1
|
Tajalli-Nezhad S, Mohammadi S, Atlasi MA, Kheiran M, Moghadam SE, Naderian H, Azami Tameh A. Calcitriol modulate post-ischemic TLR signaling pathway in ischemic stroke patients. J Neuroimmunol 2023; 375:578013. [PMID: 36657372 DOI: 10.1016/j.jneuroim.2022.578013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Neuroinflammation is a significant contributor to post-ischemic neuronal death after stroke, and Toll-Like Receptors (TLRs) are one of the essential mediators in many inflammatory pathways. TLRs activate the nuclear factor kappa β (NF-kβ), which promotes the expression of various pro-inflammatory genes such as interleukin (IL-1β) and IL-6. 1,25(OH)2D3, also known as calcitriol, is an active form of vitamin D3 that acts as a neurosteroid compound with anti-inflammatory properties. This study aimed to determine the modulatory effects of calcitriol hormone on post-ischemic immunity response. METHODS Neurological tests and conventional blood factors were evaluated in patients with stroke symptoms upon arrival (n = 38) to confirm the stroke. A blood sample was taken from each stroke patient immediately upon admission and again after 24 h. The experimental group was given 10 μg calcitriol orally. The gene expression levels of TLR4, TLR2, NF-kβ, IL-1β, and IL-6 pro-inflammatory factors were measured using real-time PCR. The protein expression of TLR4 and NF-kβ markers was assessed using the flow cytometry technique. RESULTS TLR4, NF-kβ, and pro-inflammatory factors IL-1β and IL-6 expression increased significantly after an ischemic stroke, and calcitriol could modulate the TLR4/NF-kβ signaling pathway 24 h after ischemia. CONCLUSIONS Calcitriol may be considered a protective reagent after ischemia by reducing the TLR4/NF-kB activation cascade and probably plays a beneficial role in reducing and improving ischemic stroke patients' symptoms. TRIAL REGISTRATION Iranian Registry of Clinical Trials identifier: IRCT2017012532174N1.
Collapse
Affiliation(s)
- Saeedeh Tajalli-Nezhad
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Salimeh Mohammadi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Ali Atlasi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdi Kheiran
- Department of Neurology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sepideh Etehadi Moghadam
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Homayoun Naderian
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
2
|
Gozt A, Hellewell S, Ward PGD, Bynevelt M, Fitzgerald M. Emerging Applications for Quantitative Susceptibility Mapping in the Detection of Traumatic Brain Injury Pathology. Neuroscience 2021; 467:218-236. [PMID: 34087394 DOI: 10.1016/j.neuroscience.2021.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is a common but heterogeneous injury underpinned by numerous complex and interrelated pathophysiological mechanisms. An essential trace element, iron is abundant within the brain and involved in many fundamental neurobiological processes, including oxygen transportation, oxidative phosphorylation, myelin production and maintenance, as well as neurotransmitter synthesis and metabolism. Excessive levels of iron are neurotoxic and thus iron homeostasis is tightly regulated in the brain, however, many details about the mechanisms by which this is achieved are yet to be elucidated. A key mediator of oxidative stress, mitochondrial dysfunction and neuroinflammatory response, iron dysregulation is an important contributor to secondary injury in TBI. Advances in neuroimaging that leverage magnetic susceptibility properties have enabled increasingly comprehensive investigations into the distribution and behaviour of iron in the brain amongst healthy individuals as well as disease states such as TBI. Quantitative Susceptibility Mapping (QSM) is an advanced neuroimaging technique that promises quantitative estimation of local magnetic susceptibility at the voxel level. In this review, we provide an overview of brain iron and its homeostasis, describe recent advances enabling applications of QSM within the context of TBI and summarise the current state of the literature. Although limited, the emergent research suggests that QSM is a promising neuroimaging technique that can be used to investigate a host of pathophysiological changes that are associated with TBI.
Collapse
Affiliation(s)
- Aleksandra Gozt
- Curtin University, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Bentley, WA Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA Australia
| | - Sarah Hellewell
- Curtin University, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Bentley, WA Australia
| | - Phillip G D Ward
- Australian Research Council Centre of Excellence for Integrative Brain Function, VIC Australia; Turner Institute for Brain and Mental Health, Monash University, VIC Australia
| | - Michael Bynevelt
- Neurological Intervention and Imaging Service of Western Australia, Sir Charles Gairdner Hospital, Nedlands, WA Australia
| | - Melinda Fitzgerald
- Curtin University, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Bentley, WA Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA Australia.
| |
Collapse
|
3
|
Wang YS, Hung TW, Bae EK, Wu KJ, Hsieh W, Yu SJ. Naltrexone is neuroprotective against traumatic brain injury in mu opioid receptor knockout mice. CNS Neurosci Ther 2021; 27:831-841. [PMID: 34018697 PMCID: PMC8193702 DOI: 10.1111/cns.13655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 12/20/2022] Open
Abstract
Aims Naltrexone is a mu opioid receptor (MOR) antagonist used to treat drug dependence in patients. Previous reports indicated that MOR antagonists reduced neurodegeneration and inflammation after brain injury. The purpose of this study was to evaluate the neuroprotective effect of naltrexone in cell culture and a mouse model of traumatic brain injury (TBI). Methods The neuroprotective effect of naltrexone was examined in primary cortical neurons co‐cultured with BV2 microglia. Controlled cortical impact (CCI) was delivered to the left cerebral cortex of adult male MOR wild‐type (WT) and knockout (KO) mice. Naltrexone was given daily for 4 days, starting from day 2 after lesioning. Locomotor activity was evaluated on day 5 after the CCI. Brain tissues were collected for immunostaining, Western, and qPCR analysis. Results Glutamate reduced MAP2 immunoreactivity (‐ir), while increased IBA1‐ir in neuron/BV2 co‐culture; both responses were antagonized by naltrexone. TBI significantly reduced locomotor activity and increased the expression of IBA1, iNOS, and CD4 in the lesioned cortex. Naltrexone significantly and equally antagonized the motor deficits and expression of IBA1 and iNOS in WT and KO mice. TBI‐mediated CD4 protein production was attenuated by naltrexone in WT mice, but not in KO mice. Conclusion Naltrexone reduced TBI‐mediated neurodegeneration and inflammation in MOR WT and KO mice. The protective effect of naltrexone involves non‐MOR and MOR mechanisms.
Collapse
Affiliation(s)
- Yu-Syuan Wang
- Center for Neuropsychiatric Research, National Health Research Institute, Zhunan, Taiwan
| | - Tsai-Wei Hung
- Center for Neuropsychiatric Research, National Health Research Institute, Zhunan, Taiwan
| | - Eun-Kyung Bae
- Center for Neuropsychiatric Research, National Health Research Institute, Zhunan, Taiwan
| | - Kuo-Jen Wu
- Center for Neuropsychiatric Research, National Health Research Institute, Zhunan, Taiwan
| | - Wei Hsieh
- Center for Neuropsychiatric Research, National Health Research Institute, Zhunan, Taiwan
| | - Seong-Jin Yu
- Center for Neuropsychiatric Research, National Health Research Institute, Zhunan, Taiwan
| |
Collapse
|
4
|
Sim TM, Tarini D, Dheen ST, Bay BH, Srinivasan DK. Nanoparticle-Based Technology Approaches to the Management of Neurological Disorders. Int J Mol Sci 2020; 21:E6070. [PMID: 32842530 PMCID: PMC7503838 DOI: 10.3390/ijms21176070] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/09/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
Neurological disorders are the most devastating and challenging diseases associated with the central nervous system (CNS). The blood-brain barrier (BBB) maintains homeostasis of the brain and contributes towards the maintenance of a very delicate microenvironment, impairing the transport of many therapeutics into the CNS and making the management of common neurological disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), cerebrovascular diseases (CVDs) and traumatic brain injury (TBI), exceptionally complicated. Nanoparticle (NP) technology offers a platform for the design of tissue-specific drug carrying systems owing to its versatile and modifiable nature. The prospect of being able to design NPs capable of successfully crossing the BBB, and maintaining a high drug bioavailability in neural parenchyma, has spurred much interest in the field of nanomedicine. NPs, which also come in an array of forms including polymeric NPs, solid lipid nanoparticles (SLNs), quantum dots and liposomes, have the flexibility of being conjugated with various macromolecules, such as surfactants to confer the physical or chemical property desired. These nanodelivery strategies represent potential novel and minimally invasive approaches to the treatment and diagnosis of these neurological disorders. Most of the strategies revolve around the ability of the NPs to cross the BBB via various influx mechanisms, such as adsorptive-mediated transcytosis (AMT) and receptor-mediated transcytosis (RMT), targeting specific biomarkers or lesions unique to that pathological condition, thereby ensuring high tissue-specific targeting and minimizing off-target side effects. In this article, insights into common neurological disorders and challenges of delivering CNS drugs due to the presence of BBB is provided, before an in-depth review of nanoparticle-based theranostic strategies.
Collapse
Affiliation(s)
- Tao Ming Sim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
| | - Dinesh Tarini
- Government Kilpauk Medical College, The Tamilnadu Dr MGR Medical University, Chennai, Tamilnadu 600032, India;
| | - S. Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (S.T.D.); (B.H.B.)
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (S.T.D.); (B.H.B.)
| | - Dinesh Kumar Srinivasan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (S.T.D.); (B.H.B.)
| |
Collapse
|
5
|
Common Protective Strategies in Neurodegenerative Disease: Focusing on Risk Factors to Target the Cellular Redox System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8363245. [PMID: 32832006 PMCID: PMC7422410 DOI: 10.1155/2020/8363245] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022]
Abstract
Neurodegenerative disease is an umbrella term for different conditions which primarily affect the neurons in the human brain. In the last century, significant research has been focused on mechanisms and risk factors relevant to the multifaceted etiopathogenesis of neurodegenerative diseases. Currently, neurodegenerative diseases are incurable, and the treatments available only control the symptoms or delay the progression of the disease. This review is aimed at characterizing the complex network of molecular mechanisms underpinning acute and chronic neurodegeneration, focusing on the disturbance in redox homeostasis, as a common mechanism behind five pivotal risk factors: aging, oxidative stress, inflammation, glycation, and vascular injury. Considering the complex multifactorial nature of neurodegenerative diseases, a preventive strategy able to simultaneously target multiple risk factors and disease mechanisms at an early stage is most likely to be effective to slow/halt the progression of neurodegenerative diseases.
Collapse
|
6
|
Tajalli-Nezhad S, Karimian M, Beyer C, Atlasi MA, Azami Tameh A. The regulatory role of Toll-like receptors after ischemic stroke: neurosteroids as TLR modulators with the focus on TLR2/4. Cell Mol Life Sci 2019; 76:523-537. [PMID: 30377701 PMCID: PMC11105485 DOI: 10.1007/s00018-018-2953-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is the most common cerebrovascular disease and considered as a worldwide leading cause of death. After cerebral ischemia, different pathophysiological processes including neuroinflammation, invasion and aggregation of inflammatory cells and up-regulation of cytokines occur simultaneously. In this respect, Toll-like receptors (TLRs) are the first identified important mediators for the activation of the innate immune system and are widely expressed in glial cells and neurons following brain trauma. TLRs are also able to interact with endogenous and exogenous molecules released during ischemia and can increase tissue damage. Particularly, TLR2 and TLR4 activate different downstream inflammatory signaling pathways. In addition, TLR signaling can alternatively play a role for endogenous neuroprotection. In this review, the gene and protein structures, common genetic polymorphisms of TLR2 and TLR4, TLR-related molecular pathways and their putative role after ischemic stroke are delineated. Furthermore, the relationship between neurosteroids and TLRs as neuroprotective mechanism is highlighted in the context of brain ischemia.
Collapse
Affiliation(s)
- Saeedeh Tajalli-Nezhad
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Karimian
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Mohammad Ali Atlasi
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Kinoshita K. Traumatic brain injury: pathophysiology for neurocritical care. J Intensive Care 2016; 4:29. [PMID: 27123305 PMCID: PMC4847183 DOI: 10.1186/s40560-016-0138-3] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 02/04/2016] [Indexed: 12/22/2022] Open
Abstract
Severe cases of traumatic brain injury (TBI) require neurocritical care, the goal being to stabilize hemodynamics and systemic oxygenation to prevent secondary brain injury. It is reported that approximately 45 % of dysoxygenation episodes during critical care have both extracranial and intracranial causes, such as intracranial hypertension and brain edema. For this reason, neurocritical care is incomplete if it only focuses on prevention of increased intracranial pressure (ICP) or decreased cerebral perfusion pressure (CPP). Arterial hypotension is a major risk factor for secondary brain injury, but hypertension with a loss of autoregulation response or excess hyperventilation to reduce ICP can also result in a critical condition in the brain and is associated with a poor outcome after TBI. Moreover, brain injury itself stimulates systemic inflammation, leading to increased permeability of the blood–brain barrier, exacerbated by secondary brain injury and resulting in increased ICP. Indeed, systemic inflammatory response syndrome after TBI reflects the extent of tissue damage at onset and predicts further tissue disruption, producing a worsening clinical condition and ultimately a poor outcome. Elevation of blood catecholamine levels after severe brain damage has been reported to contribute to the regulation of the cytokine network, but this phenomenon is a systemic protective response against systemic insults. Catecholamines are directly involved in the regulation of cytokines, and elevated levels appear to influence the immune system during stress. Medical complications are the leading cause of late morbidity and mortality in many types of brain damage. Neurocritical care after severe TBI has therefore been refined to focus not only on secondary brain injury but also on systemic organ damage after excitation of sympathetic nerves following a stress reaction.
Collapse
Affiliation(s)
- Kosaku Kinoshita
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kamimachi, Itabashi-ku, Tokyo, 173-8610 Japan
| |
Collapse
|
8
|
Pharmacological interventions in traumatic brain injury: Can we rely on systematic reviews for evidence? Injury 2016; 47:516-24. [PMID: 26589595 DOI: 10.1016/j.injury.2015.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/04/2015] [Accepted: 10/06/2015] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Providing current, reliable and evidence based information for clinicians and researchers in a synthesised and summarised way can be challenging particularly in the area of traumatic brain injury where a vast number of reviews exists. These reviews vary in their methodological quality and are scattered across varying sources. In this paper, we present an overview of systematic reviews that evaluate the pharmacological interventions in traumatic brain injury (TBI). By doing this, we aim to evaluate the existing evidence for improved outcomes in TBI with pharmacological interventions, and to identify gaps in the literature to inform future research. METHODS We searched the Neurotrauma Evidence Map on systematic reviews relating to pharmacological interventions for managing TBI in acute phase. Two reviewers independently screened search results and appraised each systematic review using the validated AMSTAR tool and extracted data from the review. RESULTS A total of 288 systematic reviews relating to TBI were available on the Neurotrauma Evidence Map at the time of this study. We identified 19 systematic reviews on pharmacological management for acute TBI with publications dates ranging from 1998 to 2014. The studies were of varying methodological quality, with a mean AMSTAR score of 7.78 (range 2-11]. CONCLUSION The evidence from high quality systematic reviews show that there is currently insufficient evidence for the use of magnesium, monoaminergic and dopamine agonists, progesterone, aminosteroids, excitatory amino acid inhibitors, haemostatic and antifibrinolytic drugs in TBI. Anti-convulsants are only effective in reducing early seizures with no significant difference between phenytoin and leviteracetam. There is no difference between propofol and midazolam for sedation in TBI patients and ketamine may not cause increased ICP. Overviews of systematic review provide informative and powerful summaries of evidence based research.
Collapse
|
9
|
Young B, Kalanuria A, Kumar M, Burke K, Balu R, Amendolia O, McNulty K, Marion B, Beckmann B, Ciocco L, Miller K, Schuele D, Maloney-Wilensky E, Frangos S, Wright D. Cerebral Microdialysis. Crit Care Nurs Clin North Am 2016; 28:109-24. [DOI: 10.1016/j.cnc.2015.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Abstract
Traumatic brain injury (TBI) has been named the most complex disease in the most complex organ of the body. It is the most common cause of death and disability in the Western world in people <40 years old and survivors commonly suffer from persisting cognitive deficits, impaired motor function, depression and personality changes. TBI may vary in severity from uniformly fatal to mild injuries with rapidly resolving symptoms and without doubt, it is a markedly heterogeneous disease. Its different subtypes differs in their pathophysiology, treatment options and long-term consequences and to date, there are no pharmacological treatments with proven clinical benefit available to TBI patients. To enable development of novel treatment options for TBI, clinically relevant animal models are needed. Due to their availability and low costs, numerous rodent models have been developed which have substantially contributed to our current understanding of the pathophysiology of TBI. The most common animal models used in laboratories worldwide are likely the controlled cortical impact (CCI) model, the central and lateral fluid percussion injury (FPI) models, and weight drop/impact acceleration (I/A) models. Each of these models has inherent advantages and disadvantages; these need to be thoroughly considered when selecting the rodent TBI model according to the hypothesis and design of the study. Since TBI is not one disease, refined animal models must take into account the clinical features and complexity of human TBI. To enhance the possibility of establishing preclinical efficacy of a novel treatment, the preclinical use of several different experimental models is encouraged as well as varying the species, gender, and age of the animal. In this chapter, the methods, limitations, and challenges of the CCI and FPI models of TBI used in rodents are described.
Collapse
Affiliation(s)
- Niklas Marklund
- Division of Neurosurgery, Department of Neuroscience, Uppsala University Hospital, Uppsala University, Uppsala, 751 85, Sweden.
| |
Collapse
|
11
|
Abstract
Traumatic brain injury (TBI) represents a significant public health problem in modern societies. It is primarily a consequence of traffic-related accidents and falls. Other recently recognized causes include sports injuries and indirect forces such as shock waves from battlefield explosions. TBI is an important cause of death and lifelong disability and represents the most well-established environmental risk factor for dementia. With the growing recognition that even mild head injury can lead to neurocognitive deficits, imaging of brain injury has assumed greater importance. However, there is no single imaging modality capable of characterizing TBI. Current advances, particularly in MR imaging, enable visualization and quantification of structural and functional brain changes not hitherto possible. In this review, we summarize data linking TBI with dementia, emphasizing the imaging techniques currently available in clinical practice along with some advances in medical knowledge.
Collapse
Affiliation(s)
- Joana Ramalho
- Centro Hospitalar de Lisboa Central, Lisboa, Portugal; University of North Carolina at Chapel Hill, Chapel Hill, NC, US
| | | |
Collapse
|
12
|
Yousefzadeh-Chabok S, Dehnadi Moghaddam A, Kazemnejad-Leili E, Saneei Z, Hosseinpour M, Kouchakinejad-Eramsadati L, Razzaghi A, Mohtasham-Amiri Z. The Relationship Between Serum Levels of Interleukins 6, 8, 10 and Clinical Outcome in Patients With Severe Traumatic Brain Injury. ARCHIVES OF TRAUMA RESEARCH 2015; 4:e18357. [PMID: 26064865 PMCID: PMC4460261 DOI: 10.5812/atr.18357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 01/04/2015] [Accepted: 02/07/2015] [Indexed: 11/16/2022]
Abstract
Background: Clinical outcome in patients with severe traumatic brain injury (TBI) depends on both primary and secondary brain injuries. Neuroinflammation is an important secondary mechanism, which occurs by releasing interleukins (ILs). Increased levels of ILs may affect clinical outcome following TBI. Objectives: This study aimed to determine the relationship between the serum levels of interleukins 6, 8 and 10 and clinical outcome in patients with severe TBI 6 months after injury. Patients and Methods: In a descriptive-analytical study, 44 patients with GCS ≤ 8 (Glasgow coma scale) and age ≥ 14 years were included. Their blood samples were collected at first 6 hours after injury. Clinical outcome was determined based on GOS (Glasgow Outcome Scale) at 6 months after head injury. Serum levels of interleukins 6, 8 and 10 were measured using the ELISA method. Spearman's rho, independent T-Test, and Mann-Whitney Test were used for data analysis. Results: Comparing the serum levels of interleukins in two groups with favorable and unfavorable clinical outcomes showed that the mean serum levels of interleukins 6 and 8 in group with favorable outcome was 85.2 ± 51.6 and 52.2 ± 31.9, respectively lower than those of group with unfavorable outcome with 162.3 ± 141.1 and 173.6 ± 257.3 (P < 0.03) and (P < 0.01). Conclusions: Increased serum levels of interleukins 6 and 8 as a predictive marker might be associated with unfavorable clinical outcome in patients with severe TBI.
Collapse
Affiliation(s)
- Sharhokh Yousefzadeh-Chabok
- Neurosurgery Department, Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, IR Iran
| | - Anoush Dehnadi Moghaddam
- Anesthesiology Department, Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, IR Iran
| | - Ehsan Kazemnejad-Leili
- Biostatistics Department,Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, IR Iran
| | - Zahra Saneei
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, IR Iran
| | - Marieh Hosseinpour
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, IR Iran
| | | | - Alireza Razzaghi
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, IR Iran
| | - Zahra Mohtasham-Amiri
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, IR Iran
- Corresponding author: Zahra Mohtasham-Amiri, Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, IR Iran. Tel: +98-1316690006, Fax: +98-1317753836, E-mail:
| |
Collapse
|
13
|
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. Despite extensive preclinical research supporting the effectiveness of neuroprotective therapies for brain trauma, there have been no successful randomized controlled clinical trials to date. TBI results in delayed secondary tissue injury due to neurochemical, metabolic and cellular changes; modulating such effects has provided the basis for neuroprotective interventions. To establish more effective neuroprotective treatments for TBI it is essential to better understand the complex cellular and molecular events that contribute to secondary injury. Here we critically review relevant research related to causes and modulation of delayed tissue damage, with particular emphasis on cell death mechanisms and post-traumatic neuroinflammation. We discuss the concept of utilizing multipotential drugs that target multiple secondary injury pathways, rather than more specific "laser"-targeted strategies that have uniformly failed in clinical trials. Moreover, we assess data supporting use of neuroprotective drugs that are currently being evaluated in human clinical trials for TBI, as well as promising emerging experimental multipotential drug treatment strategies. Finally, we describe key challenges and provide suggestions to improve the likelihood of successful clinical translation.
Collapse
Affiliation(s)
- David J Loane
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bogdan A Stoica
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Tuttolomondo A, Pecoraro R, Pinto A. Studies of selective TNF inhibitors in the treatment of brain injury from stroke and trauma: a review of the evidence to date. Drug Des Devel Ther 2014; 8:2221-2238. [PMID: 25422582 PMCID: PMC4232043 DOI: 10.2147/dddt.s67655] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The brain is very actively involved in immune-inflammatory processes, and the response to several trigger factors such as trauma, hemorrhage, or ischemia causes the release of active inflammatory substances such as cytokines, which are the basis of second-level damage. During brain ischemia and after brain trauma, the intrinsic inflammatory mechanisms of the brain, as well as those of the blood, are mediated by leukocytes that communicate with each other through cytokines. A neuroinflammatory cascade has been reported to be activated after a traumatic brain injury (TBI) and this cascade is due to the release of pro- and anti-inflammatory cytokines and chemokines. Microglia are the first sources of this inflammatory cascade in the brain setting. Also in an ischemic stroke setting, an important mediator of this inflammatory reaction is tumor necrosis factor (TNF)-α, which seems to be involved in every phase of stroke-related neuronal damage such as inflammatory and prothrombotic events. TNF-α has been shown to have an important role within the central nervous system; its properties include activation of microglia and astrocytes, influence on blood-brain barrier permeability, and influences on glutamatergic transmission and synaptic plasticity. TNF-α increases the amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor density on the cell surface and simultaneously decreases expression of γ-aminobutyric acid receptor cells, and these effects are related to a direct neurotoxic effect. Several endogenous mechanisms regulate TNF-α activity during inflammatory responses. Endogenous inhibitors of TNF include prostaglandins, cyclic adenosine monophosphate, and glucocorticoids. Etanercept, a biologic TNF antagonist, has a reported effect of decreasing microglia activation in experimental models, and it has been used therapeutically in animal models of ischemic and traumatic neuronal damage. In some studies using animal models, researchers have reported a limitation of TBI-induced cerebral ischemia due to etanercept action, amelioration of brain contusion signs, as well as motor and cognitive dysfunction. On this basis, it appears that etanercept may improve outcomes of TBI by penetrating into the cerebrospinal fluid in rats, although further studies in humans are needed to confirm these interesting and suggestive experimental findings.
Collapse
Affiliation(s)
- Antonino Tuttolomondo
- Biomedical Department of Internal and Specialistic Medicine, University of Palermo, Palermo, Italy
| | - Rosaria Pecoraro
- Biomedical Department of Internal and Specialistic Medicine, University of Palermo, Palermo, Italy
| | - Antonio Pinto
- Biomedical Department of Internal and Specialistic Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
15
|
Kumar A, Loane DJ. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behav Immun 2012; 26:1191-201. [PMID: 22728326 DOI: 10.1016/j.bbi.2012.06.008] [Citation(s) in RCA: 508] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/27/2012] [Accepted: 06/14/2012] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of mortality and morbidity worldwide, yet despite extensive efforts to develop neuroprotective therapies for this devastating disorder there have been no successful outcomes in human clinical trials to date. Following the primary mechanical insult TBI results in delayed secondary injury events due to neurochemical, metabolic and cellular changes that account for many of the neurological deficits observed after TBI. The development of secondary injury represents a window of opportunity for therapeutic intervention to prevent progressive tissue damage and loss of function after injury. To establish effective neuroprotective treatments for TBI it is essential to fully understand the complex cellular and molecular events that contribute to secondary injury. Neuroinflammation is well established as a key secondary injury mechanism after TBI, and it has been long considered to contribute to the damage sustained following brain injury. However, experimental and clinical research indicates that neuroinflammation after TBI can have both detrimental and beneficial effects, and these likely differ in the acute and delayed phases after injury. The key to developing future anti-inflammatory based neuroprotective treatments for TBI is to minimize the detrimental and neurotoxic effects of neuroinflammation while promoting the beneficial and neurotrophic effects, thereby creating optimal conditions for regeneration and repair after injury. This review outlines how post-traumatic neuroinflammation contributes to secondary injury after TBI, and discusses the complex and varied responses of the primary innate immune cells of the brain, microglia, to injury. In addition, emerging experimental anti-inflammatory and multipotential drug treatment strategies for TBI are discussed, as well as some of the challenges faced by the research community to translate promising neuroprotective drug treatments to the clinic.
Collapse
Affiliation(s)
- Alok Kumar
- Department of Anesthesiology & Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland School of Medicine, Baltimore, MD, United States
| | | |
Collapse
|
16
|
Affiliation(s)
- Andrew J Gauden
- Royal Melbourne Hospital; Department of Neurosurgery; Grattan Street Parkville VICTORIA Australia 3051
| | - Veronica Pitt
- National Trauma Research Institute, The Alfred Hospital, Monash University; Level 4, 89 Commercial Road Melbourne Victoria Australia 3004
| | - Russell L Gruen
- The Alfred Hospital, Monash University; National Trauma Research Institute; Level 4, 89 Commercial Road Melbourne Victoria Australia 3004
| |
Collapse
|
17
|
Rabchevsky AG, Patel SP, Springer JE. Pharmacological interventions for spinal cord injury: where do we stand? How might we step forward? Pharmacol Ther 2011; 132:15-29. [PMID: 21605594 DOI: 10.1016/j.pharmthera.2011.05.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 04/28/2011] [Indexed: 12/15/2022]
Abstract
Despite numerous studies reporting some measures of efficacy in the animal literature, there are currently no effective therapies for the treatment of traumatic spinal cord injuries (SCI) in humans. The purpose of this review is to delineate key pathophysiological processes that contribute to neurological deficits after SCI, as well as to describe examples of pharmacological approaches that are currently being tested in clinical trials, or nearing clinical translation, for the therapeutic management of SCI. In particular, we will describe the mechanistic rationale to promote neuroprotection and/or functional recovery based on theoretical, yet targeted pathological events. Finally, we will consider the clinical relevancy for emerging evidence that pharmacologically targeting mitochondrial dysfunction following injury may hold the greatest potential for increasing tissue sparing and, consequently, the extent of functional recovery following traumatic SCI.
Collapse
Affiliation(s)
- Alexander G Rabchevsky
- Spinal Cord & Brain injury Research Center, Lexington, University of Kentucky, KY 40536-0509, USA.
| | | | | |
Collapse
|
18
|
Nandhu MS, Naijil G, Smijin S, Jayanarayanan S, Paulose CS. Opioid system functional regulation in neurological disease management. J Neurosci Res 2011; 88:3215-21. [PMID: 20734417 DOI: 10.1002/jnr.22463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is increasing evidence to suggest a role for the opioid system in the control of pathophysiology of neurological disorders (Alzheimer's, Parkinson's, and Huntington's diseases, spinal cord injury, epilepsy, hypoxia, and autism). Resuscitation of the altered expression of the opioid system in various neurological disorders is of therapeutic importance. Such treatment may be beneficial in ameliorating the clinical symptoms of the disorder. This Mini-Review provides a brief update on opioid system regulation in neurological disorders and focuses on the opioids' pharmacological importance.
Collapse
Affiliation(s)
- M S Nandhu
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, India
| | | | | | | | | |
Collapse
|
19
|
Chamoun R, Suki D, Gopinath SP, Goodman JC, Robertson C. Role of extracellular glutamate measured by cerebral microdialysis in severe traumatic brain injury. J Neurosurg 2010; 113:564-70. [PMID: 20113156 DOI: 10.3171/2009.12.jns09689] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Authors of several studies have implied a key role of glutamate, an excitatory amino acid, in the pathophysiology of traumatic brain injury (TBI). However, the place of glutamate measurement in clinical practice and its impact on the management of TBI has yet to be elucidated. The authors' objective in the present study was to evaluate glutamate levels in TBI, analyzing the factors affecting them and determining their prognostic value. METHODS A prospective study of patients with severe TBI was conducted with an inclusion criterion of a Glasgow Coma Scale score < or = 8 within 48 hours of injury. Invasive monitoring included intracranial pressure measurements, brain tissue PO(2), jugular venous O(2) saturation, and cerebral microdialysis. Patients received standard care including mass evacuation when indicated and treatment of elevated intracranial pressure values. Demographic data, CT findings, and outcome at 6 months of follow-up were recorded. RESULTS One hundred sixty-five patients were included in the study. Initially high glutamate values were predictive of a poor outcome. The mortality rate was 30.3% among patients with glutamate levels > 20 micromol/L, compared with 18% among those with levels < or = 20 micromol/L. Two general patterns were recognized: Pattern 1, glutamate levels tended to normalize over the monitoring period (120 hours); and Pattern 2, glutamate levels tended to increase with time or remain abnormally elevated. Patients showing Pattern 1 had a lower mortality rate (17.1 vs 39.6%) and a better 6-month functional outcome among survivors (41.2 vs 20.7%). CONCLUSIONS Glutamate levels measured by microdialysis appear to have an important role in TBI. Data in this study suggest that glutamate levels are correlated with the mortality rate and 6-month functional outcome.
Collapse
Affiliation(s)
- Roukoz Chamoun
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
20
|
Fatehi-Hassanabad Z, Tasker RA. Peroxisome Proliferator-Activated Receptor-γ (PPAR-γ) Activation Confers Functional Neuroprotection in Global Ischemia. Neurotox Res 2010; 19:462-71. [DOI: 10.1007/s12640-010-9201-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 05/17/2010] [Accepted: 05/20/2010] [Indexed: 12/27/2022]
|
21
|
Cook NL, Vink R, Helps SC, Manavis J, van den Heuvel C. Transient receptor potential melastatin 2 expression is increased following experimental traumatic brain injury in rats. J Mol Neurosci 2010; 42:192-9. [PMID: 20309649 DOI: 10.1007/s12031-010-9347-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 02/24/2010] [Indexed: 11/30/2022]
Abstract
Traumatic brain injury (TBI) elicits a sequence of complex biochemical changes including oxidative stress, oedema, inflammation and excitotoxicity. These factors contribute to the high morbidity and mortality following TBI, although their underlying molecular mechanisms remain poorly understood. Transient receptor potential melastatin 2 (TRPM2) is a non-selective cation channel, highly expressed in the brain and immune cells. Recent studies have implicated TRPM2 channels in processes involving oxidative stress, inflammation and cell death. However, no studies have investigated the role of TRPM2 in TBI pathophysiology. In the present study, we have characterised TRPM2 mRNA and protein expression following experimental TBI. Adult male Sprague Dawley rats were injured using the impact-acceleration model of diffuse TBI with survival times between 5 and 5 days. Real-time RT-PCR (including reference gene validation studies) and semi-quantitative immunohistochemistry were used to quantify TRPM2 mRNA and protein levels, respectively, following TBI. Significant increases in TRPM2 mRNA and protein expression were observed in the cerebral cortex and hippocampus of injured animals, suggesting that TRPM2 may contribute to TBI injury processes such as oxidative stress, inflammation and neuronal death. Further characterisation of how TRPM2 may contribute to TBI pathophysiology is warranted.
Collapse
Affiliation(s)
- Naomi L Cook
- Discipline of Anatomy and Pathology, The University of Adelaide, Adelaide, Australia
| | | | | | | | | |
Collapse
|
22
|
Abstract
BACKGROUND This review summarizes promising approaches for the treatment of traumatic brain injury (TBI) that are in either preclinical or clinical trials. OBJECTIVE The pathophysiology underlying neurological deficits after TBI is described. An overview of select therapies for TBI with neuroprotective and neurorestorative effects is presented. METHODS A literature review of preclinical TBI studies and clinical TBI trials related to neuroprotective and neurorestorative therapeutic approaches is provided. RESULTS/CONCLUSION Nearly all Phase II/III clinical trials in neuroprotection have failed to show any consistent improvement in outcome for TBI patients. The next decade will witness an increasing number of clinical trials that seek to translate preclinical research discoveries to the clinic. Promising drug- or cell-based therapeutic approaches include erythropoietin and its carbamylated form, statins, bone marrow stromal cells, stem cells singularly or in combination or with biomaterials to reduce brain injury via neuroprotection and promote brain remodeling via angiogenesis, neurogenesis, and synaptogenesis with a final goal to improve functional outcome of TBI patients. In addition, enriched environment and voluntary physical exercise show promise in promoting functional outcome after TBI, and should be evaluated alone or in combination with other treatments as therapeutic approaches for TBI.
Collapse
Affiliation(s)
- Ye Xiong
- Henry Ford Health System, Department of Neurosurgery, Detroit, MI 48202, USA
| | | | | |
Collapse
|
23
|
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of mortality and morbidity worldwide in individuals under the age of 45 years, and, despite extensive efforts to develop neuroprotective therapies, there has been no successful outcome in any trial of neuroprotection to date. In addition to recognizing that many TBI clinical trials have not been optimally designed to detect potential efficacy, the failures can be attributed largely to the fact that most of the therapies investigated have been targeted toward an individual injury factor. The contemporary view of TBI is that of a very heterogenous type of injury, one that varies widely in etiology, clinical presentation, severity, and pathophysiology. The mechanisms involved in neuronal cell death after TBI involve an interaction of acute and delayed anatomic, molecular, biochemical, and physiological events that are both complex and multifaceted. Accordingly, neuropharmacotherapies need to be targeted at the multiple injury factors that contribute to the secondary injury cascade, and, in so doing, maximize the likelihood of a successful outcome. This review focuses on a number of such multifunctional compounds that have shown considerable success in experimental studies and that show maximum promise for success in clinical trials.
Collapse
Affiliation(s)
- Robert Vink
- School of Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | | |
Collapse
|
24
|
|
25
|
Adjan VV, Hauser KF, Bakalkin G, Yakovleva T, Gharibyan A, Scheff SW, Knapp PE. Caspase-3 activity is reduced after spinal cord injury in mice lacking dynorphin: differential effects on glia and neurons. Neuroscience 2007; 148:724-36. [PMID: 17698296 DOI: 10.1016/j.neuroscience.2007.05.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 05/16/2007] [Accepted: 05/24/2007] [Indexed: 12/12/2022]
Abstract
Dynorphins are endogenous opioid peptide products of the prodynorphin gene. An extensive literature suggests that dynorphins have deleterious effects on CNS injury outcome. We thus examined whether a deficiency of dynorphin would protect against tissue damage after spinal cord injury (SCI), and if individual cell types would be specifically affected. Wild-type and prodynorphin(-/-) mice received a moderate contusion injury at 10th thoracic vertebrae (T10). Caspase-3 activity at the injury site was significantly decreased in tissue homogenates from prodynorphin(-/-) mice after 4 h. We examined frozen sections at 4 h post-injury by immunostaining for active caspase-3. At 3-4 mm rostral or caudal to the injury, >90% of all neurons, astrocytes and oligodendrocytes expressed active caspase-3 in both wild-type and knockout mice. At 6-7 mm, there were fewer caspase-3(+) oligodendrocytes and astrocytes than at 3-4 mm. Importantly, caspase-3 activation was significantly lower in prodynorphin(-/-) oligodendrocytes and astrocytes, as compared with wild-type mice. In contrast, while caspase-3 expression in neurons also declined with further distance from the injury, there was no effect of genotype. Radioimmunoassay showed that dynorphin A(1-17) was regionally increased in wild-type injured versus sham-injured tissues, although levels of the prodynorphin processing product Arg(6)-Leu-enkephalin were unchanged. Our results indicate that dynorphin peptides affect the extent of post-injury caspase-3 activation, and that glia are especially sensitive to these effects. By promoting caspase-3 activation, dynorphin peptides likely increase the probability of glial apoptosis after SCI. While normally beneficial, our findings suggest that prodynorphin or its peptide products become maladaptive following SCI and contribute to secondary injury.
Collapse
Affiliation(s)
- V V Adjan
- Department of Anatomy and Neurobiology, 800 Rose Street, MS209, University of Kentucky, Lexington, KY 40536-0298, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Traumatic brain injury (TBI) is a common and potentially devastating clinical problem. Because prompt proper management of TBI sequelae can significantly alter the clinical course especially within 48 h of the injury, neuroimaging techniques have become an important part of the diagnostic work up of such patients. In the acute setting, these imaging studies can determine the presence and extent of injury and guide surgical planning and minimally invasive interventions. Neuroimaging also can be important in the chronic therapy of TBI, identifying chronic sequelae, determining prognosis, and guiding rehabilitation.
Collapse
Affiliation(s)
- Bruce Lee
- Department of Medicine, University of Pennsylvania Health System, Philadelphia, Pennsylvani 19104, USA
| | | |
Collapse
|
27
|
Lee B, Newberg A. Neuroimaging in traumatic brain imaging. Neurotherapeutics 2005. [DOI: 10.1007/bf03206678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
28
|
Hauser KF, Aldrich JV, Anderson KJ, Bakalkin G, Christie MJ, Hall ED, Knapp PE, Scheff SW, Singh IN, Vissel B, Woods AS, Yakovleva T, Shippenberg TS. Pathobiology of dynorphins in trauma and disease. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2005; 10:216-35. [PMID: 15574363 PMCID: PMC4304872 DOI: 10.2741/1522] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dynorphins, endogenous opioid neuropeptides derived from the prodynorphin gene, are involved in a variety of normative physiologic functions including antinociception and neuroendocrine signaling, and may be protective to neurons and oligodendroglia via their opioid receptor-mediated effects. However, under experimental or pathophysiological conditions in which dynorphin levels are substantially elevated, these peptides are excitotoxic largely through actions at glutamate receptors. Because the excitotoxic actions of dynorphins require supraphysiological concentrations or prolonged tissue exposure, there has likely been little evolutionary pressure to ameliorate the maladaptive, non-opioid receptor mediated consequences of dynorphins. Thus, dynorphins can have protective and/or proapoptotic actions in neurons and glia, and the net effect may depend upon the distribution of receptors in a particular region and the amount of dynorphin released. Increased prodynorphin gene expression is observed in several disease states and disruptions in dynorphin processing can accompany pathophysiological situations. Aberrant processing may contribute to the net negative effects of dysregulated dynorphin production by tilting the balance towards dynorphin derivatives that are toxic to neurons and/or oligodendroglia. Evidence outlined in this review suggests that a variety of CNS pathologies alter dynorphin biogenesis. Such alterations are likely maladaptive and contribute to secondary injury and the pathogenesis of disease.
Collapse
Affiliation(s)
- Kurt F Hauser
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hoover RC, Motta M, Davis J, Saatman KE, Fujimoto ST, Thompson HJ, Stover JF, Dichter MA, Twyman R, White HS, McIntosh TK. Differential Effects of the Anticonvulsant Topiramate on Neurobehavioral and Histological Outcomes following Traumatic Brain Injury in Rats. J Neurotrauma 2004; 21:501-12. [PMID: 15165359 DOI: 10.1089/089771504774129847] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The efficacy of topiramate, a novel therapeutic agent approved for the treatment of seizure disorders, was evaluated in a model of traumatic brain injury (TBI). Adult male rats were anesthetized (sodium pentobarbital, 60 mg/kg, i.p.), subjected to lateral fluid percussion brain injury (n = 60) or sham injury (n = 47) and randomized to receive either topiramate or vehicle at 30 min (30 mg/kg, i.p.), and 8, 20 and 32 h postinjury (30 mg/kg, p.o.). In Study A, memory was evaluated using a Morris water maze at 48 h postinjury, after which brain tissue was evaluated for regional cerebral edema. In Study B, animals were evaluated for motor function at 48 h and 1, 2, 3, and 4 weeks postinjury using a composite neuroscore and the rotating pole test and for learning ability at 4 weeks. Brains were analyzed for hemispheric tissue loss and hippocampal CA3 cell loss. Topiramate had no effect on posttraumatic cerebral edema or histologic damage when compared to vehicle. At 48 h, topiramate treatment improved memory function in sham but not brain-injured animals, while at one month postinjury it impaired learning performance in brain-injured but not sham animals. Topiramate significantly improved composite neuroscores at 4 weeks postinjury and rotating pole performance at 1 and 4 weeks postinjury, suggesting a potentially beneficial effect on motor function following TBI.
Collapse
Affiliation(s)
- Rachel C Hoover
- Head Injury Center, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19103, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
BACKGROUND Glutamate is the principal excitatory neurotransmitter in the brain. Injury to the brain can cause an ionic imbalance in cerebral tissue, creating an excitotoxic cascade involving glutamate and other excitatory amino acids, that leads to neuronal death in the tissue surrounding the original injury site. Research has centred around inhibiting this increase in excitatory amino acid during injury either pre- or post-synaptically. Animal studies appeared promising, but as yet, those results have not been repeated in human clinical trials. OBJECTIVES To assess systematically the efficacy of excitatory amino acid inhibitors on improving patient outcome following traumatic brain injury. SEARCH STRATEGY Online searches of the databases; CENTRAL, MEDLINE, EMBASE, IDdb3, and Science Citation Index. Online searches of clinical trial registers. General online searches of the Internet. Authors of published works and associated pharmaceutical companies were contacted. SELECTION CRITERIA Trials were included if they were randomised, double-blind, controlled trials where excitatory amino acid inhibitors were administered to patients with traumatic brain injury, within 24 hours of sustaining that injury, and compared to a control group. DATA COLLECTION AND ANALYSIS Twelve trials, involving eight compounds, were identified that appeared to fit the inclusion criteria. Further investigation excluded three of these trials. Two of the remaining trials are ongoing. Of the seven included studies, one trial did not report GOS data and we were unable to acquire them. Three trials have not been published and the data were not made available to us. One trial is currently being prepared for publication, leaving two trials where data were available. Data were extracted by two independent reviewers. MAIN RESULTS Data were available for two of the seven relevant trials identified, with 760 recruited participants. Mortality is similar between patients who receive excitatory amino acid inhibitors and those that receive placebo: odds ratio (OR) 1.11; 95% confidence interval (CI) 0.78, 1.60. Patients who have a favourable outcome six months after injury are also similar between treatment and placebo groups: OR 0.86; 95% CI 0.64, 1.16. REVIEWER'S CONCLUSIONS The case for efficacy of excitatory amino acid inhibitor therapy remains unproven. To date, no product has proven to be efficacious (as determined by the criteria applied) for improving the outcomes of brain-injured patients. Early termination, unpublished, and underpowered studies limit a clear appreciation of the merits of this form of intervention. Additional studies, some of which remain in progress, may more clearly define the efficacy and effectiveness issues.
Collapse
Affiliation(s)
- Charlene Willis
- The University of QueenslandQueensland Institute of Medical Research (QIMR)Level 3, Mayne Medical SchoolHerston RoadBrisbaneQueenslandAustralia4006
| | - Sean Lybrand
- Merck, Sharp & Dohme (Australia) Pty LtdHealth OutcomesPO Box 79GranvilleNew South WalesAustralia2142
| | - Nicholas Bellamy
- Mayne Medical School, The University of QueenslandCentre of National Research on Disability and Rehabilitation MedicineLevel 3Herston RoadBrisbaneQueenslandAustralia4006
| | | |
Collapse
|
31
|
McPhee B. Second Sir George Montario Bedbrook Oration-1999. Some milestones in the life of George Bedbrook. Their relationship to management and research of spinal cord injuries. ANZ J Surg 2003; 73:650-9. [PMID: 12887540 DOI: 10.1046/j.1445-2197.2003.t01-1-02671.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Mu X, Azbill RD, Springer JE. NBQX treatment improves mitochondrial function and reduces oxidative events after spinal cord injury. J Neurotrauma 2002; 19:917-27. [PMID: 12225652 DOI: 10.1089/089771502320317078] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to examine the effects of inhibiting ionotropic glutamate receptor subtypes on measures of oxidative stress events at acute times following traumatic spinal cord injury (SCI). Rats received a moderate contusion injury and 15 min later were treated with one of two doses of 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzol[f]quinoxaline-7-sulfonamide disodium (NBQX), MK-801, or the appropriate vehicle. At 4 h following injury, spinal cords were removed and a crude synaptosomal preparation obtained to examine mitochondrial function using the MTT assay, as well as measures of reactive oxygen species (ROS), lipid peroxidation, and glutamate and glucose uptake. We report here that intraspinal treatment with either 15 or 30 nmol of NBQX improves mitochondrial function and reduces the levels of ROS and lipid peroxidation products. In contrast, MK-801, given intravenously at doses of 1.0 or 5.0 mg/kg, was without effect on these same measures. Neither drug treatment had an effect on glutamate or glucose uptake, both of which are reduced at acute times following SCI. Previous studies have documented that drugs acting on non-N-methyl-D-aspartate (NMDA) receptors exhibit greater efficacy compared to NMDA receptor antagonists on recovery of function and tissue sparing following traumatic spinal cord injury. The results of this study provide a potential mechanism by which blockade of the non-NMDA ionotropic receptors exhibit positive effects following traumatic SCI.
Collapse
Affiliation(s)
- Xiaojun Mu
- Department of Anatomy, Center for Spinal Cord and Brain Injury Research, University of Kentucky Medical Center, Lexington, Kentucky 40536-0084, USA
| | | | | |
Collapse
|
33
|
Segatore M. Managing neural tissue injury in combined vertebral column-spinal cord injury. Orthop Nurs 2002; 21:43-59; quiz 58-60. [PMID: 11949238 DOI: 10.1097/00006416-200203000-00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Orthopaedic, neurosurgical, and trauma nurses all care for patients who have sustained a spinal cord injury (SCI) and are challenged to address care issues related to spinal stability as well as neurologic function. Advances in the understanding of the pathobiology of SCI have given rise to a three-tiered, time-sensitive approach to intervention designed to optimize functional recovery. Immediately after injury, pharmacologic strategies dominate. They are generally intended to limit progression of the initial injury, preserve existing neurologic function, and create the nidus for future regeneration. This article reviews the current standard of care with respect to hyperacute neuroprotection after blunt SCI in adults. After a synopsis of selected concepts in the pathophysiology of injury and pharmacology, clinical trial results will be presented, followed by a discussion of the nursing implications associated with the use of high-dose methylprednisolone neuroprotective therapy.
Collapse
|
34
|
Segal JL, Pathak MS. Optimal drug therapy and therapeutic drug monitoring after spinal cord injury: a population-specific approach. Am J Ther 2001; 8:451-63. [PMID: 11704784 DOI: 10.1097/00045391-200111000-00010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Study of the clinical pharmacology of SCI has revealed population-specific patterns of drug metabolism and disposition. PD/PK profiles reflect the changed physiology associated with SCI and correlate well with the neurologic or anatomic level and the magnitude and completeness of the injury. The greatest value of SCI PK/PD profiles lies in their use in developing criteria and strategies for the optimal prescribing of drugs and in therapeutic drug monitoring. Patients with SCI, acute or long-standing, comprise a therapeutically unique and distinct population. Rational, efficacious, and cost-effective approaches to drug development and pharmacotherapy in spinal cord-injured patients can only come about when population-specific PK/PD behavior is incorporated early into the drug development process and used to develop safe, effective therapeutic guidelines.
Collapse
Affiliation(s)
- J L Segal
- Department of General Internal Medicine, Harbor-UCLA Medical Center, 1000 West Carson Street, Box 459, Torrance, CA 90509-2910, USA.
| | | |
Collapse
|
35
|
Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB, Dumont AS. Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol 2001; 24:254-64. [PMID: 11586110 DOI: 10.1097/00002826-200109000-00002] [Citation(s) in RCA: 509] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Spinal cord injury (SCI) is a devastating and common neurologic disorder that has profound influences on modern society from physical, psychosocial, and socioeconomic perspectives. Accordingly, the present decade has been labeled the Decade of the Spine to emphasize the importance of SCI and other spinal disorders. Spinal cord injury may be divided into both primary and secondary mechanisms of injury. The primary injury, in large part, determines a given patient's neurologic grade on admission and thereby is the strongest prognostic indicator. However, secondary mechanisms of injury can exacerbate damage and limit restorative processes, and hence, contribute to overall morbidity and mortality. A burgeoning body of evidence has facilitated our understanding of these secondary mechanisms of injury that are amenable to pharmacological interventions, unlike the primary injury itself. Secondary mechanisms of injury encompass an array of perturbances and include neurogenic shock, vascular insults such as hemorrhage and ischemia-reperfusion, excitotoxicity, calcium-mediated secondary injury and fluid-electrolyte disturbances, immunologic injury, apoptosis, disturbances in mitochondrion function, and other miscellaneous processes. Comprehension of secondary mechanisms of injury serves as a basis for the development and application of targeted pharmacological strategies to confer neuroprotection and restoration while mitigating ongoing neural injury. The first article in this series will comprehensively review the pathophysiology of SCI while emphasizing those mechanisms for which pharmacologic therapy has been developed, and the second article reviews the pharmacologic interventions for SCI.
Collapse
Affiliation(s)
- R J Dumont
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
Dumont RJ, Verma S, Okonkwo DO, Hurlbert RJ, Boulos PT, Ellegala DB, Dumont AS. Acute spinal cord injury, part II: contemporary pharmacotherapy. Clin Neuropharmacol 2001; 24:265-79. [PMID: 11586111 DOI: 10.1097/00002826-200109000-00003] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Spinal cord injury (SCI) remains a common and devastating problem of modern society. Through an understanding of underlying pathophysiologic mechanisms involved in the evolution of SCI, treatments aimed at ameliorating neural damage may be developed. The possible pharmacologic treatments for acute spinal cord injury are herein reviewed. Myriad treatment modalities, including corticosteroids, 21-aminosteroids, opioid receptor antagonists, gangliosides, thyrotropin-releasing hormone (TRH) and TRH analogs, antioxidants and free radical scavengers, calcium channel blockers, magnesium replacement therapy, sodium channel blockers, N -methyl-D-aspartate receptor antagonists, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid-kainate receptor antagonists, modulators of arachadonic acid metabolism, neurotrophic growth factors, serotonin antagonists, antibodies against inhibitors of axonal regeneration, potassium channel blockers (4-aminopyridine), paclitaxel, clenbuterol, progesterone, gabexate mesylate, activated protein C, caspase inhibitors, tacrolimus, antibodies against adhesion molecules, and other immunomodulatory therapy have been studied to date. Although most of these agents have shown promise, only one agent, methylprednisolone, has been shown to provide benefit in large clinical trials. Given these data, many individuals consider methylprednisolone to be the standard of care for the treatment of acute SCI. However, this has not been established definitively, and questions pertaining to methodology have emerged regarding the National Acute Spinal Cord Injury Study trials that provided these conclusions. Additionally, the clinical significance (in contrast to statistical significance) of recovery after methylprednisolone treatment is unclear and must be considered in light of the potential adverse effects of such treatment. This first decade of the new millennium, now touted as the Decade of the Spine, will hopefully witness the emergence of universal and efficacious pharmacologic therapy and ultimately a cure for SCI.
Collapse
Affiliation(s)
- R J Dumont
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
Hauser KF, Knapp PE, Turbek CS. Structure-activity analysis of dynorphin A toxicity in spinal cord neurons: intrinsic neurotoxicity of dynorphin A and its carboxyl-terminal, nonopioid metabolites. Exp Neurol 2001; 168:78-87. [PMID: 11170722 DOI: 10.1006/exnr.2000.7580] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dynorphin A [dynorphin A (1-17)] is an endogenous opioid peptide that is antinociceptive at physiological concentrations. Levels of dynorphin A increase markedly following spinal cord trauma and may contribute to secondary neurodegeneration. Both kappa opioid and N-methyl-d-aspartate (NMDA) receptor antagonists can modulate the effects of dynorphin, suggesting that dynorphin is acting through kappa opioid and/or NMDA receptor types. Despite these findings, few studies have critically examined the mechanisms of dynorphin A neurotoxicity at the cellular level. To better understand how dynorphin affects cell viability, structure-activity studies were performed examining the effects of dynorphin A and dynorphin A-derived peptide fragments on the survival of mouse spinal cord neurons coexpressing kappa opioid and NMDA receptors in vitro. Time-lapse photography was used to repeatedly follow the same neurons before and during experimental treatments. Dynorphin A caused significant neuronal losses that were dependent on concentration (> or = 1 microM) and duration of exposure. Moreover, exposure to an equimolar concentration of dynorphin A fragments (100 microM) also caused a significant loss of neurons. The rank order of toxicity was dynorphin A (1-17) > dynorphin A (1-13) congruent with dynorphin A (2-13) congruent with dynorphin A (13-17) (least toxic) > dynorphin A (1-5) ([Leu(5)]-enkephalin) or dynorphin A (1-11). Dynorphin A (1-5) or dynorphin A (1-11) did not cause neuronal losses even following 96 h of continuous exposure, while dynorphin A (3-13), dynorphin A (6-17), and dynorphin A (13-17) were neurotoxic. The NMDA receptor antagonist MK-801 (dizocilpine) (10 microM) significantly attenuated the neurotoxic effects of dynorphin A and/or dynorphin-derived fragments except dynorphin A (13-17), suggesting that the neurotoxic effects of dynorphin were largely mediated by NMDA receptors. Thus, toxicity resides in the carboxyl-terminal portion of dynorphin A and this minimally includes dynorphin A (3-13) and (13-17). Our findings suggest that dynorphin A and/or its metabolites may contribute significantly to neurodegeneration during spinal cord injury and that alterations in dynorphin A biosynthesis, metabolism, and/or degradation may be important in determining injury outcome.
Collapse
Affiliation(s)
- K F Hauser
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298, USA
| | | | | |
Collapse
|
38
|
Abstract
Injury to the brain is the leading factor in mortality and morbidity from traumatic injury. The devastating personal, social, and financial consequences of traumatic brain injury (TBI) are compounded by the fact that most people with TBI are young and previously healthy. From the emergency physician's standpoint, patients with severe TBI are those with a presenting Glasgow Coma Scale score of less than 9. Over the past 30 years, mortality from severe traumatic brain injury for those patients who survive to the hospital has been reduced by half from nearly 50% to approximately 25%. Because most of the pathologic processes that determine outcome are fully active during the first hours after TBI, the decisions of emergency care providers may be crucial. This review addresses new concepts and information in the pathophysiology of TBI and secondary brain injury and demonstrates how emergency management may be linked to neurologic outcome.
Collapse
Affiliation(s)
- B J Zink
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI 48109-0303, USA.
| |
Collapse
|
39
|
Calvanio R, Burke DT, Kim HJ, Cheng J, Lepak P, Leonard J, Dwyer MA, Gavande V. Naltrexone: effects on motor function, speech, and activities of daily living in a patient with traumatic brain injury. Brain Inj 2000; 14:933-42. [PMID: 11076138 DOI: 10.1080/026990500445745] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Evidence from many studies has suggested that endogenous opioid peptides participate in a number of pathophysiological responses to brain injury. This provides the rationale for the use of opioid antagonists for the enhancement of neural recovery after brain injury. A case is presented of an 18-year-old male who had loss of consciousness for 1 month after a severe brain injury. Three months of intensive rehabilitative therapies did not change his functional status. A trial of naltrexone was given while his performance in mobility, speech and overall Functional Independence Measure (FIM) scores were monitored. Results indicate an accelerated improvement in functional status and statistically improved FIM score.
Collapse
Affiliation(s)
- R Calvanio
- Spaulding Rehabilitation Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Mu X, Azbill RD, Springer JE. Riluzole improves measures of oxidative stress following traumatic spinal cord injury. Brain Res 2000; 870:66-72. [PMID: 10869502 DOI: 10.1016/s0006-8993(00)02402-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Rats received a contusion injury to the spinal cord followed by treatment with riluzole (a glutamate release inhibitor, 8 mg/kg), methylprednisolone (MP 30 mg/kg) or both. At 4 h following injury, spinal cords were removed and synaptosomes prepared and examined using five measures of oxidative stress. Riluzole treatment was found to improve mitochondrial function, and enhance glutamate and glucose uptake. As expected, MP treatment was found to reduce lipid peroxidation, but also improved glutamate and glucose uptake. Interestingly, the combination treatment was found to be effective in improving all five measures of oxidative stress. The results of this study clearly demonstrate the potential beneficial effects of a combination approach in the treatment of oxidative stress events in traumatic spinal cord injury.
Collapse
Affiliation(s)
- X Mu
- Department of Anatomy and Neurobiology, Center for Spinal Cord and Brain Injury Research, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536-0084, USA
| | | | | |
Collapse
|
41
|
Hauser KF, Foldes JK, Turbek CS. Dynorphin A (1-13) neurotoxicity in vitro: opioid and non-opioid mechanisms in mouse spinal cord neurons. Exp Neurol 1999; 160:361-75. [PMID: 10619553 PMCID: PMC4868554 DOI: 10.1006/exnr.1999.7235] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dynorphin A is an endogenous opioid peptide that preferentially activates kappa-opioid receptors and is antinociceptive at physiological concentrations. Levels of dynorphin A and a major metabolite, dynorphin A (1-13), increase significantly following spinal cord trauma and reportedly contribute to neurodegeneration associated with secondary injury. Interestingly, both kappa-opioid and N-methyl-D-aspartate (NMDA) receptor antagonists can modulate dynorphin toxicity, suggesting that dynorphin is acting (directly or indirectly) through kappa-opioid and/or NMDA receptor types. Despite these findings, few studies have systematically explored dynorphin toxicity at the cellular level in defined populations of neurons coexpressing kappa-opioid and NMDA receptors. To address this question, we isolated populations of neurons enriched in both kappa-opioid and NMDA receptors from embryonic mouse spinal cord and examined the effects of dynorphin A (1-13) on intracellular calcium concentration ([Ca2+]i) and neuronal survival in vitro. Time-lapse photography was used to repeatedly follow the same neurons before and during experimental treatments. At micromolar concentrations, dynorphin A (1-13) elevated [Ca2+]i and caused a significant loss of neurons. The excitotoxic effects were prevented by MK-801 (Dizocilpine) (10 microM), 2-amino-5-phosphopentanoic acid (100 microM), or 7-chlorokynurenic acid (100 microM)--suggesting that dynorphin A (1-13) was acting (directly or indirectly) through NMDA receptors. In contrast, cotreatment with (-)-naloxone (3 microM), or the more selective kappa-opioid receptor antagonist nor-binaltorphimine (3 microM), exacerbated dynorphin A (1-13)-induced neuronal loss; however, cell losses were not enhanced by the inactive stereoisomer (+)-naloxone (3 microM). Neuronal losses were not seen with exposure to the opioid antagonists alone (10 microM). Thus, opioid receptor blockade significantly increased toxicity, but only in the presence of excitotoxic levels of dynorphin. This provided indirect evidence that dynorphin also stimulates kappa-opioid receptors and suggests that kappa receptor activation may be moderately neuroprotective in the presence of an excitotoxic insult. Our findings suggest that dynorphin A (1-13) can have paradoxical effects on neuronal viability through both opioid and non-opioid (glutamatergic) receptor-mediated actions. Therefore, dynorphin A potentially modulates secondary neurodegeneration in the spinal cord through complex interactions involving multiple receptors and signaling pathways.
Collapse
Affiliation(s)
- Kurt F. Hauser
- Department of Anatomy and Neurobiology, University of Kentucky, College of Medicine, Lexington, KY 40536-0084
- Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, KY 40536-0084
| | - Jane K. Foldes
- Department of Anatomy and Neurobiology, University of Kentucky, College of Medicine, Lexington, KY 40536-0084
| | - Carol S. Turbek
- Department of Anatomy and Neurobiology, University of Kentucky, College of Medicine, Lexington, KY 40536-0084
| |
Collapse
|
42
|
Duhaime AC, Raghupathi R. Age-specific therapy for traumatic injury of the immature brain: experimental approaches. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 1999; 51:172-7. [PMID: 10192586 DOI: 10.1016/s0940-2993(99)80091-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- A C Duhaime
- Neurosurgery, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, USA.
| | | |
Collapse
|
43
|
Brown JI, Baker AJ, Konasiewicz SJ, Moulton RJ. Clinical significance of CSF glutamate concentrations following severe traumatic brain injury in humans. J Neurotrauma 1998; 15:253-63. [PMID: 9555971 DOI: 10.1089/neu.1998.15.253] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glutamate excitotoxicity is a putative mechanism of secondary damage after traumatic brain injury (TBI). No relationship between glutamate release and clinical status has been shown in humans, however. We hypothesize a dose-response relationship between CSF glutamate concentrations and severity of injury, electrophysiological deterioration as measured by somatosensory evoked potential amplitudes, and clinical outcome. From August 1991 to March 1996, intensive monitoring of 55 patients with severe TBI (GCS < or = 8 after resuscitation) included twice daily CSF glutamate levels and hourly somatosensory evoked potentials (SSEPs) for an average of 5 days. Clinical outcomes were survival/nonsurvival and Glasgow outcome score (GOS) at 3 months or more post-injury. Glutamate levels were not associated with severity of injury, electrophysiological deterioration, or clinical outcome. Neither peak nor mean glutamate levels significantly improved a simple logistic regression model which used only age and presence of bilaterally unreactive pupils to predict survival. Using this methodology CSF glutamate concentrations did not display a dose-response relationship to severity of injury, electrophysiological deterioration, or predict clinical outcomes following TBI in a group of 55 patients. An early effect of glutamate, an effect dependent on time of exposure to glutamate or other modulating effects cannot be ruled out.
Collapse
Affiliation(s)
- J I Brown
- Department of Surgery, St. Michael's Hospital, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
44
|
Forde CG. Medical Management of Patients with Traumatic Brain Injury. Proc (Bayl Univ Med Cent) 1997. [DOI: 10.1080/08998280.1997.11930034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
45
|
Zink BJ, Maio RF, Chen B. Alcohol, central nervous system injury, and time to death in fatal motor vehicle crashes. Alcohol Clin Exp Res 1996; 20:1518-22. [PMID: 8986197 DOI: 10.1111/j.1530-0277.1996.tb01693.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Motor vehicle crash (MVC) studies have found that alcohol (ALC) is associated with increased mortality and decreased time to death (TTD). Clinical and experimental data suggest that ALC potentiates central nervous system injury (CNSI). We hypothesize that ALC-intoxicated, MVC fatalities with CNSI are more likely to die in the immediate postinjury period than are sober victims with CNSI. Methods; DESIGN A retrospective cohort of 401 MVC fatalities from four Michigan counties for the time period 1985 to 1991 was studied. MEASUREMENTS Medical examiner records were reviewed to determine age, blood alcohol concentration (BAC), and TTD. Injury severity was calculated with the Abbreviated injury Scale (1985 version). Anatomical profile scores and G scores were also calculated and used to identify CNSI subjects. ANALYSIS chi 2 and Student's t test were used, and odds ratios with 0.95 confidence intervals (CIs) were calculated. RESULTS ALC(+) cases (BAC > or = 100 mg/dl) (n = 99) were significantly younger and more frequently had TTD < 1 hr than ALC(-) cases (n = 233): odds ratio 1.62[0.95 CI (1.02 to 2.58)]. Overall, CNSI cases (n = 297) were significantly younger and had fewer thoracic injuries, but did not have significantly shorter TTD, compared with non-CNSI cases. However, ALC(+) CNSI cases (n = 77) were over twice as likely to have TTD < 1 hr ¿odds ratio 2.04 [0.95 CI (1.13 to 3.70)]¿. For ALC(+) isolated CNSI cases, the odds ratio for TTD < 1 hr, compared with nonisolated CNSI cases was 8.25 (0.95; CI 0.66 to 102.5). Injury Severity Score, anatomical profile, and G scores were not significantly different for ALC(+) CNSI cases, compared with ALC(-) CNSI cases, whether isolated or nonisolated. CONCLUSIONS These data suggest that alcohol intoxication is associated with increased frequency of early death in MVC victims with CNSI, despite there being no detectable difference in anatomical injury scoring.
Collapse
Affiliation(s)
- B J Zink
- Department of Surgery, University of Michigan, Ann Arbor 48109-0303, USA
| | | | | |
Collapse
|
46
|
Perrin JC, Wilkins J. Traumatic Brain Injury. Phys Med Rehabil Clin N Am 1996. [DOI: 10.1016/s1047-9651(18)30379-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
47
|
Feldman Z, Gurevitch B, Artru AA, Oppenheim A, Shohami E, Reichenthal E, Shapira Y. Effect of magnesium given 1 hour after head trauma on brain edema and neurological outcome. J Neurosurg 1996; 85:131-7. [PMID: 8683262 DOI: 10.3171/jns.1996.85.1.0131] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Excitatory amino acids (EAA), mainly glutamate and aspartate, are released in excessive amounts from terminals of ischemic or traumatically injured neurons. These excessive levels of EAAs initiate a cascade of events believed to lead to secondary delayed damage to the surrounding brain. The N-methyl-D-aspartate receptor antagonists MK-801 and ketamine are reported to suppress excessive EAA release and to attenuate the development of focal brain edema following neuronal injury. Magnesium is also reported to work at the postsynaptic receptor to reduce the neurotoxic effect of glutamate. The present study was undertaken to examine the effect of postinjury treatment with Mg++ on brain edema and neurological outcome after traumatic brain injury. Sixty-nine rats that survived halothane anesthesia and closed head trauma (CHT) were randomly assigned to one of seven experimental groups: sham, CHT, and CHT with administration of Mg++ 1 hour postinjury. At 48 hours, brain tissue Mg++ concentration (calculated from optical density using a standard curve) was significantly increased compared to baseline levels (10.06 +/- 2.44 mg/g vs. 6.83 +/- 0.81 mg/g, p < 0.01 calculated by one-way analysis of variance). Also at 48 hours postinjury, brain tissue specific gravity in the contused hemisphere of Mg(++)-treated rats was significantly greater than that in the contused hemisphere of untreated rats, indicating attenuation of brain edema formation by Mg++. The neurological severity score (NSS) of rats treated with Mg++ improved significantly at both 18 and 48 hours, compared to baseline values obtained 1 hour after CHT but prior to administration of Mg++ (11.2 +/- 2.5 vs. 15.2 +/- 4.1, p = 0.03; and 12.3 +/- 6.1 vs. 17.3 +/- 3.6, p = 0.004, respectively). In the untreated groups, the NSS at 18 and 48 hours was not significantly different from baseline values (that is, no neurological improvement). The present study indicates that postinjury treatment with Mg++ attenuates brain edema formation and improves neurological outcome after experimental CHT.
Collapse
Affiliation(s)
- Z Feldman
- Department of Neurosurgery, Soroka Medical Center, Ben-Gurion University, Beer-Sheva, Israel
| | | | | | | | | | | | | |
Collapse
|
48
|
Kimura H, Meaney DF, McGowan JC, Grossman RI, Lenkinski RE, Ross DT, McIntosh TK, Gennarelli TA, Smith DH. Magnetization transfer imaging of diffuse axonal injury following experimental brain injury in the pig: characterization by magnetization transfer ratio with histopathologic correlation. J Comput Assist Tomogr 1996; 20:540-6. [PMID: 8708052 DOI: 10.1097/00004728-199607000-00007] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE Our goal was to evaluate the use of the magnetization transfer ratio (MTR) in the detection of diffuse axonal injury (DAI) resulting from traumatic brain injury in a swine model. METHOD DAI was created by applying a nonimpact, coronal plane, rotational acceleration to the heads of miniature swine (n = 4). GE imaging was performed with and without off-resonance MT saturation. Histologic correlation of axonal injury with MRI was performed 7 days postinjury. Thirty-one subcortical white matter regions and 10 deep white matter regions were selected for the direct comparison of histologic data and MTR measurements. RESULTS Nineteen of 41 examined locations exhibited histologic evidence of axonal injury. The mean MTR in regions with axonal damage was significantly less than in regions without axonal damage. These changes were observed both in regions demonstrating high signal intensity on T2-weighted images (T2WI) (p <0.0001, n = 6) and in regions with no signal intensity change on T2WI (p < 0.05, n = 13). CONCLUSION These results suggest that the measurement of MTR may have the potential for evaluation axonal damage in DAI following traumatic brain injury even when conventional T2WI does not demonstrate the lesion.
Collapse
Affiliation(s)
- H Kimura
- Department of Radiology, University of Pennsylvania School of Medicine, PA 19104-6316, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Abstract
Traumatic brain injury (TBI) contributes significantly to the mortality and morbidity rates of traumatized patients. This article presents current concepts in the pathophysiology of TBI, including mechanisms of injury, biomolecular mediators of injury, and the occurrence of secondary injury. Emergency management, monitoring, and imaging of TBI also are reviewed.
Collapse
Affiliation(s)
- B J Zink
- Department of Surgery, Section of Emergency Medicine, University of Michigan Medical School, Ann Arbor, USA
| |
Collapse
|