1
|
Kalam SN, Dowland S, Lindsay L, Murphy CR. Microtubules are reorganised and fragmented for uterine receptivity. Cell Tissue Res 2018; 374:667-677. [PMID: 30030603 DOI: 10.1007/s00441-018-2887-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/21/2018] [Indexed: 01/01/2023]
Abstract
For the development of uterine receptivity, many morphological and molecular changes occur in the apical surface of luminal uterine epithelial cells (UECs) including an increase in vesicular activity. Vesicular movements for exocytosis and endocytosis are dependent on microtubules; however, changes in microtubules in UECs during early pregnancy have received little attention. β-tubulin, one of the main component of microtubules, is distributed throughout the cytoplasm of UECs on day 1 (non-receptive) of pregnancy in the rat. On day 5.5, β-tubulin is concentrated above the nuclei and by day 6 (receptive), β-tubulin is concentrated in a band-like fashion above the nucleus. Western blot analysis of isolated UECs found two bands (50 and 34 kDa) for β-tubulin in UECs during early pregnancy. The intensity of the 34 kDa band was significantly higher on day 6 compared to day 1. The increase in the 34 kDa band may be due to higher proteolytic activity associated with microtubule polymerisation during the receptive state. Transmission electron microscopy showed fragmented microtubules at the time of receptivity in UECs. This is the first study to show that microtubules are reorganised during uterine receptivity. This re-organisation likely facilitates vesicular movement and promotes the reorganisation of the apical plasma membrane for uterine receptivity.
Collapse
Affiliation(s)
- Sadaf N Kalam
- Anatomy and Histology, School of Medical Sciences and The Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia. .,Cell and Reproductive Biology Laboratory, Discipline of Anatomy and Histology, The University of Sydney, Room N364, Anderson Stuart Building (F13), Sydney, NSW, 2006, Australia.
| | - Samson Dowland
- Anatomy and Histology, School of Medical Sciences and The Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Laura Lindsay
- Anatomy and Histology, School of Medical Sciences and The Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Christopher R Murphy
- Anatomy and Histology, School of Medical Sciences and The Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
2
|
Binker MG, Richards D, Gaisano HY, Cosen-Binker LI. ER stress-associated CTRC mutants decrease stimulated pancreatic zymogen secretion through SIRT2-mediated microtubule dysregulation. Biochem Biophys Res Commun 2015; 463:329-35. [DOI: 10.1016/j.bbrc.2015.05.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/15/2015] [Indexed: 01/24/2023]
|
3
|
Gómez-Lázaro M, Rinn C, Aroso M, Amado F, Schrader M. Proteomic analysis of zymogen granules. Expert Rev Proteomics 2014; 7:735-47. [DOI: 10.1586/epr.10.31] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Direct imaging of RAB27B-enriched secretory vesicle biogenesis in lacrimal acinar cells reveals origins on a nascent vesicle budding site. PLoS One 2012; 7:e31789. [PMID: 22363735 PMCID: PMC3282733 DOI: 10.1371/journal.pone.0031789] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 01/16/2012] [Indexed: 12/20/2022] Open
Abstract
This study uses YFP-tagged Rab27b expression in rabbit lacrimal gland acinar cells, which are polarized secretory epithelial cells, to characterize early stages of secretory vesicle trafficking. Here we demonstrate the utility of YFP-Rab27b to delineate new perspectives on the mechanisms of early vesicle biogenesis in lacrimal gland acinar cells, where information is significantly limited. Protocols were developed to deplete the mature YFP-Rab27b-enriched secretory vesicle pool in the subapical region of the cell, and confocal fluorescence microscopy was used to track vesicle replenishment. This analysis revealed a basally-localized organelle, which we termed the "nascent vesicle site," from which nascent vesicles appeared to emerge. Subapical vesicular YFP-Rab27b was co-localized with p150(Glued), a component of the dynactin cofactor of cytoplasmic dynein. Treatment with the microtubule-targeted agent, nocodazole, did not affect release of mature secretory vesicles, although during vesicle repletion it significantly altered nascent YFP-Rab27b-enriched secretory vesicle localization. Instead of moving to the subapical region, these vesicles were trapped at the nascent vesicle site which was adjacent to, if not a sub-compartment of, the trans-Golgi network. Finally, YFP-Rab27b-enriched secretory vesicles which reached the subapical cytoplasm appeared to acquire the actin-based motor protein, Myosin 5C. Our findings show that Rab27b enrichment occurs early in secretory vesicle formation, that secretory vesicles bud from a visually discernable nascent vesicle site, and that transport from the nascent vesicle site to the subapical region requires intact microtubules.
Collapse
|
5
|
Diffusion and directed transport. Biophysics (Nagoya-shi) 2012. [DOI: 10.1017/cbo9781139035002.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
6
|
Tctex-1, a novel interaction partner of Rab3D, is required for osteoclastic bone resorption. Mol Cell Biol 2011; 31:1551-64. [PMID: 21262767 DOI: 10.1128/mcb.00834-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Vesicular transport along microtubules must be strictly regulated to sustain the unique structural and functional polarization of bone-resorbing osteoclasts. However, the molecular mechanisms bridging these vesicle-microtubule interactions remain largely obscure. Rab3D, a member of the Rab3 subfamily (Rab3A/B/C/D) of small exocytotic GTPases, represents a core component of the osteoclastic vesicle transport machinery. Here, we identify a new Rab3D-interacting partner, Tctex-1, a light chain of the cytoplasmic dynein microtubule motor complex, by a yeast two-hybrid screen. We demonstrate that Tctex-1 binds specifically to Rab3D in a GTP-dependent manner and co-occupies Rab3D-bearing vesicles in bone-resorbing osteoclasts. Furthermore, we provide evidence that Tctex-1 and Rab3D intimately associate with the dynein motor complex and microtubules in osteoclasts. Finally, targeted disruption of Tctex-1 by RNA interference significantly impairs bone resorption capacity and mislocalizes Rab3D vesicles in osteoclasts, attesting to the notion that components of the Rab3D-trafficking pathway contribute to the maintenance of osteoclastic resorptive function.
Collapse
|
7
|
Schnekenburger J, Weber IA, Hahn D, Buchwalow I, Krüger B, Albrecht E, Domschke W, Lerch MM. The role of kinesin, dynein and microtubules in pancreatic secretion. Cell Mol Life Sci 2009; 66:2525-37. [PMID: 19488676 PMCID: PMC11115865 DOI: 10.1007/s00018-009-0052-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/08/2009] [Accepted: 05/13/2009] [Indexed: 10/20/2022]
Abstract
The regulated secretion of pancreatic zymogens depends on a functional cytoskeleton and intracellular vesicle transport. To study the dynamics of tubulin and its motor proteins dynein and kinesin during secretion in pancreatic acinar cells, we infused rats with 0.1 mug/kg/h caerulein. Electron and fluorescence microscopy detected neither dynein nor kinesin at the apical secretory pole, nor on the surface of mature zymogen granules. After 30 min of secretagogue stimulation, kinesin and the Golgi marker protein 58 K were reallocated towards the apical plasma membrane and association of kinesin with tubulin was enhanced. Disruption of acinar cell microtubules had no effect on initial caerulein-induced amylase release but completely blocked secretion during a second stimulus. Our results suggest that mature zymogen granule exocytosis is independent of intact microtubules, kinesin and dynein. However, microtubule-dependent mechanisms seem to be important for the replenishment of secretory vesicles by redistribution of Golgi elements towards the apical cell pole.
Collapse
Affiliation(s)
- Jürgen Schnekenburger
- Department of Medicine B, Westfälische Wilhelms-University, Domagkstr. 3A, 48149 Münster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Gauthier DJ, Sobota JA, Ferraro F, Mains RE, Lazure C. Flow cytometry-assisted purification and proteomic analysis of the corticotropes dense-core secretory granules. Proteomics 2008; 8:3848-61. [PMID: 18704904 PMCID: PMC2989539 DOI: 10.1002/pmic.200700969] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Indexed: 11/10/2022]
Abstract
The field of organellar proteomics has emerged as an attempt to minimize the complexity of the proteomics data obtained from whole cell and tissue extracts while maximizing the resolution on the protein composition of a single subcellular compartment. Standard methods involve lengthy density-based gradient and/or immunoaffinity purification steps followed by extraction, 1-DE or 2-DE, gel staining, in-gel tryptic digestion, and protein identification by MS. In this paper, we present an alternate approach to purify subcellular organelles containing a fluorescent reporter molecule. The gel-free procedure involves fluorescence-assisted sorting of the secretory granules followed by gentle extraction in a buffer compatible with tryptic digestion and MS. Once the subcellular organelle labeled, this procedure can be done in a single day, requires no major modification to any instrumentation and can be readily adapted to the study of other organelles. When applied to corticotrope secretory granules, it led to a much enriched granular fraction from which numerous proteins could be identified through MS.
Collapse
Affiliation(s)
- Daniel J Gauthier
- Neuropeptides Structure & Metabolism Research Unit, Institut de recherches cliniques de Montréal (affiliated to University of Montréal), 110 Pine avenue West, Montréal, Québec H2W 1R7, Canada
| | - Jacqueline A. Sobota
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401
| | - Francesco Ferraro
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401
| | - Claude Lazure
- Neuropeptides Structure & Metabolism Research Unit, Institut de recherches cliniques de Montréal (affiliated to University of Montréal), 110 Pine avenue West, Montréal, Québec H2W 1R7, Canada
| |
Collapse
|
9
|
Chen X, Ulintz PJ, Simon ES, Williams JA, Andrews PC. Global topology analysis of pancreatic zymogen granule membrane proteins. Mol Cell Proteomics 2008; 7:2323-36. [PMID: 18682380 DOI: 10.1074/mcp.m700575-mcp200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The zymogen granule is the specialized organelle in pancreatic acinar cells for digestive enzyme storage and regulated secretion and is a classic model for studying secretory granule function. Our long term goal is to develop a comprehensive architectural model for zymogen granule membrane (ZGM) proteins that would direct new hypotheses for subsequent functional studies. Our initial proteomics analysis focused on identification of proteins from purified ZGM (Chen, X., Walker, A. K., Strahler, J. R., Simon, E. S., Tomanicek-Volk, S. L., Nelson, B. B., Hurley, M. C., Ernst, S. A., Williams, J. A., and Andrews, P. C. (2006) Organellar proteomics: analysis of pancreatic zymogen granule membranes. Mol. Cell. Proteomics 5, 306-312). In the current study, a new global topology analysis of ZGM proteins is described that applies isotope enrichment methods to a protease protection protocol. Our results showed that tryptic peptides of ZGM proteins were separated into two distinct clusters according to their isobaric tag for relative and absolute quantification (iTRAQ) ratios for proteinase K-treated versus control zymogen granules. The low iTRAQ ratio cluster included cytoplasm-orientated membrane and membrane-associated proteins including myosin V, vesicle-associated membrane proteins, syntaxins, and all the Rab proteins. The second cluster having unchanged ratios included predominantly luminal proteins. Because quantification is at the peptide level, this technique is also capable of mapping both cytoplasm- and lumen-orientated domains from the same transmembrane protein. To more accurately assign the topology, we developed a statistical mixture model to provide probabilities for identified peptides to be cytoplasmic or luminal based on their iTRAQ ratios. By implementing this approach to global topology analysis of ZGM proteins, we report here an experimentally constrained, comprehensive topology model of identified zymogen granule membrane proteins. This model contributes to a firm foundation for developing a higher order architecture model of the ZGM and for future functional studies of individual ZGM proteins.
Collapse
Affiliation(s)
- Xuequn Chen
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | |
Collapse
|
10
|
Rindler MJ, Xu CF, Gumper I, Smith NN, Neubert TA. Proteomic analysis of pancreatic zymogen granules: identification of new granule proteins. J Proteome Res 2007; 6:2978-92. [PMID: 17583932 PMCID: PMC2582026 DOI: 10.1021/pr0607029] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The composition of zymogen granules from rat pancreas was determined by LC-MS/MS. Enriched intragranular content, peripheral membrane, and integral membrane protein fractions were analyzed after one-dimensional SDS-PAGE and tryptic digestion of gel slices. A total of 371 proteins was identified with high confidence, including 84 previously identified granule proteins. The 287 remaining proteins included 37 GTP-binding proteins and effectors, 8 tetraspan membrane proteins, and 22 channels and transporters. Seven proteins, pantophysin, cyclic nucleotide phosphodiesterase, carboxypeptidase D, ecto-nucleotide phosphodiesterase 3, aminopeptidase N, ral, and the potassium channel TWIK-2, were confirmed by immunofluorescence microscopy or by immunoblotting to be new zymogen granule membrane proteins.
Collapse
Affiliation(s)
- Michael J Rindler
- Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA.
| | | | | | | | | |
Collapse
|
11
|
McManaman JL, Reyland ME, Thrower EC. Secretion and fluid transport mechanisms in the mammary gland: comparisons with the exocrine pancreas and the salivary gland. J Mammary Gland Biol Neoplasia 2006; 11:249-68. [PMID: 17136613 DOI: 10.1007/s10911-006-9031-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Milk is a complex fluid composed of proteins, sugars, lipids and minerals, in addition to a wide variety of bioactive molecules including vitamins, trace elements and growth factors. The composition of these components reflects the integrated activities of distinct synthetic, secretion and transport processes found in mammary epithelial cells, and mirrors the differing nutritional and developmental requirements of mammalian neonates. Five general pathways have been described for secretion of milk components. With the exception of lipids, which are secreted a unique pathway, milk components are thought to be secreted by adaptations of pathways found in other secretory organs. However little is known about the molecular and cellular mechanisms that constitute these pathways or the physiological mechanisms by which they are regulated. Comparisons of current secretion and transport models in the mammary gland, exocrine pancreas and salivary gland indicate that significant differences exist between the mammary gland and other exocrine organs in how proteins and lipids are packaged and secreted, and how fluid is transported.
Collapse
Affiliation(s)
- James L McManaman
- Department of Obstetrics and Gynecology, University of Colorado Health Sciences Center at Fitzsimons, Mail Stop 8309, P.O. Box 6511, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
12
|
Wu K, Jerdeva GV, da Costa SR, Sou E, Schechter JE, Hamm-Alvarez SF. Molecular mechanisms of lacrimal acinar secretory vesicle exocytosis. Exp Eye Res 2006; 83:84-96. [PMID: 16530759 DOI: 10.1016/j.exer.2005.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 10/12/2005] [Accepted: 11/01/2005] [Indexed: 11/26/2022]
Abstract
The acinar epithelial cells of the lacrimal gland are responsible for the production, packaging and regulated exocytosis of tear proteins into ocular surface fluid. This review summarizes new findings on the mechanisms of exocytosis in these cells. Participating proteins are discussed within the context of different categories of trafficking effectors including targeting and specificity factors (rabs, SNAREs) and transport factors (microtubules, actin filaments and motor proteins). Recent information describing fundamental changes in basic exocytotic mechanisms in the NOD mouse, an animal model of Sjögren's syndrome, is presented.
Collapse
Affiliation(s)
- Kaijin Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Avenue, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|
13
|
Huang WP, Ho HC. Role of microtubule-dependent membrane trafficking in acrosomal biogenesis. Cell Tissue Res 2005; 323:495-503. [PMID: 16341711 DOI: 10.1007/s00441-005-0097-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 10/05/2005] [Indexed: 11/25/2022]
Abstract
The role of microtubule-based trafficking in acrosomal biogenesis was examined by studying the effects of colchicine on spermiogenesis. In electron micrographs of untreated cap-phase mouse spermatids, coated vesicles were always seen on the apex and caudal margins of the developing acrosomal cap. The increase in volume and the accumulation of materials in the acrosome during the Golgi and cap phases were observed to occur via fusion of vesicles at various sites on the growing acrosome. By studying the acid phosphatase localization pattern and colchicine-treated spermatids, the role of clathrin-coated vesicles became clear. Coated vesicle formation at the caudal margin of the acrosome appeared to be responsible for the spreading and shaping of the acrosome over the surface of the nucleus and also established distinct regional differences in the acrosome. In colchicine-treated spermatids, the Golgi apparatus lost its typical membranous stack conformation and disintegrated into many small vesicles. Acrosome formation was retarded, and there was discordance of the spread of the acrosomal cap with that of the modified nuclear envelope. Many symplasts were also found because of the breakdown of intercellular bridges. Colchicine treatment thus indicated that microtubule-dependent trafficking of transport vesicles between the Golgi apparatus and the acrosome plays a vital role in acrosomal biogenesis. In addition, both anterograde and retrograde vesicle trafficking are extensively involved and seem to be equally important in acrosome formation.
Collapse
Affiliation(s)
- Wei-Pang Huang
- Department of Life Science, Institute of Zoology, National Taiwan University, Taipei, 10617, Taiwan
| | | |
Collapse
|
14
|
Vaughan KT. Microtubule plus ends, motors, and traffic of Golgi membranes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:316-24. [PMID: 15950296 DOI: 10.1016/j.bbamcr.2005.05.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 04/30/2005] [Accepted: 05/03/2005] [Indexed: 01/06/2023]
Abstract
The intimate link between microtubule (MT) organization and the components of the secretory pathway has suggested that MT-based motility is an essential component of vesicular membrane transport and membrane polarization. The molecular details of these processes are still under investigation; however, a novel class of MT plus end-binding proteins shed new light on transport between the endoplasmic reticulum (ER) and Golgi apparatus. The dynactin complex, an initial member of this family, shares localization and live-cell imaging phenotypes with other plus end-binding proteins such as CLIP-170 and EB1. In addition, dynactin has been shown to mediate the binding of ER-Golgi transport vesicles to MTs through a regulated MT-binding motif in p150(Glued). Whereas the plus end-binding activity of CLIP-170 and EB1 has been linked to the regulation of dynamic instability, the plus end binding of dynactin is implicated in a search-capture mechanism for dynein-dependent cargoes. An examination of dynactin's role in ER-Golgi transport suggests that plus end binding could be a reflection of fundamental membrane transport mechanisms.
Collapse
Affiliation(s)
- Kevin T Vaughan
- Department of Biological Sciences, P.O. Box 369, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
15
|
Fan SS. Dynactin affects extension and assembly of adherens junctions in Drosophila photoreceptor development. J Biomed Sci 2004; 11:362-9. [PMID: 15067220 DOI: 10.1007/bf02254441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2003] [Accepted: 11/19/2003] [Indexed: 10/25/2022] Open
Abstract
Drosophila eye development is a progressive process including cell fate determination, pattern formation, and rhabdomere morphogenesis. During eye development, a dramatic change in cell shape, which involves turning and extension of the photoreceptor apical surface, occurs in the early pupal stages. It is known that assembly and extension of adherens junctions (AJs) play an important role in this process. In the present study, I show that mutation of the largest subunit of dynactin complexes encoded by Glued (Gl) affects the extension and assembly of Ajs in developing photoreceptors. In Gl(1)/(+) mutants and transgenic flies expressing the dominant negative form of Glued, the AJs failed to properly assemble and extend. In addition, the morphogenesis of rhabdomeres was also affected in these flies. Taken together, these results suggest that the extension and assembly of AJs as well as determination of the rhabdomere domain in photoreceptor development are Gl dependent.
Collapse
Affiliation(s)
- Seng-Sheen Fan
- Department of Biology and Life Science Research Center, Tunghai University, Taichung, Taiwan, ROC.
| |
Collapse
|
16
|
Abstract
A missing link in the understanding of the mechanisms of transport of the mannose 6-phosphate receptors has recently been discovered, following the identification of the protein TIP47. In association with Rab9-GTP, this protein is responsible for the return of the receptors from the late endosomes back to the trans-Golgi network. Curiously, the same protein called PP17b, was described as a placental protein twenty years ago, and more recently, as a blood marker for human uterine cervical cancer. The sequence of PP17b/TIP47 displays not only a strong homology with those of adipophilin and the perilipins, two proteins known to be involved in the intracellular traffic of lipid droplets but also PP17b/TIP47 is associated with the later. How this ubiquitous protein could participate in processes as different as the mannose 6-phosphate receptors traffic and the formation and/or traffic of lipid droplets? A tentative hypothesis is put forward.
Collapse
Affiliation(s)
- Alain Pauloin
- Unité de Génomique et physiologie de la lactation, Inra, 78352 Jouy-en-Josas, France.
| | | | | |
Collapse
|
17
|
Abstract
Microtubules are essential for many aspects of polarity in multicellular organisms, ranging from the asymmetric distribution of cell-fate determinants in the one-cell embryo to the transient polarity generated in migrating fibroblasts. Epithelial cells exhibit permanent cell polarity characterized by apical and basolateral surface domains of distinct protein and lipid composition that are segregated by tight junctions. They are also endowed with a microtubule network that reflects the asymmetry of their cell surface: microtubule minus-ends face the apical- and microtubule plus-ends the basal domain. Strikingly, the formation of distinct surface domains during epithelial differentiation is accompanied by the re-organization of microtubules from a uniform array focused at the centrosome to the noncentrosomal network that aligns along the apico-basolateral polarity axis. The significance of this coincidence for epithelial morphogenesis and the signaling mechanisms that drive microtubule repolymerization in developing epithelia remain major unresolved questions that we are only beginning to address. Studies in cultured polarized epithelial cells have established that microtubules serve as tracks that facilitate targeted vesicular transport. Novel findings suggest, moreover, that microtubule-based transport promotes protein sorting, and even the generation of transport carriers in the endo- and exocytic pathways.
Collapse
Affiliation(s)
- Anne Müsch
- Dyson Institute of Vision Research; Weill Medical College of Cornell University, New York, 10021, USA.
| |
Collapse
|
18
|
Abstract
Regulated secretion and exocytosis require the selective packaging of regulated secretory proteins in secretory storage organelles and the controlled docking and fusion of these organelles with the plasma membrane. Secretory granule biogenesis involves sorting of secretory proteins and membrane components both at the level of the trans-Golgi network and the immature secretory granule. Sorting is thought to be mediated by selective protein aggregation and the interaction of these proteins with specific membrane domains. There is now considerable interest in the understanding of the complex lipid-protein and protein-protein interactions at the trans-Golgi network and the granule membrane. A role for lipid microdomains and associated sorting receptors in membrane targeting and granule formation is vividly discussed for (neuro)endocrine cells. In exocrine cells, however, little has been known of granule membrane composition and membrane protein function. With the cloning and characterization of granule membrane proteins and their interactions at the inner leaflet of zymogen granules of pancreatic acinar cells, it is now possible to elucidate their function in membrane targeting and sorting of zymogens at the molecular level.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Cell Biology and Cell Pathology, University of Marburg, Robert Koch Str 6, 35037 Marburg, Germany
| |
Collapse
|
19
|
Kidd JF, Pilkington MF, Schell MJ, Fogarty KE, Skepper JN, Taylor CW, Thorn P. Paclitaxel affects cytosolic calcium signals by opening the mitochondrial permeability transition pore. J Biol Chem 2002; 277:6504-10. [PMID: 11724773 DOI: 10.1074/jbc.m106802200] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We have characterized the effects of the antimitotic drug paclitaxel (Taxol(TM)) on the Ca(2+) signaling cascade of terminally differentiated mouse pancreatic acinar cells. Using single cell fluorescence techniques and whole-cell patch clamping to record cytosolic Ca(2+) and plasma membrane Ca(2+)-dependent Cl(-) currents, we find that paclitaxel abolishes cytosolic Ca(2+) oscillations and in more than half of the cells it also induces a rapid, transient cytosolic Ca(2+) response. This response is not affected by removal of extracellular Ca(2+) indicating that paclitaxel releases Ca(2+) from an intracellular Ca(2+) store. Using saponin-permeabilized cells, we show that paclitaxel does not affect Ca(2+) release from an inositol trisphosphate-sensitive store. Furthermore, up to 15 min after paclitaxel application, there is no significant effect on either microtubule organization or on endoplasmic reticulum organization. The data suggest a non-endoplasmic reticulum source for the intracellular Ca(2+) response. Using the mitochondrial fluorescent dyes, JC-1 and Rhod-2, we show that paclitaxel evoked a rapid decline in the mitochondrial membrane potential and a loss of mitochondrial Ca(2+). Cyclosporin A, a blocker of the mitochondrial permeability transition pore, blocked both the paclitaxel-induced loss of mitochondrial Ca(2+) and the effect on Ca(2+) spikes. We conclude that paclitaxel exerts rapid effects on the cytosolic Ca(2+) signal via the opening of the mitochondrial permeability transition pore. This work indicates that some of the more rapidly developing side effects of chemotherapy might be due to an action of antimitotic drugs on mitochondrial function and an interference with the Ca(2+) signal cascade.
Collapse
Affiliation(s)
- Jackie F Kidd
- Biomedical Imaging Group, Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Noda Y, Okada Y, Saito N, Setou M, Xu Y, Zhang Z, Hirokawa N. KIFC3, a microtubule minus end-directed motor for the apical transport of annexin XIIIb-associated Triton-insoluble membranes. J Cell Biol 2001; 155:77-88. [PMID: 11581287 PMCID: PMC2150803 DOI: 10.1083/jcb.200108042] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have identified and characterized a COOH-terminal motor domain-type kinesin superfamily protein (KIFC), KIFC3, in the kidney. KIFC3 is a minus end-directed microtubule motor protein, therefore it accumulates in regions where minus ends of microtubules assemble. In polarized epithelial cells, KIFC3 is localized on membrane organelles immediately beneath the apical plasma membrane of renal tubular epithelial cells in vivo and polarized MDCK II cells in vitro. Flotation assay, coupled with detergent extraction, demonstrated that KIFC3 is associated with Triton X-100-insoluble membrane organelles, and that it overlaps with apically transported TGN-derived vesicles. This was confirmed by immunoprecipitation and by GST pulldown experiments showing the specific colocalization of KIFC3 and annexin XIIIb, a previously characterized membrane protein for apically transported vesicles (Lafont, F., S. Lecat, P. Verkade, and K. Simons. 1998. J. Cell Biol. 142:1413-1427). Furthermore, we proved that the apical transport of both influenza hemagglutinin and annexin XIIIb was partially inhibited or accelerated by overexpression of motor-domainless (dominant negative) or full-length KIFC3, respectively. Absence of cytoplasmic dynein on these annexin XIIIb-associated vesicles and distinct distribution of the two motors on the EM level verified the existence of KIFC3-driven transport in epithelial cells.
Collapse
Affiliation(s)
- Y Noda
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Thomas DD, Taft WB, Kaspar KM, Groblewski GE. CRHSP-28 regulates Ca(2+)-stimulated secretion in permeabilized acinar cells. J Biol Chem 2001; 276:28866-72. [PMID: 11384973 DOI: 10.1074/jbc.m102214200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CRHSP-28 is a Ca(2+)-regulated heat-stable phosphoprotein, abundant in the apical cytoplasm of epithelial cells that are specialized in exocrine protein secretion. To define a functional role for the protein in pancreatic secretion, recombinant CRHSP-28 (rCRHSP-28) was introduced into streptolysin-O-permeabilized acinar cells, and amylase secretion in response to elevated Ca(2+) was determined. Secretion was enhanced markedly by rCRHSP-28 over a time course that closely corresponded with the loss of the native protein from the intracellular compartment. No effects of rCRHSP-28 were detected until approximately 50% of the native protein was lost from the cytosol. Secretion was enhanced by rCRHSP-28 over a physiological range of Ca(2+) concentrations with 2-3-fold increases in amylase release occurring in response to low micromolar levels of free Ca(2+). Further, rCRHSP-28 augmented secretion in a concentration-dependent manner with minimal and maximal effects occurring at 1 and 25 microg/ml, respectively. Covalent cross-linking experiments demonstrated that native CRHSP-28 was present in a 60-kDa complex in cytosolic fractions and in a high molecular mass complex in particulate fractions, consistent with the slow leak rate of the protein from streptolysin-O-permeabilized cells. Probing acinar lysates with rCRHSP-28 in a gel-overlay assay identified two CRHSP-28-binding proteins of 35 (pp35) and 70 kDa (pp70). Interestingly, preparation of lysates in the presence of 1 mm Ca(2+) resulted in a marked redistribution of both proteins from a cytosolic to a Triton X-100-insoluble fraction, suggesting a Ca(2+)-sensitive interaction of these proteins with the acinar cell cytoskeleton. In agreement with our previous study immunohistochemically localizing CRHSP-28 around secretory granules in acinar cells, gel-overlay analysis revealed pp70 copurified with acinar cell secretory granule membranes. These findings demonstrate an important cell physiological function for CRHSP-28 in the Ca(2+)-regulated secretory pathway of acinar cells.
Collapse
Affiliation(s)
- D D Thomas
- Department of Nutritional Sciences, University of Wisconsin, Madison Wisconsin 53706, USA
| | | | | | | |
Collapse
|
22
|
Habermann A, Schroer TA, Griffiths G, Burkhardt JK. Immunolocalization of cytoplasmic dynein and dynactin subunits in cultured macrophages: enrichment on early endocytic organelles. J Cell Sci 2001; 114:229-240. [PMID: 11112706 DOI: 10.1242/jcs.114.1.229] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cytoplasmic dyneins and their cofactor, dynactin, work together to mediate the movement of numerous cargo organelles toward the minus-ends of microtubules. In many cases, there is compelling evidence that dynactin functions in part to attach dyneins to cargo organelles, but this may not always be the case. We have localized three dynactin subunits (Arp1, p62 and p150(Glued)) and two subunits of conventional cytoplasmic dynein (dynein intermediate chain and dynein heavy chain 1) in murine macrophages using immunogold labeling of thawed cryosections. Using stereological techniques, we have quantified the relative distributions of each of these subunits on specific membrane organelles to generate a comprehensive analysis of the distribution of these proteins in a single cell type. Our results show that each of the subunits tested exhibits the same distribution with respect to different membrane organelles, with highest levels present on early endosomes, and lower levels present on later endocytic organelles, the mitochondrial outer membrane, the plasma membrane and vesicles in the Golgi region. An additional pool of punctate dynactin labeling was detected in the cell periphery, in the absence of dynein labeling. Even when examined closely, membrane organelles could not be detected in association with these dynactin-positive sites; however, double labeling with anti-tubulin antibody revealed that at least some of these sites represent the ends of microtubules. The similarities among the labeling profiles with respect to membrane organelles suggest that dynein and dynactin bind to membrane organelles as an obligate unit. In contrast, our results show that dynactin can associate with microtubule ends in the absence of dynein, perhaps providing sites for subsequent organelle and dynein association to form a functional motility complex.
Collapse
Affiliation(s)
- A Habermann
- Cell Biology Programme, European Molecular Biology Laboratory, Meyerhofstrasse 1, Postfach 102209, Germany
| | | | | | | |
Collapse
|
23
|
Ong LL, Lim AP, Er CP, Kuznetsov SA, Yu H. Kinectin-kinesin binding domains and their effects on organelle motility. J Biol Chem 2000; 275:32854-60. [PMID: 10913441 DOI: 10.1074/jbc.m005650200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intracellular organelle motility involves motor proteins that move along microtubules or actin filaments. One of these motor proteins, kinesin, was proposed to bind to kinectin on membrane organelles during movement. Whether kinectin is the kinesin receptor on organelles with a role in organelle motility has been controversial. We have characterized the sites of interaction between human kinectin and conventional kinesin using in vivo and in vitro assays. The kinectin-binding domain on the kinesin tail partially overlaps its head-binding domain and the myosin-Va binding domain. The kinesin-binding domain on kinectin resides near the COOH terminus and enhances the microtubule-stimulated kinesin-ATPase activity, and the overexpression of the kinectin-kinesin binding domains inhibited kinesin-dependent organelle motility in vivo. These data, when combined with other studies, suggest a role for kinectin in organelle motility.
Collapse
Affiliation(s)
- L L Ong
- National University Medical Institutes, Faculty of Medicine, National University of Singapore, Singapore 117597
| | | | | | | | | |
Collapse
|
24
|
Wu CC, Howell KE, Neville MC, Yates JR, McManaman JL. Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis 2000; 21:3470-82. [PMID: 11079566 DOI: 10.1002/1522-2683(20001001)21:16<3470::aid-elps3470>3.0.co;2-g] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The synthesis and secretion of lipids by mammary epithelial cells is a highly ordered process that involves several distinct steps. Triacylglycerols are synthesized in the endoplasmic reticulum and incorporated into microlipid droplets which coalesce into cytoplasmic lipid droplets. These are vectorially transported to the apical plasma membrane where they are secreted into the milk surrounded by a membrane bilayer. The origin of this membrane as well as the mechanism by which cytoplasmic lipid droplets form and become surrounded by membrane is poorly understood. Proteomic analysis of the protein composition of milk fat globules and cytoplasmic lipid droplet has revealed that the endoplasmic reticulum is not only involved in the synthesis of the lipid but also potentially contributes to the membrane component of milk fat globules. The proteins identified suggest possible mechanisms of multiple steps during this process. Completion of the proteome of milk fat globule membranes and cytoplasmic lipid droplets will provide the necessary reporter molecules to follow and dissect the mechanisms of the sorting and ultimate secretion of cytoplasmic lipid droplets.
Collapse
Affiliation(s)
- C C Wu
- Department of Cellular and Structural Biology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | |
Collapse
|
25
|
Thiemann M, Schrader M, Völkl A, Baumgart E, Fahimi HD. Interaction of peroxisomes with microtubules. In vitro studies using a novel peroxisome-microtubule binding assay. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6264-75. [PMID: 11012681 DOI: 10.1046/j.1432-1327.2000.01713.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The association of membrane-bounded cell organelles to microtubules is crucial for determination of their shape, intracellular localization and translocation. We have shown previously the high affinity binding of peroxisomes to microtubules which appears to be of static nature as in vivo studies indicate that only a few peroxisomes move along the microtubular tracks. In order to characterize the interactions of peroxisomes with microtubules, we have developed a semiquantitative in vitro binding assay, which is based on the association of highly purified rat liver peroxisomes to microtubules coated onto microtiterplates. The binding was visualized by differential interference contrast and immunofluorescence using a confocal laser scanning microscope. The binding was concentration dependent and saturable, being affected by time, temperature, and pH. Addition of ATP or the motor proteins kinesin and dynein increased the binding capacity, while ATP-depletion or microtubule associated proteins (MAPs) decreased it. KCl treatment of peroxisomes reduced the binding, which was restored by dialyzed KCl-stripping eluate as well as by rat liver cytosol. The reconstituting effect of cytosol was abolished by its pretreatment with proteases or N-ethylmaleimide. Moreover, the treatment of peroxisomes with proteases or N-ethylmaleimide reduced their binding, which was not reversed by cytosol. These results suggest the involvement of a peroxisomal membrane protein and cytosolic factor(s) in the binding of peroxisomes to microtubules. This notion is supported by the observation that distinct subfractions of dialyzed KCl-stripping eluate obtained by gel chromatography augmented the binding. Those subfractions, as well as purified peroxisome fractions, exhibited strong immunoreactivity with an antibody to cytoplasmic linker protein (CLIP)-115, revealing a 70-kDa polypeptide. Moreover, immunodepletion of KCl-stripping eluate and its subfractions with an antibody to the conserved microtubule binding domain of CLIPs, abolished their promoting effect on the binding, thus suggesting the involvement of a CLIP-related protein in the binding of peroxisomes to microtubules.
Collapse
Affiliation(s)
- M Thiemann
- Department of Anatomy and Cell Biology, Division of Medical Cell Biology, University of Heidelberg, Germany
| | | | | | | | | |
Collapse
|
26
|
Waschke J, Drenckhahn D. Uniform apicobasal polarity of microtubules and apical location of gamma-tubulin in polarized intestinal epithelium in situ. Eur J Cell Biol 2000; 79:317-26. [PMID: 10887962 DOI: 10.1078/s0171-9335(04)70035-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polarized differentiation of the intestinal epithelium has been previously shown to depend on an intact microtubular system that is essential for vectorial delivery of apical membrane proteins to the apical cell surfaces. Uniform alignment and polarization of microtubules have been suggested to provide the ultrastructural basis for vectorial transport between the Golgi apparatus and the apical cell surface. In the present study we applied the hook decoration technique to analyse the polarity of microtubules in the rat jejunal epithelium. By immunocytochemistry we studied the subcellular location of gamma-tubulin, an essential component of microtubule-organizing centers. Microtubules were found to be mainly aligned parallel to the apicobasal axis of the cells and to extend from the subterminal space underneath the apical terminal web down to the cellular basis. We found that 98% out of 1122 decorated microtubules displayed uniform apicobasal polarity with the growing ends (plus ends) pointing basally and the non-growing ends (minus ends) pointing towards the cellular apex. No differences were observed with respect to microtubular polarity between the apical, perinuclear and infranuclear cellular portions. Immunostaining specific for gamma-tubulin was restricted to the apical subterminal space underneath the rootlets of microvilli. These findings indicate that the apical subterminal space of enterocytes serves as the predominant if not exclusive microtubule-organizing compartment from which uniformly polarized microtubules grow out with their plus ends towards the cellular basis.
Collapse
Affiliation(s)
- J Waschke
- Institute of Anatomy, Julius-Maximilians University, Würzburg, Germany
| | | |
Collapse
|
27
|
Srinivasan S, Alexander H, Alexander S. The prespore vesicles of Dictyostelium discoideum. Purification, characterization, and developmental regulation. J Biol Chem 1999; 274:35823-31. [PMID: 10585466 DOI: 10.1074/jbc.274.50.35823] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The coordinate fusion of the prespore vesicles (PSVs) with the plasma membrane at the terminal stage of spore differentiation in Dictyostelium discoideum is an important example of developmentally regulated protein secretion. However, little is known about the composition of the vesicles, the molecular signals regulating secretion, or the mechanics of the membrane fusion. Taking a biochemical approach, we purified PSVs from different developmental stages. These preparations are highly enriched for their specific cargo of spore coat proteins while devoid of markers for other cellular compartments. Electron microscopic observations show that the PSV preparations are homogenous, with the soluble spore coat protein PsB/SP85 distributed throughout the lumen and the acid mucopolysaccharide localized in the central core. During development the PSVs increase in size and density concomitant with an increase in their protein cargo. The PSVs contain approximately 80 proteins, and we have identified a PSV-specific GTP-binding protein that may be involved in regulating vesicle fusion. The PSVs are not clathrin-coated and do not contain the SpiA spore coat protein. The PSV preparations are ideal for a global proteome analysis to identify proteins involved in signal reception, vesicle movement, docking, and fusion in this developmentally regulated organelle.
Collapse
Affiliation(s)
- S Srinivasan
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211-7400, USA
| | | | | |
Collapse
|
28
|
Ku NO, Zhou X, Toivola DM, Omary MB. The cytoskeleton of digestive epithelia in health and disease. Am J Physiol Gastrointest Liver Physiol 1999; 277:G1108-37. [PMID: 10600809 DOI: 10.1152/ajpgi.1999.277.6.g1108] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
The mammalian cell cytoskeleton consists of a diverse group of fibrillar elements that play a pivotal role in mediating a number of digestive and nondigestive cell functions, including secretion, absorption, motility, mechanical integrity, and mitosis. The cytoskeleton of higher-eukaryotic cells consists of three highly abundant major protein families: microfilaments (MF), microtubules (MT), and intermediate filaments (IF), as well as a growing number of associated proteins. Within digestive epithelia, the prototype members of these three protein families are actins, tubulins, and keratins, respectively. This review highlights the important structural, regulatory, functional, and unique features of the three major cytoskeletal protein groups in digestive epithelia. The emerging exciting biological aspects of these protein groups are their involvement in cell signaling via direct or indirect interaction with a growing list of associated proteins (MF, MT, IF), the identification of several disease-causing mutations (IF, MF), the functional role that they play in protection from environmental stresses (IF), and their functional integration via several linker proteins that bridge two or potentially all three of these groups together. The use of agents that target specific cytoskeletal elements as therapeutic modalities for digestive diseases offers potential unique areas of intervention that remain to be fully explored.
Collapse
Affiliation(s)
- N O Ku
- Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA
| | | | | | | |
Collapse
|