1
|
Christie AE. Expansion of the Litopenaeus vannamei and Penaeus monodon peptidomes using transcriptome shotgun assembly sequence data. Gen Comp Endocrinol 2014; 206:235-54. [PMID: 24787055 DOI: 10.1016/j.ygcen.2014.04.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/14/2014] [Accepted: 04/21/2014] [Indexed: 11/21/2022]
Abstract
The shrimp Litopenaeus vannamei and Penaeus monodon are arguably the most important commercially farmed crustaceans. While expansion of their aquaculture has classically relied on improvements to rearing facilities, these options have largely been exhausted, and today a shift in focus is occurring, with increased investment in manipulating the shrimp themselves. Hormonal control is one strategy for increasing aquaculture output. However, to use it, one must first understand an animal's native hormonal systems. Here, transcriptome shotgun assembly (TSA) data were used to expand the peptidomes for L. vannamei and P. monodon. Via an established bioinformatics workflow, 41 L. vannamei and 25 P. monodon pre/preprohormone-encoding transcripts were identified, allowing for the prediction of 158 and 106 distinct peptide structures for these species, respectively. The identified peptides included isoforms of allatostatin A, B and C, as well as members the bursicon, CAPA, CCHamide, crustacean cardioactive peptide, crustacean hyperglycemic hormone, diuretic hormone 31, eclosion hormone, FLRFamide, GSEFLamide, intocin, leucokinin, molt-inhibiting hormone, myosuppressin, neuroparsin, neuropeptide F, orcokinin, orcomyotropin, pigment dispersing hormone, proctolin, red pigment concentrating hormone, RYamide, SIFamide, short neuropeptide F and tachykinin-related peptide families. While some of the predicted peptides are known L. vannamei and/or P. monodon isoforms (which vet the structures of many peptides identified previously via mass spectrometry and other means), most are described here for the first time. These data more than double the extant catalogs of L. vannamei and P. monodon peptides and provide platforms from which to launch future physiological studies of peptidergic signaling in these two commercially important species.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
2
|
|
3
|
Lugo JM, Carpio Y, Morales R, Rodríguez-Ramos T, Ramos L, Estrada MP. First report of the pituitary adenylate cyclase activating polypeptide (PACAP) in crustaceans: conservation of its functions as growth promoting factor and immunomodulator in the white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1788-1796. [PMID: 24036332 DOI: 10.1016/j.fsi.2013.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/02/2013] [Accepted: 08/30/2013] [Indexed: 06/02/2023]
Abstract
The high conservation of the pituitary adenylate cyclase activating polypeptide (PACAP) sequence indicates that this peptide fulfills important biological functions in a broad spectrum of organisms. However, in invertebrates, little is known about its presence and its functions remain unclear. Up to now, in non-mammalian vertebrates, the majority of studies on PACAP have focused mainly on the localization, cloning and structural evolution of this peptide. As yet, little is known about its biological functions as growth factor and immunomodulator in lower vertebrates. Recently, we have shown that PACAP, apart from its neuroendocrine role, influences immune functions in larval and juvenile fish. In this work, we isolated for the first time the cDNA encoding the mature PACAP from a crustacean species, the white shrimp Litopenaeus vannamei, corroborating its high degree of sequence conservation, when compared to sequences reported from tunicates to mammalian vertebrates. Based on this, we have evaluated the effects of purified recombinant Clarias gariepinus PACAP administrated by immersion baths on white shrimp growth and immunity. We demonstrated that PACAP improves hemocyte count, superoxide dismutase, lectins and nitric oxide synthase derived metabolites in treated shrimp related with an increase in total protein concentration and growth performance. From our results, PACAP acts as a regulator of shrimp growth and immunity, suggesting that in crustaceans, as in vertebrate organisms, PACAP is an important molecule shared by both the endocrine and the immune systems.
Collapse
Affiliation(s)
- Juana María Lugo
- Aquatic Biotechnology Project, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba
| | | | | | | | | | | |
Collapse
|
4
|
Toullec JY, Corre E, Bernay B, Thorne MAS, Cascella K, Ollivaux C, Henry J, Clark MS. Transcriptome and peptidome characterisation of the main neuropeptides and peptidic hormones of a euphausiid: the Ice Krill, Euphausia crystallorophias. PLoS One 2013; 8:e71609. [PMID: 23990964 PMCID: PMC3749230 DOI: 10.1371/journal.pone.0071609] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 07/01/2013] [Indexed: 11/19/2022] Open
Abstract
Background The Ice krill, Euphausia crystallorophias is one of the species at the base of the Southern Ocean food chain. Given their significant contribution to the biomass of the Southern Ocean, it is vitally important to gain a better understanding of their physiology and, in particular, anticipate their responses to climate change effects in the warming seas around Antarctica. Methodology/Principal Findings Illumina sequencing was used to produce a transcriptome of the ice krill. Analysis of the assembled contigs via two different methods, produced 36 new pre-pro-peptides, coding for 61 neuropeptides or peptide hormones belonging to the following families: Allatostatins (A, B et C), Bursicon (α and β), Crustacean Hyperglycemic Hormones (CHH and MIH/VIHs), Crustacean Cardioactive Peptide (CCAP), Corazonin, Diuretic Hormones (DH), the Eclosion Hormone (EH), Neuroparsin, Neuropeptide F (NPF), small Neuropeptide F (sNPF), Pigment Dispersing Hormone (PDH), Red Pigment Concentrating Hormone (RPCH) and finally Tachykinin. LC/MS/MS proteomics was also carried out on eyestalk extracts, which are the major site of neuropeptide synthesis in decapod crustaceans. Results confirmed the presence of six neuropeptides and six precursor-related peptides previously identified in the transcriptome analyses. Conclusions This study represents the first comprehensive analysis of neuropeptide hormones in a Eucarida non-decapod Malacostraca, several of which are described for the first time in a non-decapod crustacean. Additionally, there is a potential expansion of PDH and Neuropeptide F family members, which may reflect certain life history traits such as circadian rhythms associated with diurnal migrations and also the confirmation via mass spectrometry of several novel pre-pro-peptides, of unknown function. Knowledge of these essential hormones provides a vital framework for understanding the physiological response of this key Southern Ocean species to climate change and provides a valuable resource for studies into the molecular phylogeny of these organisms and the evolution of neuropeptide hormones.
Collapse
Affiliation(s)
- Jean-Yves Toullec
- UPMC University of Paris 06, UMR 7144 CNRS, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, UMR 7144, Station Biologique de Roscoff, Roscoff, France
- * E-mail:
| | - Erwan Corre
- UPMC University of Paris 06, FR 2424 CNRS, ABiMS, Analysis and Bioinformatics for Marine Science, Station Biologique de Roscoff, Roscoff, France
| | - Benoît Bernay
- University of Caen Basse Normandie, FRE 3484 CNRS, Biologie des Mollusques Marins et des Ecosystèmes Associés, Caen, France
- University of Caen Basse Normandie, Plateforme PROTEOGEN, Caen, France, SF ICORE 4206
| | - Michael A. S. Thorne
- British Antarctic Survey, Natural Environment Research Council, High Cross, Cambridge, United Kingdom
| | - Kévin Cascella
- UPMC University of Paris 06, UMR 7144 CNRS, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, UMR 7144, Station Biologique de Roscoff, Roscoff, France
| | - Céline Ollivaux
- UPMC University of Paris 06, UMR 7150 CNRS, Mer et Santé, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, UMR 7150, Station Biologique de Roscoff, Roscoff, France
- Université Européenne de Bretagne, UEB, France
| | - Joël Henry
- University of Caen Basse Normandie, FRE 3484 CNRS, Biologie des Mollusques Marins et des Ecosystèmes Associés, Caen, France
- University of Caen Basse Normandie, Plateforme PROTEOGEN, Caen, France, SF ICORE 4206
| | - Melody S. Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Cambridge, United Kingdom
| |
Collapse
|
5
|
Nässel DR, Wegener C. A comparative review of short and long neuropeptide F signaling in invertebrates: Any similarities to vertebrate neuropeptide Y signaling? Peptides 2011; 32:1335-55. [PMID: 21440021 DOI: 10.1016/j.peptides.2011.03.013] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/10/2011] [Accepted: 03/10/2011] [Indexed: 10/18/2022]
Abstract
Neuropeptides referred to as neuropeptide F (NPF) and short neuropeptide F (sNPF) have been identified in numerous invertebrate species. Sequence information has expanded tremendously due to recent genome sequencing and EST projects. Analysis of sequences of the peptides and prepropeptides strongly suggest that NPFs and sNPFs are not closely related. However, the NPFs are likely to be ancestrally related to the vertebrate family of neuropeptide Y (NPY) peptides. Peptide diversification may have been accomplished by different mechanisms in NPFs and sNPFs; in the former by gene duplications followed by diversification and in the sNPFs by internal duplications resulting in paracopies of peptides. We discuss the distribution and functions of NPFs and their receptors in several model invertebrates. Signaling with sNPF, however, has been investigated mainly in insects, especially in Drosophila. Both in invertebrates and in mammals NPF/NPY play roles in feeding, metabolism, reproduction and stress responses. Several other NPF functions have been studied in Drosophila that may be shared with mammals. In Drosophila sNPFs are widely distributed in numerous neurons of the CNS and some gut endocrines and their functions may be truly pleiotropic. Peptide distribution and experiments suggest roles of sNPF in feeding and growth, stress responses, modulation of locomotion and olfactory inputs, hormone release, as well as learning and memory. Available data indicate that NPF and sNPF signaling systems are distinct and not likely to play redundant roles.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden.
| | | |
Collapse
|
6
|
Palasoon R, Panasophonkul S, Sretarugsa P, Hanna P, Sobhon P, Chavadej J. The distribution of APGWamide and RFamides in the central nervous system and ovary of the giant freshwater prawn, Macrobrachium rosenbergii. INVERTEBRATE NEUROSCIENCE 2011; 11:29-42. [PMID: 21476046 DOI: 10.1007/s10158-011-0115-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 03/23/2011] [Indexed: 11/29/2022]
Abstract
Immunohistochemistry was used to identify the distribution of both APGWamide-like and RFamide-like peptides in the central nervous system (CNS) and ovary of the mature female giant freshwater prawn, Macrobrachium rosenbergii. APGWamide-like immunoreactivity (ALP-ir) was found only within the sinus gland (SG) of the eyestalk, in small- and medium-sized neurons of cluster 4, as well as their varicosed axons. RFamide-like immunoreactivity (RF-ir) was detected in neurons of all neuronal clusters of the eyestalk and CNS, except clusters 1 and 5 of the eyestalk, and dorsal clusters of the subesophageal, thoracic, and abdominal ganglia. The RF-ir was also found in all neuropils of the CNS and SG, except the lamina ganglionaris. These immunohistochemical locations of the APGWamide-like and RF-like peptides in the eyestalk indicate that these neuropeptides could modulate the release of the neurohormones in the sinus gland. The presence of RFamide-like peptides in the thoracic and abdominal ganglia suggests that it may act as a neurotransmitter which controls muscular contractions. In the ovary, RF-ir was found predominantly in late previtellogenic and early vitellogenic oocytes, and to a lesser degree in late vitellogenic oocytes. These RFs may be involved with oocyte development, but may also act with other neurohormones and/or neurotransmitters within the oocyte in an autocrine or paracrine manner.
Collapse
|
7
|
Christie AE, Stemmler EA, Dickinson PS. Crustacean neuropeptides. Cell Mol Life Sci 2010; 67:4135-69. [PMID: 20725764 PMCID: PMC11115526 DOI: 10.1007/s00018-010-0482-8] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 07/09/2010] [Accepted: 07/28/2010] [Indexed: 10/19/2022]
Abstract
Crustaceans have long been used for peptide research. For example, the process of neurosecretion was first formally demonstrated in the crustacean X-organ-sinus gland system, and the first fully characterized invertebrate neuropeptide was from a shrimp. Moreover, the crustacean stomatogastric and cardiac nervous systems have long served as models for understanding the general principles governing neural circuit functioning, including modulation by peptides. Here, we review the basic biology of crustacean neuropeptides, discuss methodologies currently driving their discovery, provide an overview of the known families, and summarize recent data on their control of physiology and behavior.
Collapse
Affiliation(s)
- Andrew E Christie
- Program in Neuroscience, John W. and Jean C. Boylan Center for Cellular and Molecular Physiology, Mount Desert Island Biological Laboratory, Old Bar Harbor Road, P.O. Box 35, Salisbury Cove, ME 04672, USA.
| | | | | |
Collapse
|
8
|
Nuss AB, Forschler BT, Crim JW, TeBrugge V, Pohl J, Brown MR. Molecular characterization of neuropeptide F from the eastern subterranean termite Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae). Peptides 2010; 31:419-28. [PMID: 19747517 DOI: 10.1016/j.peptides.2009.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 09/01/2009] [Accepted: 09/01/2009] [Indexed: 11/22/2022]
Abstract
Neuropeptide F (NPF)-like immunoreactivity was previously found to be abundant in the eastern subterranean termite, Reticulitermes flavipes. Purification of the NPF from a whole body extract of worker termites was accomplished in the current study by HPLC and heterologous radioimmunoassay for an NPF-related peptide, Helicoverpa zea Midgut Peptide-I. A partial amino acid sequence allowed determination of the corresponding cDNA that encoded an open reading frame deduced for authentic R. flavipes NPF (Ref NPF): KPSDPEQLADTLKYLEELDRFYSQVARPRFa. Effects of synthetic NPFs on muscle contractions were investigated for isolated foreguts and hindguts of workers, with Drm NPF inhibiting spontaneous contractions of hindguts. Phylogenetic analysis of invertebrate NPF sequences reveals two separate groupings, with Ref NPF occurring within a clade composed exclusively of arthropods.
Collapse
Affiliation(s)
- Andrew B Nuss
- Department of Entomology, 413 Biological Sciences Building, University of Georgia, Athens, GA 30602-2603, USA.
| | | | | | | | | | | |
Collapse
|
9
|
McVeigh P, Mair GR, Atkinson L, Ladurner P, Zamanian M, Novozhilova E, Marks NJ, Day TA, Maule AG. Discovery of multiple neuropeptide families in the phylum Platyhelminthes. Int J Parasitol 2009; 39:1243-52. [PMID: 19361512 PMCID: PMC2749192 DOI: 10.1016/j.ijpara.2009.03.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 02/20/2009] [Accepted: 03/11/2009] [Indexed: 10/20/2022]
Abstract
Available evidence shows that short amidated neuropeptides are widespread and have important functions within the nervous systems of all flatworms (phylum Platyhelminthes) examined, and could therefore represent a starting point for new lead drug compounds with which to combat parasitic helminth infections. However, only a handful of these peptides have been characterised, the rigorous exploration of the flatworm peptide signalling repertoire having been hindered by the dearth of flatworm genomic data. Through searches of both expressed sequence tags and genomic resources using the basic local alignment search tool (BLAST), we describe 96 neuropeptides on 60 precursors from 10 flatworm species. Most of these (51 predicted peptides on 14 precursors) are novel and are apparently restricted to flatworms; the remainder comprise nine recognised peptide families including FMRFamide-like (FLPs), neuropeptide F (NPF)-like, myomodulin-like, buccalin-like and neuropeptide FF (NPFF)-like peptides; notably, the latter have only previously been reported in vertebrates. Selected peptides were localised immunocytochemically to the Schistosoma mansoni nervous system. We also describe several novel flatworm NPFs with structural features characteristic of the vertebrate neuropeptide Y (NPY) superfamily, previously unreported characteristics which support the common ancestry of flatworm NPFs with the NPY-superfamily. Our dataset provides a springboard for investigation of the functional biology and therapeutic potential of neuropeptides in flatworms, simultaneously launching flatworm neurobiology into the post-genomic era.
Collapse
Affiliation(s)
- Paul McVeigh
- Parasitology, School of Biological Sciences, Queen's University Belfast, Belfast, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Clynen E, Husson SJ, Schoofs L. Identification of new members of the (short) neuropeptide F family in locusts and Caenorhabditis elegans. Ann N Y Acad Sci 2009; 1163:60-74. [PMID: 19456328 DOI: 10.1111/j.1749-6632.2008.03624.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Both the long and short neuropeptides F (NPF) represent important families of invertebrate neuropeptides that have been implicated in the regulation of reproduction and feeding behavior. In the present study, two short NPFs (SNRSPS(L/I)R(L/I)RFamide and SPS(L/I)R(L/I)RFamide) were de novo sequenced by mass spectrometry in two major pest insects, the desert locust Schistocerca gregaria and the African migratory locust Locusta migratoria. They are two of the most widespread peptides in the locust neuroendocrine system. A peptide that was previously reported to accelerate egg development in S. gregaria is shown to represent a truncated form of long NPF. This peptide is most likely derived by a novel processing mechanism involving cleavage at RY. In addition, an NPF peptide from the nematode Caenorhabditis elegans was isolated and sequenced by tandem mass spectrometry.
Collapse
Affiliation(s)
- Elke Clynen
- Research Group Functional Genomics and Proteomics, K.U. Leuven, Leuven, Belgium.
| | | | | |
Collapse
|
11
|
Structure, Function and Mode of Action of Select Arthropod Neuropeptides. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2006. [DOI: 10.1016/s1572-5995(06)80026-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Kiris IGA, Eroldoğan OT, Kir M, Kumlu M. Influence of neuropeptide Y (NPY) on food intake and growth of penaeid shrimps Marsupenaeus japonicus and Penaeus semisulcatus (Decapoda: Penaeidae). Comp Biochem Physiol A Mol Integr Physiol 2005; 139:239-44. [PMID: 15528173 DOI: 10.1016/j.cbpb.2004.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 09/13/2004] [Accepted: 09/14/2004] [Indexed: 11/16/2022]
Abstract
The effects of neuropeptide Y (NPY) administered intramuscularly or orally on postlarvae (PLs) of two penaeid species were investigated in this study. In experiment 1, food intake (FI) of Marsupenaeus japonicus PLs (0.96 g), injected with NPY at 0.6 microg per g BW, was investigated within 48 h posttreatment. In experiment 2, oral administration of NPY (at doses of 0, 0.125, 0.25, 0.5 microg g(-1) food) on feed intake and growth performance of Penaeus semisulcatus PLs (0.27 g) was examined for 6 weeks. In experiment 1, NPY injection significantly increased average daily FI of M. japonicus PLs within the first 24 h compared to the control (P<0.05), but its stimulatory effect decreased on the second day (P>0.05). The increase in FI was 33% during the first 24 h and 17% during the next 24 h. In experiment 2, significant (P<0.05) differences were found among the groups in terms of weight gain and food utilization (P<0.05). Mean FI significantly increased (as much as 1.3-fold over the control) when NPY was orally administered at doses from 0.125 to 0.5 microg g(-1) feed. There was a positive relationship between FI and final weight (y=-0.972+2.098x, R(2)=0.81) and between FCE and NPY doses in the diets (y=45.37+3.46x, R(2)=0.91). The present findings indicated for the first time that NPY is a potent stimulator of food intake when administered either intramuscularly or orally to penaeid shrimps.
Collapse
Affiliation(s)
- I G A Kiris
- Faculty of Fisheries, Department of Aquaculture, Cukurova University, 01330, Balcali, Adana, Turkey
| | | | | | | |
Collapse
|