1
|
Fernandez-Acosta M, Zanini R, Heredia F, A. Volonté Y, Menezes J, Prüger K, Ibarra J, Arana M, Pérez MS, Veenstra JA, Wegener C, Gontijo AM, Garelli A. Triggering and modulation of a complex behavior by a single peptidergic command neuron in Drosophila. Proc Natl Acad Sci U S A 2025; 122:e2420452122. [PMID: 40085652 PMCID: PMC11929487 DOI: 10.1073/pnas.2420452122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/13/2025] [Indexed: 03/16/2025] Open
Abstract
At the end of their growth phase, Drosophila larvae remodel their bodies, glue themselves to a substrate, and harden their cuticle in preparation for metamorphosis. This process-termed pupariation-is triggered by a surge in the hormone ecdysone. Substrate attachment is achieved by a pupariation subprogram called glue expulsion and spreading behavior (GSB). An epidermis-to-CNS Dilp8-Lgr3 relaxin signaling event that occurs downstream of ecdysone is critical for unlocking progression of the pupariation motor program toward GSB, but the factors and circuits acting downstream of Lgr3 signaling remain unknown. Here, using cell-type-specific RNA interference and behavioral monitoring, we identify Myoinhibiting peptide (Mip) as a neuromodulator of multiple GSB action components, such as tetanic contraction, peristaltic contraction alternation, and head-waving. Mip is required in a pair of brain descending neurons, which act temporally downstream of Dilp8-Lgr3 signaling. Mip modulates GSB via ventral nerve cord neurons expressing its conserved receptor, sex peptide receptor (SPR). Silencing of Mip descending neurons by hyperpolarization completely abrogates GSB, while their optogenetic activation at a restricted competence time window triggers GSB-like behavior. Hence, Mip descending neurons have at least two functions: to act as GSB command neurons and to secrete Mip to modulate GSB action components. Our results provide insight into conserved aspects of Mip-SPR signaling in animals, reveal the complexity of GSB control, and contribute to the understanding of how multistep innate behaviors are coordinated in time and with other developmental processes through command neurons and neuropeptidergic signaling.
Collapse
Affiliation(s)
| | - Rebeca Zanini
- iNOVA4Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon1150-082, Portugal
- Centre for Ecology, Evolution and Environmental Changes & CHANGE - Intitute for Global Change and Sustainability, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon1749-016, Portugal
| | - Fabiana Heredia
- iNOVA4Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon1150-082, Portugal
- Centre for Ecology, Evolution and Environmental Changes & CHANGE - Intitute for Global Change and Sustainability, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon1749-016, Portugal
| | - Yanel A. Volonté
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía BlancaB8000FWB, Argentina
| | - Juliane Menezes
- iNOVA4Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon1150-082, Portugal
- Centre for Ecology, Evolution and Environmental Changes & CHANGE - Intitute for Global Change and Sustainability, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon1749-016, Portugal
| | - Katja Prüger
- iNOVA4Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon1150-082, Portugal
| | - Julieta Ibarra
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía BlancaB8000FWB, Argentina
| | - Maite Arana
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía BlancaB8000FWB, Argentina
| | - María S. Pérez
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía BlancaB8000FWB, Argentina
| | - Jan A. Veenstra
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine UMR 5287 CNRS, Université de Bordeaux, Bordeaux33076, France
| | - Christian Wegener
- Julius-Maximilians-Universität Würzburg, Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Würzburg97074, Germany
| | - Alisson M. Gontijo
- iNOVA4Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon1150-082, Portugal
- Centre for Ecology, Evolution and Environmental Changes & CHANGE - Intitute for Global Change and Sustainability, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon1749-016, Portugal
| | - Andrés Garelli
- iNOVA4Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon1150-082, Portugal
- Centre for Ecology, Evolution and Environmental Changes & CHANGE - Intitute for Global Change and Sustainability, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon1749-016, Portugal
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía BlancaB8000FWB, Argentina
| |
Collapse
|
2
|
Trebels B, Dippel S, Anders J, Ernst C, Goetz B, Keyser T, Rexer KH, Wimmer EA, Schachtner J. Anatomic and neurochemical analysis of the palpal olfactory system in the red flour beetle Tribolium castaneum, HERBST. Front Cell Neurosci 2023; 17:1097462. [PMID: 36998268 PMCID: PMC10043995 DOI: 10.3389/fncel.2023.1097462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
The paired antennal lobes were long considered the sole primary processing centers of the olfactory pathway in holometabolous insects receiving input from the olfactory sensory neurons of the antennae and mouthparts. In hemimetabolous insects, however, olfactory cues of the antennae and palps are processed separately. For the holometabolous red flour beetle Tribolium castaneum, we could show that primary processing of the palpal and antennal olfactory input also occurs separately and at distinct neuronal centers. While the antennal olfactory sensory neurons project into the antennal lobes, those of the palps project into the paired glomerular lobes and the unpaired gnathal olfactory center. Here we provide an extended analysis of the palpal olfactory pathway by combining scanning electron micrographs with confocal imaging of immunohistochemical staining and reporter expression identifying chemosensory and odorant receptor-expressing neurons in the palpal sensilla. In addition, we extended the anatomical characterization of the gnathal olfactory center by 3D reconstructions and investigated the distribution of several neuromediators. The similarities in the neuromediator repertoire between antennal lobes, glomerular lobes, and gnathal olfactory center underline the role of the latter two as additional primary olfactory processing centers.
Collapse
Affiliation(s)
- Björn Trebels
- Animal Physiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
- *Correspondence: Joachim Schachtner Björn Trebels Ernst A. Wimmer
| | - Stefan Dippel
- Animal Physiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Janet Anders
- Animal Physiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Clara Ernst
- Animal Physiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Brigitte Goetz
- Animal Physiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Tim Keyser
- Animal Physiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Karl Heinz Rexer
- Biodiversity of Plants, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Ernst A. Wimmer
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Georg-August-University Göttingen, Göttingen, Germany
- *Correspondence: Joachim Schachtner Björn Trebels Ernst A. Wimmer
| | - Joachim Schachtner
- Animal Physiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
- Clausthal University of Technology, Clausthal-Zellerfeld, Germany
- *Correspondence: Joachim Schachtner Björn Trebels Ernst A. Wimmer
| |
Collapse
|
3
|
Hensgen R, Dippel S, Hümmert S, Jahn S, Seyfarth J, Homberg U. Myoinhibitory peptides in the central complex of the locust Schistocerca gregaria and colocalization with locustatachykinin-related peptides. J Comp Neurol 2022; 530:2782-2801. [PMID: 35700405 DOI: 10.1002/cne.25374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022]
Abstract
The central complex in the brain of insects provides a neural network for sensorimotor processing that is essential for spatial navigation and locomotion and plays a role in sleep control. Studies on the neurochemical architecture of the central complex have been performed especially in the fruit fly Drosophila melangoaster and the desert locust, Schistocerca gregaria. In several insect species, myoinhibitory peptides (MIPs) are involved in circadian control and sleep-wake regulation. To identify neurons that might underlie these functions, we investigated the distribution of MIPs in the central complex of the locust. In silico transcript analysis suggests the presence of eight different MIPs in the desert locust. Through immunolabeling, we identified five systems of central-complex neurons that express MIP-like peptides. Two systems constitute columnar neurons of the protocerebral bridge and the lower division of the central body, while the other three systems are columnar neurons (two systems) and tangential neurons (one system) of the upper division of the central body. The innervation pattern and cell count of two systems of columnar neurons revealed the existence of 18 instead of 16 columns of the protocerebral bridge. Immunostaining of preparations containing intracellularly stained single cells allowed us to further specify subtypes of labeled columnar neurons. Double-label experiments showed that three systems of MIP-immunostained columnar neurons are also locustatachykinin-immunoreactive. No colocalization was found with serotonin immunostaining. The data provide novel insights into the architecture of the locust central complex and suggest that MIPs play a prominent role within the central-complex network.
Collapse
Affiliation(s)
- Ronja Hensgen
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Stefan Dippel
- Department of Biology, Zoology, and Developmental Biology, Justus Liebig University of Giessen, Gießen, Germany
| | - Sophie Hümmert
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Stefanie Jahn
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Jutta Seyfarth
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany.,Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| |
Collapse
|
4
|
Krzeptowski W, Walkowicz L, Krzeptowska E, Motta E, Witek K, Szramel J, Al Abaquita T, Baster Z, Rajfur Z, Rosato E, Stratoulias V, Heino TI, Pyza EM. Mesencephalic Astrocyte-Derived Neurotrophic Factor Regulates Morphology of Pigment-Dispersing Factor-Positive Clock Neurons and Circadian Neuronal Plasticity in Drosophila melanogaster. Front Physiol 2021; 12:705183. [PMID: 34646147 PMCID: PMC8502870 DOI: 10.3389/fphys.2021.705183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Mesencephalic Astrocyte-derived Neurotrophic Factor (MANF) is one of a few neurotrophic factors described in Drosophila melanogaster (DmMANF) but its function is still poorly characterized. In the present study we found that DmMANF is expressed in different clusters of clock neurons. In particular, the PDF-positive large (l-LNv) and small (s-LNv) ventral lateral neurons, the CRYPTOCHROME-positive dorsal lateral neurons (LNd), the group 1 dorsal neurons posterior (DN1p) and different tim-positive cells in the fly's visual system. Importantly, DmMANF expression in the ventral lateral neurons is not controlled by the clock nor it affects its molecular mechanism. However, silencing DmMANF expression in clock neurons affects the rhythm of locomotor activity in light:dark and constant darkness conditions. Such phenotypes correlate with abnormal morphology of the dorsal projections of the s-LNv and with reduced arborizations of the l-LNv in the medulla of the optic lobe. Additionally, we show that DmMANF is important for normal morphology of the L2 interneurons in the visual system and for the circadian rhythm in the topology of their dendritic tree. Our results indicate that DmMANF is important not only for the development of neurites but also for maintaining circadian plasticity of neurons.
Collapse
Affiliation(s)
- Wojciech Krzeptowski
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Lucyna Walkowicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Ewelina Krzeptowska
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Edyta Motta
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Kacper Witek
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Joanna Szramel
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Terence Al Abaquita
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Zbigniew Baster
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
| | - Zenon Rajfur
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland.,Jagiellonian Center of Biomedical Imaging, Jagiellonian University, Kraków, Poland
| | - Ezio Rosato
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Vassilis Stratoulias
- Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Tapio I Heino
- Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Elżbieta M Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland.,Jagiellonian Center of Biomedical Imaging, Jagiellonian University, Kraków, Poland
| |
Collapse
|
5
|
Hasebe M, Shiga S. Immunoreactive Response of Plast-MIPs to Fasting and Their Functional Role in the Reduction of Hemolymph Reducing Sugars in the Brown-Winged Green Bug, Plautia stali. Zoolog Sci 2021; 38:332-342. [PMID: 34342954 DOI: 10.2108/zs200162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/20/2021] [Indexed: 11/17/2022]
Abstract
Animals survive nutrient deficiency by controlling their physiology, such as sugar metabolism and energy-consuming developmental events. Although research on the insect neural mechanisms of the starvation-induced modulation has progressed, the mechanisms have not been fully understood due to their complexity. Myoinhibitory peptides are known to be neuropeptides involved in various physiological activities, development, and behavior. Here, we analyzed the responsiveness of Plautia stali myoinhibitory peptides (Plast-MIPs) to starvation and their physiological role in the brown-winged green bug, P. stali. First, we performed immunohistochemical analyses to investigate the response of Plast-MIP neurons in the cephalic ganglion to fasting under long day conditions. Fasting significantly enhanced the immunoreactivity to Plast-MIPs in the pars intercerebralis (PI), which is known to be a brain region related to various endocrine regulations. Next, to analyze the physiological role of Plast-MIPs, we performed RNA interference-mediated knockdown of Plast-Mip and injection of synthetic Plast-MIP in normally fed and fasted females. The knockdown of Plast-Mip did not have significant effects on the body weight or proportions of ovarian development in each feeding condition. On the other hand, the knockdown of Plast-Mip increased the gonadosomatic index of normally fed females whereas it did not have a significant effect on food intake. Notably, the knockdown of Plast-Mip diminished the fasting-induced reduction of hemolymph reducing sugar levels. Additionally, injection of synthetic Plast-MIP acutely decreased the hemolymph reducing sugar level. Our results suggested responsiveness of Plast-MIPs in the PI to fasting and their functional role in reduction of the hemolymph reducing sugar level.
Collapse
Affiliation(s)
- Masaharu Hasebe
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka 560-0043, Japan,
| | - Sakiko Shiga
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka 560-0043, Japan
| |
Collapse
|
6
|
Neuromodulation Can Be Simple: Myoinhibitory Peptide, Contained in Dedicated Regulatory Pathways, Is the Only Neurally-Mediated Peptide Modulator of Stick Insect Leg Muscle. J Neurosci 2021; 41:2911-2929. [PMID: 33531417 DOI: 10.1523/jneurosci.0188-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 01/22/2023] Open
Abstract
In the best studied cases (Aplysia feeding, crustacean stomatogastric system), peptidergic modulation is mediated by large numbers of peptides. Furthermore, in Aplysia, excitatory motor neurons release the peptides, obligatorily coupling target activation and modulator release. Vertebrate nervous systems typically contain about a hundred peptide modulators. These data have created a belief that modulation is, in general, complex. The stick insect leg is a well-studied locomotory model system, and the complete stick insect neuropeptide inventory was recently described. We used multiple techniques to comprehensively examine stick insect leg peptidergic modulation. Single-cell mass spectrometry (MS) and immunohistochemistry showed that myoinhibitory peptide (MIP) is the only neuronal (as opposed to hemolymph-borne) peptide modulator of all leg muscles. Leg muscle excitatory motor neurons contained no neuropeptides. Only the common inhibitor (CI) and dorsal unpaired median (DUM) neuron groups, each neuron of which innervates a group of functionally-related leg muscles, contained MIP. We described MIP transport to, and receptor presence in, one leg muscle, the extensor tibiae (ExtTi). MIP application reduced ExtTi slow fiber force and shortening by about half, increasing the muscle's ability to contract and relax rapidly. These data show neuromodulation does not need to be complex. Excitation and modulation do not need to be obligatorily coupled (Aplysia feeding). Modulation does not need to involve large numbers of peptides, with the attendant possibility of combinatorial explosion (stomatogastric system). Modulation can be simple, mediated by dedicated regulatory neurons, each innervating a single group of functionally-related targets, and all using the same neuropeptide.SIGNIFICANCE STATEMENT Vertebrate and invertebrate nervous systems contain large numbers (around a hundred in human brain) of peptide neurotransmitters. In prior work, neuropeptide modulation has been complex, either obligatorily coupling postsynaptic excitation and modulation, or large numbers of peptides modulating individual neural networks. The complete stick insect neuropeptide inventory was recently described. We comprehensively describe here peptidergic modulation in the stick insect leg. Surprisingly, out of the large number of potential peptide transmitters, only myoinhibitory peptide (MIP) was present in neurons innervating leg muscles. Furthermore, the peptide was present only in dedicated regulatory neurons, not in leg excitatory motor neurons. Peptidergic modulation can thus be simple, neither obligatorily coupling target activation and modulation nor involving so many peptides that combinatorial explosion can occur.
Collapse
|
7
|
Zeng H, Qin Y, Du E, Wei Q, Li Y, Huang D, Wang G, Veenstra JA, Li S, Li N. Genomics- and Peptidomics-Based Discovery of Conserved and Novel Neuropeptides in the American Cockroach. J Proteome Res 2020; 20:1217-1228. [PMID: 33166158 DOI: 10.1021/acs.jproteome.0c00596] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As a model hemimetabolous insect species and an invasive urban pest that is globally distributed, the American cockroach, Periplaneta americana, is of great interest in both basic and applied research. Previous studies on P. americana neuropeptide identification have been based on biochemical isolation and molecular cloning. In the present study, an integrated approach of genomics- and peptidomics-based discovery was performed for neuropeptide identification in this insect species. First, 67 conserved neuropeptide or neurohormone precursor genes were predicted via an in silico analysis of the P. americana genome and transcriptome. Using a large-scale peptidomic analysis of peptide extracts from four different tissues (the central nervous system, corpora cardiac and corpora allata complex, midgut, and male accessory gland), 35 conserved (predicted) neuropeptides and a potential (novel) neuropeptide were then identified. Subsequent experiments revealed the tissue distribution, sex difference, and developmental patterns of two conserved neuropeptides (allatostatin B and short neuropeptide F) and a novel neuropeptide (PaOGS36577). Our study shows a comprehensive neuropeptidome and detailed spatiotemporal distribution patterns, providing a solid basis for future functional studies of neuropeptides in the American cockroach (data are available via ProteomeXchange with identifier PXD021660).
Collapse
Affiliation(s)
- Huanchao Zeng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Yiru Qin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Erxia Du
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Qiulan Wei
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Danyan Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Guirong Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Jan A Veenstra
- INCIA, UMR 5287 CNRS, Université de Bordeaux, Pessac F33615, France
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Na Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| |
Collapse
|
8
|
Williams EA. Function and Distribution of the Wamide Neuropeptide Superfamily in Metazoans. Front Endocrinol (Lausanne) 2020; 11:344. [PMID: 32547494 PMCID: PMC7270403 DOI: 10.3389/fendo.2020.00344] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/01/2020] [Indexed: 01/19/2023] Open
Abstract
The Wamide neuropeptide superfamily is of interest due to its distinctive functions in regulating life cycle transitions, metamorphic hormone signaling, and several aspects of digestive system function, from gut muscle contraction to satiety and fat storage. Due to variation among researchers in naming conventions, a global view of Wamide signaling in animals in terms of conservation or diversification of function is currently lacking. Here, I summarize the phylogenetic distribution of Wamide neuropeptides based on current data and describe recent findings in the areas of Wamide receptors and biological functions. Common trends that emerge across Cnidarians and protostomes are the presence of multiple Wamide receptors within a single organism, and the fact that Wamide signaling likely functions across an extensive variety of biological systems, including visual, circadian, and reproductive systems. Important areas of focus for future research are the further identification of Wamide-receptor pairs, confirmation of the phylogenetic distribution of Wamides through largescale sequencing and mass spectrometry, and assignment of different functions to specific subsets of Wamide-expressing neurons. More extensive study of Wamide signaling throughout larval development in a greater number of phyla is also important in order to understand the role of Wamides in hormonal regulation. Defining the evolution and function of neuropeptide signaling in animal nervous systems will benefit from an increased understanding of Wamide function and signaling mechanisms in a wider variety of organisms, beyond the traditional model systems.
Collapse
|
9
|
Identification, Localization in the Central Nervous System and Novel Myostimulatory Effect of Allatostatins in Tenebrio molitor Beetle. Int J Mol Sci 2020; 21:ijms21103510. [PMID: 32429155 PMCID: PMC7279042 DOI: 10.3390/ijms21103510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 12/26/2022] Open
Abstract
Allatostatins (ASTs) are pleiotropic insect neuropeptides that are potent myoinhibitors of muscle contractions. In this study, we identified and immunolocalized peptides from the MIP/AST and PISCF/AST families in the nervous system of a model beetle, Tenebrio molitor. Neurons containing MIPs were immunolocalized in the brains of adults and the ventral nerve cords of larvae, pupae and imagines of this species as well as in the retrocerebral complex. PISCFs were immunolocalized in the ventral nerve cord of all stages as well as the brain of the adult beetle. Faint signals were also observed in the corpus allatum but not in the corpus cardiacum. The results allowed us to deduce the sequences of three neuropeptides belonging to MIP/ASTs, Tenmo-MIP4—NWGQFGXWa, Tenmo-MIP5—SKWDNFRGSWa and Tenmo-MIP6—EPAWSNLKGIWa, and one peptide from the PISCF/AST family, QSRYXQCYFNPISCX. Furthermore, we showed for the first time myostimulatory action of endogenous MIP/ASTs. Tenmo-MIP5 caused dose-dependent stimulation of the contractile activity of the beetle oviduct muscles, showing a sigmoidal curve up to 81.20% at the 10−8 M concentration, and the EC50 value for the myostimulatory effect of this peptide was 8.50 × 10−12 M. This is the first report of myostimulatory action of an endogenous myoinhibitory peptide in insect muscles.
Collapse
|
10
|
Arnold T, Korek S, Massah A, Eschstruth D, Stengl M. Candidates for photic entrainment pathways to the circadian clock via optic lobe neuropils in the Madeira cockroach. J Comp Neurol 2020; 528:1754-1774. [PMID: 31860126 DOI: 10.1002/cne.24844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022]
Abstract
The compound eye of cockroaches is obligatory for entrainment of the Madeira cockroach's circadian clock, but the cellular nature of its entrainment pathways is enigmatic. Employing multiple-label immunocytochemistry, histochemistry, and backfills, we searched for photic entrainment pathways to the accessory medulla (AME), the circadian clock of the Madeira cockroach. We wanted to know whether photoreceptor terminals could directly contact pigment-dispersing factor-immunoreactive (PDF-ir) circadian pacemaker neurons with somata in the lamina (PDFLAs) or somata next to the AME (PDFMEs). Short green-sensitive photoreceptor neurons of the compound eye terminated in lamina layers LA1 and LA2, adjacent to PDFLAs and PDFMEs that branched in LA3. Long UV-sensitive compound eye photoreceptor neurons terminated in medulla layer ME2 without direct contact to ipsilateral PDFMEs that arborized in ME4. Multiple neuropeptide-ir interneurons branched in ME4, connecting the AME to ME2. Before, extraocular photoreceptors of the lamina organ were suggested to send terminals to accessory laminae. There, they overlapped with PDFLAs that mostly colocalized PDF, FMRFamide, and 5-HT immunoreactivities, and with terminals of ipsi- and contralateral PDFMEs. We hypothesize that during the day cholinergic activation of the largest PDFME via lamina organ photoreceptors maintains PDF release orchestrating phases of sleep-wake cycles. As ipsilateral PDFMEs express excitatory and contralateral PDFMEs inhibitory PDF autoreceptors, diurnal PDF release keeps both PDF-dependent clock circuits in antiphase. Future experiments will test whether ipsilateral PDFMEs are sleep-promoting morning cells, while contralateral PDFMEs are activity-promoting evening cells, maintaining stable antiphase via the largest PDFME entrained by extraocular photoreceptors of the lamina organ.
Collapse
Affiliation(s)
- Thordis Arnold
- FB 10, Biology, Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | - Sebastian Korek
- FB 10, Biology, Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | - Azar Massah
- FB 10, Biology, Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | - David Eschstruth
- FB 10, Biology, Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | - Monika Stengl
- FB 10, Biology, Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| |
Collapse
|
11
|
Urbański A, Lubawy J, Marciniak P, Rosiński G. Myotropic activity and immunolocalization of selected neuropeptides of the burying beetle Nicrophorus vespilloides (Coleoptera: Silphidae). INSECT SCIENCE 2019; 26:656-670. [PMID: 29333681 DOI: 10.1111/1744-7917.12569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/20/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
Burying beetles (Nicrophorus sp.) are necrophagous insects with developed parental care. Genome of Nicrophorus vespilloides has been recently sequenced, which makes them interesting model organism in behavioral ecology. However, we know very little about their physiology, including the functioning of their neuroendocrine system. In this study, one of the physiological activities of proctolin, myosuppressin (Nicve-MS), myoinhibitory peptide (Trica-MIP-5) and the short neuropeptide F (Nicve-sNPF) in N. vespilloides have been investigated. The tested neuropeptides were myoactive on N. vespilloides hindgut. After application of the proctolin increased hindgut contraction frequency was observed (EC50 value was 5.47 × 10-8 mol/L). The other tested neuropeptides led to inhibition of N. vespilloides hindgut contractions (Nicve-MS: IC50 = 5.20 × 10-5 mol/L; Trica-MIP-5: IC50 = 5.95 × 10-6 mol/L; Nicve-sNPF: IC50 = 4.08 × 10-5 mol/L). Moreover, the tested neuropeptides were immunolocalized in the nervous system of N. vespilloides. Neurons containing sNPF and MIP in brain and ventral nerve cord (VNC) were identified. Proctolin-immunolabeled neurons only in VNC were observed. Moreover, MIP-immunolabeled varicosities and fibers in retrocerebral complex were observed. In addition, our results have been supplemented with alignments of amino acid sequences of these neuropeptides in beetle species. This alignment analysis clearly showed amino acid sequence similarities between neuropeptides. Moreover, this allowed to deduce amino acid sequence of N. vespilloides proctolin (RYLPTa), Nicve-MS (QDVDHVFLRFa) and six isoforms of Nicve-MIP (Nicve-MIP-1-DWNRNLHSWa; Nicve-MIP-2-AWQNLQGGWa; Nicve-MIP-3-AWQNLQGGWa; Nicve-MIP-4-AWKNLNNAGWa; Nicve-MIP-5-SEWGNFRGSWa; Nicve-MIP-6- DPAWTNLKGIWa; and Nicve-sNPF-SGRSPSLRLRFa).
Collapse
Affiliation(s)
- Arkadiusz Urbański
- Faculty of Biology, Department of Animal Physiology and Development, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Jan Lubawy
- Faculty of Biology, Department of Animal Physiology and Development, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Paweł Marciniak
- Faculty of Biology, Department of Animal Physiology and Development, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Grzegorz Rosiński
- Faculty of Biology, Department of Animal Physiology and Development, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
12
|
Komisarczuk AZ, Kongshaug H, Li M, Nilsen F. RNAi mediated myosuppressin deficiency affects muscle development and survival in the salmon louse (Lepeophtheirus salmonis). Sci Rep 2019; 9:6944. [PMID: 31061463 PMCID: PMC6502818 DOI: 10.1038/s41598-019-43515-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/23/2019] [Indexed: 12/05/2022] Open
Abstract
Muscle activity is regulated by stimulatory and inhibitory neuropeptides allowing for contraction and relaxation. In Arthropods, one of the important myoinhibitors is Myosuppressin, belonging to FMRFamide-like peptides, that was shown to have inhibitory effects on visceral muscle contraction and to regulate vital physiological processes including reproduction or feeding. We have identified myosuppressin in salmon louse Lepeophtheirus salmonis (LsalMS) and systematically characterised its function and complex abnormalities emerging after LsalMS knockdown by RNAi in all developmental stages in this species. Immunohistochemistry analysis localized the LsalMS mainly to the central nervous system, but also to the vital organs within the alimentary tract and the reproductive system. The most striking feature of LsalMS deficiency during lice development was severe reduction of the muscle content, with abnormalities detected in both the visceral and skeletal muscles. Moreover, down-regulation of LsalMS affects moulting, spermatophore deposition and feeding by affecting development of the intestinal wall and increasing its contraction frequency.
Collapse
Affiliation(s)
- Anna Z Komisarczuk
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Thormøhlensgate 53 A/B, 5008, Bergen, Norway.
| | - Heidi Kongshaug
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Thormøhlensgate 53 A/B, 5008, Bergen, Norway
| | - Ming Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Frank Nilsen
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Thormøhlensgate 53 A/B, 5008, Bergen, Norway
| |
Collapse
|
13
|
Ly A, Ragionieri L, Liessem S, Becker M, Deininger SO, Neupert S, Predel R. Enhanced Coverage of Insect Neuropeptides in Tissue Sections by an Optimized Mass-Spectrometry-Imaging Protocol. Anal Chem 2019; 91:1980-1988. [DOI: 10.1021/acs.analchem.8b04304] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alice Ly
- Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - Lapo Ragionieri
- Department for Biology, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Sander Liessem
- Department for Biology, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Michael Becker
- Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359 Bremen, Germany
| | | | - Susanne Neupert
- Department for Biology, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Reinhard Predel
- Department for Biology, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
14
|
Systematic Analysis of Transmitter Coexpression Reveals Organizing Principles of Local Interneuron Heterogeneity. eNeuro 2018; 5:eN-NWR-0212-18. [PMID: 30294668 PMCID: PMC6171738 DOI: 10.1523/eneuro.0212-18.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 01/02/2023] Open
Abstract
Broad neuronal classes are surprisingly heterogeneous across many parameters, and subclasses often exhibit partially overlapping traits including transmitter coexpression. However, the extent to which transmitter coexpression occurs in predictable, consistent patterns is unknown. Here, we demonstrate that pairwise coexpression of GABA and multiple neuropeptide families by olfactory local interneurons (LNs) of the moth Manduca sexta is highly heterogeneous, with a single LN capable of expressing neuropeptides from at least four peptide families and few instances in which neuropeptides are consistently coexpressed. Using computational modeling, we demonstrate that observed coexpression patterns cannot be explained by independent probabilities of expression of each neuropeptide. Our analyses point to three organizing principles that, once taken into consideration, allow replication of overall coexpression structure: (1) peptidergic neurons are highly likely to coexpress GABA; (2) expression probability of allatotropin depends on myoinhibitory peptide expression; and (3) the all-or-none coexpression patterns of tachykinin neurons with several other neuropeptides. For other peptide pairs, the presence of one peptide was not predictive of the presence of the other, and coexpression probability could be replicated by independent probabilities. The stochastic nature of these coexpression patterns highlights the heterogeneity of transmitter content among LNs and argues against clear-cut definition of subpopulation types based on the presence of single neuropeptides. Furthermore, the receptors for all neuropeptides and GABA were expressed within each population of principal neuron type in the antennal lobe (AL). Thus, activation of any given LN results in a dynamic cocktail of modulators that have the potential to influence every level of olfactory processing within the AL.
Collapse
|
15
|
Lubawy J, Marciniak P, Kuczer M, Rosiński G. Myotropic activity of allatostatins in tenebrionid beetles. Neuropeptides 2018; 70:26-36. [PMID: 29776677 DOI: 10.1016/j.npep.2018.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 02/01/2023]
Abstract
Neuropeptides control the functioning of the nervous system of insects, and they are the most diverse signalling molecules in terms of structure and function. Allatostatins are pleiotropic neuropeptides that are considered potent myoinhibitors of muscle contractions in insects. We investigated the effects caused by three distinct allatostatins, Dippu-AST1 (LYDFGL-NH2 from Diploptera punctata), Grybi-MIP1 (GWQDLNGGW-NH2 from Gryllus bimaculatus) and Trica-ASTC (pESRYRQCYFNPISCF-OH from Tribolium castaneum) on contractile activity of the myocardium, oviduct and hindgut of two tenebrionid beetles, Tenebrio molitor and Zophobas atratus. Studies showed that all three peptides exerted myostimulatory effects on the oviduct and hindgut of the beetles, however they did not cause any effect on myocardium. The effects of Dippu-AST1, Grybi-MIP1 and Trica-ASTC were dose-dependent and tissue and species specific. The highest stimulatory effect was caused by Trica-ASTC, showing stimulation of approximately 82% at a 10-12 M concentration and 76% at a 10-11 M concentration for T. molitor and Z. atratus, respectively. The oviduct of T. molitor was more susceptible to allatostatins than that of Z. atratus. Dippu-AST1 showed the maximum stimulating effect at 10-11 M (57%), whereas Grybi-MIP 1 at 10-10 M caused a 41% stimulation. Trica-ASTC, in both species, showed a myostimulatory effect over the whole range of tested concentrations but was most potent at a 10-12 M concentration and caused a 54% and 31.9% increase in the frequency of contractions in the oviduct of T. molitor and Z. atratus, respectively. The results suggest that allatostatins may affect the regulation of egg movement within the oviducts and movement of food in the digestive tract of beetles and do not regulate directly the activity of heart, thus being good candidate compounds in neuropeptides based pest control agents in future research.
Collapse
Affiliation(s)
- Jan Lubawy
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89 Str, 61-614 Poznań, Poland.
| | - Paweł Marciniak
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89 Str, 61-614 Poznań, Poland
| | - Mariola Kuczer
- Department of Organic Chemistry, Faculty of Chemistry, Wrocław University, F. Joliot-Curie 14D Str, 50-383 Wrocław, Poland
| | - Grzegorz Rosiński
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89 Str, 61-614 Poznań, Poland
| |
Collapse
|
16
|
Arendt A, Baz ES, Stengl M. Functions of corazonin and histamine in light entrainment of the circadian pacemaker in the Madeira cockroach,Rhyparobia maderae. J Comp Neurol 2016; 525:1250-1272. [DOI: 10.1002/cne.24133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/20/2016] [Accepted: 10/12/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Andreas Arendt
- Animal Physiology, Department of Biology; University of Kassel; 34132 Kassel Germany
| | - El-Sayed Baz
- Animal Physiology, Department of Biology; University of Kassel; 34132 Kassel Germany
- Department of Zoology, Faculty of Science; Suez Canal University; 41522 Ismailia Governorate Egypt
| | - Monika Stengl
- Animal Physiology, Department of Biology; University of Kassel; 34132 Kassel Germany
| |
Collapse
|
17
|
Sizemore TR, Dacks AM. Serotonergic Modulation Differentially Targets Distinct Network Elements within the Antennal Lobe of Drosophila melanogaster. Sci Rep 2016; 6:37119. [PMID: 27845422 PMCID: PMC5109230 DOI: 10.1038/srep37119] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/25/2016] [Indexed: 01/10/2023] Open
Abstract
Neuromodulation confers flexibility to anatomically-restricted neural networks so that animals are able to properly respond to complex internal and external demands. However, determining the mechanisms underlying neuromodulation is challenging without knowledge of the functional class and spatial organization of neurons that express individual neuromodulatory receptors. Here, we describe the number and functional identities of neurons in the antennal lobe of Drosophila melanogaster that express each of the receptors for one such neuromodulator, serotonin (5-HT). Although 5-HT enhances odor-evoked responses of antennal lobe projection neurons (PNs) and local interneurons (LNs), the receptor basis for this enhancement is unknown. We used endogenous reporters of transcription and translation for each of the five 5-HT receptors (5-HTRs) to identify neurons, based on cell class and transmitter content, that express each receptor. We find that specific receptor types are expressed by distinct combinations of functional neuronal classes. For instance, the excitatory PNs express the excitatory 5-HTRs, while distinct classes of LNs each express different 5-HTRs. This study therefore provides a detailed atlas of 5-HT receptor expression within a well-characterized neural network, and enables future dissection of the role of serotonergic modulation of olfactory processing.
Collapse
Affiliation(s)
- Tyler R Sizemore
- Department of Biology, West Virginia University, Morgantown, WV, 26505, United States of America
| | - Andrew M Dacks
- Department of Biology, West Virginia University, Morgantown, WV, 26505, United States of America
| |
Collapse
|
18
|
Tsukamoto Y, Nagata S. Newly identified allatostatin Bs and their receptor in the two-spotted cricket, Gryllus bimaculatus. Peptides 2016; 80:25-31. [PMID: 27018343 DOI: 10.1016/j.peptides.2016.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 01/11/2023]
Abstract
A cDNA encoding allatostatin Bs (ASTBs) containing the W(X)6W motif was identified using a database generated by a next generation sequencer (NGS) in the two-spotted cricket, Gryllus bimaculatus. The contig sequence revealed the presence of five novel putative ASTBs (GbASTBs) in addition to GbASTBs previously identified in G. bimaculatus. MALDI-TOF MS analyses revealed the presence of these novel and previously identified GbASTBs with three missing GbASTBs. We also identified a cDNA encoding G. bimaculatus GbASTB receptor (GbASTBR) in the NGS data. Phylogenetic analysis demonstrated that this receptor was highly conserved with other insect ASTBRs, including the sex peptide receptor of Drosophila melanogaster. Calcium imaging analyses indicated that the GbASTBR heterologously expressed in HEK293 cells exhibited responses to all identified GbASTBs at a concentration range of 10(-10)-10(-5)M.
Collapse
Affiliation(s)
- Yusuke Tsukamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8567, Japan; Research Fellow of Japan Society for the Promotion of Science (JSPS), Japan
| | - Shinji Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8567, Japan.
| |
Collapse
|
19
|
Egekwu N, Sonenshine DE, Garman H, Barshis DJ, Cox N, Bissinger BW, Zhu J, M Roe R. Comparison of synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors and their gene expression in response to feeding in Ixodes scapularis (Ixodidae) vs. Ornithodoros turicata (Argasidae). INSECT MOLECULAR BIOLOGY 2016; 25:72-92. [PMID: 26783017 DOI: 10.1111/imb.12202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Illumina GAII high-throughput sequencing was used to compare expressed genes for female synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors of the soft tick Ornithodoros turicata with the hard tick Ixodes scapularis. Gene ontology molecular level three mapping revealed no significant differences amongst the same categories represented in O. turicata and I. scapularis. Transcripts predicting 22 neuropeptides or their receptors in the O. turicata synganglion were similar to annotations for 23 neuropeptides or receptors previously identified from I scapularis, with minor exceptions. A transcript predicting ecdysis triggering hormone receptor was identified in O. turicata; transcripts encoding for proprotein convertase and glycoprotein B were identified in both species. Transcripts predicting the same neurotransmitter receptors were found in the synganglion of both species. Gene expression of the transcripts showed numerous differences in response to feeding. Major differences were observed in expression of genes believed important in regulating slow vs. rapid feeding, blood water elimination, cuticle synthesis plasticity and in signalling reproductive activity. Although the glutamate receptor was strongly upregulated in both species, the gamma aminobutyric acid receptor, which inhibits glutamate, was upregulated significantly only in I. scapularis. These differences are consistent with the slow vs. rapid action of the pharyngeal pump in the two species.
Collapse
Affiliation(s)
- N Egekwu
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - D E Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - H Garman
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - D J Barshis
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - N Cox
- Eastern Virginia Medical School, Norfolk, VA, USA
| | - B W Bissinger
- Tyra Tech, R&D, Repellents & Animal Health, Morrisville, NC, USA
| | - J Zhu
- Department of Entomology, North Carolina State University, Raleigh, NC, USA
| | - R M Roe
- Department of Entomology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
20
|
Lizbinski KM, Metheny JD, Bradley SP, Kesari A, Dacks AM. The anatomical basis for modulatory convergence in the antennal lobe of Manduca sexta. J Comp Neurol 2015; 524:1859-75. [PMID: 26560074 DOI: 10.1002/cne.23926] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022]
Abstract
The release of neuromodulators by widely projecting neurons often allows sensory systems to alter how they process information based on the physiological state of an animal. Neuromodulators alter network function by changing the biophysical properties of individual neurons and the synaptic efficacy with which individual neurons communicate. However, most, if not all, sensory networks receive multiple neuromodulatory inputs, and the mechanisms by which sensory networks integrate multiple modulatory inputs are not well understood. Here we characterized the relative glomerular distribution of two extrinsic neuromodulators associated with distinct physiological states, serotonin (5-HT) and dopamine (DA), in the antennal lobe (AL) of the moth Manduca sexta. By using immunocytochemistry and mass dye fills, we characterized the innervation patterns of both 5-HT- and tyrosine hydroxylase-immunoreactive processes relative to each other, to olfactory receptor neurons (ORNs), to projection neurons (PNs), and to several subsets of local interneurons (LNs). 5-HT immunoreactivity had nearly complete overlap with PNs and LNs, yet no overlap with ORNs, suggesting that 5-HT may modulate PNs and LNs directly but not ORNs. TH immunoreactivity overlapped with PNs, LNs, and ORNs, suggesting that dopamine has the potential to modulate all three cell types. Furthermore, the branching density of each neuromodulator differed, with 5-HT exhibiting denser arborizations and TH-ir processes being sparser. Our results suggest that 5-HT and DA extrinsic neurons target partially overlapping glomerular regions, yet DA extends further into the region occupied by ORNs.
Collapse
Affiliation(s)
- Kristyn M Lizbinski
- Department of Biology, West Virginia University, Morgantown, West Virginia, 26505
| | - Jackie D Metheny
- Department of Biology, West Virginia University, Morgantown, West Virginia, 26505.,Center for Cardiovascular and Pulmonary Research and The Heart Center at Nationwide Children's Hospital, Columbus, Ohio, 43205
| | - Samual P Bradley
- Department of Biology, West Virginia University, Morgantown, West Virginia, 26505
| | - Aditya Kesari
- Department of Biology, West Virginia University, Morgantown, West Virginia, 26505
| | - Andrew M Dacks
- Department of Biology, West Virginia University, Morgantown, West Virginia, 26505
| |
Collapse
|
21
|
Discovery and structure–activity relationships of pyrazolodiazepine derivatives as the first small molecule agonists of the Drosophila sex peptide receptor. Bioorg Med Chem 2015; 23:1808-16. [DOI: 10.1016/j.bmc.2015.02.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/11/2015] [Accepted: 02/17/2015] [Indexed: 11/18/2022]
|
22
|
Paluzzi JPV, Haddad AS, Sedra L, Orchard I, Lange AB. Functional characterization and expression analysis of the myoinhibiting peptide receptor in the Chagas disease vector, Rhodnius prolixus. Mol Cell Endocrinol 2015; 399:143-53. [PMID: 25218475 DOI: 10.1016/j.mce.2014.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/04/2014] [Accepted: 09/04/2014] [Indexed: 11/28/2022]
Abstract
Myoinhibiting peptides (MIPs), which are also known as B-type allatostatins, are a family of neuropeptides found in protostomes. Their primary structure is characterized by an amidated carboxyl-terminal motif consisting of a conserved pair of tryptophan residues normally separated by six non-conserved amino acids (W(X6)Wamide). In the fruit fly Drosophila melanogaster, MIPs are likely the ancestral ligands of the sex peptide receptor, which plays an important role in courtship and reproduction. Recently, several endogenous MIPs were discovered in the Chagas disease vector, Rhodnius prolixus, having both conserved (W(X6)Wamide) and atypical (W(X7)Wamide) carboxyl-terminal motifs. Physiological functions of MIPs are plentiful and include inhibition of visceral muscle activity; a role that has been illustrated on hindgut in R. prolixus. In order to identify novel physiological targets and elucidate biological actions for the MIPs in R. prolixus, we have isolated and examined the spatial expression profile of the MIP receptor transcript in various fifth instar tissues and have additionally determined the expression profile in reproductive tissues of fifth instar as well as adult insects. The most abundant MIP receptor transcript expression was found in the salivary glands and central nervous system, which corroborates roles previously determined for MIPs in other insects. We functionally-characterized the endogenous MIP receptor and examined its activation by R. prolixus MIPs containing the typical W(X6)Wamide and atypical W(X7)Wamide carboxyl-terminal motifs. These peptides dose-dependently activated the MIP receptor (RhoprMIPr1) with EC50 values in the mid-nanomolar range. We also examined the activity of these RhoprMIPs on spontaneous muscle contractions of oviducts from female adult R. prolixus. Our findings confirm the myoinhibitory nature of the MIP peptides, which dose-dependently reduced spontaneous oviduct contractions by nearly 70%, again having mid-nanomolar EC50 values. Finally, we utilized a heterologous receptor assay and oviduct bioassay to examine the activity of several MIP structural analogs, which independently confirmed the requirement of the highly conserved tryptophan residues as well as the amidated C-terminus for retaining full biological activity.
Collapse
Affiliation(s)
- Jean-Paul V Paluzzi
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Amir Saleem Haddad
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Laura Sedra
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
23
|
Yu N, Smagghe G. CCK(-like) and receptors: structure and phylogeny in a comparative perspective. Gen Comp Endocrinol 2014; 209:74-81. [PMID: 24842717 DOI: 10.1016/j.ygcen.2014.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 02/07/2023]
Abstract
Cholecystokinin (CCK) and gastrin are regulatory peptides in vertebrates. Their homologues are widely present in metazoan animals, in form of cionin in tunicates, neuropeptide-like protein 12 in nematodes and sulfakinin (SK) in arthropods. CCK(-like) peptides exert diverse physiological effects through binding their corresponding receptors, which are important members of the hormone-binding G-protein-coupled receptors. In this paper, CCK(-like) peptides and receptors are reviewed in a comparative way at levels of molecular structure, physiological functions and phylogeny. CCK signalling system is widely involved in the regulation of satiety, gastric acid secretion, pancreatic secretion, anxiety and memory processes in vertebrates. Its counterpart SK in arthropods is also found with similar functions on regulation of satiety and gastrointestinal motility. Co-evolution of peptide and receptor has been recognized through metazoans. The CCK(-like) receptors seem to be evolved from a common ancestor based on the phylogenetic analysis, with species-specific events in arthropods. In addition, tetraploidization has been brought up to study the evolution of receptors. There are 2 receptors in chordates and nematodes, whereas, the number of sulfakinin receptor varies in arthropods from 0 to 2. We discussed here that the presence or absence of the SK signalling system is likely to be related to feeding behaviour.
Collapse
Affiliation(s)
- Na Yu
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
24
|
Siju KP, Reifenrath A, Scheiblich H, Neupert S, Predel R, Hansson BS, Schachtner J, Ignell R. Neuropeptides in the antennal lobe of the yellow fever mosquito, Aedes aegypti. J Comp Neurol 2014; 522:592-608. [PMID: 23897410 PMCID: PMC4265797 DOI: 10.1002/cne.23434] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/14/2013] [Accepted: 07/11/2013] [Indexed: 12/25/2022]
Abstract
For many insects, including mosquitoes, olfaction is the dominant modality regulating their behavioral repertoire. Many neurochemicals modulate olfactory information in the central nervous system, including the primary olfactory center of insects, the antennal lobe. The most diverse and versatile neurochemicals in the insect nervous system are found in the neuropeptides. In the present study, we analyzed neuropeptides in the antennal lobe of the yellow fever mosquito, Aedes aegypti, a major vector of arboviral diseases. Direct tissue profiling of the antennal lobe by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry indicated the presence of 28 mature products from 10 different neuropeptide genes. In addition, immunocytochemical techniques were used to describe the cellular location of the products of up to seven of these genes within the antennal lobe. Allatostatin A, allatotropin, SIFamide, FMRFamide-related peptides, short neuropeptide F, myoinhibitory peptide, and tachykinin-related peptides were found to be expressed in local interneurons and extrinsic neurons of the antennal lobe. Building on these results, we discuss the possible role of neuropeptide signaling in the antennal lobe of Ae. aegypti. J. Comp. Neurol. 522:592–608, 2014.
Collapse
Affiliation(s)
- K P Siju
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53, Alnarp, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Binzer M, Heuer CM, Kollmann M, Kahnt J, Hauser F, Grimmelikhuijzen CJP, Schachtner J. Neuropeptidome of Tribolium castaneum antennal lobes and mushroom bodies. J Comp Neurol 2014; 522:337-57. [PMID: 23818034 DOI: 10.1002/cne.23399] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 05/27/2013] [Accepted: 06/19/2013] [Indexed: 11/08/2022]
Abstract
Neuropeptides are a highly diverse group of signaling molecules that affect a broad range of biological processes in insects, including development, metabolism, behavior, and reproduction. In the central nervous system, neuropeptides are usually considered to act as neuromodulators and cotransmitters that modify the effect of "classical" transmitters at the synapse. The present study analyzes the neuropeptide repertoire of higher cerebral neuropils in the brain of the red flour beetle Tribolium castaneum. We focus on two integrative neuropils of the olfactory pathway, the antennal lobes and the mushroom bodies. Using the technique of direct peptide profiling by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, we demonstrate that these neuropils can be characterized by their specific neuropeptide expression profiles. Complementary immunohistological analyses of selected neuropeptides revealed neuropeptide distribution patterns within the antennal lobes and the mushroom bodies. Both approaches revealed consistent differences between the neuropils, underlining that direct peptide profiling by mass spectrometry is a fast and reliable method to identify neuropeptide content.
Collapse
Affiliation(s)
- Marlene Binzer
- Philipps-University Marburg, Department of Biology, Animal Physiology, 35043, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Hull JJ, Brent CS. Identification and characterization of a sex peptide receptor-like transcript from the western tarnished plant bug Lygus hesperus. INSECT MOLECULAR BIOLOGY 2014; 23:301-319. [PMID: 24467643 DOI: 10.1111/imb.12082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Lygus hesperus females exhibit a post-mating behavioural switch that triggers increased egg laying and decreased sexual interest. In Drosophila melanogaster, these changes are controlled by sex peptide (SP) and the sex peptide receptor (DmSPR). In Helicoverpa armigera, SPR (HaSPR) also regulates some post-mating behaviour; however, myoinhibiting peptides (MIPs) have been identified as the SPR ancestral ligand, indicating that SPR is a pleiotropic receptor. In the present study, we identified a transcript, designated L. hesperus SPR (LhSPR), that is homologous to known SPRs and which is expressed throughout development and in most adult tissues. LhSPR was most abundant in female seminal depositories and heads as well as the hindgut/midgut of both sexes. In vitro analyses revealed that fluorescent chimeras of LhSPR, DmSPR and HaSPR localized to the cell surface of cultured insect cells, but only DmSPR and HaSPR bound carboxytetramethylrhodamine-labelled analogues of DmSP21-36 and DmMIP4. Injected DmSP21-36 also failed to have an effect on L. hesperus mating receptivity. Potential divergence in the LhSPR binding pocket may be linked to receptor-ligand co-evolution as 9 of 13 MIPs encoded by a putative L. hesperus MIP precursor exhibit an atypical W-X7 -Wamide motif vs the W-X6 -Wamide and W-X8 -Wamide motifs of Drosophila MIPs and SP.
Collapse
Affiliation(s)
- J J Hull
- USDA-ARS Arid Land Agricultural Center, Maricopa, AZ, USA
| | | |
Collapse
|
27
|
Robertson L, Chasiotis H, Galperin V, Donini A. Allatostatin A-like immunoreactivity in the nervous system and gut of the larval midge, Chironomus riparius (Meigen): Modulation of hindgut motility, rectal K+ transport and implications for exposure to salinity. J Exp Biol 2014; 217:3815-22. [DOI: 10.1242/jeb.108985] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
Evidence for the presence of allatostatin (AST) A-like neuropeptides in the larval midge, Chironomus riparius is reported. Immunohistochemical studies on the nervous system and gut revealed the presence of AST A-like immunoreactive (AST-IR) cells and processes. The nerve cord contained AST-IR processes that originated from cells in the brain and travelled the length of nerve cord to the terminal ganglion. Within each ganglion, these processes gave rise to varicosities suggesting that they formed synapses with neurons in the ganglia. Endocrine cells containing AST-IR were present in three regions of the midgut: near the attachment of the Malpighian tubules, between the anterior and posterior midgut and in the vicinity of the gastric caecae. The terminal ganglion also contained 4 AST-IR cells which gave rise to axons that projected onto the hindgut and posterior midgut. Application of a cockroach AST to the semi-isolated hindgut of larval C. riparius led to dose-dependent inhibition of muscle contractions with an EC50 of ~ 10 nM and a decrease in rectal K+ reabsorption resulting from reduced rectal Na+/K+-ATPase (NKA) and vacuolar type H+-ATPase (VA) activities. The results suggest the presence of endogenous AST-like neuropeptides in the larval midge C. riparius where these factors play a role in the function of the gut. Furthermore, regulation of ion reabsorption by ASTs at the rectum could serve as an ideal mechanism of ion regulation in the face of abrupt and acute elevated salt levels.
Collapse
|
28
|
Identification and localisation of selected myotropic neuropeptides in the ventral nerve cord of tenebrionid beetles. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:44-51. [DOI: 10.1016/j.cbpa.2013.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/10/2013] [Accepted: 05/12/2013] [Indexed: 12/31/2022]
|
29
|
Kromann SH, Hansson BS, Ignell R. Distribution of neuropeptides in the antennal lobes of male Spodoptera littoralis. Cell Tissue Res 2013; 354:431-40. [PMID: 23955643 DOI: 10.1007/s00441-013-1703-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
Abstract
Olfaction is an important sensory modality that regulates a plethora of behavioural expressions in insects. Processing of olfactory information takes place in the primary olfactory centres of the brain, namely the antennal lobes (ALs). Neuropeptides have been shown to be present in the olfactory system of various insect species. In the present study, we analyse the distribution of tachykinin, FMRFamide-related peptides, allatotropin, allatostatin, myoinhibitory peptides and SIFamide in the AL of the male Egyptian cotton leafworm, Spodoptera littoralis. Immunocytochemical analyses revealed that most neuropeptides were expressed in different subpopulations of AL neurons. Their arborisation patterns within the AL suggest a significant role of neuropeptide signalling in the modulation of AL processing. In addition to local interneurons, our analysis also revealed a diversity of extrinsic peptidergic neurons that connected the antennal lobe with other brain centres. Their distributions suggest that extrinsic neurons perform various types of context-related modulation.
Collapse
Affiliation(s)
- Sophie H Kromann
- Department of Plant Protection Biology, Unit of Chemical Ecology, Swedish University of Agricultural Sciences, Box 102, 230 53, Alnarp, Sweden,
| | | | | |
Collapse
|
30
|
Yu N, Nachman RJ, Smagghe G. Characterization of sulfakinin and sulfakinin receptor and their roles in food intake in the red flour beetle Tribolium castaneum. Gen Comp Endocrinol 2013; 188:196-203. [PMID: 23524001 DOI: 10.1016/j.ygcen.2013.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/02/2013] [Accepted: 03/04/2013] [Indexed: 01/06/2023]
Abstract
Sulfakinins (SK) are multifunctional neuropeptides widely found in insects that are structurally and functionally homologous to the mammalian gastrin/cholecystokinin (CCK) neuropeptides. CCK is involved in various biological processes such as the feeding regulation where it induces satiety. In this project we characterized SK and SK receptor (SKR) of an important pest and model beetle insect, the red flour beetle Tribolium castaneum, with the aim to better understand the SK signaling pathway and its function in food intake. The sk gene encoded a SK precursor with 113 amino acids and the skr gene a seven-transmembrane SKR with 554 amino acids. Both genes were expressed in the larval, pupal and adult stages with different expression levels in tested tissues. By RNA interference, sk dsRNA and skr dsRNA reduced the expression of the corresponding target gene by 80-90% and 30-50%, respectively, and stimulated food intake in the larvae. In parallel, we injected insects with a SK analog reducing food intake. In conclusion, the data are discussed in relation to the SK signaling pathway and its physiological-endocrinological role in regulating food intake and potential usage in the control of important pest insects.
Collapse
Affiliation(s)
- Na Yu
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | | | | |
Collapse
|
31
|
Vandersmissen HP, Nachman RJ, Vanden Broeck J. Sex peptides and MIPs can activate the same G protein-coupled receptor. Gen Comp Endocrinol 2013; 188:137-43. [PMID: 23453963 DOI: 10.1016/j.ygcen.2013.02.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/27/2013] [Accepted: 02/10/2013] [Indexed: 11/30/2022]
Abstract
In many animal species, copulation elicits a number of physiological and behavioral changes in the female partner. In Drosophila melanogaster, the main molecular effector of these physiological responses has been identified as sex peptide (SP). The sex peptide receptor (SPR) has been characterized and recently, its activation by Drosophila myoinhibiting peptides (MIPs)-in addition to SP-has been demonstrated. The myoinhibiting peptides are members of a conserved peptide family, also known as B-type allatostatins, which generally feature the C-terminal motif -WX6Wamide.
Collapse
|
32
|
Schulze J, Schendzielorz T, Neupert S, Predel R, Stengl M. Neuropeptidergic input pathways to the circadian pacemaker center of the Madeira cockroach analysed with an improved injection technique. Eur J Neurosci 2013; 38:2842-52. [DOI: 10.1111/ejn.12285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 05/09/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Julia Schulze
- Department of Biology, Animal Physiology; University of Kassel; Heinrich-Plett-Str. 40; Kassel; 34132; Germany
| | - Thomas Schendzielorz
- Department of Biology, Animal Physiology; University of Kassel; Heinrich-Plett-Str. 40; Kassel; 34132; Germany
| | - Susanne Neupert
- Biocenter Cologne; Functional Peptidomics; University of Cologne; Cologne; Germany
| | - Reinhard Predel
- Biocenter Cologne; Functional Peptidomics; University of Cologne; Cologne; Germany
| | - Monika Stengl
- Department of Biology, Animal Physiology; University of Kassel; Heinrich-Plett-Str. 40; Kassel; 34132; Germany
| |
Collapse
|
33
|
Carlsson MA, Schäpers A, Nässel DR, Janz N. Organization of the olfactory system of nymphalidae butterflies. Chem Senses 2013; 38:355-67. [PMID: 23513054 DOI: 10.1093/chemse/bjt008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Olfaction is in many species the most important sense, essential for food search, mate finding, and predator avoidance. Butterflies have been considered a microsmatic group of insects that mainly rely on vision due to their diurnal lifestyle. However, an emerging number of studies indicate that butterflies indeed use the sense of smell for locating food and oviposition sites. To unravel the neural substrates for olfaction, we performed an anatomical study of 2 related butterfly species that differ in food and host plant preference. We found many of the anatomical structures and pathways, as well as distribution of neuroactive substances, to resemble that of their nocturnal relatives among the Lepidoptera. The 2 species differed in the number of one type of olfactory sensilla, thus indicating a difference in sensitivity to certain compounds. Otherwise no differences could be observed. Our findings suggest that the olfactory system in Lepidoptera is well conserved despite the long evolutionary time since butterflies and moths diverged from a common ancestor.
Collapse
|
34
|
Zoephel J, Reiher W, Rexer KH, Kahnt J, Wegener C. Peptidomics of the agriculturally damaging larval stage of the cabbage root fly Delia radicum (Diptera: Anthomyiidae). PLoS One 2012; 7:e41543. [PMID: 22848525 PMCID: PMC3405134 DOI: 10.1371/journal.pone.0041543] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/22/2012] [Indexed: 12/01/2022] Open
Abstract
The larvae of the cabbage root fly induce serious damage to cultivated crops of the family Brassicaceae. We here report the biochemical characterisation of neuropeptides from the central nervous system and neurohemal organs, as well as regulatory peptides from enteroendocrine midgut cells of the cabbage maggot. By LC-MALDI-TOF/TOF and chemical labelling with 4-sulfophenyl isothiocyanate, 38 peptides could be identified, representing major insect peptide families: allatostatin A, allatostatin C, FMRFamide-like peptides, kinin, CAPA peptides, pyrokinins, sNPF, myosuppressin, corazonin, SIFamide, sulfakinins, tachykinins, NPLP1-peptides, adipokinetic hormone and CCHamide 1. We also report a new peptide (Yamide) which appears to be homolog to an amidated eclosion hormone-associated peptide in several Drosophila species. Immunocytochemical characterisation of the distribution of several classes of peptide-immunoreactive neurons and enteroendocrine cells shows a very similar but not identical peptide distribution to Drosophila. Since peptides regulate many vital physiological and behavioural processes such as moulting or feeding, our data may initiate the pharmacological testing and development of new specific peptide-based protection methods against the cabbage root fly and its larva.
Collapse
Affiliation(s)
- Judith Zoephel
- Department of Biology, Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Wencke Reiher
- Department of Biology, Animal Physiology, Philipps-University Marburg, Marburg, Germany
- Neurobiology and Genetics, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Karl-Heinz Rexer
- Department of Biology, Mycology, Philipps-University Marburg, Marburg, Germany
| | - Jörg Kahnt
- Max-Planck-Institute of Terrestrial Microbiology, Marburg, Germany
| | - Christian Wegener
- Department of Biology, Animal Physiology, Philipps-University Marburg, Marburg, Germany
- Neurobiology and Genetics, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
35
|
Lange AB, Alim U, Vandersmissen HP, Mizoguchi A, Vanden Broeck J, Orchard I. The distribution and physiological effects of the myoinhibiting peptides in the kissing bug, rhodnius prolixus. Front Neurosci 2012; 6:98. [PMID: 22783161 PMCID: PMC3390896 DOI: 10.3389/fnins.2012.00098] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/13/2012] [Indexed: 11/13/2022] Open
Abstract
The myoinhibiting peptides (MIPs), also designated as allatostatin-Bs or prothoracicostatic peptides in some insects, are neuropeptides that are characterized by two tryptophan (W) residues at the C-terminal, denoted as the W(X6)Wamide motif. They are believed to be the ancestral ligands for the Drosophila sex peptide (SP) receptor. Physiological functions of MIPs include the inhibition of contraction of insect visceral muscles, in addition to allatostatic and prothoracicostatic activities. The MIP precursor in Rhodnius prolixus encodes MIPs that have an unusual W(X7)Wamide motif. In the present study, MIP-like immunoreactivity was detected within neurons in the central nervous system and within the innervation to the salivary glands, hindgut, and female and male reproductive systems of adult R. prolixus. The effects of peptides with the unusual W(X7)Wamide motif (Rhopr-MIP-4) and with the typical W(X6)Wamide motif (Rhopr-MIP-7) were tested for physiological activity on R. prolixus hindgut contractions. Both peptides reduce the frequency and amplitude of hindgut contractions in a dose-dependent manner. In addition, both peptides activate the Drosophila SP receptor. The MIP/SP receptors are therefore activated by peptides with the unusual W(X7)Wamide motif.
Collapse
Affiliation(s)
- Angela B Lange
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Heuer CM, Kollmann M, Binzer M, Schachtner J. Neuropeptides in insect mushroom bodies. ARTHROPOD STRUCTURE & DEVELOPMENT 2012; 41:199-226. [PMID: 22401884 DOI: 10.1016/j.asd.2012.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 05/31/2023]
Abstract
Owing to their experimental amenability, insect nervous systems continue to be in the foreground of investigations into information processing in - ostensibly - simple neuronal networks. Among the cerebral neuropil regions that hold a particular fascination for neurobiologists are the paired mushroom bodies, which, despite their function in other behavioral contexts, are most renowned for their role in learning and memory. The quest to understand the processes that underlie these capacities has been furthered by research focusing on unraveling neuroanatomical connections of the mushroom bodies and identifying key players that characterize the molecular machinery of mushroom body neurons. However, on a cellular level, communication between intrinsic and extrinsic mushroom body neurons still remains elusive. The present account aims to provide an overview on the repertoire of neuropeptides expressed in and utilized by mushroom body neurons. Existing data for a number of insect representatives is compiled and some open gaps in the record are filled by presenting additional original data.
Collapse
Affiliation(s)
- Carsten M Heuer
- Philipps-University Marburg, Department of Biology, Animal Physiology, Marburg, Germany.
| | | | | | | |
Collapse
|
37
|
Bendena WG, Tobe SS. Families of allatoregulator sequences: a 2011 perspective1This review is part of a virtual symposium on recent advances in understanding a variety of complex regulatory processes in insect physiology and endocrinology, including development, metabolism, cold hardiness, food intake and digestion, and diuresis, through the use of omics technologies in the postgenomic era. CAN J ZOOL 2012. [DOI: 10.1139/z2012-012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Three different peptide families have been named “allatostatins” (ASTs), based on their initial purifications which were based on their ability to inhibit juvenile hormone (JH) biosynthesis. These include (i) a family of peptides that have a consensus C-terminal sequence Y/FXFGL-NH2; (ii) a family of peptides with a conserved C-terminal sequence W(X)6W-NH2; and(iii) a family of peptides with C-terminal sequence PISCF, some of which are C-terminally-amidated. Each allatostatin family has functions distinct and apart from the inhibition of JH biosynthesis. A peptide family known as the “allatotropins” serve to stimulate JH biosynthesis. This family of peptides also has been proven to exert multiple effects dependent on the species in question. Genome and peptidome projects are uncovering new members of these families and it is clear that these structures are not just confined to Insecta but are found in a range of invertebrates. The receptors for these neuropeptides have been identified and tested experimentally for specific ligand binding. The Y/FXFGLa-ASTs exert their action through galanin-like receptors, W(X)6Wa-ASTs through a sex peptide-binding receptor, and PISCF-ASTs through somatostatin-like receptors. These receptors are conserved through evolutionary time and are being identified in numerous invertebrates by way of genome projects.
Collapse
Affiliation(s)
- William G. Bendena
- Department of Biology and Centre for Neurosciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Stephen S. Tobe
- Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
38
|
Spit J, Badisco L, Verlinden H, Van Wielendaele P, Zels S, Dillen S, Vanden Broeck J. Peptidergic control of food intake and digestion in insects 1This review is part of a virtual symposium on recent advances in understanding a variety of complex regulatory processes in insect physiology and endocrinology, including development, metabolism, cold hardiness, food intake and digestion, and diuresis, through the use of omics technologies in the postgenomic era. CAN J ZOOL 2012. [DOI: 10.1139/z2012-014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Like all heterotrophic organisms, insects require a strict control of food intake and efficient digestion of food into nutrients to maintain homeostasis and to fulfill physiological tasks. Feeding and digestion are steered by both external and internal signals that are transduced by a multitude of regulatory factors, delivered either by neurons innervating the gut or mouthparts, or by midgut endocrine cells. The present review gives an overview of peptide regulators known to control feeding and digestion in insects. We describe the discovery and functional role in these processes for insect allatoregulatory peptides, diuretic hormones, FMRFamide-related peptides, (short) neuropeptide F, proctolin, saliva production stimulating peptides, kinins, and tachykinins. These peptides control either gut myoactivity, food intake, and (or) release of digestive enzymes. Some peptides exert their action at multiple levels, possibly having a biological function that depends on their site of delivery. Many regulatory peptides have been physically extracted from different insect species. However, multiple peptidomics, proteomics, transcriptomics, and genome sequencing projects have led to increased discovery and prediction of peptide (precursor) and receptor sequences. In combination with physiological experiments, these large-scale projects have already led to important steps forward in unraveling the physiology of feeding and digestion in insects.
Collapse
Affiliation(s)
- J. Spit
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - L. Badisco
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - H. Verlinden
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - P. Van Wielendaele
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - S. Zels
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - S. Dillen
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - J. Vanden Broeck
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| |
Collapse
|
39
|
Schulze J, Neupert S, Schmidt L, Predel R, Lamkemeyer T, Homberg U, Stengl M. Myoinhibitory peptides in the brain of the cockroach Leucophaea maderae and colocalization with pigment-dispersing factor in circadian pacemaker cells. J Comp Neurol 2012; 520:1078-97. [DOI: 10.1002/cne.22785] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
40
|
Neupert S, Fusca D, Schachtner J, Kloppenburg P, Predel R. Toward a single-cell-based analysis of neuropeptide expression in Periplaneta americana antennal lobe neurons. J Comp Neurol 2012; 520:694-716. [DOI: 10.1002/cne.22745] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Robertson L, Rodriguez EP, Lange AB. The neural and peptidergic control of gut contraction in Locusta migratoria: the effect of an FGLa/AST. J Exp Biol 2012; 215:3394-402. [DOI: 10.1242/jeb.073189] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
The regulation of insect gut physiology is complex and involves the interactions of a number of mechanisms, including the neural regulation of gut contraction by altering neural input and the modulation of gut contractions by neuropeptides directly affecting the muscle. The FGLa-type allatostatins (FGLa/ASTs) are known brain/gut peptides with numerous physiological roles, including modulation of gut contraction and neural input. To further investigate the pleiotropic roles of FGLa/AST peptides in Locusta migratoria, we have examined the role of a locust FGLa/AST (Scg-AST-6) in the gut. Proctolin and Scg-AST-6 have opposing effects on gut contraction, where proctolin dose-dependently increases gut muscle tension, while Scg-AST-6 inhibits both muscle tension and spontaneous and neurogenic contractions in a dose-dependent manner. Results from neurophysiological recordings indicate that there may be a central pattern generator (CPG) within the ventricular ganglia regulated by descending inhibition, and the addition of Scg-AST-6 dose-dependently modulates this ventricular ganglion CPG. This work provides a comprehensive picture of how FGLa/ASTs may modulate and coordinate each region of the locust gut, and shows that FGLa/ASTs have both central effects, on the ventricular ganglion CPG, and peripheral effects on the gut muscle. Overall, this work shows how FGLa/ASTs contribute to the complex regulation and fine tuning of gut contraction.
Collapse
|
42
|
Kollmann M, Huetteroth W, Schachtner J. Brain organization in Collembola (springtails). ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:304-316. [PMID: 21420507 DOI: 10.1016/j.asd.2011.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 01/05/2011] [Accepted: 02/17/2011] [Indexed: 05/30/2023]
Abstract
Arthropoda is comprised of four major taxa: Hexapoda, Crustacea, Myriapoda and Chelicerata. Although this classification is widely accepted, there is still some debate about the internal relationships of these groups. In particular, the phylogenetic position of Collembola remains enigmatic. Some molecular studies place Collembola into a close relationship to Protura and Diplura within the monophyletic Hexapoda, but this placement is not universally accepted, as Collembola is also regarded as either the sister group to Branchiopoda (a crustacean taxon) or to Pancrustacea (crustaceans + hexapods). To contribute to the current debate on the phylogenetic position of Collembola, we examined the brains in three collembolan species: Folsomia candida, Protaphorura armata and Tetrodontophora bielanensis, using antennal backfills, series of semi-thin sections, and immunostaining technique with several antisera, in conjunction with confocal laser scanning microscopy and three-dimensional reconstructions. We identified several neuroanatomical structures in the collembolan brain, including a fan-shaped central body showing a columnar organization, a protocerebral bridge, one pair of antennal lobes with 20-30 spheroidal glomeruli each, and a structure, which we interpret as a simply organized mushroom body. The results of our neuroanatomical study are consistent with the phylogenetic position of Collembola within the Hexapoda and do not contradict the hypothesis of a close relationship of Collembola, Protura and Diplura.
Collapse
Affiliation(s)
- Martin Kollmann
- Department of Biology - Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35032 Marburg, Germany
| | | | | |
Collapse
|
43
|
Down RE, Matthews HJ, Audsley N. Oral activity of FMRFamide-related peptides on the pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae) and degradation by enzymes from the aphid gut. ACTA ACUST UNITED AC 2011; 171:11-8. [PMID: 21704083 DOI: 10.1016/j.regpep.2011.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 05/25/2011] [Accepted: 05/30/2011] [Indexed: 11/25/2022]
Abstract
Insect myosuppressins and myosuppressin analogues were tested for oral toxicity against the pea aphid Acyrthosiphon pisum (Harris) by incorporation into an artificial diet. Acyrthosiphon pisum myosuppressin (Acypi-MS) and leucomyosuppressin (LMS) had significant dose-dependent effects (0.1-0.5μg peptide/μl diet) on feeding suppression, mortality, reduced growth and fecundity compared with control insects, but Acypi-MS was more potent than LMS. One hundred percent of aphids had died after 10days of feeding on 0.5μg Acypi-MS/μl diet whereas 40% of aphids feeding on 0.5μg LMS/μl diet were still alive after 13days. Myosuppressins were degraded by aphid gut enzymes; degradation was most likely due to a carboxypeptidase-like protease, an aminopeptidase and a cathepsin L cysteine protease. The estimated half-life of Acypi-MS in a gut extract was 30min, whereas LMS was degraded more slowly (t½=54min). No toxicity was observed when the analogues δR(9) LMS and citrolline(9) Acypi-MS or FMRFamide were fed to the pea aphid. These findings not only help to better understand the biological effects of myosuppressins in aphids but also demonstrate the potential use of myosuppressins in a strategy to control aphid pests.
Collapse
Affiliation(s)
- Rachel E Down
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, UK.
| | | | | |
Collapse
|
44
|
Myoinhibitory peptide (MIP) immunoreactivity in the visual system of the blowfly Calliphora vomitoria in relation to putative clock neurons and serotonergic neurons. Cell Tissue Res 2011; 345:125-35. [PMID: 21660541 DOI: 10.1007/s00441-011-1198-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 05/16/2011] [Indexed: 10/18/2022]
Abstract
A few types of peptidergic clock neurons have been identified in the fruitfly Drosophila, whereas in blowflies, only pigment-dispersing factor (PDF)-immunoreactive lateral ventral clock neurons (LN(v)s) have been described. In blowflies, but not Drosophila, a subset of these PDF-expressing neurons supplies axon branches to a region outside the synaptic layer of the lamina, the most peripheral optic lobe neuropil. In Drosophila, similar lamina processes are instead supplied by non-clock neurons (LMIo) that express myoinhibitory peptide (MIP). We have investigated the distribution of MIP-immunoreactive neurons in the visual system of the blowfly Calliphora vomitoria and found neurons resembling the three LMIos, but without processes to the lamina. In Calliphora, PDF-immunoreactive processes of LN(v)s in the lamina closely impinge on branching serotonin-immunoreactive axon terminations in the same region. We have also identified, in the blowfly, two types of putative clock neurons that label with an antiserum to ion-transport peptide (ITP). The presence of serotonin-immunoreactive neurons supplying processes to the lamina seems to be a conserved feature in dipteran flies. The morphology of the two types of ITP-immunoreactive clock neurons might also be conserved. However, peptidergic neurons with branches converging on the serotonin-immunoreactive neurons in the lamina are of different morphological types and express PDF in blowflies and MIP in Drosophila. The central circuitry of these PDF- and MIP-expressing neurons probably differs; consequently, whether their convergence on serotonergic neurons subserves similar functions in the two species is unclear.
Collapse
|
45
|
Nagata S, Morooka N, Matsumoto S, Kawai T, Nagasawa H. Effects of neuropeptides on feeding initiation in larvae of the silkworm, Bombyx mori. Gen Comp Endocrinol 2011; 172:90-5. [PMID: 21397600 DOI: 10.1016/j.ygcen.2011.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 11/26/2022]
Abstract
In insects, especially phytophagous insects, feeding behavior occurs at a regular frequency. Although a number of physiological studies have revealed various causal factors leading to feeding behavior in insects, little has been demonstrated regarding the regulatory mechanisms underlying insect feeding behavior. To confirm the presence of an endocrinological regulatory mechanism in feeding behavior, we tested the effects of several biologically active peptides on silkworm, Bombyx mori larvae feeding behaviors. To evaluate the effects of the biologically active peptides, we measured the period of latency to the first bite following sample injection into starved Bombyx larvae. Of the chemically synthesized peptides tested, myosuppressin exhibited a prolonged latency, indicating that myosuppressin is a possible inhibitory peptide in Bombyx larvae. In contrast, injections of tachykinin and short neuropeptide F, which are members of the structurally related RF-amide peptide family, had a shorter latency period, indicating that these two peptides are possible stimulatory peptides. In addition, the present study suggests that this bioassay will be advantageous for screening for peptides that regulate insect feeding behavior.
Collapse
Affiliation(s)
- Shinji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | |
Collapse
|
46
|
A novel wide-field neuron with branches in the lamina of the Drosophila visual system expresses myoinhibitory peptide and may be associated with the clock. Cell Tissue Res 2010; 343:357-69. [PMID: 21174124 DOI: 10.1007/s00441-010-1100-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
Although neuropeptides are widespread throughout the central nervous system of the fruifly Drosophila, no records exist of peptidergic neurons in the first synaptic region of the visual system, the lamina. Here, we describe a novel type of neuron that has wide-field tangential arborizations just distal to the lamina neuropil and that expresses myoinhibitory peptide (MIP). The cell bodies of these neurons, designated lateral MIP-immunoreactive optic lobe (LMIo) neurons, lie anteriorly at the base of the medulla of the optic lobe. The LMIo neurons also arborize in several layers of the medulla and in the dorso-lateral and lateral protocerebrum. Since the LMIo resemble LN(v) clock neurons, we have investigated the relationships between these two sets of neurons by combining MIP-immunolabeling with markers for two of the clock genes, viz., Cryptochrome and Timeless, or with antisera to two peptides expressed in clock neurons, viz., pigment-dispersing factor and ion transport peptide. LMIo neurons do not co-express any of these clock neuron markers. However, branches of LMIo and clock neurons overlap in several regions. Furthermore, the varicose lamina branches of LMIo neurons superimpose those of two large bilateral serotonergic neurons. The close apposition of the terminations of MIP- and serotonin-producing neurons distal to the lamina suggests that they have the same peripheral targets. Our data indicate that the LMIo neurons are not bona fide clock neurons, but they may be associated with the clock system and regulate signaling peripherally in the visual system.
Collapse
|
47
|
Kahsai L, Winther ÅM. Chemical neuroanatomy of the Drosophila central complex: Distribution of multiple neuropeptides in relation to neurotransmitters. J Comp Neurol 2010; 519:290-315. [DOI: 10.1002/cne.22520] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Carlsson MA, Diesner M, Schachtner J, Nässel DR. Multiple neuropeptides in the Drosophila antennal lobe suggest complex modulatory circuits. J Comp Neurol 2010; 518:3359-80. [PMID: 20575072 DOI: 10.1002/cne.22405] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The fruitfly, Drosophila, is dependent on its olfactory sense in food search and reproduction. Processing of odorant information takes place in the antennal lobes, the primary olfactory center in the insect brain. Besides classical neurotransmitters, earlier studies have indicated the presence of a few neuropeptides in the olfactory system. In the present study we made an extensive analysis of the expression of neuropeptides in the Drosophila antennal lobes by direct profiling using matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry and immunocytochemistry. Neuropeptides from seven different precursor genes were unambiguously identified and their localization in neurons was subsequently revealed by immunocytochemistry. These were short neuropeptide F, tachykinin related peptide, allatostatin A, myoinhibitory peptide, SIFamide, IPNamide, and myosuppressin. The neuropeptides were expressed in subsets of olfactory sensory cells and different populations of local interneurons and extrinsic (centrifugal) neurons. In some neuron types neuropeptides were colocalized with classical neurotransmitters. Our findings suggest a huge complexity in peptidergic signaling in different circuits of the antennal lobe.
Collapse
Affiliation(s)
- Mikael A Carlsson
- Department of Zoology, Stockholm University, S-10691, Stockholm, Sweden.
| | | | | | | |
Collapse
|
49
|
Abstract
Upon mating, females of many animal species undergo dramatic changes in their behavior. In Drosophila melanogaster, postmating behaviors are triggered by sex peptide (SP), which is produced in the male seminal fluid and transferred to female during copulation. SP modulates female behaviors via sex peptide receptor (SPR) located in a small subset of internal sensory neurons that innervate the female uterus and project to the CNS. Although required for postmating responses only in these female sensory neurons, SPR is expressed broadly in the CNS of both sexes. Moreover, SPR is also encoded in the genomes of insects that lack obvious SP orthologs. These observations suggest that SPR may have additional ligands and functions. Here, we identify myoinhibitory peptides (MIPs) as a second family of SPR ligands that is conserved across a wide range of invertebrate species. MIPs are potent agonists for Drosophila, Aedes, and Aplysia SPRs in vitro, yet are unable to trigger postmating responses in vivo. In contrast to SP, MIPs are not produced in male reproductive organs, and are not required for postmating behaviors in Drosophila females. We conclude that MIPs are evolutionarily conserved ligands for SPR, which are likely to mediate functions other than the regulation of female reproductive behaviors.
Collapse
|
50
|
Bombyx prothoracicostatic peptides activate the sex peptide receptor to regulate ecdysteroid biosynthesis. Proc Natl Acad Sci U S A 2010; 107:2060-5. [PMID: 20133850 DOI: 10.1073/pnas.0907471107] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insect molting and metamorphosis are induced by steroid hormones named ecdysteroids, whose production is regulated by various neuropeptides. We cloned the gene and analyzed the expression of the prothoracicostatic peptide, a unique neuropeptide shown to suppress the production of ecdysteroids in the prothoracic gland of the silkworm, Bombyx mori. We also characterized a Bombyx G protein-coupled receptor, which has previously been identified as an ortholog of the Drosophila sex peptide receptor, as a functional prothoracicostatic peptide receptor. This receptor responded specifically to the prothoracicostatic peptides when examined using a heterologous expression system. The receptor was highly expressed in the prothoracic gland on the day before each larval and pupal ecdysis, when prothoracicostatic peptides are synthesized at a high level in the epiproctodeal glands. These results suggest that the sex peptide receptor functions as a prothoracicostatic peptide receptor in Bombyx and that the peripheral neurosecretory cells as well as the central neuroendocrine system play stage-specific roles in regulating ecdysteroidogenesis.
Collapse
|