1
|
Afridi S, Muzzammil M, Ali I, Shahi MH. Neuropeptide Signaling in Glioblastoma: A Comprehensive Review of the Current State and Future Direction. Neuromolecular Med 2025; 27:27. [PMID: 40227382 DOI: 10.1007/s12017-025-08849-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/24/2025] [Indexed: 04/15/2025]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive brain tumor characterized by complex pathophysiology and significant clinical challenges. Emerging research emphasizes the crucial role of neuropeptides in GBM and its influence on tumor progression, immune modulation, and therapy resistance. This review highlighted the importance of neuropeptides and their receptors in maintaining brain homeostasis and the glioblastoma tumor microenvironment. We discussed new therapeutic frontiers, including neuropeptide receptors as therapeutic targets, renin-angiotensin system, peptide receptor modulation, targeted cytotoxic analogs (such as Bombesin and Somatostatin), and advances in targeted radiotherapy. The review highlighted the potential of neuropeptide-based targeted therapies to improve GBM patient outcomes and suggests future research directions. This underscores the importance of targeting neuropeptide-related pathways for innovative therapeutic strategies in GBM, aiming to enhance patient prognosis and effective treatment.
Collapse
Affiliation(s)
- Shahid Afridi
- Faculty of Medicine, Interdisciplinary Brain Research Centre, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Mohd Muzzammil
- Faculty of Medicine, Interdisciplinary Brain Research Centre, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Intezar Ali
- Faculty of Medicine, Interdisciplinary Brain Research Centre, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Mehdi H Shahi
- Faculty of Medicine, Interdisciplinary Brain Research Centre, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
2
|
Sánchez ML, Mangas A, Coveñas R. Glioma and Peptidergic Systems: Oncogenic and Anticancer Peptides. Int J Mol Sci 2024; 25:7990. [PMID: 39063232 PMCID: PMC11277022 DOI: 10.3390/ijms25147990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Glioma cells overexpress different peptide receptors that are useful for research, diagnosis, management, and treatment of the disease. Oncogenic peptides favor the proliferation, migration, and invasion of glioma cells, as well as angiogenesis, whereas anticancer peptides exert antiproliferative, antimigration, and anti-angiogenic effects against gliomas. Other peptides exert a dual effect on gliomas, that is, both proliferative and antiproliferative actions. Peptidergic systems are therapeutic targets, as peptide receptor antagonists/peptides or peptide receptor agonists can be administered to treat gliomas. Other anticancer strategies exerting beneficial effects against gliomas are discussed herein, and future research lines to be developed for gliomas are also suggested. Despite the large amount of data supporting the involvement of peptides in glioma progression, no anticancer drugs targeting peptidergic systems are currently available in clinical practice to treat gliomas.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| | - Arturo Mangas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
- Grupo GIR USAL-BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
3
|
Sánchez ML, Rodríguez FD, Coveñas R. Neuropeptide Y Peptide Family and Cancer: Antitumor Therapeutic Strategies. Int J Mol Sci 2023; 24:9962. [PMID: 37373115 DOI: 10.3390/ijms24129962] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Currently available data on the involvement of neuropeptide Y (NPY), peptide YY (PYY), and pancreatic polypeptide (PP) and their receptors (YRs) in cancer are updated. The structure and dynamics of YRs and their intracellular signaling pathways are also studied. The roles played by these peptides in 22 different cancer types are reviewed (e.g., breast cancer, colorectal cancer, Ewing sarcoma, liver cancer, melanoma, neuroblastoma, pancreatic cancer, pheochromocytoma, and prostate cancer). YRs could be used as cancer diagnostic markers and therapeutic targets. A high Y1R expression has been correlated with lymph node metastasis, advanced stages, and perineural invasion; an increased Y5R expression with survival and tumor growth; and a high serum NPY level with relapse, metastasis, and poor survival. YRs mediate tumor cell proliferation, migration, invasion, metastasis, and angiogenesis; YR antagonists block the previous actions and promote the death of cancer cells. NPY favors tumor cell growth, migration, and metastasis and promotes angiogenesis in some tumors (e.g., breast cancer, colorectal cancer, neuroblastoma, pancreatic cancer), whereas in others it exerts an antitumor effect (e.g., cholangiocarcinoma, Ewing sarcoma, liver cancer). PYY or its fragments block tumor cell growth, migration, and invasion in breast, colorectal, esophageal, liver, pancreatic, and prostate cancer. Current data show the peptidergic system's high potential for cancer diagnosis, treatment, and support using Y2R/Y5R antagonists and NPY or PYY agonists as promising antitumor therapeutic strategies. Some important research lines to be developed in the future will also be suggested.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37008 Salamanca, Spain
| | - Francisco D Rodríguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37008 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37008 Salamanca, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37008 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
4
|
Zhong W, Darmani NA. The Contribution of Phospholipase C in Vomiting in the Least Shrew (Cryptotis Parva) Model of Emesis. Front Pharmacol 2021; 12:736842. [PMID: 34566660 PMCID: PMC8461300 DOI: 10.3389/fphar.2021.736842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Gq and Gβγ protein-dependent phospholipase C (PLC) activation is extensively involved in G protein-coupled receptor (GPCR)-mediated signaling pathways which are implicated in a wide range of physiological and pathological events. Stimulation of several GPCRs, such as substance P neurokinin 1-, dopamine D2/3-, histamine H1- and mu-opioid receptors, can lead to vomiting. The aim of this study was to investigate the role of PLC in vomiting through assessment of the emetic potential of a PLC activator (m-3M3FBS), and the antiemetic efficacy of a PLC inhibitor (U73122), in the least shrew model of vomiting. We find that a 50 mg/kg (i.p.) dose of m-3M3FBS induces vomiting in ∼90% of tested least shrews, which was accompanied by significant increases in c-Fos expression and ERK1/2 phosphorylation in the shrew brainstem dorsal vagal complex, indicating activation of brainstem emetic nuclei in m-3M3FBS-evoked emesis. The m-3M3FBS-evoked vomiting was reduced by pretreatment with diverse antiemetics including the antagonists/inhibitors of: PLC (U73122), L-type Ca2+ channel (nifedipine), IP3R (2-APB), RyR receptor (dantrolene), ERK1/2 (U0126), PKC (GF109203X), the serotoninergic type 3 receptor (palonosetron), and neurokinin 1 receptor (netupitant). In addition, the PLC inhibitor U73122 displayed broad-spectrum antiemetic effects against diverse emetogens, including the selective agonists of serotonin type 3 (2-Methyl-5-HT)-, neurokinin 1 receptor (GR73632), dopamine D2/3 (quinpirole)-, and muscarinic M1 (McN-A-343) receptors, the L-type Ca2+ channel (FPL64176), and the sarco/endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin. In sum, PLC activation contributes to emesis, whereas PLC inhibition suppresses vomiting evoked by diverse emetogens.
Collapse
Affiliation(s)
| | - Nissar A. Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
5
|
Fu W, Wessel CR, Taylor BK. Neuropeptide Y tonically inhibits an NMDAR➔AC1➔TRPA1/TRPV1 mechanism of the affective dimension of chronic neuropathic pain. Neuropeptides 2020; 80:102024. [PMID: 32145934 PMCID: PMC7456540 DOI: 10.1016/j.npep.2020.102024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/18/2019] [Accepted: 01/23/2020] [Indexed: 11/26/2022]
Abstract
Transection of the sural and common peroneal branches of the sciatic nerve produces cutaneous hypersensitivity at the tibial innervation territory of the mouse hindpaw that resolves within a few weeks. We report that interruption of endogenous neuropeptide Y (NPY) signaling during remission, with either conditional NPY knockdown in NPYtet/tet mice or intrathecal administration of the Y1 receptor antagonist BIBO3304, reinstated hypersensitivity. These data indicate that nerve injury establishes a long-lasting latent sensitization of spinal nociceptive neurons that is masked by spinal NPY-Y1 neurotransmission. To determine whether this mechanism extends beyond the sensory component of nociception, we used conditioned place aversion and preference assays to evaluate the affective component of pain. We found that BIBO3304 produced place aversion in mice when administered during remission. Furthermore, the analgesic drug gabapentin produced place preference after NPY knockdown in NPYtet/tet but not control mice. We then used pharmacological agents and deletion mutant mice to investigate the cellular mechanisms of neuropathic latent sensitization. BIBO3304-induced reinstatement of mechanical hypersensitivity and conditioned place aversion could be prevented with intrathecal administration of an N-methyl-d-aspartate receptor antagonist (MK-801) and was absent in adenylyl cyclase type 1 (AC1) deletion mutant mice. BIBO3304-induced reinstatement could also be prevented with intrathecal administration an AC1 inhibitor (NB001) or a TRPV1 channel blocker (AMG9801), but not vehicle. Intrathecal administration of a TRPA1 channel blocker (HC030031) prevented the reinstatement of neuropathic hypersensitivity produced either by BIBO3304, or by NPY knockdown in NPYtet/tet but not control mice. Our results confirm new mediators of latent sensitization: TRPA1 and TRPV1. We conclude that NPY acts at spinal Y1 to tonically inhibit a molecular NMDAR➔AC1 intracellular signaling pathway in the dorsal horn that is induced by peripheral nerve injury and drives both the sensory and affective components of chronic neuropathic pain.
Collapse
Affiliation(s)
- Weisi Fu
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY, USA
| | - Caitlin R Wessel
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY, USA
| | - Bradley K Taylor
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY, USA; Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Fu W, Nelson TS, Santos DF, Doolen S, Gutierrez JJ, Ye N, Zhou J, Taylor B. An NPY Y1 receptor antagonist unmasks latent sensitization and reveals the contribution of protein kinase A and Epac to chronic inflammatory pain. Pain 2019; 160:1754-1765. [PMID: 31335645 PMCID: PMC6903783 DOI: 10.1097/j.pain.0000000000001557] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peripheral inflammation produces a long-lasting latent sensitization of spinal nociceptive neurons, that is, masked by tonic inhibitory controls. We explored mechanisms of latent sensitization with an established four-step approach: (1) induction of inflammation; (2) allow pain hypersensitivity to resolve; (3) interrogate latent sensitization with a channel blocker, mutant mouse, or receptor antagonist; and (4) disrupt compensatory inhibition with a receptor antagonist so as to reinstate pain hypersensitivity. We found that the neuropeptide Y Y1 receptor antagonist BIBO3304 reinstated pain hypersensitivity, indicative of an unmasking of latent sensitization. BIBO3304-evoked reinstatement was not observed in AC1 knockout mice and was prevented with intrathecal co-administration of a pharmacological blocker to the N-methyl-D-aspartate receptor (NMDAR), adenylyl cyclase type 1 (AC1), protein kinase A (PKA), transient receptor potential cation channel A1 (TRPA1), channel V1 (TRPV1), or exchange protein activated by cAMP (Epac1 or Epac2). A PKA activator evoked both pain reinstatement and touch-evoked pERK expression in dorsal horn; the former was prevented with intrathecal co-administration of a TRPA1 or TRPV1 blocker. An Epac activator also evoked pain reinstatement and pERK expression. We conclude that PKA and Epac are sufficient to maintain long-lasting latent sensitization of dorsal horn neurons that is kept in remission by the NPY-Y1 receptor system. Furthermore, we have identified and characterized 2 novel molecular signaling pathways in the dorsal horn that drive latent sensitization in the setting of chronic inflammatory pain: NMDAR→AC1→PKA→TRPA1/V1 and NMDAR→AC1→Epac1/2. New treatments for chronic inflammatory pain might either increase endogenous NPY analgesia or inhibit AC1, PKA, or Epac.
Collapse
Affiliation(s)
- Weisi Fu
- Department of Physiology, University of Kentucky Medical Center, Lexington KY, USA
| | - Tyler S. Nelson
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA USA
| | - Diogo F. Santos
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Suzanne Doolen
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Javier J.P. Gutierrez
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Na Ye
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Bradley Taylor
- Department of Physiology, University of Kentucky Medical Center, Lexington KY, USA
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
7
|
Cheon M, Park H, Rhim H, Chung C. Actions of Neuropeptide Y on Synaptic Transmission in the Lateral Habenula. Neuroscience 2019; 410:183-190. [PMID: 31082535 DOI: 10.1016/j.neuroscience.2019.04.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/27/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022]
Abstract
Neuropeptide Y is a peptide neuromodulator with protective roles including anxiolytic and antidepressant-like effects in animal models of depression and post-traumatic stress disorder. The lateral habenula (LHb) is a brain region that encodes aversive information and is closely related with mood disorders. Although LHb neurons express NPY receptors, the physiological roles of NPY in this region remain uninvestigated. In this study, we examined the actions of NPY on synaptic transmission in the LHb using whole cell patch clamp recording. We observed that NPY inhibited excitatory neurotransmission in a subset of LHb neurons whereas potentiating in a small population of neurons. Inhibitory transmission remained unchanged by NPY application in a subset of neurons but was reduced in the majority of LHb neurons recorded. The overall outcome of NPY application was a decrease in the spontaneous firing rate of the LHb, leading to hypoactivation of the LHb. Our observations indicate that although NPY has divergent effects on excitatory and inhibitory transmission, NPY receptor activation decreases LHb activity, suggesting that the LHb may partly mediate the protective roles of NPY in the central nervous system.
Collapse
Affiliation(s)
- Myunghyun Cheon
- Department of Biological Sciences, Konkuk University, Seoul 05029, South Korea
| | - Hoyong Park
- Department of Biological Sciences, Konkuk University, Seoul 05029, South Korea
| | - Hyewon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 139-791, South Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul 05029, South Korea.
| |
Collapse
|
8
|
Estes AM, McAllen K, Parker MS, Sah R, Sweatman T, Park EA, Balasubramaniam A, Sallee FR, Walker MW, Parker SL. Maintenance of Y receptor dimers in epithelial cells depends on interaction with G-protein heterotrimers. Amino Acids 2010; 40:371-80. [DOI: 10.1007/s00726-010-0642-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 05/25/2010] [Indexed: 12/01/2022]
|
9
|
Parker SL, Parker MS, Estes AM, Wong YY, Sah R, Sweatman T, Park EA, Balasubramaniam A, Sallee FR. The neuropeptide Y (NPY) Y2 receptors are largely dimeric in the kidney, but monomeric in the forebrain. J Recept Signal Transduct Res 2008; 28:245-63. [PMID: 18569526 DOI: 10.1080/10799890802084341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The neuropeptide Y(NPY) Y2 receptors are detected largely as dimers in the clonal expressions in CHO cells and in particulates from rabbit kidney cortex. However, in two areas of the forebrain (rat or rabbit piriform cortex and hypothalamus), these receptors are found mainly as monomers. Evidence is presented that this difference relates to large levels of G proteins containing the Gi alpha -subunit in the forebrain areas. The predominant monomeric status of these Y2 receptors should also be physiologically linked to large synaptic inputs of the agonist NPY. The rabbit kidney and the human CHO cell-expressed Y2 dimers are converted by agonists to monomers in vitro at a similar rate in the presence of divalent cations.
Collapse
Affiliation(s)
- S L Parker
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Neuropeptide Y receptors in primary human brain tumors: overexpression in high-grade tumors. J Neuropathol Exp Neurol 2008; 67:741-9. [PMID: 18648328 DOI: 10.1097/nen.0b013e318180e618] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Peptide receptors are often overexpressed in tumors, and they may be targeted in vivo. We evaluated neuropeptide Y (NPY) receptor expression in 131 primary human brain tumors, including gliomas, embryonal tumors, meningiomas, and pituitary adenomas, by in vitro receptor autoradiography using the 125I-labeled NPY receptor ligand peptide YY in competition with NPY receptor subtype-selective analogs. Receptor functionality was investigated in selected cases using [35S]GTPgammaS-binding autoradiography. World Health Organization Grade IV glioblastomas showed a remarkably high expression of the NPY receptor subtype Y2 with respect to both incidence (83%) and density (mean, 4,886 dpm/mg tissue); astrocytomas World Health Organization Grades I to III and oligodendrogliomas also exhibited high Y2 incidences but low Y2 densities. In glioblastomas, Y2 agonists specifically stimulated [35S]GTPgammaS binding, suggesting that tumoral Y2 receptors were functional. Furthermore, nonneoplastic nerve fibers containing NPY peptide were identified in glioblastomas by immunohistochemistry. Medulloblastomas, primitive neuroectodermal tumors of the CNS, and meningiomas expressed Y1 and Y2 receptor subtypes in moderate incidence and density. In conclusion, Y2 receptors in glioblastomas that are activated by NPY originating from intratumoral nerve fibers might mediate functional effects on the tumor cells. Moreover, identification of the high expression of NPY receptors in high-grade gliomas and embryonal brain tumors provides the basis for in vivo targeting.
Collapse
|
11
|
Brumovsky P, Shi TS, Landry M, Villar MJ, Hökfelt T. Neuropeptide tyrosine and pain. Trends Pharmacol Sci 2007; 28:93-102. [PMID: 17222466 DOI: 10.1016/j.tips.2006.12.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 11/24/2006] [Accepted: 12/20/2006] [Indexed: 12/20/2022]
Abstract
Research during the past two decades supports a complex role for neuropeptide tyrosine (NPY) and two of its associated receptors, the Y1 receptor and the Y2 receptor, in the modulation of pain, in addition to regeneration and survival mechanisms at the spinal level. Thus, NPY has been shown to both cause and reduce pain, in addition to having biphasic effects. Recent research has focused on the distribution of the spinal NPY-mediated system. Here, we propose various possible scenarios for the role of NPY in pain processing, based on its actions at different sites (axon versus cell body), through different receptors (Y1 receptor versus Y2 receptor) and/or types of neuron (ganglion neurons and intraganglionic cross-excitation versus interneurons versus projection neurons).
Collapse
Affiliation(s)
- Pablo Brumovsky
- Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
12
|
Parallel inactivation of Y2 receptor and G-proteins in CHO cells by pertussis toxin. ACTA ACUST UNITED AC 2006; 139:128-35. [PMID: 17175038 DOI: 10.1016/j.regpep.2006.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2006] [Accepted: 10/22/2006] [Indexed: 02/04/2023]
Abstract
The Y(2) receptor for neuropeptide Y (NPY) interacts with pertussis toxin (PTX)-sensitive G-proteins, but little is known about interdependence of their levels and functions. We found that PTX reduces Y(2) receptors expressed in CHO cells in parallel to inactivation of Gi G-proteins, to loss of inhibition by Y(2) agonists of forskolin-stimulated adenylyl cyclase, and to decrease in the binding of GTP-gamma-S. These losses were attenuated by the endosome alkalinizer ammonium chloride. Affinity of the Y(2) receptor was not changed by PTX treatment. Prolonged treatment induced a large decrease of Y(2) receptor immunoreactivity (more than 70% in 48 h). The Gi(3) alpha-subunit immunoreactivity decreased slowly (about 46% in 48 h). There was a significant increase in Gq alpha immunoreactivity and in fraction of Y(2) binding sensitive to a Gq-selective antagonist. Possibly linked to that, the surface Y(2) sites and the internalization of the Y(2) receptor were less than 40% reduced. However, the abundant masked Y(2) sites were eliminated by the toxin, and could be mainly coupled to PTX-sensitive G-proteins.
Collapse
|
13
|
Gibbs JL, Diogenes A, Hargreaves KM. Neuropeptide Y modulates effects of bradykinin and prostaglandin E2 on trigeminal nociceptors via activation of the Y1 and Y2 receptors. Br J Pharmacol 2006; 150:72-9. [PMID: 17143304 PMCID: PMC2013847 DOI: 10.1038/sj.bjp.0706967] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Although previous studies have demonstrated that neuropeptide Y (NPY) modulates nociceptors, the relative contributions of the Y1 and Y2 receptors are unknown. Therefore, we evaluated the effect of Y1 and Y2 receptor activation on nociceptors stimulated by bradykinin (BK) and prostaglandin E2 (PGE2). EXPERIMENTAL APPROACH Combined immunohistochemistry (IHC) with in situ hybridization (ISH) demonstrated that Y1- and Y2-receptors are collocated with bradykinin (2) (B2)-receptors in rat trigeminal ganglia (TG). The relative functions of the Y1 and Y2 receptors in modulating BK/PGE2-evoked CGRP release and increased intracellular calcium levels in cultured TG neurons were evaluated. KEY RESULTS The Y1 and Y2 receptors are co-expressed with B2 in TG neurons, suggesting the potential for direct NPY modulation of BK responses. Pretreatment with the Y1 agonist [Leu31,Pro34]-NPY, inhibited BK/PGE2-evoked CGRP release. Conversely, pretreatment with PYY(3-36), a Y2 agonist, increased BK/PGE2 evoked CGRP release. Treatment with NPY evoked an overall inhibitory effect, although of lesser magnitude. Similarly, [Leu31,Pro34]-NPY inhibited BK/PGE2-evoked increases in intracellular calcium levels whereas PYY(3-36) increased responses. NPY inhibition of BK/PGE2-evoked release of CGRP was reversed by the Y1 receptor antagonist, BIBO3304, and higher concentrations of BIBO3304 significantly facilitated CGRP release. The Y2 receptor antagonist, BIIE0246, enhanced the inhibitory NPY effects. CONCLUSIONS AND IMPLICATIONS These results demonstrate that NPY modulation of peptidergic neurons is due to net activation of inhibitory Y1 and excitatory Y2 receptor systems. The relative expression or activity of these opposing receptor systems may mediate dynamic responses to injury and pain.
Collapse
Affiliation(s)
- J L Gibbs
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
14
|
Stimulation of neuropeptide Y-mediated calcium responses in human SMS-KAN neuroblastoma cells endogenously expressing Y2 receptors by co-expression of chimeric G proteins. Biochem Pharmacol 2005; 69:1493-9. [PMID: 15857613 DOI: 10.1016/j.bcp.2005.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 02/21/2005] [Accepted: 02/22/2005] [Indexed: 11/20/2022]
Abstract
Human SMS-KAN neuroblastoma cells endogenously express the neuropeptide Y (NPY) type 2 (Y(2)) receptor. Although ligand binding and GTPgammaS binding studies supported high functional Y(2) receptor expression, only weak coupling to the natural second messenger cyclic AMP was observed. The main reason was the low responsiveness of SMS-KAN cells to forskolin, a direct activator of adenylyl cyclases. In order to obtain a cell-based functional assay for the Y(2) receptor in SMS-KAN cells, the transient calcium (Ca(2+)) mobilization assay in the fluorimetric imaging plate reader (FLIPR) format was established by stably expressing a chimeric G protein Gq(i9). This manipulation resulted in robust mobilization of Ca(2+) after challenge with various NPY-related agonists in a 384-well format. The sensitivity of the FLIPR readout was in the low nanomolar range for NPY agonists and comparable to that of the recombinant Y(2) receptor. The selective Y(2) antagonist BIIE0246 competitively inhibited NPY-mediated Ca(2+) transients in SMS-KAN/Gq(i9) cells with a pA(2) value of 7.39+/-0.1. This is the first evidence that an endogenously expressed G protein-coupled receptor couples to an overexpressed chimeric G protein, thereby functionally responding in the FLIPR readout.
Collapse
|
15
|
Yu Y, Jawa A, Pan W, Kastin AJ. Effects of peptides, with emphasis on feeding, pain, and behavior A 5-year (1999-2003) review of publications in Peptides. Peptides 2004; 25:2257-89. [PMID: 15572212 DOI: 10.1016/j.peptides.2004.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 09/21/2004] [Indexed: 11/28/2022]
Abstract
Novel effects of naturally occurring peptides are continuing to be discovered, and their mechanisms of actions as well as interactions with other substances, organs, and systems have been elucidated. Synthetic analogs may have actions similar or antagonistic to the endogenous peptides, and both the native peptides and analogs have potential as drugs or drug targets. The journal Peptides publishes many leading articles on the structure-activity relationship of peptides as well as outstanding reviews on some families of peptides. Complementary to the reviews, here we extract information from the original papers published during the past five years in Peptides (1999-2003) to summarize the effects of different classes of peptides, their modulation by other chemicals and various pathophysiological states, and the mechanisms by which the effects are exerted. Special attention is given to peptides related to feeding, pain, and other behaviors. By presenting in condensed form the effects of peptides which are essential for systems biology, we hope that this summary of existing knowledge will encourage additional novel research to be presented in Peptides.
Collapse
Affiliation(s)
- Yongmei Yu
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|
16
|
Abstract
Neuropeptide Y (NPY) is a 36 amino acids peptide amide that was isolated for the first time almost 20 years ago from porcine brain. NPY displays a multiplicity of physiological effects that are transmitted by at least six G-protein coupled receptors (GPCRs) named Y(1), Y(2), Y(3), Y(4), Y(5), and y(6). Because of the difficulty in obtaining high-resolution crystallographic structures from GPCRs that all belong to seven transmembrane helices proteins, a variety of biophysical methods have been applied in order to characterize the interaction of ligand and receptor. In this review article we present the most relevant outcomes of the studies performed in this field by our group and others. The use of photoaffinity labeling allowed the molecular characterization of the Y(2) receptor. The concerted application of molecular modeling and mutagenesis studies led to a model for the interaction of the natural agonist and nonpeptide antagonists with the Y(1) receptor. The three-dimensional (3D) structure and dynamics of micelle-bound NPY and their implications for receptor selection have been studied by NMR. The characterization of the tertiary and quaternary structure of the NPY dimer in solution at millimolar concentrations has been performed by NMR and extended to physiologically relevant concentrations by fluorescence resonance energy transfer (FRET) experiments performed with fluorescence-labeled analogues.
Collapse
Affiliation(s)
- A Bettio
- Institute of Biochemistry, University of Leipzig, Talstrasse 33, D-04103, Leipzig, Germany
| | | |
Collapse
|