Road, Selwyn, ON K9J 6X2, Canada
| | - Andrea Gielens
- Wildlife Preservation Canada, 5420 Highway 6 North, Guelph, ON N1H 6J2, Canada
| | - Christina M. Davy
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Environmental and Life Sciences, Trent University, 1600 West Bank Drive, Peterborough, ON K9J 7B8, Canada
| |
Collapse
|
39
|
Brudvig LA, Barak RS, Bauer JT, Caughlin TT, Laughlin DC, Larios L, Matthews JW, Stuble KL, Turley NE, Zirbel CR. Interpreting variation to advance predictive restoration science. J Appl Ecol 2017. [DOI: 10.1111/1365-2664.12938] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lars A. Brudvig
- Department of Plant Biology and Program in Ecology, Evolutionary Biology and Behavior Michigan State University 612 Wilson Rd Room 368 East Lansing MI 48824 USA
| | - Rebecca S. Barak
- Program in Plant Biology and Conservation Northwestern University O.T. Hogan Hall Room 6‐140B 2205 Tech Drive Evanston IL 60208 USA
- Plant Science and Conservation Chicago Botanic Garden 1000 Lake Cook Road Glencoe IL 60022 USA
| | | | - T. Trevor Caughlin
- School of Forest Resources and Conservation University of Florida Gainesville FL 32601 USA
| | - Daniel C. Laughlin
- Department of Botany University of Wyoming 1000 University Ave Laramie WY 82071 USA
| | - Loralee Larios
- Department of Botany & Plant Sciences University of California 2140 Bachelor Hall Riverside CA 92521 USA
| | - Jeffrey W. Matthews
- Department of Natural Resources and Environmental Sciences University of Illinois at Urbana‐Champaign 1102 South Goodwin Avenue Urbana IL 61801 USA
| | | | - Nash E. Turley
- Department of Plant Biology and Program in Ecology, Evolutionary Biology and Behavior Michigan State University 612 Wilson Rd Room 368 East Lansing MI 48824 USA
| | - Chad R. Zirbel
- Department of Plant Biology and Program in Ecology, Evolutionary Biology and Behavior Michigan State University 612 Wilson Rd Room 368 East Lansing MI 48824 USA
| |
Collapse
|
40
|
Mattern T, Meyer S, Ellenberg U, Houston DM, Darby JT, Young M, van Heezik Y, Seddon PJ. Quantifying climate change impacts emphasises the importance of managing regional threats in the endangered Yellow-eyed penguin. PeerJ 2017; 5:e3272. [PMID: 28533952 PMCID: PMC5436559 DOI: 10.7717/peerj.3272] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/28/2017] [Indexed: 11/20/2022] Open
Abstract
Climate change is a global issue with effects that are difficult to manage at a regional scale. Yet more often than not climate factors are just some of multiple stressors affecting species on a population level. Non-climatic factors—especially those of anthropogenic origins—may play equally important roles with regard to impacts on species and are often more feasible to address. Here we assess the influence of climate change on population trends of the endangered Yellow-eyed penguin (Megadyptes antipodes) over the last 30 years, using a Bayesian model. Sea surface temperature (SST) proved to be the dominating factor influencing survival of both adult birds and fledglings. Increasing SST since the mid-1990s was accompanied by a reduction in survival rates and population decline. The population model showed that 33% of the variation in population numbers could be explained by SST alone, significantly increasing pressure on the penguin population. Consequently, the population becomes less resilient to non-climate related impacts, such as fisheries interactions, habitat degradation and human disturbance. However, the extent of the contribution of these factors to declining population trends is extremely difficult to assess principally due to the absence of quantifiable data, creating a discussion bias towards climate variables, and effectively distracting from non-climate factors that can be managed on a regional scale to ensure the viability of the population.
Collapse
Affiliation(s)
- Thomas Mattern
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Stefan Meyer
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Ursula Ellenberg
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Australia
| | - David M Houston
- Science and Policy Group, Department of Conservation, Auckland, New Zealand
| | | | - Melanie Young
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | - Philip J Seddon
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
41
|
Bienvenu F, Akçay E, Legendre S, McCandlish DM. The genealogical decomposition of a matrix population model with applications to the aggregation of stages. Theor Popul Biol 2017; 115:69-80. [PMID: 28476403 DOI: 10.1016/j.tpb.2017.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 04/19/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
Abstract
Matrix projection models are a central tool in many areas of population biology. In most applications, one starts from the projection matrix to quantify the asymptotic growth rate of the population (the dominant eigenvalue), the stable stage distribution, and the reproductive values (the dominant right and left eigenvectors, respectively). Any primitive projection matrix also has an associated ergodic Markov chain that contains information about the genealogy of the population. In this paper, we show that these facts can be used to specify any matrix population model as a triple consisting of the ergodic Markov matrix, the dominant eigenvalue and one of the corresponding eigenvectors. This decomposition of the projection matrix separates properties associated with lineages from those associated with individuals. It also clarifies the relationships between many quantities commonly used to describe such models, including the relationship between eigenvalue sensitivities and elasticities. We illustrate the utility of such a decomposition by introducing a new method for aggregating classes in a matrix population model to produce a simpler model with a smaller number of classes. Unlike the standard method, our method has the advantage of preserving reproductive values and elasticities. It also has conceptually satisfying properties such as commuting with changes of units.
Collapse
Affiliation(s)
- François Bienvenu
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, F-75005 Paris, France; University of Pennsylvania Biology Department, Philadelphia, PA 19104, USA; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, F-75005 Paris, France.
| | - Erol Akçay
- University of Pennsylvania Biology Department, Philadelphia, PA 19104, USA
| | - Stéphane Legendre
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, F-75005 Paris, France
| | - David M McCandlish
- University of Pennsylvania Biology Department, Philadelphia, PA 19104, USA; Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
42
|
Ingley SJ, Johnson JB. Selection is stronger in early-versus-late stages of divergence in a Neotropical livebearing fish. Biol Lett 2016; 12:20151022. [PMID: 26979559 DOI: 10.1098/rsbl.2015.1022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
How selection acts to drive trait evolution at different stages of divergence is of fundamental importance in our understanding of the origins of biodiversity. Yet, most studies have focused on a single point along an evolutionary trajectory. Here, we provide a case study evaluating the strength of divergent selection acting on life-history traits at early-versus-late stages of divergence in Brachyrhaphis fishes. We find that the difference in selection is stronger in the early-diverged population than the late-diverged population, and that trait differences acquired early are maintained over time.
Collapse
Affiliation(s)
- Spencer J Ingley
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Jerald B Johnson
- Department of Biology, Brigham Young University, Provo, UT 84602, USA Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
43
|
Germano MD, Picollo MI. Demographic effects of deltamethrin resistance in the Chagas disease vector Triatoma infestans. MEDICAL AND VETERINARY ENTOMOLOGY 2016; 30:416-425. [PMID: 27677531 DOI: 10.1111/mve.12196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/20/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
Triatoma infestans (Heteroptera: Reduviidae) Klug is the main vector of Chagas disease in Latin America. Resistance to deltamethrin was reported in Argentina and recently associated with reproductive and longevity trade-offs. The objectives of the present study were to describe the demographic consequences of deltamethrin resistance in T. infestans and to establish possible target stages for chemical control in susceptible and resistant colonies. A stage-classified matrix model was constructed based on the average stage length for susceptible, resistant and reciprocal matings' progeny. The differences between colonies were analysed by prospective and retrospective analysis. The life table parameters indicated reduced fecundity, fertility and population growth in resistant insects. The retrospective analysis suggested the latter was associated with lower reproductive output and increased fifth-instar nymph stage length. The prospective analysis suggested that the adult stage should be the main target for insecticide control. Although, fifth-instar nymphs should also be targeted when resistance has been detected. The presented results show demographic effects of deltamethrin resistance in T. infestans. While the older stages could be the main targets for chemical control, this approach is impeded by their higher tolerance to insecticides. It is concluded that the different mode of action insecticides would be more effective than a dose increase for the control of deltamethrin-resistant T. infestans.
Collapse
Affiliation(s)
- M D Germano
- Centro de Investigaciones de Plagas e Insecticidas, Unidad de Investigación y Desarrollo Estratégico para la Defensa/Consejo Nacional de Investigaciones Científicas y Técnicas (CIPEIN, UNIDEF/CONICET), Buenos Aires, Argentina.
| | - M I Picollo
- Centro de Investigaciones de Plagas e Insecticidas, Unidad de Investigación y Desarrollo Estratégico para la Defensa/Consejo Nacional de Investigaciones Científicas y Técnicas (CIPEIN, UNIDEF/CONICET), Buenos Aires, Argentina
| |
Collapse
|
44
|
Smallegange IM, van der Ouderaa IBC, Tibiriçá Y. Effects of yearling, juvenile and adult survival on reef manta ray (Manta alfredi) demography. PeerJ 2016; 4:e2370. [PMID: 27635337 PMCID: PMC5012281 DOI: 10.7717/peerj.2370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 07/26/2016] [Indexed: 11/22/2022] Open
Abstract
Background The trade in manta ray gill plates has considerably increased over the last two decades. The resulting increases in ray mortality, in addition to mortality caused by by-catch, has caused many ray populations to decrease in size. The aim of this study was to ascertain how yearling and juvenile growth and survival, and adult survival and reproduction affect reef manta ray (Manta alfredi) population change, to increase our understanding of manta ray demography and thereby improve conservation research and measures for these fish. Methods We developed a population projection model for reef manta rays, and used published life history data on yearling and juvenile growth and adult reproduction to parameterise the model. Because little is known about reef manta ray yearling and juvenile survival, we conducted our analyses using a range of plausible survival rate values for yearlings, juveniles and adults. Results The model accurately captured observed variation in population growth rate, lifetime reproductive success and cohort generation time in different reef manta ray populations. Our demographic analyses revealed a range of population consequences in response to variation in demographic rates. For example, an increase in yearling or adult survival rates always elicited greater responses in population growth rate, lifetime reproductive success and cohort generation time than the same increase in juvenile survival rate. The population growth rate increased linearly, but lifetime reproductive success and cohort generation time increased at an accelerating rate with increasing yearling or adult survival rates. Hence, even a small increase in survival rate could increase lifetime reproductive success by one pup, and cohort generation time by several years. Elasticity analyses revealed that, depending on survival rate values of all life stages, the population growth rate is either most sensitive to changes in the rate with which juveniles survive but stay juveniles (i.e., do not mature into adults) or to changes in adult survival rate. However, when assessing these results against estimates on population growth and adult survival rates for populations off the coasts of Mozambique and Japan, we found that the population growth rate is predicted to be always most sensitive to changes in the adult survival rate. Discussion It is important to gain an in-depth understanding of reef manta ray life histories, particularly of yearling and adult survival rates, as these can influence reef manta ray population dynamics in a variety of ways. For declining populations in particular, it is crucial to know which life stage should be targeted for their conservation. For one such declining population off the coast of Mozambique, adult annual survival rate has the greatest effect on population growth, and by increasing adult survival by protecting adult aggregation sites, this population’s decline could be halted or even reversed.
Collapse
Affiliation(s)
- Isabel M Smallegange
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam , Amsterdam , Netherlands
| | | | - Yara Tibiriçá
- Zavora Marine Lab, Association of Coastal Conservation of Mozambique , Inharrime , Inhambane Province , Mozambique
| |
Collapse
|
45
|
Affiliation(s)
- Jussi Lehtonen
- Evolution and Ecology Research Centre School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales 2052 Australia
| |
Collapse
|
46
|
Plastic Responses to Temperature Versus Local Adaptation at the Cold Extreme of the Climate Gradient. Evol Biol 2015. [DOI: 10.1007/s11692-015-9341-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Ancona S, Jaime Zúñiga-Vega J, Rodríguez C, Carmona-Isunza MC, Drummond H. Recruiting age influences male and female survival and population persistence in a long-lived tropical seabird. Evol Ecol 2015. [DOI: 10.1007/s10682-015-9781-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Richard R, Casas J, McCauley E. Sensitivity analysis of continuous-time models for ecological and evolutionary theories. THEOR ECOL-NETH 2015. [DOI: 10.1007/s12080-015-0265-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Christiansen F, Lusseau D. Linking Behavior to Vital Rates to Measure the Effects of Non-Lethal Disturbance on Wildlife. Conserv Lett 2015. [DOI: 10.1111/conl.12166] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Fredrik Christiansen
- Centre for Integrative Ecology, School of Life and Environmental Sciences; Deakin University; Warrnambool VIC 3280 Australia
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen AB24 2TZ UK
- Cetacean Research Unit, School of Veterinary and Life Sciences; Murdoch University; South Street Murdoch WA 6150 Australia
| | - David Lusseau
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen AB24 2TZ UK
| |
Collapse
|
50
|
How effective is integrated vector management against malaria and lymphatic filariasis where the diseases are transmitted by the same vector? PLoS Negl Trop Dis 2014; 8:e3393. [PMID: 25501002 PMCID: PMC4263402 DOI: 10.1371/journal.pntd.0003393] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 11/05/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The opportunity to integrate vector management across multiple vector-borne diseases is particularly plausible for malaria and lymphatic filariasis (LF) control where both diseases are transmitted by the same vector. To date most examples of integrated control targeting these diseases have been unanticipated consequences of malaria vector control, rather than planned strategies that aim to maximize the efficacy and take the complex ecological and biological interactions between the two diseases into account. METHODOLOGY/PRINCIPAL FINDINGS We developed a general model of malaria and LF transmission and derived expressions for the basic reproductive number (R0) for each disease. Transmission of both diseases was most sensitive to vector mortality and biting rate. Simulating different levels of coverage of long lasting-insecticidal nets (LLINs) and larval control confirms the effectiveness of these interventions for the control of both diseases. When LF was maintained near the critical density of mosquitoes, minor levels of vector control (8% coverage of LLINs or treatment of 20% of larval sites) were sufficient to eliminate the disease. Malaria had a far greater R0 and required a 90% population coverage of LLINs in order to eliminate it. When the mosquito density was doubled, 36% and 58% coverage of LLINs and larval control, respectively, were required for LF elimination; and malaria elimination was possible with a combined coverage of 78% of LLINs and larval control. CONCLUSIONS/SIGNIFICANCE Despite the low level of vector control required to eliminate LF, simulations suggest that prevalence of LF will decrease at a slower rate than malaria, even at high levels of coverage. If representative of field situations, integrated management should take into account not only how malaria control can facilitate filariasis elimination, but strike a balance between the high levels of coverage of (multiple) interventions required for malaria with the long duration predicted to be required for filariasis elimination.
Collapse
|