1
|
Dankert AM, Kash TL, Thiele TE. Repeated cycles of binge-like ethanol consumption and abstinence alter neuropeptide mRNA in prefrontal and insular cortex, amygdala, and lateral hypothalamus of male and female C57BL/6J mice. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:573-586. [PMID: 39888221 PMCID: PMC11928273 DOI: 10.1111/acer.15536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Binge drinking is a risky pattern of alcohol (ethanol) consumption associated with a variety of negative outcomes, including the development of alcohol use disorder (AUD). Many neuropeptide systems are thought to become dysregulated in AUD; however, whether repeated cycles of binge-like ethanol consumption and abstinence following binge-like drinking alter neuropeptide mRNA in key brain regions, such as the medial prefrontal cortex (mPFC), insular cortex (IC), amygdala, and lateral hypothalamus (LH), remains unknown. METHODS Male and female mice underwent 0, 3, or 6 cycles of binge-like ethanol consumption using the "Drinking in the Dark" (DID) paradigm. Brain tissue was collected either immediately following the final session of DID or after a 24-h period of abstinence, and quantitative polymerase chain reaction (qPCR) was performed to assess how repeated cycles of binge-like ethanol intake and abstinence alter relative mRNA expression for 22 neuropeptide-related targets. RESULTS We observed that repeated cycles of binge-like ethanol consumption and abstinence altered relative mRNA expression for 11 targets in the mPFC, five targets in the IC, eight targets in the amygdala, and two targets in the LH. Two of these alterations were specific to female mice, while one was specific to male mice. CONCLUSIONS These data suggest that neuropeptide mRNA is altered by repeated cycles of binge-like ethanol intake and abstinence in a brain region and sex-dependent manner. The current findings provide a useful foundation from which to explore potential targets to decrease binge-like ethanol consumption and prevent the development of AUD.
Collapse
Affiliation(s)
- Anne M. Dankert
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, NC 27599-3270
- The Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC 27599-3270
| | - Thomas L. Kash
- The Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC 27599-3270
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599-3270
| | - Todd E. Thiele
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, NC 27599-3270
- The Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC 27599-3270
| |
Collapse
|
2
|
Brockway DF, Crowley NA. Emerging pharmacological targets for alcohol use disorder. Alcohol 2024; 121:103-114. [PMID: 39069210 PMCID: PMC11638729 DOI: 10.1016/j.alcohol.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/27/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Alcohol Use Disorder (AUD) remains a challenging condition with limited effective treatment options; however new technology in drug delivery and advancements in pharmacology have paved the way for discovery of novel therapeutic targets. This review explores emerging pharmacological targets that offer new options for the management of AUD, focusing on the potential of somatostatin (SST), vasoactive intestinal peptide (VIP), glucagon-like peptide-1 (GLP-1), nociceptin (NOP), and neuropeptide S (NPS). These targets have been selected based on recent advancements in preclinical and clinical research, which suggest their significant roles in modulating alcohol consumption and related behaviors. SST dampens cortical circuits, and targeting both the SST neurons and the SST peptide itself presents promise for treating AUD and various related comorbidities. VIP neurons are modulated by alcohol and targeting the VIP system presents an unexplored avenue for addressing alcohol exposure at various stages of development. GLP-1 interacts with the dopaminergic reward system and reduces alcohol intake. Nociceptin modulates mesolimbic circuitry and agonism and antagonism of nociceptin receptor offers a complex but promising approach to reducing alcohol consumption. NPS stands out for its anxiolytic-like effects, particularly relevant for the anxiety associated with AUD. This review aims to synthesize the current understanding of these targets, highlighting their potential in developing more effective and personalized AUD therapies, and underscores the importance of continued research in identifying and validating novel targets for treatment of AUD and comorbid conditions.
Collapse
Affiliation(s)
- Dakota F Brockway
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA; Penn State Neuroscience Institute, Penn State University, University Park, PA, 16802, USA.
| | - Nicole A Crowley
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; Penn State Neuroscience Institute, Penn State University, University Park, PA, 16802, USA.
| |
Collapse
|
3
|
Kiguchi N, Ding H, Ko MC. Therapeutic potentials of NOP and MOP receptor coactivation for the treatment of pain and opioid abuse. J Neurosci Res 2020; 100:191-202. [PMID: 32255240 DOI: 10.1002/jnr.24624] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/26/2020] [Accepted: 03/17/2020] [Indexed: 12/21/2022]
Abstract
Following the identification of the nociceptin/orphanin FQ (N/OFQ) peptide (NOP) as an endogenous ligand for the NOP receptor, ample evidence has revealed unique functional profiles of the N/OFQ-NOP receptor system. NOP receptors are expressed in key neural substrates involved in pain and reward modulation. In nonhuman primates (NHPs), NOP receptor activation effectively exerts antinociception and anti-hypersensitivity at the spinal and supraspinal levels. Moreover, NOP receptor activation inhibits dopaminergic transmission and synergistically enhances mu-opioid peptide (MOP) receptor-mediated analgesia. In this article, we have discussed the functional profiles of ligands with dual NOP and MOP receptor agonist activities and highlight their optimal functional efficacy for pain relief and drug abuse treatment. Through coactivation of NOP and MOP receptors, bifunctional NOP/MOP receptor "partial" agonists (e.g., AT-121, BU08028, and BU10038) reveal a wider therapeutic window with fewer side effects. These newly developed ligands potently induce antinociception without MOP receptor agonist-associated side effects such as abuse potential, respiratory depression, itching sensation, and physical dependence. In addition, in both rodent and NHP models, bifunctional NOP/MOP receptor agonists can attenuate reward processing and/or the reinforcing effects of opioids and other abused drugs. While a mixed NOP/opioid receptor "full" agonist cebranopadol is undergoing clinical trials, bifunctional NOP/MOP "partial" agonists exhibit promising therapeutic profiles in translational NHP models for the treatment of pain and opioid abuse. This class of drugs demonstrates the therapeutic advantage of NOP and MOP receptor coactivation, indicating a greater potential for future development.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Huiping Ding
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mei-Chuan Ko
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,W.G. Hefner Veterans Affairs Medical Center, Salisbury, NC, USA
| |
Collapse
|
4
|
Borruto AM, Fotio Y, Stopponi S, Brunori G, Petrella M, Caputi FF, Romualdi P, Candeletti S, Narendran R, Rorick-Kehn LM, Ubaldi M, Weiss F, Ciccocioppo R. NOP receptor antagonism reduces alcohol drinking in male and female rats through mechanisms involving the central amygdala and ventral tegmental area. Br J Pharmacol 2020; 177:1525-1537. [PMID: 31713848 DOI: 10.1111/bph.14915] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Nociceptin/orphanin FQ (N/OFQ) peptide and its cognate receptor (NOP) are widely expressed in mesolimbic brain regions where they play an important role in modulating reward and motivation. Early evidence suggested that NOP receptor activation attenuates the rewarding effects of drugs of abuse, including alcohol. However, emerging data indicate that NOP receptor blockade also effectively attenuates alcohol drinking and relapse. To advance our understanding of the role of the N/OFQ-NOP receptor system in alcohol abuse, we examined the effect of NOP receptor blockade on voluntary alcohol drinking at the neurocircuitry level. EXPERIMENTAL APPROACH Using male and female genetically selected alcohol-preferring Marchigian Sardinian (msP) rats, we initially evaluated the effects of the selective NOP receptor antagonist LY2817412 (3, 10, and 30 mg·kg-1 , p.o.) on alcohol consumption in a two-bottle free-choice paradigm. We then microinjected LY2817412 (3 and 6 μg·μl-1 per rat) in the central nucleus of the amygdala (CeA), ventral tegmental area (VTA), and nucleus accumbens (NAc). KEY RESULTS Peripheral LY2817412 administration dose-dependently and selectively reduced voluntary alcohol intake in male and female msP rats. Central injections of LY2817412 markedly attenuated voluntary alcohol intake in both sexes following administration in the CeA and VTA but not in the NAc. CONCLUSION AND IMPLICATIONS The present results revealed that the CeA and VTA are neuroanatomical substrates that mediate the effects of NOP receptor antagonism on alcohol consumption. Overall, our findings support the potential of NOP receptor antagonism as a treatment strategy to attenuate alcohol use and addiction.
Collapse
Affiliation(s)
| | - Yannick Fotio
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy
| | - Serena Stopponi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy
| | - Gloria Brunori
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy.,Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Michele Petrella
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy
| | - Francesca Felicia Caputi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Rajesh Narendran
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Linda M Rorick-Kehn
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana, USA
| | - Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy
| | - Friedbert Weiss
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
5
|
Kallupi M, Carrette LLG, Kononoff J, Solberg Woods LC, Palmer AA, Schweitzer P, George O, de Guglielmo G. Nociceptin attenuates the escalation of oxycodone self-administration by normalizing CeA-GABA transmission in highly addicted rats. Proc Natl Acad Sci U S A 2020; 117:2140-2148. [PMID: 31932450 PMCID: PMC6994987 DOI: 10.1073/pnas.1915143117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Approximately 25% of patients who are prescribed opioids for chronic pain misuse them, and 5 to 10% develop an opioid use disorder. Although the neurobiological target of opioids is well known, the molecular mechanisms that are responsible for the development of addiction-like behaviors in some but not all individuals are poorly known. To address this issue, we used a unique outbred rat population (heterogeneous stock) that better models the behavioral and genetic diversity that is found in humans. We characterized individual differences in addiction-like behaviors using an addiction index that incorporates the key criteria of opioid use disorder: escalated intake, highly motivated responding, and hyperalgesia. Using in vitro electrophysiological recordings in the central nucleus of the amygdala (CeA), we found that rats with high addiction-like behaviors (HA) exhibited a significant increase in γ-aminobutyric acid (GABA) transmission compared with rats with low addiction-like behaviors (LA) and naive rats. The superfusion of CeA slices with nociceptin/orphanin FQ peptide (N/OFQ; 500 nM), an endogenous opioid-like peptide, normalized GABA transmission in HA rats. Intra-CeA levels of N/OFQ were lower in HA rats than in LA rats. Intra-CeA infusions of N/OFQ (1 μg per site) reversed the escalation of oxycodone self-administration in HA rats but not in LA rats. These results demonstrate that the downregulation of N/OFQ levels in the CeA may be responsible for hyper-GABAergic tone in the CeA that is observed in individuals who develop addiction-like behaviors. Based on these results, we hypothesize that small molecules that target the N/OFQ system might be useful for the treatment of opioid use disorder.
Collapse
Affiliation(s)
- Marsida Kallupi
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
| | - Lieselot L G Carrette
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium
| | - Jenni Kononoff
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093
| | - Leah C Solberg Woods
- Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093
| | - Paul Schweitzer
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
| | - Olivier George
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093;
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
| | - Giordano de Guglielmo
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093;
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
6
|
Parker KE, Pedersen CE, Gomez AM, Spangler SM, Walicki MC, Feng SY, Stewart SL, Otis JM, Al-Hasani R, McCall JG, Sakers K, Bhatti DL, Copits BA, Gereau RW, Jhou T, Kash TJ, Dougherty JD, Stuber GD, Bruchas MR. A Paranigral VTA Nociceptin Circuit that Constrains Motivation for Reward. Cell 2019; 178:653-671.e19. [PMID: 31348890 PMCID: PMC7001890 DOI: 10.1016/j.cell.2019.06.034] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 08/16/2018] [Accepted: 06/25/2019] [Indexed: 12/26/2022]
Abstract
Nociceptin and its receptor are widely distributed throughout the brain in regions associated with reward behavior, yet how and when they act is unknown. Here, we dissected the role of a nociceptin peptide circuit in reward seeking. We generated a prepronociceptin (Pnoc)-Cre mouse line that revealed a unique subpopulation of paranigral ventral tegmental area (pnVTA) neurons enriched in prepronociceptin. Fiber photometry recordings during progressive ratio operant behavior revealed pnVTAPnoc neurons become most active when mice stop seeking natural rewards. Selective pnVTAPnoc neuron ablation, inhibition, and conditional VTA nociceptin receptor (NOPR) deletion increased operant responding, revealing that the pnVTAPnoc nucleus and VTA NOPR signaling are necessary for regulating reward motivation. Additionally, optogenetic and chemogenetic activation of this pnVTAPnoc nucleus caused avoidance and decreased motivation for rewards. These findings provide insight into neuromodulatory circuits that regulate motivated behaviors through identification of a previously unknown neuropeptide-containing pnVTA nucleus that limits motivation for rewards.
Collapse
Affiliation(s)
- Kyle E Parker
- Departments of Anesthesiology, Division of Basic Research, Anatomy and Neurobiology, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Christian E Pedersen
- Departments of Anesthesiology, Division of Basic Research, Anatomy and Neurobiology, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Adrian M Gomez
- Departments of Anesthesiology, Division of Basic Research, Anatomy and Neurobiology, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Skylar M Spangler
- Departments of Anesthesiology, Division of Basic Research, Anatomy and Neurobiology, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Neuroscience Program (DBBS), Washington University School of Medicine, St. Louis, MO, USA
| | - Marie C Walicki
- Departments of Anesthesiology, Division of Basic Research, Anatomy and Neurobiology, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Shelley Y Feng
- Departments of Anesthesiology, Division of Basic Research, Anatomy and Neurobiology, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Sarah L Stewart
- Departments of Anesthesiology, Division of Basic Research, Anatomy and Neurobiology, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - James M Otis
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Ream Al-Hasani
- Departments of Anesthesiology, Division of Basic Research, Anatomy and Neurobiology, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Jordan G McCall
- Departments of Anesthesiology, Division of Basic Research, Anatomy and Neurobiology, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristina Sakers
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Dionnet L Bhatti
- Departments of Anesthesiology, Division of Basic Research, Anatomy and Neurobiology, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Bryan A Copits
- Departments of Anesthesiology, Division of Basic Research, Anatomy and Neurobiology, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert W Gereau
- Departments of Anesthesiology, Division of Basic Research, Anatomy and Neurobiology, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Thomas Jhou
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Thomas J Kash
- Department of Pharmacology and Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Garret D Stuber
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Michael R Bruchas
- Departments of Anesthesiology, Division of Basic Research, Anatomy and Neurobiology, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
7
|
Ciccocioppo R, Borruto AM, Domi A, Teshima K, Cannella N, Weiss F. NOP-Related Mechanisms in Substance Use Disorders. Handb Exp Pharmacol 2019; 254:187-212. [PMID: 30968214 PMCID: PMC6641545 DOI: 10.1007/164_2019_209] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Nociceptin/orphanin FQ (N/OFQ) is a 17 amino acid peptide that was deorphanized in 1995 and has been widely studied since. The role of the N/OFQ system in drug abuse has attracted researchers' attention since its initial discovery. The first two scientific papers describing the effect of intracranial injection of N/OFQ appeared 20 years ago and reported efficacy of the peptide in attenuating alcohol intake, whereas heroin self-administration was insensitive. Since then more than 100 scientific articles investigating the role of the N/OFQ and N/OFQ receptor (NOP) system in drug abuse have been published. The present article provides an historical overview of the advances in the field with focus on three major elements. First, the most robust data supportive of the efficacy of NOP agonists in treating drug abuse come from studies in the field of alcohol research, followed by psychostimulant and opioid research. In contrast, activation of NOP appears to facilitate nicotine consumption. Second, emerging data challenge the assumption that activation of NOP is the most appropriate strategy to attenuate consumption of substances of abuse. This assumption is based first on the observation that animals carrying an overexpression of NOP system components are more prone to consume substances of abuse, whereas NOP knockout rats are less motivated to self-administer heroin, alcohol, and cocaine. Third, administration of NOP antagonists also reduces alcohol consumption. In addition, NOP blockade reduces nicotine self-administration. Hypothetical mechanisms explaining this apparent paradox are discussed. Finally, we focus on the possibility that co-activation of NOP and mu opioid (MOP) receptors is an alternative strategy, readily testable in the clinic, to reduce the consumption of psychostimulants, opiates, and, possibly, alcohol.
Collapse
Affiliation(s)
- Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy.
| | - Anna Maria Borruto
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Ana Domi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Koji Teshima
- Research Unit/Neuroscience, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Osaka, Japan
| | - Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Friedbert Weiss
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
8
|
Zaveri NT, Marquez PV, Meyer ME, Polgar WE, Hamid A, Lutfy K. A Novel and Selective Nociceptin Receptor (NOP) Agonist (1-(1-((cis)-4-isopropylcyclohexyl)piperidin-4-yl)-1H-indol-2-yl)methanol (AT-312) Decreases Acquisition of Ethanol-Induced Conditioned Place Preference in Mice. Alcohol Clin Exp Res 2018; 42:461-471. [PMID: 29215139 DOI: 10.1111/acer.13575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 11/30/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Nociceptin/orphanin FQ, the endogenous peptide agonist for the opioid receptor-like receptor (also known as NOP or the nociceptin receptor), has been shown to block the acquisition and expression of ethanol (EtOH)-induced conditioned place preference (CPP). Here, we report the characterization of a novel small-molecule NOP ligand AT-312 (1-(1-((cis)-4-isopropylcyclohexyl)piperidin-4-yl)-1H-indol-2-yl)methanol) in receptor binding and GTPγS functional assays in vitro. We then investigated the effect of AT-312 on the rewarding action of EtOH in mice using the CPP paradigm. Further, using mice lacking the NOP receptor and their wild-type controls, we also examined the involvement of NOP in the effect of AT-312. Motivational effects of AT-312 alone were also assessed in the CPP paradigm. METHODS Female mice lacking NOP and/or their wild-type controls received conditioning in the presence or absence of the NOP agonist [AT-312 (1, 3, and 10 mg/kg) or the control NOP agonist SCH221510 (10 mg/kg)] followed by saline/EtOH for 3 consecutive days (twice daily) and tested for CPP in a drug-free state on the next day. RESULTS Our in vitro data showed that AT-312 is a high-affinity, selective NOP full agonist with 17-fold selectivity over the mu opioid receptor and >200-fold selectivity over the kappa opioid receptor. The results of our in vivo studies showed that AT-312 reduced EtOH CPP at the lowest dose (1 mg/kg) tested but completely abolished EtOH CPP at higher doses (3 or 10 mg/kg) compared to their vehicle-treated control group. AT-312 (3 mg/kg) did not alter EtOH-induced CPP in mice lacking NOP, confirming that AT-312 reduced EtOH CPP through its action at the NOP receptor. AT-312 (3 mg/kg) did not induce reward or aversion when administered alone, showing that the novel small-molecule NOP agonist shows efficacy in blocking EtOH-induced CPP via the NOP receptor. CONCLUSIONS Together, these data suggest that small-molecule NOP agonists have the potential to reduce alcohol reward and may be promising as medications to treat alcohol addiction.
Collapse
Affiliation(s)
| | - Paul V Marquez
- College of Pharmacy, Western University of Health Sciences, Pomona, California
| | | | | | - Abdul Hamid
- College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Kabirullah Lutfy
- College of Pharmacy, Western University of Health Sciences, Pomona, California
| |
Collapse
|
9
|
Abstract
Animal models provide rapid, inexpensive assessments of an investigational drug's therapeutic potential. Ideally, they support the plausibility of therapeutic efficacy and provide a rationale for further investigation. Here, I discuss how the absence of clear effective-ineffective categories for alcohol use disorder (AUD) medications and biases in the clinical and preclinical literature affect the development of predictive preclinical alcohol dependence (AD) models. Invoking the analogical argument concept from the philosophy of science field, I discuss how models of excessive alcohol drinking support the plausibility of clinical pharmacotherapy effects. Even though these models are not likely be completely discriminative, they are sensitive to clinically effective medications and have revealed dozens of novel medication targets. In that context, I discuss recent preclinical work on GLP-1 receptor agonists, phosphodiesterase inhibitors, glucocorticoid receptor antagonists, nociception agonists and antagonists, and CRF1 antagonists. Clinically approved medications are available for each of these drug classes. I conclude by advocating a translational approach in which drugs are evaluated highly congruent preclinical models and human laboratory studies. Once translation is established, I suggest the burden is to develop hypothesis-based therapeutic interventions maximizing the impact of the confirmed pharmacotherapeutic effects in the context of additional variables falling outside the model.
Collapse
Affiliation(s)
- Mark Egli
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Tollefson S, Himes M, Narendran R. Imaging corticotropin-releasing-factor and nociceptin in addiction and PTSD models. Int Rev Psychiatry 2017; 29:567-579. [PMID: 29231765 DOI: 10.1080/09540261.2017.1404445] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Addiction is composed of three phases: intoxication, withdrawal, and craving. Negative reinforcement, strengthening a behaviour by removing an aversive stimulus, has been associated with the withdrawal phase. An imbalance of neurotransmitters within the brain's stress (nociceptin, neuropeptide Y) and anti-stress (CRF, norepinephrine, etc.) system is attributed to negatively reinforced compulsive behaviours associated with relapse. Similarly, post-traumatic stress disorder is characterized by an overactive stress system. In a PTSD mouse model, rodents exhibited impaired cued-fear memory consolidation when nociceptin transmission was blocked. Furthermore, a single-nucleotide polymorphism has been identified between women diagnosed with PTSD and the severity of PTSD symptoms, suggesting a genetic basis. Therefore, it is critical to understand the functions and interactions between the brain's stress and anti-stress neurotransmitters, specifically nociceptin. This paper will examine the hypothalamic-pituitary-adrenocortical axis, evaluate the functions of corticotropin-releasing-factor and nociceptin, discuss nociceptin's role as an anxiolytic or anxiogenic, and discuss PET-imaging studies-all of which targeted nociceptin receptors (NOP-R). Finally, the discussion of pharmacological interventions will be proposed as preventative or therapeutic treatments for those suffering from PTSD and substance-use disorders.
Collapse
Affiliation(s)
- Savannah Tollefson
- a Department of Radiology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Michael Himes
- a Department of Radiology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Rajesh Narendran
- a Department of Radiology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| |
Collapse
|
11
|
de Guglielmo G, Matzeu A, Kononoff J, Mattioni J, Martin-Fardon R, George O. Cebranopadol Blocks the Escalation of Cocaine Intake and Conditioned Reinstatement of Cocaine Seeking in Rats. J Pharmacol Exp Ther 2017; 362:378-384. [PMID: 28645915 PMCID: PMC5539589 DOI: 10.1124/jpet.117.241042] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/21/2017] [Indexed: 11/22/2022] Open
Abstract
Cebranopadol is a novel agonist of nociceptin/orphanin FQ peptide (NOP) and opioid receptors with analgesic properties that is being evaluated in clinical Phase 2 and Phase 3 trials for the treatment of chronic and acute pain. Recent evidence indicates that the combination of opioid and NOP receptor agonism may be a new treatment strategy for cocaine addiction. We sought to extend these findings by examining the effects of cebranopadol on cocaine self-administration (0.5 mg/kg/infusion) and cocaine conditioned reinstatement in rats with extended access to cocaine. Oral administration of cebranopadol (0, 25, and 50 μg/kg) reversed the escalation of cocaine self-administration in rats that were given extended (6 hour) access to cocaine, whereas it did not affect the self-administration of sweetened condensed milk (SCM). Cebranopadol induced conditioned place preference but did not affect locomotor activity during the conditioning sessions. Finally, cebranopadol blocked the conditioned reinstatement of cocaine seeking. These results show that oral cebranopadol treatment prevented addiction-like behaviors (i.e., the escalation of intake and reinstatement), suggesting that it may be a novel strategy for the treatment of cocaine use disorder. However, the conditioned place preference that was observed after cebranopadol administration suggests that this compound may have some intrinsic rewarding effects.
Collapse
Affiliation(s)
| | - Alessandra Matzeu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Jenni Kononoff
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Julia Mattioni
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Rémi Martin-Fardon
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Olivier George
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
12
|
Poznanski P, Lesniak A, Korostynski M, Szklarczyk K, Lazarczyk M, Religa P, Bujalska-Zadrozny M, Sadowski B, Sacharczuk M. Delta-opioid receptor antagonism leads to excessive ethanol consumption in mice with enhanced activity of the endogenous opioid system. Neuropharmacology 2017; 118:90-101. [PMID: 28322978 DOI: 10.1016/j.neuropharm.2017.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 11/19/2022]
Abstract
The opioid system modulates the central reinforcing effects of ethanol and participates in the etiology of addiction. However, the pharmacotherapy of ethanol dependence targeted on the opioid system is little effective and varies due to individual patients' sensitivity. In the present study, we used two mouse lines with high (HA) and low (LA) activity of the endogenous opioid system to analyze the effect of opioid receptor blockade on ethanol drinking behavior. We found that LA and HA lines characterized by divergent magnitudes of swim stress-induced analgesia also differ in ethanol intake and preference. Downregulation of the opioid system in LA mice was associated with increased ethanol consumption. Treatment with a non-selective opioid receptor antagonist (naloxone) had no effect on ethanol intake in this line. Surprisingly, in HA mice, the blockage of opioid receptors led to excessive ethanol consumption. Moreover, naloxone selectively induced high levels of anxiety- and depressive-like behaviors in HA mice which was attenuated by ethanol. With the use of specific opioid receptor antagonists we showed that the naloxone-induced increase in ethanol drinking in HA mice is mediated mainly by δ and to a lower extent by μ opioid receptors. The effect of δ-opioid receptor antagonism was abolished in HA mice carrying a C320T transition in the δ-opioid receptor gene (EU446125.1), which impairs this receptor's function. Our results indicate that high activity of the opioid system plays a protective role against ethanol dependence. Therefore, its blockage with opioid receptor antagonists may lead to a profound increase in ethanol consumption.
Collapse
Affiliation(s)
- Piotr Poznanski
- Laboratory of Neurogenomics and Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Postepu 36A Str., 05-552 Magdalenka, Poland
| | - Anna Lesniak
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Michal Korostynski
- Department of Molecular Neuropharmacology, Institute of Pharmacology, 12 Smetna Str., 31-343 Krakow, Poland
| | - Klaudia Szklarczyk
- Department of Molecular Neuropharmacology, Institute of Pharmacology, 12 Smetna Str., 31-343 Krakow, Poland
| | - Marzena Lazarczyk
- Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Religa
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magdalena Bujalska-Zadrozny
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Bogdan Sadowski
- Laboratory of Neurogenomics and Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Postepu 36A Str., 05-552 Magdalenka, Poland
| | - Mariusz Sacharczuk
- Laboratory of Neurogenomics and Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Postepu 36A Str., 05-552 Magdalenka, Poland; Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland; Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
13
|
Miranda-Morales RS, Pautassi RM. Pharmacological characterization of the nociceptin/orphanin FQ receptor on ethanol-mediated motivational effects in infant and adolescent rats. Behav Brain Res 2016; 298:88-96. [PMID: 25907741 DOI: 10.1016/j.bbr.2015.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 01/17/2023]
Abstract
Activation of nociceptin/orphanin FQ (NOP) receptors attenuates ethanol drinking and prevents relapse in adult rodents. In younger rodents (i.e., infant rats), activation of NOP receptors blocks ethanol-induced locomotor activation but does not attenuate ethanol intake. The aim of the present study was to extend the analysis of NOP modulation of ethanol's effects during early ontogeny. Aversive and anxiolytic effects of ethanol were measured in infant and adolescent rats via conditioned taste aversion and the light-dark box test; whereas ethanol-induced locomotor activity and ethanol intake was measured in adolescents only. Before these tests, infant rats were treated with the natural ligand of NOP receptors, nociceptin (0.0, 0.5 or 1.0 μg) and adolescent rats were treated with the specific agonist Ro 64-6198 (0.0, 0.1 or 0.3 mg/kg). The activation of NOP receptors attenuated ethanol-induced anxiolysis in adolescents only, and had no effect on ethanol's aversive effects. Administration of Ro 64-6198 blocked ethanol-induced locomotor activation but did not modify ethanol intake patterns. The attenuation of ethanol stimulating and anxiolytic effect by activation of NOP receptors indicates a modulatory role of this receptor on ethanol effects, which is expressed early in ontogeny.
Collapse
Affiliation(s)
- Roberto Sebastián Miranda-Morales
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), 5016 Córdoba, Argentina.
| | - Ricardo M Pautassi
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), 5016 Córdoba, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| |
Collapse
|
14
|
Ciccocioppo R, Stopponi S, Economidou D, Kuriyama M, Kinoshita H, Heilig M, Roberto M, Weiss F, Teshima K. Chronic treatment with novel brain-penetrating selective NOP receptor agonist MT-7716 reduces alcohol drinking and seeking in the rat. Neuropsychopharmacology 2014; 39:2601-10. [PMID: 24863033 PMCID: PMC4207340 DOI: 10.1038/npp.2014.113] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/31/2014] [Accepted: 04/22/2014] [Indexed: 11/09/2022]
Abstract
Since its discovery, the nociceptin/orphanin FQ (N/OFQ)-NOP receptor system has been extensively investigated as a promising target to treat alcoholism. Encouraging results obtained with the endogenous ligand N/OFQ stimulated research towards the development of novel brain-penetrating NOP receptor agonists with a pharmacological and toxicological profile compatible with clinical development. Here we describe the biochemical and alcohol-related behavioral effects of the novel NOP receptor agonist MT-7716. MT-7716 has high affinity for human NOP receptors expressed in HEK293 cells with a Ki value of 0.21 nM. MT-7716 concentration-dependently stimulated GTPγ(35)S binding with an EC50 value of 0.30 nM and its efficacy was similar to N/OFQ, suggesting that MT7716 is a full agonist at NOP receptors. In the two bottle choice test MT-7716 (0, 0.3, 1, and 3 mg/kg, bid) given orally for 14 days dose-dependently decreased voluntary alcohol intake in Marchigian Sardinian rats. The effect became gradually stronger following repeated administration, and was still significant 1 week after discontinuation of the drug. Oral naltrexone (30 mg/kg, bid) for 14 days also reduced ethanol intake; however, the effect decreased over the treatment period and rapidly disappeared when drug treatment was discontinued. MT-7716 is also effective for preventing reinstatement caused by both ethanol-associated environmental stimuli and stress. Finally, to investigate the effect of MT-7716 on alcohol withdrawal symptoms, Wistar rats were withdrawn from a 7-day alcohol liquid diet. MT-7716 significantly attenuated somatic alcohol withdrawal symptoms. Together these findings indicate that MT-7716 is a promising candidate for alcoholism treatment remaining effective with chronic administration.
Collapse
Affiliation(s)
- Roberto Ciccocioppo
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Serena Stopponi
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Daina Economidou
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Makoto Kuriyama
- Department II (CNS), Pharmacology Research Laboratories I, Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Hiroshi Kinoshita
- Department II (CNS), Pharmacology Research Laboratories I, Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Markus Heilig
- Laboratory of Clinical and Translational Studies, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Friedbert Weiss
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Koji Teshima
- Department II (CNS), Pharmacology Research Laboratories I, Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| |
Collapse
|
15
|
Kallupi M, Oleata CS, Luu G, Teshima K, Ciccocioppo R, Roberto M. MT-7716, a novel selective nonpeptidergic NOP receptor agonist, effectively blocks ethanol-induced increase in GABAergic transmission in the rat central amygdala. Front Integr Neurosci 2014; 8:18. [PMID: 24600360 PMCID: PMC3927450 DOI: 10.3389/fnint.2014.00018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/01/2014] [Indexed: 11/13/2022] Open
Abstract
The GABAergic system in the central amygdala (CeA) plays a major role in ethanol dependence and the anxiogenic-like response to ethanol withdrawal. A large body of evidence shows that Nociceptin/Orphanin FQ (N/OFQ) regulates ethanol intake and anxiety-like behavior. In the rat, ethanol significantly augments CeA GABA release, whereas N/OFQ diminishes it. Using electrophysiological techniques in an in vitro slice preparation, in this study we investigated the effects of a nonpeptidergic NOP receptor agonist, MT-7716 [(R)-2-3-[1-(Acenaphthen-1-yl)piperidin-4-yl]-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl-N-methylacetamide hydrochloride hydrate], and its interaction with ethanol on GABAergic transmission in CeA slices of naïve rats. We found that MT-7716 dose-dependently (100-1000 nM) diminished evoked GABAA receptor-mediated inhibitory postsynaptic potentials (IPSPs) and increased paired-pulse facilitation (PPF) ratio of these evoked IPSPs, suggesting a presynaptic site of action of the MT-7716 by decreasing GABA release at CeA synapses. The presynaptic action of MT-7716 was also supported by the significant decrease in the frequency of miniature inhibitory postsynaptic currents (mIPSCs) induced by the nociceptin receptor (NOP) agonist. Interestingly, MT-7716 prevented the ethanol-induced augmentation of evoked IPSPs. A putative selective NOP antagonist, [Nphe1]Nociceptin(1-13)NH2, totally prevented the MT-7716-induced inhibition of IPSP amplitudes indicating that MT-7716 exerts its effect through NOPs. These data provide support for an interaction between the nociceptin and GABAergic systems in the CeA and for the anti-alcohol properties of the NOP activation. The development of a synthetic nonpeptidergic NOP receptor agonist such as MT-7716 may represent a useful therapeutic target for alcoholism.
Collapse
Affiliation(s)
- Marsida Kallupi
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La JollaCA, USA
- Pharmacology Unit, School of Pharmacy, University of CamerinoCamerino, Italy
| | - Christopher S. Oleata
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La JollaCA, USA
| | - George Luu
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La JollaCA, USA
| | - Koji Teshima
- Department II (CNS), Pharmacology Research Laboratories I, Research Division, Mitsubishi Tanabe Pharma CorporationYokohama, Japan
| | - Roberto Ciccocioppo
- Pharmacology Unit, School of Pharmacy, University of CamerinoCamerino, Italy
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La JollaCA, USA
| |
Collapse
|
16
|
Miranda-Morales RS, Nizhnikov ME, Waters DH, Spear NE. Participation of the nociceptin/orphanin FQ receptor in ethanol-mediated locomotor activation and ethanol intake in preweanling rats. Behav Brain Res 2013; 245:137-44. [PMID: 23439216 PMCID: PMC3666860 DOI: 10.1016/j.bbr.2013.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/12/2013] [Accepted: 02/14/2013] [Indexed: 12/16/2022]
Abstract
Activation of nociceptin/orphanin FQ (NOP) receptors seems to attenuate ethanol-induced reinforcement in adult rodents. Since early ethanol exposure results in later increased responsiveness to ethanol, it is important to analyze NOP receptor modulation of ethanol-related behaviors during early ontogeny. By measuring NOP involvement in ethanol intake and ethanol-induced locomotor activation, we analyzed the specific participation of NOP receptors on these ethanol-related behaviors in two-week-old rats. In each experiment animals were pre-treated with the endogenous ligand for this receptor (nociceptin/orphanin FQ at 0.0, 0.5, 1.0 or 2.0 μg) or a selective NOP antagonist (J-113397 at 0.0, 0.5, 2.0 or 5.0 mg/kg). Results indicated that activation of the nociceptin receptor system had no effect on ethanol or water intake, while blockade of the NOP receptor has an unspecific effect on consummatory behavior: J-113397 increased ethanol (at a dose of 0.5 mg/kg) and water intake (at 0.5 and 5.0 mg/kg). Ethanol-mediated locomotor stimulation was attenuated by activation of the NOP system (nociceptin at 1.0 and 2.0 μg). Nociceptin had no effect on basal locomotor activity. Blockade of NOP receptors did not modify ethanol-induced locomotor activation. Contrary to what has been reported for adult rodents, nociceptin failed to suppress intake of ethanol in infants. Attenuation of ethanol-induced stimulation by activation of NOP receptor system suggests an early role of this receptor in this ethanol-related behavior.
Collapse
Affiliation(s)
- Roberto Sebastián Miranda-Morales
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902-6000, USA.
| | | | | | | |
Collapse
|
17
|
Ubaldi M, Bifone A, Ciccocioppo R. Translational approach to develop novel medications on alcohol addiction: focus on neuropeptides. Curr Opin Neurobiol 2013; 23:684-91. [PMID: 23648086 DOI: 10.1016/j.conb.2013.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 11/28/2022]
Abstract
Research on alcohol and drug dependence has shown that the development of addiction depends on a complex interplay of psychological factors, genetic or epigenetic predisposing factors, and neurobiological adaptations induced by drug consumption. A greater understanding of the mechanisms leading to alcohol abuse will allow researchers to identify genetic variation that corresponds to a specific biological vulnerability to addiction, thus defining robust endophenotypes that might help deconstruct these complex syndromes into more tractable components. To this end, it is critical to develop a translational framework that links alterations at the molecular level, to changes in neuronal function, and ultimately to changes at the behavioral and clinical levels. Translational phenotypes can be identified by the combination of animal and human studies designed to elucidate the neurofunctional, anatomical and pharmacological mechanisms underlying the etiology of alcohol addiction. The present article offers an overview of medication development in alcoholism with a focus on the critical aspect of translational research. Moreover, significant examples of promising targets from neuropeptidergic systems, namely nociceptin/orphanin FQ and neuropeptide S are given.
Collapse
Affiliation(s)
- Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032, Camerino, Italy
| | | | | |
Collapse
|
18
|
Vazquez-DeRose J, Stauber G, Khroyan TV, Xie X(S, Zaveri NT, Toll L. Retrodialysis of N/OFQ into the nucleus accumbens shell blocks cocaine-induced increases in extracellular dopamine and locomotor activity. Eur J Pharmacol 2013; 699:200-6. [PMID: 23219985 PMCID: PMC3570659 DOI: 10.1016/j.ejphar.2012.11.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 12/14/2022]
Abstract
Nociceptin (N/OFQ) has been implicated in a variety of neurological disorders, most notably in reward processes and drug abuse. N/OFQ suppresses extracellular dopamine in the nucleus accumbens (NAc) after intracerebroventricular injection. This study sought to examine the effects of retrodialyzed N/OFQ on the cocaine-induced increase in extracellular dopamine levels in the NAc, as well as locomotor activity, in freely moving rats. 1.0μM, 10μM, and 1mM N/OFQ, in the NAc shell, significantly suppressed the cocaine-induced dopamine increase in the NAc, while N/OFQ alone had no significant effect on dopamine levels. Co-delivery of the selective NOP receptor antagonist SB612111 ([(-)-cis-1-Methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol] reversed the N/OFQ suppression of cocaine-induced dopamine in the NAc, suggesting that this is an NOP receptor-mediated effect. Using a novel system to assess locomotion, we measured various motor activities of the animals with simultaneous microdialysis from the home cage. Cocaine produced an expected increase in total activity, including horizontal movement and rearing behavior. Retrodialysis of N/OFQ with cocaine administration affected all motor activities, initially showing no effect on behavior, but over time inhibiting cocaine-induced motor behaviors. These results suggest that N/OFQ can act directly in the NAc shell to block cocaine-induced increases in extracellular dopamine levels. Extracellular dopamine and locomotor activity can be dissociated within the NAc and may reflect motor output differences in shell versus core regions of the NAc. These studies confirm the widespread involvement of NOP receptors in drug addiction and further validate the utility of an NOP receptor agonist as a medication for treatment of drug addiction.
Collapse
Affiliation(s)
| | | | | | | | | | - Lawrence Toll
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, 34987 USA
| |
Collapse
|
19
|
Calo' G, Rizzi A, Cifani C, Micioni Di Bonaventura MV, Regoli D, Massi M, Salvadori S, Lambert DG, Guerrini R. UFP-112 a potent and long-lasting agonist selective for the Nociceptin/Orphanin FQ receptor. CNS Neurosci Ther 2010; 17:178-98. [PMID: 20497197 DOI: 10.1111/j.1755-5949.2009.00107.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nociceptin/orphanin FQ (N/OFQ) controls several biological functions via selective activation of the N/OFQ peptide receptor (NOP). [(pF)Phe(4) Aib(7) Arg(14) Lys(15) ]N/OFQ-NH(2) (UFP-112) is an NOP receptor ligand designed using a combination of several chemical modifications in the same peptide sequence that increase NOP receptor affinity/potency and/or reduce susceptibility to enzymatic degradation. In the present review article, we summarize data from the literature and present original findings on the in vitro and in vivo pharmacological features of UFP-112. Moreover, important biological actions and possible therapeutic indications of NOP receptor agonists are discussed based on the results obtained with UFP-112 and compared with other peptide and nonpeptide NOP receptor ligands.
Collapse
Affiliation(s)
- Girolamo Calo'
- Department Experimental and Clinical Medicine, Section of Pharmacology and Neuroscience Center, University of Ferrara, and National Institute of Neuroscience, Ferrara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Anton B, Calva JC, Acevedo R, Salazar A, Matus M, Flores A, Martinez M, Adler MW, Gaughan JP, Eisenstein TK. Nociceptin/orphanin FQ suppresses adaptive immune responses in vivo and at picomolar levels in vitro. J Neuroimmune Pharmacol 2010; 5:143-54. [PMID: 20119853 PMCID: PMC4007060 DOI: 10.1007/s11481-010-9190-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 01/03/2010] [Indexed: 11/26/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ), added in vitro to murine spleen cells in the picomolar range, suppressed antibody formation to sheep red blood cells in a primary and a secondary plaque-forming cell assay. The activity of the peptide was maximal at 10(-12) M, with an asymmetric U-shaped dose-response curve that extended activity to 10(-14) M. Suppression was not blocked by pretreatment with naloxone. Specificity of the suppressive response was shown using affinity-purified rabbit antibodies against two N/OFQ peptides and with a pharmacological antagonist. Antisera against both peptides were active, in a dose-related manner, in neutralizing N/OFQ-mediated immunosuppression, when the peptide was used at concentrations from 10(-12.3) to 10(-11.6) M. In addition, nociceptin given in vivo by osmotic pump for 48 h suppressed the capacity of spleen cells placed ex vivo to make an anti-sheep red blood cell response. These studies show that nociceptin directly inhibits an adaptive immune response, i.e., antibody formation, both in vitro and in vivo.
Collapse
Affiliation(s)
- Benito Anton
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA, 19140, USA
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Mexico City, Mexico
| | - Juan C. Calva
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Mexico City, Mexico
| | - Rodolfo Acevedo
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Mexico City, Mexico
| | - Alberto Salazar
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Mexico City, Mexico
| | - Maura Matus
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Mexico City, Mexico
| | - Anabel Flores
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Mexico City, Mexico
| | - Martin Martinez
- Department of Physiology, National Institute of Cardiology, Mexico City, Mexico
| | - Martin W. Adler
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - John P. Gaughan
- Biostatistics Consulting Center, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Toby K. Eisenstein
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| |
Collapse
|
21
|
Sakoori K, Murphy NP. Enhanced nicotine sensitivity in nociceptin/orphanin FQ receptor knockout mice. Neuropharmacology 2009; 56:896-904. [PMID: 19371589 DOI: 10.1016/j.neuropharm.2009.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 01/15/2009] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
Abstract
The opioid peptide nociceptin (orphanin FQ) has been implicated in reward, reinforcement and addiction. The current study sought evidence of a role of endogenous nociceptin in nicotine responses by studying nociceptin receptor (NOP) knockout mice. The results were: (1) NOP receptor knockout mice showed enhanced anxiety-like behavior on an elevated plus maze. Whereas nicotine (0.05-0.5 mg/kg) tended to be anxiogenic in wild-type mice, NOP receptor KO mice were resistant to this effect, though interpretation was confounded by their stronger anxiety-like behavior. (2) When presented increasing nicotine concentrations (3-50 microg/ml) in a bottle choice drinking paradigm, there were no genotype-dependent differences in nicotine preference. However, NOP receptor knockout mice consumed more 3 microg/ml nicotine solution when considered in absolute terms. (3) NOP receptor knockout mice showed stronger hypothermic responses to nicotine (1 or 2 mg/kg) administration. (4) There was modest evidence that NOP receptor KO mice showed attenuated behavioral sensitization to a low dose of nicotine (0.05 mg/kg) during repeated daily treatment. (5) NOP receptor knockout mice more rapidly tolerated the sedative effect of nicotine (1 mg/kg), due partially to slightly lower locomotion on first treatment. (6) NOP receptor knockout mice, unlike wild-type mice, showed a significant mecamylamine (2.5 mg/kg) induced conditioned place aversion to nicotine (24 mg/kg/day) withdrawal. These results show that mice lacking the influence of endogenous N/OFQ mice are hypersensitive to nicotine in most measures, showing a role of endogenous nociceptin in modulating or mediating the acute effects of nicotine, and possibly nicotine addiction.
Collapse
Affiliation(s)
- Kazuto Sakoori
- Molecular Neuropathology Group, RIKEN Brain Science Institute, 2-1 Hirosawa, Wakoshi, Saitama 351-0198, Japan
| | | |
Collapse
|
22
|
The nociceptin/orphanin FQ receptor: a target with broad therapeutic potential. Nat Rev Drug Discov 2008; 7:694-710. [DOI: 10.1038/nrd2572] [Citation(s) in RCA: 291] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
Sakoori K, Murphy NP. Endogenous nociceptin (orphanin FQ) suppresses basal hedonic state and acute reward responses to methamphetamine and ethanol, but facilitates chronic responses. Neuropsychopharmacology 2008; 33:877-91. [PMID: 17522627 DOI: 10.1038/sj.npp.1301459] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The opioid peptide nociceptin (orphanin FQ) suppresses drug reward, drug self-administration, and impedes some of the processes believed to underlie the transition to addiction. As virtually all previous studies have used administration of nociceptin receptor agonists to evaluate the role of nociceptin on addiction-like behavior, the current study used a pharmacological (nociceptin receptor antagonist) and genetic (nociceptin receptor knockout mice) approach to elucidate the role of endogenous nociceptin. The nociceptin receptor antagonist UFP-101 induced a modest place preference, and enhanced the conditioned place preference induced by methamphetamine. In agreement with this, nociceptin receptor knockout mice had slightly enhanced methamphetamine and ethanol conditioned place preferences compared to wild-type mice. This effect did not appear to depend on differences in learning ability, as nociceptin receptor knockout mice had slightly weaker-conditioned place aversions to lithium chloride, the kappa-opioid receptor agonist, U50488H, and the general opiate antagonist, naloxone. The development of behavioral sensitization to methamphetamine was lower in nociceptin receptor knockout mice, and attenuated by UFP-101 administration to wild-type mice. Additionally, ethanol consumption and preference in a two-bottle choice test was lower in nociceptin receptor knockout mice, though ethanol-stimulated locomotion was stronger. Whereas the rewarding effect of methamphetamine and ethanol following chronic treatment, as measured by place conditioning, strengthened in wild-type mice, this effect was absent in nociceptin receptor knockout mice. These results suggest that endogenous N/OFQ suppresses basal and drug-stimulated increases in hedonic state, and plays either a permissive or facilitatory role in the development of addiction.
Collapse
Affiliation(s)
- Kazuto Sakoori
- Neuronal Circuit Mechanisms Research Group, RIKEN Brain Science Institute, Wakoshi, Saitama, Japan
| | | |
Collapse
|
24
|
Khroyan TV, Zaveri NT, Polgar WE, Orduna J, Olsen C, Jiang F, Toll L. SR 16435 [1-(1-(bicyclo[3.3.1]nonan-9-yl)piperidin-4-yl)indolin-2-one], a novel mixed nociceptin/orphanin FQ/mu-opioid receptor partial agonist: analgesic and rewarding properties in mice. J Pharmacol Exp Ther 2007; 320:934-43. [PMID: 17132815 DOI: 10.1124/jpet.106.111997] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We identified a novel nociceptin/orphanin FQ (NOP)/mu-opioid receptor agonist, SR 16435 [1-(1-(bicyclo[3.3.1]nonan-9-yl)piperidin-4-yl)indolin-2-one], with high binding affinity and partial agonist activity at both receptors. It was hypothesized that SR 16435 would produce antinociception and yet, unlike morphine, would have diminished rewarding properties and tolerance development. Antinociception was assessed in mice using the tail-flick assay, whereas behavioral and rewarding effects were assessed using the place conditioning (PC) paradigm. PC was established by pairing drug injections with a distinct compartment. Behavioral effects were measured after acute and repeated drug administration, and the test for PC was carried out 24 h after four drug- and vehicle-pairing sessions. SR 16435 produced an increase in tail-flick latency, but SR 16435-induced antinociception was lower than that observed with morphine. Given that naloxone blocked SR 16435-induced antinociception, it is highly likely that this effect was mediated by mu-opioid receptors. Compared with morphine, chronic SR 16435 treatment resulted in reduced development of tolerance to its antinociceptive effects. SR 16435-induced conditioned place preference (CPP) was evident, an effect that was probably mediated via mu-opioid receptors, as it was reversed by coadministration of naloxone. NOP agonist activity was also present, given that SR 16435 decreased global activity, and this effect was partially reversed with the selective NOP antagonist, SR 16430 [1-(cyclooctylmethyl)-4-(3-(trifluoromethyl)phenyl)piperidin-4-ol]. Naloxone, however, also reversed the SR 16435-induced decrease in activity, indicating that both opioid and NOP receptors mediate this behavior. In summary, the mixed NOP/mu-opioid partial agonist SR 16435 exhibited both NOP and mu-opioid receptor-mediated behaviors.
Collapse
Affiliation(s)
- Taline V Khroyan
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Ciccocioppo R, Economidou D, Rimondini R, Sommer W, Massi M, Heilig M. Buprenorphine reduces alcohol drinking through activation of the nociceptin/orphanin FQ-NOP receptor system. Biol Psychiatry 2007; 61:4-12. [PMID: 16533497 PMCID: PMC3035814 DOI: 10.1016/j.biopsych.2006.01.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2005] [Revised: 12/29/2005] [Accepted: 01/30/2006] [Indexed: 11/28/2022]
Abstract
BACKGROUND Activation of the NOP receptor by its endogenous ligand nociceptin/orphanin FQ reduces ethanol intake in genetically selected alcohol preferring Marchigian Sardinian alcohol preferring (msP) rats. Here we evaluated whether buprenorphine, a partial agonist at micro-opioid and NOP receptors, would reduce ethanol consumption in msP rats via activation of NOP receptors. METHODS Marchigian Sardinian alcohol preferring rats trained to drink 10% alcohol 2 hours/day were injected with buprenorphine (.03, .3, 3.0, or 6.0 mg/kg intraperitoneally [IP]) 90 min before access to ethanol. RESULTS Similar to prototypical micro-agonists, the two lowest doses of buprenorphine significantly increased ethanol consumption (p < .01); in contrast, the two highest doses reduced it (p < .05). Pretreatment with naltrexone (.25 mg/kg IP) prevented the increase of ethanol intake induced by .03 mg/kg of buprenorphine (p < .001) but did not affect the inhibition of ethanol drinking induced by 3.0 mg/kg of buprenorphine. Conversely, pretreatment with the selective NOP receptor antagonist UFP-101 (10.0 or 20.0 microg/rat) abolished the suppression of ethanol drinking by 3.0 mg/kg of buprenorphine. CONCLUSIONS Buprenorphine has dualistic effects on ethanol drinking; low doses increase alcohol intake via stimulation of classic opioid receptors, whereas higher doses reduce it via activation of NOP receptors. We suggest that NOP agonistic properties of buprenorphine might be useful in the treatment of alcoholism.
Collapse
Affiliation(s)
- Roberto Ciccocioppo
- Department of Experimental Medicine and Public Health, University of Camerino, Camerino, Italy.
| | | | | | | | | | | |
Collapse
|
26
|
Cifani C, Guerrini R, Massi M, Polidori C. Chronic intracerebroventricular infusion of nociceptin/orphanin FQ increases food and ethanol intake in alcohol-preferring rats. Peptides 2006; 27:2803-10. [PMID: 16730389 DOI: 10.1016/j.peptides.2006.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2006] [Revised: 04/18/2006] [Accepted: 04/19/2006] [Indexed: 11/17/2022]
Abstract
Central administration of low doses of nociceptin/orphanin FQ (N/OFQ), the endogenous ligand of the opioid-like orphan receptor NOP, have been shown to reduce ethanol consumption, ethanol-induced conditioned place preference and stress-induced reinstatement of alcohol-seeking behavior in alcohol preferring rats. The present study evaluated the effect of continuous (7 days) lateral brain ventricle infusions of N/OFQ (0, 0.25, 1, 4, and 8 microg/h), by means of osmotic mini-pumps, on 10% ethanol intake in Marchigian-Sardinian alcohol-preferring (msP) rats provided 2h or 24h access to it. N/OFQ dose-dependently increased food intake in msP rats. On the other hand, in contrast to previous studies with acute injections, continuous lateral brain ventricle infusion of high doses of N/OFQ increased ethanol consumption when the ethanol solution was available for 24h/day or 2h/day. The present study demonstrates that continuous activation of the opioidergic N/OFQ receptor does not blunt the reinforcing effects of ethanol. Moreover, the data suggest that continuous activation of the opioidergic N/OFQ receptor is not a suitable way to reduce alcohol abuse.
Collapse
Affiliation(s)
- Carlo Cifani
- Department of Experimental Medicine and Public Health, University of Camerino, Via Scalzino 5, 62032 Camerino (MC), Italy
| | | | | | | |
Collapse
|
27
|
Ciccocioppo R, Economidou D, Cippitelli A, Cucculelli M, Ubaldi M, Soverchia L, Lourdusamy A, Massi M. Genetically selected Marchigian Sardinian alcohol-preferring (msP) rats: an animal model to study the neurobiology of alcoholism. Addict Biol 2006; 11:339-55. [PMID: 16961763 PMCID: PMC3035824 DOI: 10.1111/j.1369-1600.2006.00032.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present article provides an up-to-date review summarizing almost 18 years of research in genetically selected Marchigian Sardinian alcohol-preferring (msP) rats. The results of this work demonstrate that msP rats have natural preference for ethanol characterized by a spontaneous binge-type of drinking that leads to pharmacologically significant blood ethanol levels. This rat line is highly vulnerable to relapse and presentation of stimuli predictive of alcohol availability or foot-shock stress can reinstate extinguished drug-seeking up to 8 months from the last alcohol experience. The msP rat is highly sensitive to stress, shows an anxious phenotype and has depressive-like symptoms that recover following ethanol drinking. Interestingly, these animals have an up-regulated corticotrophin releasing factor (CRF) receptor 1 system. Clinical studies have shown that alcoholic patients often drink ethanol in the attempt to self-medicate from negative affective states and to search for anxiety relief. We propose that msP rats represent an animal model that largely mimics the human alcoholic population that due to poor ability to engage in stress-coping strategies drink ethanol as a tension relief strategy and for self-medication purposes.
Collapse
Affiliation(s)
- Roberto Ciccocioppo
- Department of Experimental Medicine and Public Heath, University of Camerino, MC, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Roberto M, Siggins GR. Nociceptin/orphanin FQ presynaptically decreases GABAergic transmission and blocks the ethanol-induced increase of GABA release in central amygdala. Proc Natl Acad Sci U S A 2006; 103:9715-20. [PMID: 16788074 PMCID: PMC1480472 DOI: 10.1073/pnas.0601899103] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Indexed: 02/07/2023] Open
Abstract
Behavioral studies show that the GABAergic system in the central amygdala (CeA) nucleus has a complex role in the reinforcing effects effects of ethanol and the anxiogenic response to ethanol withdrawal. Opioid peptides and nociceptin/orphanin FQ (nociceptin) within the CeA are implicated also in regulating voluntary ethanol consumption and ethanol relapse. Recently, we reported that basal GABAergic transmission was increased in ethanol-dependent rats, and that acute ethanol increases GABA(A) receptor-mediated inhibitory postsynaptic currents (IPSCs) in CeA neurons from both naïve and ethanol-dependent rats to the same extent, suggesting lack of tolerance for the acute effect of ethanol. Here, we investigated the effect of nociceptin on IPSCs in CeA neurons and its interaction with ethanol effects on these GABA synapses. We found that nociceptin moderately decreased IPSC amplitudes, acting mostly presynaptically as it increased paired-pulse facilitation ratio of IPSCs and decreased miniature IPSC frequencies (but not amplitudes). Nociceptin also prevented the ethanol-induced augmentation of IPSCs in CeA of naïve rats. Interestingly, in CeA of ethanol-dependent rats, the nociceptin-induced inhibition of IPSCs was increased, indicating an enhanced sensitivity to nociceptin. Nociceptin also blocked the ethanol-induced augmentation of IPSCs in ethanol-dependent rats. Our data suggest that nociceptin has a role in regulating the GABAergic system and opposing the effect elicited by ethanol. Thus, nociceptin may represent a therapeutic target for alleviating alcohol dependence.
Collapse
Affiliation(s)
- Marisa Roberto
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
29
|
Yu Y, Jawa A, Pan W, Kastin AJ. Effects of peptides, with emphasis on feeding, pain, and behavior A 5-year (1999-2003) review of publications in Peptides. Peptides 2004; 25:2257-89. [PMID: 15572212 DOI: 10.1016/j.peptides.2004.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 09/21/2004] [Indexed: 11/28/2022]
Abstract
Novel effects of naturally occurring peptides are continuing to be discovered, and their mechanisms of actions as well as interactions with other substances, organs, and systems have been elucidated. Synthetic analogs may have actions similar or antagonistic to the endogenous peptides, and both the native peptides and analogs have potential as drugs or drug targets. The journal Peptides publishes many leading articles on the structure-activity relationship of peptides as well as outstanding reviews on some families of peptides. Complementary to the reviews, here we extract information from the original papers published during the past five years in Peptides (1999-2003) to summarize the effects of different classes of peptides, their modulation by other chemicals and various pathophysiological states, and the mechanisms by which the effects are exerted. Special attention is given to peptides related to feeding, pain, and other behaviors. By presenting in condensed form the effects of peptides which are essential for systems biology, we hope that this summary of existing knowledge will encourage additional novel research to be presented in Peptides.
Collapse
Affiliation(s)
- Yongmei Yu
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|
30
|
Koizumi M, Sakoori K, Midorikawa N, Murphy NP. The NOP (ORL1) receptor antagonist Compound B stimulates mesolimbic dopamine release and is rewarding in mice by a non-NOP-receptor-mediated mechanism. Br J Pharmacol 2004; 143:53-62. [PMID: 15289286 PMCID: PMC1575267 DOI: 10.1038/sj.bjp.0705906] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Compound B (1-[(3R, 4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one, CompB) is a nociceptin/orphanin FQ (N/OFQ) antagonist showing high selectivity for the NOP (ORL1) receptor over classical opioid receptors. We studied the effect of subcutaneous CompB administration on the release of mesolimbic dopamine (DA) and the expression of hedonia in mice. 2. CompB (0.3-30 mg kg(-1)) dose dependently stimulated mesolimbic DA release as measured by in vivo freely moving microdialysis, without any change in locomotor activity. However, intracerebroventricular administered N/OFQ (endogenous agonist of the NOP receptor, 6 nmol) did not influence CompB- (10 mg kg(-1)) induced DA release, despite clearly suppressing release when administered alone. 3. Studies using NOP receptor knockout mice and no-net-flux microdialysis revealed mildly, but not statistically significantly higher endogenous DA levels in mice lacking the NOP receptor compared to wild-type mice. Administration of CompB (10 mg kg(-1)) induced identical increases in mesolimbic DA release in wild-type and NOP receptor knockout mice. 4. CompB was rewarding in approximately the same dose range in which CompB induced major increases in mesolimbic DA release when assayed using a conditioned place preference paradigm. The rewarding effect of CompB (30 mg kg(-1)) was maintained in NOP receptor knockout mice. 5. These results show that CompB stimulates mesolimbic DA release and is rewarding by an action independent of the NOP receptor, the precise site of which is unclear. Consequently, caution should be exercised when interpreting the results of studies using this drug, particularly when administered by a peripheral route.
Collapse
Affiliation(s)
- Miwako Koizumi
- Neuronal Circuit Mechanisms Research Group, RIKEN Brain Science Institute, 2-1 Hirosawa, Wakoshi, Saitama 351-0198, Japan
| | - Kazuto Sakoori
- Neuronal Circuit Mechanisms Research Group, RIKEN Brain Science Institute, 2-1 Hirosawa, Wakoshi, Saitama 351-0198, Japan
| | - Naoko Midorikawa
- Neuronal Circuit Mechanisms Research Group, RIKEN Brain Science Institute, 2-1 Hirosawa, Wakoshi, Saitama 351-0198, Japan
| | - Niall P Murphy
- Neuronal Circuit Mechanisms Research Group, RIKEN Brain Science Institute, 2-1 Hirosawa, Wakoshi, Saitama 351-0198, Japan
- Author for correspondence:
| |
Collapse
|
31
|
Olszewski PK, Levine AS. Minireview: Characterization of influence of central nociceptin/orphanin FQ on consummatory behavior. Endocrinology 2004; 145:2627-32. [PMID: 15044361 DOI: 10.1210/en.2004-0016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ), a peptide closely related to dynorphin A, is the endogenous agonist of the NOP receptor that moderately increases food intake under various conditions. Its orexigenic properties are mediated by the brain circuitry. In the present review, we focus on discussing the nature of hyperphagic effects of N/OFQ with special emphasis on its function within feeding-related neural networks. Although some of N/OFQ's orexigenic effects resemble those induced by opioids, reward-dependent feeding appears to be affected in a different manner by agonists of the NOP and classical opioid receptors. Also, data suggest that N/OFQ may not only promote feeding initiation, but rather its role may be to inhibit signaling responsible for inhibition of consummatory behavior. Central systems involved in termination of feeding that seem to be influenced by N/OFQ encompass oxytocin, alpha-MSH, and CRH.
Collapse
Affiliation(s)
- Pawel K Olszewski
- Veterans Affairs Medical Center, Research Service (151), One Veterans Drive, Minneapolis, Minnesota 55417, USA
| | | |
Collapse
|
32
|
Abstract
The role of neuromodulatory peptides in the aetiology of alcoholism has been relatively under-explored; however, the development of selective ligands for neuropeptide receptors, the characterization and cloning of receptors, and the development of transgenic mouse models have greatly facilitated this analysis. The present review considers the most recent preclinical evidence obtained from animal models for the role of two of the opioid peptides, namely b-endorphin and enkephalin; corticotropin-releasing factor (CRF), urocortin I and neuropeptide Y (NPY) in deleterious and excessive alcohol consumption, focussing on specific brain regions, in particular the central nucleus of the amygdala, that appear to be implicated in the pathophysiology of alcoholism. The review also outlines potential directions for further research to clarify neuropeptide involvement in neuromodulation within discrete brain nuclei pertinent to behavioural patterns.
Collapse
Affiliation(s)
- Michael S Cowen
- The Howard Florey Institute, University of Melbourne, VIC 3010, Australia.
| | | | | |
Collapse
|
33
|
Ciccocioppo R, Economidou D, Fedeli A, Angeletti S, Weiss F, Heilig M, Massi M. Attenuation of ethanol self-administration and of conditioned reinstatement of alcohol-seeking behaviour by the antiopioid peptide nociceptin/orphanin FQ in alcohol-preferring rats. Psychopharmacology (Berl) 2004; 172:170-8. [PMID: 14624331 PMCID: PMC3035816 DOI: 10.1007/s00213-003-1645-1] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2003] [Accepted: 09/04/2003] [Indexed: 11/24/2022]
Abstract
RATIONALE Nociceptin/orphanin FQ (N/OFQ), the endogenous ligand of the opioid-like orphan receptor NOP, was shown to reduce home-cage ethanol consumption, ethanol-induced conditioned place preference and stress-induced reinstatement of alcohol-seeking behaviour. OBJECTIVES The present study, using genetically selected Marchigian Sardinian alcohol-preferring (msP) rats, was designed to evaluate the effect of this opioid peptide on 10% ethanol and 10% sucrose self-administration, under a fixed-ratio 1 (FR 1) or a progressive-ratio (PR) schedule of reinforcement. Furthermore, using an experimental model of relapse in which rats were trained to lever press for ethanol in the presence of the discriminative stimulus of an orange odour (S(+)) and a 1-s cue light (CS(+)) or for water in the presence of anise odour (S(-)) and 1-s white noise (CS(-)), the effect of N/oFQ on cue-induced reinstatement of extinguished ethanol responding was investigated. RESULTS Sub-chronic (6 days) intracerebroventricular (i.c.v.) injection of 0.5 microg or 1.0 microg N/OFQ per rat significantly reduced alcohol self-administration under both the FR 1 and PR schedules of reinforcement. Conversely, i.c.v. administration of 0.5, 1.0 or 4.0 microg of the peptide per rat did not affect sucrose self-administration. In addition, i.c.v. N/OFQ (1.0-2.0 microg per rat) significantly inhibited the reinstatement of extinguished ethanol responding under an S(+)/CS(+) condition, whereas lever pressing under S(-)/CS(-) was not altered. CONCLUSIONS The present study demonstrates that the reinforcing effects of ethanol are markedly blunted by activation of the opioidergic N/OFQ receptor system. Moreover, the data provide evidence of the efficacy of N/OFQ to prevent reinstatement of ethanol-seeking behaviour elicited by environmental conditioned stimuli.
Collapse
Affiliation(s)
- Roberto Ciccocioppo
- Department of Pharmacological Sciences and Experimental Medicine, University of Camerino, Via Scalzino 3, 62032 Camerino, Italy.
| | | | | | | | | | | | | |
Collapse
|
34
|
Blakley GG, Pohorecky LA, Benjamin D. Behavioral and endocrine changes following antisense oligonucleotide-induced reduction in the rat NOP receptor. Psychopharmacology (Berl) 2004; 171:421-8. [PMID: 14624326 DOI: 10.1007/s00213-003-1597-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Accepted: 07/14/2003] [Indexed: 11/26/2022]
Abstract
RATIONALE Compared with the use of classic receptor ligands, antisense oligonucleotides (ASO) targeted at specific central nervous system receptors are an effective alternative in experiments designed to examine the behavioral role of such systems. OBJECTIVES The nociception/orphaninFQ (N/OFQ) system has been implicated in mediating endocrine function, feeding, stress, pain, anxiety, and the rewarding effects of drugs of abuse. The objective of the current study was to examine whether long-term ASO-induced downregulation of N/OFQ's receptor (NOP) produced changes in endocrine, anxiety, nociception and ethanol's (EtOH's) locomotor activating properties. METHODS Male Long Evans rats were implanted with osmotic mini-pumps containing ASO for the NOP receptor. ASO was chronically infused for 26 days and, during this time, multiple behavioral and physiological measurements were conducted. RESULTS ASO infusion significantly reduced expression of the NOP receptor in brain, confirmed by significant reductions of OFQ-stimulated [(35)S]-GTPgammaS binding in the paraventricular nucleus, prefrontal cortex, and septum. Behavioral changes were observed in ASO-treated animals including higher body temperature, increased water intake, decreased corticosterone (CORT) levels, decreased grooming in the open field, increased tail-flick latency, shorter durations on the open arms of the elevated plus maze, and heightened locomotor activity following EtOH. CONCLUSIONS These behavioral, physiological and endocrine changes are relatively consistent with previous findings with agonists and antagonists for the NOP receptor and, taken together, suggest that ASO-induced downregulation of the NOP receptor is an effective method for studying the N/OFQ system.
Collapse
Affiliation(s)
- Gregory G Blakley
- Neuropharmacology Laboratory, Rutgers University Center of Alcohol Studies, 607 Allison Road, Piscataway, NJ 08855, USA.
| | | | | |
Collapse
|
35
|
Fernandez F, Misilmeri MA, Felger JC, Devine DP. Nociceptin/orphanin FQ increases anxiety-related behavior and circulating levels of corticosterone during neophobic tests of anxiety. Neuropsychopharmacology 2004; 29:59-71. [PMID: 14532912 DOI: 10.1038/sj.npp.1300308] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Revised: 08/04/2003] [Accepted: 08/07/2003] [Indexed: 11/08/2022]
Abstract
Intracranial administration of nociceptin/orphanin FQ (N/OFQ) increases circulating concentrations of adrenocorticotrophic hormone and corticosterone in unstressed rats, and elevates the responsiveness of these hormones during mild stress. Furthermore, N/OFQ and its cognate receptor are both abundant in a variety of limbic nuclei, and stress exposure decreases neuronal N/OFQ content in forebrain neurons. In light of these and other findings, we examined the potential involvement of N/OFQ in regulation of anxiety-related behaviors in rats. In the open field, elevated plus maze, and dark-light neophobic tests, intracerebroventricular N/OFQ (1.0 pmole-1.0 nmole) increased the expression of anxiety-related behaviors. Specifically, N/OFQ increased the latency to enter, decreased the number of entries into, and decreased the time spent in the exposed or brightly lit environments of all three tests. N/OFQ also enhanced thigmotactic responses in the open field test. The effects of diazepam and of the benzodiazepine inverse agonist FG 7142 were also assessed in independent groups of rats. In all three tests, the behavioral effects of N/OFQ resembled the anxiogenic actions of FG 7142, and contrasted with the anxiolytic actions of diazepam. N/OFQ administration also increased circulating concentrations of corticosterone during anxiety testing, in comparison with the concentrations in vehicle-treated controls. We conclude that N/OFQ administration is anxiogenic, and elevates responsiveness of the hypothalamic pituitary-adrenal axis during neophobic tests of anxiety. This supports the possibility that N/OFQ neurotransmission participates in processing of emotionally-salient and stressful stimuli, and suggests that normal functioning of the N/OFQ system may be important in physiological and psychological well-being.
Collapse
Affiliation(s)
- Fabian Fernandez
- Department of Psychology, University of Florida, Gainesville, FL 32611-2250, USA
| | | | | | | |
Collapse
|
36
|
Abstract
This paper is the twenty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2002 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
37
|
Ciccocioppo R, Economidou D, Fedeli A, Massi M. The nociceptin/orphanin FQ/NOP receptor system as a target for treatment of alcohol abuse: a review of recent work in alcohol-preferring rats. Physiol Behav 2003; 79:121-8. [PMID: 12818717 DOI: 10.1016/s0031-9384(03)00112-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The intracerebroventricular administration of the 17 amino acid peptide nociceptin/orphanin FQ (N/OFQ), the endogenous ligand of the NOP receptor (previously referred to as ORL-1 or OP4 receptor), reduces voluntary 10% ethanol intake in genetically selected Marchigian Sardinian alcohol-preferring (msP) rats. Studies aimed at the pharmacological characterization of the receptor, which mediates the effect, have shown that the C-terminal 13 amino acid sequence is crucial for activity and that the selective NOP receptor antagonist [Nphe(1)]N/OFQ(1-13)NH(2) blocks the effect of N/OFQ on ethanol drinking. In place conditioning studies, N/OFQ abolishes the conditioned place preference (CPP) induced by ethanol in msP rats, or by morphine in nonselected Wistar rats; these findings suggest that N/OFQ is able to abolish the rewarding properties of ethanol and morphine. Moreover, N/OFQ inhibits reinstatement of alcohol-seeking behavior induced to electric footshock stress, as well as reinstatement of alcohol-seeking behavior induced by ethanol-paired cues. Together, these findings suggest that N/OFQ and its receptor may represent an interesting target for pharmacological treatment of alcohol abuse.
Collapse
Affiliation(s)
- Roberto Ciccocioppo
- Department of Pharmacological Sciences and Experimental Medicine, University of Camerino, Via Scalzino 3, 62032 (MC), Camerino, Italy
| | | | | | | |
Collapse
|