1
|
Crosstalk between Melanin Concentrating Hormone and Endocrine Factors: Implications for Obesity. Int J Mol Sci 2022; 23:ijms23052436. [PMID: 35269579 PMCID: PMC8910548 DOI: 10.3390/ijms23052436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 01/03/2023] Open
Abstract
Melanin-concentrating hormone (MCH) is a 19aa cyclic peptide exclusively expressed in the lateral hypothalamic area, which is an area of the brain involved in a large number of physiological functions and vital processes such as nutrient sensing, food intake, sleep-wake arousal, memory formation, and reproduction. However, the role of the lateral hypothalamic area in metabolic regulation stands out as the most relevant function. MCH regulates energy balance and glucose homeostasis by controlling food intake and peripheral lipid metabolism, energy expenditure, locomotor activity and brown adipose tissue thermogenesis. However, the MCH control of energy balance is a complex mechanism that involves the interaction of several neuroendocrine systems. The aim of the present work is to describe the current knowledge of the crosstalk of MCH with different endocrine factors. We also provide our view about the possible use of melanin-concentrating hormone receptor antagonists for the treatment of metabolic complications. In light of the data provided here and based on its actions and function, we believe that the MCH system emerges as an important target for the treatment of obesity and its comorbidities.
Collapse
|
2
|
Al-Massadi O, Dieguez C, Schneeberger M, López M, Schwaninger M, Prevot V, Nogueiras R. Multifaceted actions of melanin-concentrating hormone on mammalian energy homeostasis. Nat Rev Endocrinol 2021; 17:745-755. [PMID: 34608277 DOI: 10.1038/s41574-021-00559-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
Melanin-concentrating hormone (MCH) is a small cyclic peptide expressed in all mammals, mainly in the hypothalamus. MCH acts as a robust integrator of several physiological functions and has crucial roles in the regulation of sleep-wake rhythms, feeding behaviour and metabolism. MCH signalling has a very broad endocrine context and is involved in physiological functions and emotional states associated with metabolism, such as reproduction, anxiety, depression, sleep and circadian rhythms. MCH mediates its functions through two receptors (MCHR1 and MCHR2), of which only MCHR1 is common to all mammals. Owing to the wide variety of MCH downstream signalling pathways, MCHR1 agonists and antagonists have great potential as tools for the directed management of energy balance disorders and associated metabolic complications, and translational strategies using these compounds hold promise for the development of novel treatments for obesity. This Review provides an overview of the numerous roles of MCH in energy and glucose homeostasis, as well as in regulation of the mesolimbic dopaminergic circuits that encode the hedonic component of food intake.
Collapse
Affiliation(s)
- Omar Al-Massadi
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain.
| | - Carlos Dieguez
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Marc Schneeberger
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Miguel López
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Laboratory of Development and Plasticity of the Neuroendocrine Brain, UMR-S1172, EGID, Lille, France
| | - Ruben Nogueiras
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain.
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.
- Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain.
| |
Collapse
|
3
|
Cui L, Lv C, Zhang J, Mo C, Lin D, Li J, Wang Y. Characterization of melanin-concentrating hormone (MCH) and its receptor in chickens: Tissue expression, functional analysis, and fasting-induced up-regulation of hypothalamic MCH expression. Gene 2017; 615:57-67. [DOI: 10.1016/j.gene.2017.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 02/27/2017] [Accepted: 03/10/2017] [Indexed: 12/14/2022]
|
4
|
Tuziak SM, Volkoff H. A preliminary investigation of the role of melanin-concentrating hormone (MCH) and its receptors in appetite regulation of winter flounder (Pseudopleuronectes americanus). Mol Cell Endocrinol 2012; 348:281-96. [PMID: 21945816 DOI: 10.1016/j.mce.2011.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/25/2011] [Accepted: 09/07/2011] [Indexed: 10/17/2022]
Abstract
In order to better understand the role of melanin-concentrating hormone (MCH) in the regulation of appetite in fish, the mRNAs of two forms of MCH, prepro-MCH and MCH2, and two forms of MCH receptors, MCH-R1 and MCH-R2, were isolated from winter flounder (Pseudopleuronectes americanus). In addition, the mRNA expressions of these peptides and their receptors were determined under fed and fasted conditions. Both MCHs are expressed in forebrain and midbrain, as well as peripheral tissues including gut and gonads. Both MCH-Rs are ubiquitously expressed in the brain and periphery. Fasting induced an increase in the expression levels of MCH and MCH-R1 mRNAs in optic tectum/thalamus and hypothalamus but had no effect on either MCH2 or MCH-R2 mRNA expressions. Our results suggest that MCH and MCH-R1, but not MCH2 and MCH-R2 might have a role in the regulation of appetite in flounder.
Collapse
Affiliation(s)
- Sarah M Tuziak
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B-3X9
| | | |
Collapse
|
5
|
Clapham JC. Central control of thermogenesis. Neuropharmacology 2011; 63:111-23. [PMID: 22063719 DOI: 10.1016/j.neuropharm.2011.10.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/18/2011] [Accepted: 10/24/2011] [Indexed: 01/26/2023]
Abstract
In mammals and birds, conservation of body heat at around 37 °C is vital to life. Thermogenesis is the production of this heat which can be obligatory, as in basal metabolic rate, or it can be facultative such as the response to cold. A complex regulatory system has evolved which senses environmental or core temperature and integrates this information in hypothalamic regions such as the preoptic area and dorsomedial hypothalamus. These areas then send the appropriate signals to generate and conserve heat (or dissipate it). In this review, the importance of the sympathetic nervous system is discussed in relation to its role in basal metabolic rate and adaptive thermogenesis with a particular emphasis to human obesity. The efferent sympathetic pathway does not uniformly act on all tissues; different tissues can receive different levels of sympathetic drive at the same time. This is an important concept in the discussion of the pharmacotherapy of obesity. Despite decades of work the medicine chest contains only one pill for the long term treatment of obesity, orlistat, a lipase inhibitor that prevents the absorption of lipid from the gut and is itself not systemically absorbed. The central controlling system for thermogenesis has many potential intervention points. Several drugs, previously marketed, awaiting approval or in the earlier stages of development may have a thermogenic effect via activation of the sympathetic nervous system at some point in the thermoregulatory circuit and are discussed in this review. If the balance is weighted to the "wrong" side there is the burden of increased cardiovascular risk while a shift to the "right" side, if possible, will afford a thermogenic benefit that is conducive to weight loss maintenance. This article is part of a Special Issue entitled 'Central Control Food Intake'
Collapse
Affiliation(s)
- John C Clapham
- AstraZeneca R&D, Alderley Park, Macclesfield, SK10 4TG, UK.
| |
Collapse
|
6
|
Eberle AN, Mild G, Zumsteg U. Cellular models for the study of the pharmacology and signaling of melanin-concentrating hormone receptors. J Recept Signal Transduct Res 2010; 30:385-402. [PMID: 21083507 DOI: 10.3109/10799893.2010.524223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cellular models for the study of the neuropeptide melanin-concentrating hormone (MCH) have become indispensable tools for pharmacological profiling and signaling analysis of MCH and its synthetic analogues. Although expression of MCH receptors is most abundant in the brain, MCH-R(1) is also found in different peripheral tissues. Therefore, not only cell lines derived from nervous tissue but also from peripheral tissues that naturally express MCH receptors have been used to study receptor signaling and regulation. For screening of novel compounds, however, heterologous expression of MCH-R(1) or MCH-R(2) genes in HEK293, Chinese hamster ovary, COS-7, or 3T3-L1 cells, or amplified MCH-R(1) expression/signaling in IRM23 cells transfected with the G(q) protein gene are the preferred tools because of more distinct pharmacological effects induced by MCH, which include inhibition of cAMP formation, stimulation of inositol triphosphate production, increase in intracellular free Ca(2+) and/or activation of mitogen-activated protein kinases. Most of the published data originate from this type of model system, whereas data based on studies with cell lines endogenously expressing MCH receptors are more limited. This review presents an update on the different cellular models currently used for the analysis of MCH receptor interaction and signaling.
Collapse
Affiliation(s)
- Alex N Eberle
- Laboratory of Endocrinology, Department of Biomedicine, University Hospital and University Children's Hospital, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
7
|
Ito M, Ishihara A, Gomori A, Matsushita H, Ito M, Metzger JM, Marsh DJ, Haga Y, Iwaasa H, Tokita S, Takenaga N, Sato N, MacNeil DJ, Moriya M, Kanatani A. Mechanism of the anti-obesity effects induced by a novel melanin-concentrating hormone 1-receptor antagonist in mice. Br J Pharmacol 2009; 159:374-83. [PMID: 20015294 DOI: 10.1111/j.1476-5381.2009.00536.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Melanin-concentrating hormone (MCH) is an orexigenic neuropeptide expressed in the lateral hypothalamus that is involved in feeding and body weight regulation. Intracerebroventricular infusion of a peptidic MCH1 receptor antagonist ameliorated obesity in murine models. Recently, small molecule MCH1 receptor antagonists have been developed and characterized for the treatment of obesity. However, little is known of the mechanism of the anti-obesity effects of MCH1 receptor antagonists. EXPERIMENTAL APPROACH To examine the mechanisms of action of the anti-obesity effect of MCH1 receptor antagonists more precisely, we conducted a pair-feeding study in mice with diet-induced obesity (DIO), chronically treated with an orally active and highly selective MCH1 receptor antagonist and examined changes in mRNA expression levels in liver, brown and white adipose tissues. We also assessed the acute effects of the MCH1 receptor antagonist in energy expenditure under thermoneutral conditions. KEY RESULTS Treatment with the MCH1 receptor antagonist at 30 mg.kg(-1) for 1 month moderately suppressed feeding and significantly reduced body weight by 24%. In contrast, pair-feeding resulted in a smaller weight reduction of 10%. Treatment with the MCH1 receptor antagonist resulted in a higher body temperature compared with the pair-fed group. TaqMan and calorimetry data suggested that the MCH1 receptor antagonist also stimulated thermogenesis. CONCLUSIONS AND IMPLICATIONS Our results indicate that an MCH1 receptor antagonist caused anti-obesity effects im mice by acting on both energy intake and energy expenditure.
Collapse
Affiliation(s)
- Masahiko Ito
- Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd., Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ito M, Ishihara A, Gomori A, Egashira S, Matsushita H, Mashiko S, Ito J, Ito M, Nakase K, Haga Y, Iwaasa H, Suzuki T, Ohtake N, Moriya M, Sato N, MacNeil DJ, Takenaga N, Tokita S, Kanatani A. Melanin-concentrating hormone 1-receptor antagonist suppresses body weight gain correlated with high receptor occupancy levels in diet-induced obesity mice. Eur J Pharmacol 2009; 624:77-83. [PMID: 19836369 DOI: 10.1016/j.ejphar.2009.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/18/2009] [Accepted: 10/06/2009] [Indexed: 11/25/2022]
Abstract
Melanin-concentrating hormone (MCH), which is a neuropeptide expressed in the hypothalamus of the brain, is involved in regulating feeding behavior and energy homeostasis via the MCH(1) receptor in rodents. It is widely considered that MCH(1) receptor antagonists are worthy of development for medical treatment of obesity. Here we report on the development of an ex vivo receptor occupancy assay using a new radiolabeled MCH(1) receptor antagonist, [(35)S]-compound D. An MCH(1) receptor antagonist inhibited the binding of [(35)S]-compound D to brain slices in a dose-dependent manner. The result showed a good correlation between the receptor occupancy levels and plasma or brain levels of the MCH(1) receptor antagonist, suggesting that the ex vivo receptor binding assay using this radioligand is practical. Quantitative analysis in diet-induced obese mice showed that the efficacy of body weight reduction correlated with the receptor occupancy levels at 24h. Furthermore, more than 90% occupancy levels of MCH(1) receptor antagonists during 24h post-dosing are required for potent efficacy on body weight reduction. The present occupancy assay could be a useful pharmacodynamic marker to quantitatively estimate anti-obese efficacy, and would accelerate the development of MCH(1) receptor antagonists for treatment of obesity.
Collapse
Affiliation(s)
- Masahiko Ito
- Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd., Okubo 3, Tsukuba, Ibaraki 300-2611, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
There is compelling genetic and pharmacologic evidence to indicate that melanin-concentrating hormone receptor-1 (MCHR1) signaling is involved in the regulation of food intake and energy expenditure. The medical need for novel therapies to treat obesity and related metabolic disorders has led to a great deal of interest by pharmaceutical companies in the discovery of MCHR1 antagonists. Recent publications describing preclinical studies have demonstrated that small-molecule MCHR1 antagonists decrease food intake, bodyweight, and adiposity in rodent models of obesity. Results from ongoing early-stage clinical trials with MCHR1 antagonists are eagerly awaited, as is the movement of other MCHR1 antagonists into the clinic.
Collapse
Affiliation(s)
- Timothy J Kowalski
- Department of CV/Metabolic Diseases, Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA.
| | | |
Collapse
|
10
|
Pissios P, Bradley RL, Maratos-Flier E. Expanding the scales: The multiple roles of MCH in regulating energy balance and other biological functions. Endocr Rev 2006; 27:606-20. [PMID: 16788162 DOI: 10.1210/er.2006-0021] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Melanin-concentrating hormone (MCH) is a cyclic peptide originally identified as a 17-amino-acid circulating hormone in teleost fish, where it is secreted by the pituitary in response to stress and environmental stimuli. In fish, MCH lightens skin color by stimulating aggregation of melanosomes, pigment-containing granules in melanophores, cells of neuroectodermal origin found in fish scales. Although the peptide structure between fish and mammals is highly conserved, in mammals, MCH has no demonstrable effects on pigmentation; instead, based on a series of pharmacological and genetic experiments, MCH has emerged as a critical hypothalamic regulator of energy homeostasis, having effects on both feeding behavior and energy expenditure.
Collapse
Affiliation(s)
- Pavlos Pissios
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
11
|
McBriar MD, Guzik H, Shapiro S, Paruchova J, Xu R, Palani A, Clader JW, Cox K, Greenlee WJ, Hawes BE, Kowalski TJ, O'neill K, Spar BD, Weig B, Weston DJ, Farley C, Cook J. Discovery of Orally Efficacious Melanin-Concentrating Hormone Receptor-1 Antagonists as Antiobesity Agents. Synthesis, SAR, and Biological Evaluation of Bicyclo[3.1.0]hexyl Ureas. J Med Chem 2006; 49:2294-310. [PMID: 16570926 DOI: 10.1021/jm050886n] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Melanin-concentrating hormone (MCH) is a cyclic, nonadecapeptide expressed in the CNS of all vertebrates that regulates feeding behavior and energy homeostasis via interaction with the central melanocortin system. Regulation of this interaction results in modulation of food intake and body weight gain, demonstrating significant therapeutic potential for the treatment of obesity. The MCH-1 receptor (MCH-R1) has been identified as a key target in MCH regulation, as small molecule antagonists of MCH-R1 have demonstrated activity in vivo. Herein, we document our research in a bicyclo[3.1.0]hexyl urea series with particular emphasis on structure-activity relationships and optimization of receptor occupancy, measured both in vitro and via an ex vivo binding assay following an oral dosing regimen. Several compounds have been tested in vivo and exhibit oral efficacy in relevant acute rodent feeding models. In particular, 24u has proven efficacious in chronic rodent models of obesity, showing a statistically significant reduction in food intake and body weight over a 28 day study.
Collapse
Affiliation(s)
- Mark D McBriar
- Department of Chemical Research and Department of Cardiovascular and Metabolic Diseases, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033-0539, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kowalski TJ, Spar BD, Weig B, Farley C, Cook J, Ghibaudi L, Fried S, O'Neill K, Del Vecchio RA, McBriar M, Guzik H, Clader J, Hawes BE, Hwa J. Effects of a selective melanin-concentrating hormone 1 receptor antagonist on food intake and energy homeostasis in diet-induced obese mice. Eur J Pharmacol 2006; 535:182-91. [PMID: 16540104 DOI: 10.1016/j.ejphar.2006.01.062] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 01/19/2006] [Accepted: 01/25/2006] [Indexed: 11/16/2022]
Abstract
Melanin concentrating hormone (MCH) is a cyclic neuropeptide expressed in the lateral hypothalamus that plays an important role in energy homeostasis. To investigate the pharmacological consequences of inhibiting MCH signaling in murine obesity models, we examined the effect of acute and chronic administration of a selective MCH1 receptor antagonist (SCH-A) in diet-induced obese (DIO) and Lep(ob/ob) mice. Oral administration of SCH-A for 5 consecutive days (30 mg/kg q.d.) produced hypophagia, a loss of body weight and adiposity, and decreased plasma leptin levels in DIO mice, and hypophagia and reduced weight gain in Lep(ob/ob) mice. Chronic administration of SCH-A to DIO mice decreased food intake, body weight and adiposity, and plasma leptin and free fatty acids. These effects were accompanied by increases in several hypothalamic neuropeptides. Acute administration of SCH-A (30 mg/kg) prevented the decrease in energy expenditure associated with food restriction. These results indicate that MCH1 receptor antagonists may be effective in the treatment of obesity.
Collapse
MESH Headings
- Adipose Tissue/drug effects
- Administration, Oral
- Animals
- Binding, Competitive
- Body Weight/drug effects
- Brain/metabolism
- CHO Cells
- Cricetinae
- Cricetulus
- Dietary Fats/administration & dosage
- Dose-Response Relationship, Drug
- Eating/drug effects
- Energy Metabolism/drug effects
- Fatty Acids, Nonesterified/blood
- Female
- Galanin/genetics
- Gene Expression/drug effects
- Homeostasis/drug effects
- Hypothalamic Hormones/genetics
- Hypothalamus/drug effects
- Hypothalamus/metabolism
- Insulin/blood
- Intracellular Signaling Peptides and Proteins/genetics
- Iodine Radioisotopes
- Leptin/blood
- Male
- Melanins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Obese
- Neuropeptide Y/genetics
- Neuropeptides/genetics
- Nitriles/administration & dosage
- Nitriles/pharmacology
- Obesity/etiology
- Obesity/physiopathology
- Oligopeptides/metabolism
- Orexin Receptors
- Orexins
- Piperazines/administration & dosage
- Piperazines/pharmacology
- Pituitary Hormones/genetics
- Protein Binding
- Receptors, G-Protein-Coupled
- Receptors, Neuropeptide
- Receptors, Somatostatin/antagonists & inhibitors
- Receptors, Somatostatin/genetics
- Receptors, Somatostatin/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Triglycerides/blood
- Urea/administration & dosage
- Urea/analogs & derivatives
- Urea/pharmacology
Collapse
Affiliation(s)
- Timothy J Kowalski
- Department of CV/Metabolic Diseases, Schering-Plough Research Institute, Kenilworth, NJ 07033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Fry D, Dayton B, Brodjian S, Ogiela C, Sidorowicz H, Frost LJ, McNally T, Reilly RM, Collins CA. Characterization of a neuronal cell line expressing native human melanin-concentrating hormone receptor 1 (MCHR1). Int J Biochem Cell Biol 2006; 38:1290-9. [PMID: 16524757 DOI: 10.1016/j.biocel.2006.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 12/23/2005] [Accepted: 01/16/2006] [Indexed: 11/21/2022]
Abstract
Melanin-concentrating hormone (MCH), an orexigenic neuropeptide in mammals, activates a G-protein coupled receptor, MCHR1. It is expected that antagonists of MCHR1 function will prove therapeutically useful as anti-obesity agents. Intracellular signaling by MCHR1 has been investigated primarily using non-neural cell lines expressing the recombinant receptor, in which MCHR1 has been shown to couple to G alpha(i/o) and G alpha(q) G-proteins. While these cell lines have been widely utilized to discover and optimize small molecule antagonists, it is unknown whether the intracellular signaling pathways in these cells accurately reflect those in neurons. Thus, we sought to develop a neurally derived cell line endogenously expressing MCHR1. IMR32, a human neuroblastoma cell line, has been shown to express MCHR1 mRNA; however, we were unable to detect either MCH-binding or MCH-stimulated Ca++-mobilization in these cells. Following transfection of IMR32 cells with a plasmid encoding human G alpha(16) G-protein, we isolated a cell line, I3.4.2, which responded to MCH in Ca++-mobilization assays. We found that the expression level of MCHR1 mRNA in I3.4.2 cells was 2000-fold higher than in the parent cell line. Using [125I]MCH saturation-binding to I3.4.2 cell membranes, we estimated the Bmax as 0.72 pmol/mg protein and the Kd as 0.35 nM. We report that Ca++-mobilization in I3.4.2 cells was insensitive to pertussis toxin (Ptx) treatment, indicating that signaling was via G alpha(q) G-proteins. Furthermore, negative results in cAMP accumulation assays confirmed the lack of signaling via the G alpha(i/o) G-proteins. Our results suggest that the I3.4.2 cell line may be useful for characterization of MCHR1 activity in a neural-derived cell line.
Collapse
Affiliation(s)
- Dennis Fry
- Metabolic Disease Research, Global Pharmaceutical Products Division, Abbott Laboratories, Abbott Park, IL 60064, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Adamantidis A, Thomas E, Foidart A, Tyhon A, Coumans B, Minet A, Tirelli E, Seutin V, Grisar T, Lakaye B. Disrupting the melanin-concentrating hormone receptor 1 in mice leads to cognitive deficits and alterations of NMDA receptor function. Eur J Neurosci 2005; 21:2837-44. [PMID: 15926931 DOI: 10.1111/j.1460-9568.2005.04100.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In order to investigate the physiological properties of the melanin-concentrating hormone (MCH) we have generated and used mice from which the MCH receptor 1 gene was deleted (MCHR1(Neo/Neo) mice). Complementary experimental approaches were used to investigate alterations in the learning and memory processes of our transgenic model. The ability of the knockout strain to carry out the inhibitory passive avoidance test was found to be considerably impaired although no significant differences were observed in anxiety levels. This impaired cognitive property prompted us to explore modifications in N-methyl D-aspartate (NMDA) responses in the hippocampus. Intracellular recordings of CA1 pyramidal neurons in hippocampal slices from the MCHR1(Neo/Neo) mice revealed significantly decreased NMDA responses. Finally, using in situ hybridization we found a 15% reduction in NMDAR1 subunit in the CA1 region. These results show for the first time a possible role for MCH in the control of the function of the NMDA receptor.
Collapse
Affiliation(s)
- Antoine Adamantidis
- Research Center for Cellular and Molecular Neurobiology, University of Liège, 17, Place Delcour, B-4020 Liège, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kowalski TJ, McBriar MD. Therapeutic potential of melanin-concentrating hormone-1 receptor antagonists for the treatment of obesity. Expert Opin Investig Drugs 2005; 13:1113-22. [PMID: 15330743 DOI: 10.1517/13543784.13.9.1113] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The compelling genetic and pharmacological evidence implicating melanin-concentrating hormone-1 receptor (MCH-1R) signalling in the regulation of food intake and energy expenditure has generated a great deal of interest by pharmaceutical companies for the discovery of MCH-1R antagonists, evidenced by the increased number of patents describing MCH-1R antagonists for the treatment of obesity and metabolic syndrome. The structural diversity of small molecular weight drug-like MCH-1R antagonists produced and preclinical studies showing hypophagia and weight loss with small molecular weight and peptidal antagonists in rodents is encouraging and suggests that the identification of clinical candidates will be forthcoming.
Collapse
Affiliation(s)
- Timothy J Kowalski
- Department of Cardiovascular/Metabolic Disease Research, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | |
Collapse
|
16
|
Melanin-Concentrating Hormone as a Therapeutic Target. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2005. [DOI: 10.1016/s0065-7743(05)40008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
17
|
Chaki S, Yamaguchi JI, Yamada H, Kanuma K, Sekiguchi Y. Melanin-concentrating hormone receptor 1 antagonists for the treatment of depression and anxiety. Drug Dev Res 2005. [DOI: 10.1002/ddr.20029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Yu Y, Jawa A, Pan W, Kastin AJ. Effects of peptides, with emphasis on feeding, pain, and behavior A 5-year (1999-2003) review of publications in Peptides. Peptides 2004; 25:2257-89. [PMID: 15572212 DOI: 10.1016/j.peptides.2004.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 09/21/2004] [Indexed: 11/28/2022]
Abstract
Novel effects of naturally occurring peptides are continuing to be discovered, and their mechanisms of actions as well as interactions with other substances, organs, and systems have been elucidated. Synthetic analogs may have actions similar or antagonistic to the endogenous peptides, and both the native peptides and analogs have potential as drugs or drug targets. The journal Peptides publishes many leading articles on the structure-activity relationship of peptides as well as outstanding reviews on some families of peptides. Complementary to the reviews, here we extract information from the original papers published during the past five years in Peptides (1999-2003) to summarize the effects of different classes of peptides, their modulation by other chemicals and various pathophysiological states, and the mechanisms by which the effects are exerted. Special attention is given to peptides related to feeding, pain, and other behaviors. By presenting in condensed form the effects of peptides which are essential for systems biology, we hope that this summary of existing knowledge will encourage additional novel research to be presented in Peptides.
Collapse
Affiliation(s)
- Yongmei Yu
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|
19
|
Eberle AN, Mild G, Schlumberger S, Drozdz R, Hintermann E, Zumsteg U. Expression and characterization of melanin-concentrating hormone receptors on mammalian cell lines. Peptides 2004; 25:1585-95. [PMID: 15476925 DOI: 10.1016/j.peptides.2004.06.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 06/08/2004] [Indexed: 11/24/2022]
Abstract
The neuropeptide melanin-concentrating hormone (MCH) is expressed in central and peripheral tissues where it participates in the complex network regulating energy homeostasis as well as in other physiologically important functions. Two MCH receptor subtypes, MCH-R1 and MCH-R2, have been cloned which signal through activation of Gi/o/q proteins and hence regulate different intracellular signals, such as inhibition of cAMP formation, stimulation of IP3 production, increase in intracellular free Ca2+ and/or activation of MAP kinases. Most of the data were obtained with cell systems heterologously expressing either of the MCH receptors. Fewer reports exist on studies with cell lines which endogenously express MCH receptors. Here, we describe human and other mammalian cell lines with which MCH receptor activation can be studied under "natural" conditions and we summarize the characteristics and signaling pathways of the MCH receptors in the different cell systems.
Collapse
Affiliation(s)
- Alex N Eberle
- Laboratory of Endocrinology, Department of Research, University Hospital Basel and University Children's Hospital Basel, Klingelbergstrasse 23, CH-4031 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
20
|
Kela J, Salmi P, Rimondini-Giorgini R, Heilig M, Wahlestedt C. Behavioural analysis of melanin-concentrating hormone in rats: evidence for orexigenic and anxiolytic properties. REGULATORY PEPTIDES 2003; 114:109-14. [PMID: 12832098 DOI: 10.1016/s0167-0115(03)00114-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Melanin-concentrating hormone (MCH) is a cyclic neuropeptide, predominantly expressed in hypothalamus, and recognized as a key regulator in feeding behaviour and energy balance. In this study, we examined the behavioural effects of intracerebroventricularly administered MCH on food intake, anxiety, exploratory behaviour and body core temperature in rats. MCH (0.15-10.0 microg, i.c.v.) acutely increased food intake in a dose-dependent manner. In addition, MCH (0.6-10.0 microg, i.c.v.) produced effects similar to anxiolytics in an animal model of anxiety, Vogel's punished drinking test. Thus, punished drinking episodes were significantly increased. We found no effects of MCH (5.0-20.0 microg, i.c.v.) on locomotor activity either in habituated or non-habituated animals. Furthermore, MCH did not produce any changes in body core temperature. Together, these observations further support a role for MCH as an orexigenic neuropeptide and also suggest anti-anxiety properties for MCH.
Collapse
Affiliation(s)
- Johanna Kela
- Center for Genomics and Bioinformatics, Karolinska Institutet, Berzelius väg 35, SE-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|