1
|
Abstract
Under many circumstances, prophylactic immunizations are considered as the only possible strategy to control infectious diseases. Considerable efforts are typically invested in immunogen selection but, erroneously, the route of administration is not usually a major concern despite the fact that it can strongly influence efficacy. The skin is now considered a key component of the lymphatic system with tremendous potential as a target for vaccination. The purpose of this review is to present the immunological basis of the skin-associated lymphoid tissue, so as to provide understanding of the skin vaccination strategies. Several strategies are currently being developed for the transcutaneous delivery of antigens. The classical, mechanical or chemical disruptions versus the newest approaches based on microneedles for antigen delivery through the skin are discussed herein.
Collapse
|
2
|
Caimi AT, Parra F, de Farias MA, Portugal RV, Perez AP, Romero EL, Morilla MJ. Topical vaccination with super-stable ready to use nanovesicles. Colloids Surf B Biointerfaces 2016; 152:114-123. [PMID: 28103528 DOI: 10.1016/j.colsurfb.2016.12.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/18/2016] [Accepted: 12/24/2016] [Indexed: 12/28/2022]
Abstract
Ultradeformable archaeosomes (UDA) are nanovesicles made of total polar archaeolipids (TPA) from the archaea Halorubrum tebenquichense, soybean phosphatidylcholine and sodium cholate (3:3:1w/w). Fresh dispersions of UDA including different type of antigens are acknowledged as efficient topical vaccination agents. UDA dispersions however, if manufactured for pharmaceutical use, have to maintain colloidal stability upon liposomicidal processes such as sterilization and lyophilization (SLRUDA), needed to extend shelf life during storage. The remaining capacity of SLRUDA to act as adjuvants was therefore tested here for the first time. Another unexplored issue addressed here, is the outcome of replacing classical antigen inclusion into nanovesicles by their physical mixture. Our results showed that UDA behaved as super-stable nanovesicles because of its high endurance during heat sterilization and storage for 5 months at 40°C. The archaeolipid content of UDA however, was insufficient to protect it against lyophilization, which demanded the addition of 2.5% v/v glycerol plus 0.07% w/v glucose. No significant differences were found between serum anti-ovalbumin (OVA) IgG titers induced by fresh or SLRUDA upon topical application of 4 weekly doses at 600μg lipids/75μg OVA to Balb/c mice. Finally, SLRUDA mixed with OVA elicited the same Th2 biased plus a non-specific cell mediated response than OVA encapsulated within UDA. Concluding, we showed that TPA is key component of super-stable nanovesicles that confers resistance to heat sterilization and to storage under cold-free conditions. The finding of SLRUDA as ready-to-use topical adjuvant would lead to simpler manufacture processing and cheaper products. .
Collapse
Affiliation(s)
- Ayelen Tatiana Caimi
- Nanomedicine Research Program, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Federico Parra
- Nanomedicine Research Program, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Marcelo Alexandre de Farias
- Brazilian Nanotechnology National Laboratory, CNPEM, Caixa Postal 6192, CEP 13.083-970, Campinas, São Paulo, Brazil
| | - Rodrigo Villares Portugal
- Brazilian Nanotechnology National Laboratory, CNPEM, Caixa Postal 6192, CEP 13.083-970, Campinas, São Paulo, Brazil
| | - Ana Paula Perez
- Nanomedicine Research Program, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Eder Lilia Romero
- Nanomedicine Research Program, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Maria Jose Morilla
- Nanomedicine Research Program, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina.
| |
Collapse
|
3
|
Abstract
Nanoscale materials hold great promise in the therapeutic field. In particular, as carriers or vectors, they help bioactive molecules reach their primary targets. Furthermore, by themselves, certain nanomaterials-regarded as protective-can modulate particular metabolic pathways that are deregulated in pathological situations. They can also synergistically improve the effects of a payload drug. These properties are the basis of their appeal. However, nanoscale materials can also have intrinsic properties that limit their use, and this is the case for certain types of nanomaterials that influence autophagy. This property can be beneficial in some pathological settings, but in others, if the autophagic flux is already accelerated, it can be deleterious. This is notably the case for systemic lupus erythematosus (SLE) and other chronic inflammatory diseases, including certain neurological diseases. The nanomaterial-autophagy interaction therefore must be treated with caution for therapeutic molecules and peptides that require vectorization for their administration.
Collapse
Affiliation(s)
- Alberto Bianco
- CNRS, Immunopathologie et chimie thérapeutique, Institut de Biologie Moléculaire et Cellulaire, UPR3572 CNRS, 15 rue René Descartes, 67000, Strasbourg, France
| | - Sylviane Muller
- CNRS, Immunopathologie et chimie thérapeutique, Institut de Biologie Moléculaire et Cellulaire, UPR3572 CNRS, 15 rue René Descartes, 67000, Strasbourg, France. .,University of Strasbourg, Institute for Advanced Study, 5 allée du Général Rouvillois, 67083, Strasbourg, France.
| |
Collapse
|
4
|
Cheng S, Lin Z, Liu X, Zheng W, Lu G, Tu Z, Zhang J, Zheng J, Yu X. The epitope analysis of an antibody specifically against Vibrio cholerae O1 Ogawa by phage library study. J Microbiol Methods 2015; 117:22-7. [PMID: 26172085 DOI: 10.1016/j.mimet.2015.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/03/2015] [Accepted: 07/05/2015] [Indexed: 11/29/2022]
Abstract
To prevent epidemic and pandemic cholera disease, an indispensible approach is to develop cholera vaccines based on comprehensive epitope information of this pathogen. This study aimed to utilize our previously raised monoclonal antibody IXiao3G6, which can recognize an epitope in lipopolysaccharide (LPS) sites of Ogawa, to identify mimetic peptides, which may represent Ogawa LPS's epitope information. A phage display library screening using IXiao3G6 antibody resulted in identification of a mimic peptide (MP) with high avidity. A recombinant protein, containing one cholera toxin subunit B (CTB) and two MP repeats (CTB-(MP)2), was subsequently constructed and investigated for its immunological characteristics. The findings collectively demonstrated that the MP presenting phages and CTB-(MP)2 recombinant protein were both capable of inhibiting the interaction between IXiao3G6 and Ogawa/Ogawa LPS specifically in a dose-dependent manner.
Collapse
Affiliation(s)
- Shiliang Cheng
- Clinical Laboratory, Shandong Jiaotong Hospital, Jinan, Shandong, China
| | - Zhen Lin
- Key Laboratory of Molecular Biology on Infectious Diseases, Chongqing Medical University, Chongqing, China
| | - Xinfeng Liu
- Clinical Laboratory, Shandong Jiaotong Hospital, Jinan, Shandong, China
| | - Wen Zheng
- Clinical Laboratory, Shandong Jiaotong Hospital, Jinan, Shandong, China
| | - Gang Lu
- Artron BioResearch Inc., Burnaby, British Columbia, Canada
| | - Zhiguang Tu
- Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing, China
| | - Jun Zhang
- Artron BioResearch Inc., Burnaby, British Columbia, Canada
| | - Jian Zheng
- Key Laboratory of Molecular Biology on Infectious Diseases, Chongqing Medical University, Chongqing, China
| | - Xiaolin Yu
- Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing, China..
| |
Collapse
|
5
|
Fujiyama T, Oze I, Yagi H, Hashizume H, Matsuo K, Hino R, Kamo R, Imayama S, Hirakawa S, Ito T, Takigawa M, Tokura Y. Induction of cytotoxic T cells as a novel independent survival factor in malignant melanoma with percutaneous peptide immunization. J Dermatol Sci 2014; 75:43-8. [PMID: 24802712 DOI: 10.1016/j.jdermsci.2014.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/03/2014] [Accepted: 04/05/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Malignant melanoma (MM) often shows multiple chemo-resistance, leading to poor prognosis of the patients. Therapeutic anti-cancer vaccination may be a feasible way to prolong the survival of patients. We have demonstrated that application of antigenic peptides via the tape-stripped, horny layer-removed skin, known as percutaneous peptide immunization (PPI), induces tumor cell-specific cytotoxic T lymphocytes (CTLs) in rodents and humans. OBJECTIVE To evaluate clinical significance of PPI in advanced MM patients. METHODS We performed PPI in 59 patients undergoing advanced MM with Melan-A, tyrosinase, MAGE-2, MAGE-3 and gp-100 peptides based on HLA typing in individuals. The induction of CTLs was assessed by the tetramer or pentamer flow cytometry in 35 patients. Patients showing positive CTL responses to all antigens were defined as complete responder (n=18), and those showing negative responses to at least one applied antigen were classified as incomplete responder (n=17). The primary endpoint of the study was overall survival (OS). For statistical analysis, log-rank test, univariate and multivariate Cox proportional hazard model were used. RESULTS OS of the complete responders was longer than that of the incomplete responders (median survival time: 55.8 vs 20.3 months, log rank P=0.089). A hazard ratio for the complete responders relative to the incomplete responders was 0.23 (95% confidence interval: 0.06-0.93, P=0.039) in a multivariate Cox proportional hazard model. CONCLUSION The induction of CTLs was a novel independent survival factor, and the induction of peptide-specific CTLs by PPI contributes to the prolonged survival and represents an impact on therapeutic approaches in MM. Unique trial number: UMIN000005706.
Collapse
Affiliation(s)
- Toshiharu Fujiyama
- Department of Dermatology, Hamamatsu University School of Medicine, Japan.
| | - Isao Oze
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Japan
| | - Hiroaki Yagi
- Department of Dermatology, Hamamatsu University School of Medicine, Japan
| | - Hideo Hashizume
- Department of Dermatology, Hamamatsu University School of Medicine, Japan
| | - Keitaro Matsuo
- Department of Preventive Medicine, Kyusyu University, Japan
| | - Ryosuke Hino
- Department of Dermatology, University of Occupational and Environmental Health, Japan
| | - Riei Kamo
- Department of Dermatology, Osaka City University Graduate School of Medicine, Japan
| | | | - Satoshi Hirakawa
- Department of Dermatology, Hamamatsu University School of Medicine, Japan
| | - Taisuke Ito
- Department of Dermatology, Hamamatsu University School of Medicine, Japan
| | - Masahiro Takigawa
- Department of Dermatology, Hamamatsu University School of Medicine, Japan
| | - Yoshiki Tokura
- Department of Dermatology, Hamamatsu University School of Medicine, Japan
| |
Collapse
|
6
|
Croft NP, Purcell AW. Peptidomimetics: modifying peptides in the pursuit of better vaccines. Expert Rev Vaccines 2014; 10:211-26. [DOI: 10.1586/erv.10.161] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Briand JP, Schall N, Muller S. Generation of self-peptides to treat systemic lupus erythematosus. Methods Mol Biol 2014; 1134:173-192. [PMID: 24497362 DOI: 10.1007/978-1-4939-0326-9_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Synthetic peptides are attracting increasing attention as therapeutics. Despite their potential, however, only a few selected peptides have been able to enter in clinical trials for chronic autoimmune diseases and systemic lupus erythematosus (SLE) in particular. Here, we describe and discuss a series of assays, which may help in characterizing valuable candidate peptides that were applied in our laboratory to develop the lupus P140 peptide program. The different steps of selection include the choice of the initial autoantigen, the design, synthesis and purification of peptides, their preliminary screen by measuring cytokines produced ex vivo by T cells and their binding to major histocompatibility complex class II (MHCII) molecules, their capacity to lower peripheral cell hyperproliferation in lupus-prone MRL/lpr mice, and, as a final step, their ability to slow down the development of lupus disease in model animals.
Collapse
Affiliation(s)
- Jean-Paul Briand
- Immunopathology and Therapeutic Chemistry, CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | |
Collapse
|
8
|
Sasaki H, Ishikawa H, Kojima K, Itoh M, Matsumoto T, Itoh T, Hosomi O, Kawamoto E. Intranasal immunization with a non-adjuvanted adhesive protein descended from Pasteurella pneumotropica and its preventive efficacy against opportunistic infection in mice. Vaccine 2013; 31:5729-35. [DOI: 10.1016/j.vaccine.2013.09.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/25/2013] [Accepted: 09/19/2013] [Indexed: 12/14/2022]
|
9
|
Debache K, Hemphill A. Differential effects of intranasal vaccination with recombinant NcPDI in different mouse models ofNeospora caninuminfection. Parasite Immunol 2012; 35:11-20. [DOI: 10.1111/pim.12013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 10/02/2012] [Indexed: 01/28/2023]
Affiliation(s)
- K. Debache
- Institute of Parasitology; Vetsuisse Faculty; University of Berne; Berne; Switzerland
| | - A. Hemphill
- Institute of Parasitology; Vetsuisse Faculty; University of Berne; Berne; Switzerland
| |
Collapse
|
10
|
Schall N, Page N, Macri C, Chaloin O, Briand JP, Muller S. Peptide-based approaches to treat lupus and other autoimmune diseases. J Autoimmun 2012; 39:143-53. [PMID: 22727561 DOI: 10.1016/j.jaut.2012.05.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 05/20/2012] [Indexed: 01/15/2023]
Abstract
After a long period where the potential of therapeutic peptides was let into oblivion and even dismissed, there is a revival of interest in peptides as potential drug candidates. Novel strategies for limiting metabolism and improve their bioavailability, and alternative routes of administration have emerged. This resulted in a large number of peptide-based drugs that are now being marketed in different indications. Regarding autoimmunity, successful data have been reported in numerous mouse models of autoimmune inflammation, yet relatively few clinical trials based on synthetic peptides are currently underway. This review reports on peptides that show much promises in appropriate mouse models of autoimmunity and describes in more detail clinical trials based on peptides for treating autoimmune patients. A particular emphasis is given to the 21-mer peptide P140/Lupuzor that has completed successfully phase I, phase IIa and phase IIb clinical trials for systemic lupus erythematosus.
Collapse
Affiliation(s)
- Nicolas Schall
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
11
|
Intranasal administration of an inactivated Yersinia pestis vaccine with interleukin-12 generates protective immunity against pneumonic plague. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1925-35. [PMID: 21880856 DOI: 10.1128/cvi.05117-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Inhalation of Yersinia pestis causes pneumonic plague, which rapidly progresses to death. A previously licensed killed whole-cell vaccine is presently unavailable due to its reactogenicity and inconclusive evidence of efficacy. The present study now shows that vaccination intranasally (i.n.) with inactivated Y. pestis CO92 (iYp) adjuvanted with interleukin-12 (IL-12) followed by an i.n. challenge with a lethal dose of Y. pestis CO92 prevented bacterial colonization and protected 100% of mice from pneumonic plague. Survival of the vaccinated mice correlated with levels of systemic and lung antibodies, reduced pulmonary pathology and proinflammatory cytokines, and the presence of lung lymphoid cell aggregates. Protection against pneumonic plague was partially dependent upon Fc receptors and could be transferred to naïve mice with immune mouse serum. On the other hand, protection was not dependent upon complement, and following vaccination, depletion of CD4 and/or CD8 T cells before challenge did not affect survival. In summary, the results demonstrate the safety, immunogenicity, and protective efficacy of i.n. administered iYp plus IL-12 in a mouse model of pneumonic plague.
Collapse
|
12
|
Epicutaneous/transcutaneous allergen-specific immunotherapy: rationale and clinical trials. Curr Opin Allergy Clin Immunol 2011; 10:582-6. [PMID: 20827178 DOI: 10.1097/aci.0b013e32833f1419] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW IgE-mediated allergies, such as allergic rhinoconjunctivitis and asthma, have become highly prevalent, today affecting up to 35% of the population in industrialized countries. Allergen immunotherapy (also called hyposensitization therapy, desensitization or allergen-specific immunotherapy), the administration of gradually increasing amounts of an allergen, either subcutaneously or via the sublingual or oral route is effective. However, only few allergy patients (<5%) choose immunotherapy, as treatment duration is over years and because allergen administrations are associated with local and in some cases even systemic allergic side effects due to allergen accidentally reaching the circulation. Therefore, ideally the allergen should be administered to a site that contains high numbers of potent antigen-presenting cells in order to enhance efficacy and shorten treatment duration, and ideally that site should also be nonvascularized in order to prevent both systemic distribution of the allergen and systemic allergic side effects. The epidermis, a nonvascularized multilayer epithelium that contains high numbers of potent antigen-presenting Langerhans cells, could therefore be an interesting administration route. RECENT FINDINGS We have recently reintroduced transcutaneous or epicutaneous allergen-specific immunotherapy (EPIT) as treatment option for IgE-mediated allergies. This method was found efficacious and safe. Few applications of allergens using skin patches with a treatment duration of a few weeks were sufficient to achieve lasting relief. SUMMARY This review gives an overview on the history, the rationale, and the mechanisms of transcutaneous/epicutaneous immunotherapy.
Collapse
|
13
|
Intraperitoneal and intra-nasal vaccination of mice with three distinct recombinant Neospora caninum antigens results in differential effects with regard to protection against experimental challenge with Neospora caninum tachyzoites. Parasitology 2009; 137:229-40. [PMID: 19835644 DOI: 10.1017/s0031182009991259] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recombinant NcPDI(recNcPDI), NcROP2(recNcROP2), and NcMAG1(recNcMAG1) were expressed in Escherichia coli and purified, and evaluated as potential vaccine candidates by employing the C57Bl/6 mouse cerebral infection model. Intraperitoneal application of these proteins suspended in saponin adjuvants lead to protection against disease in 50% and 70% of mice vaccinated with recNcMAG1 and recNcROP2, respectively, while only 20% of mice vaccinated with recNcPDI remained without clinical signs. In contrast, a 90% protection rate was achieved following intra-nasal vaccination with recNcPDI emulsified in cholera toxin. Only 1 mouse vaccinated intra-nasally with recNcMAG1 survived the challenge infection, and protection achieved with intra-nasally applied recNcROP2 was at 60%. Determination of cerebral parasite burdens by real-time PCR showed that these were significantly reduced only in recNcROP2-vaccinated animals (following intraperitoneal and intra-nasal application) and in recNcPDI-vaccinated mice (intra-nasal application only). Quantification of viable tachyzoites in brain tissue of intra-nasally vaccinated mice showed that immunization with recNcPDI resulted in significantly decreased numbers of live parasites. These data show that, besides the nature of the antigen, the protective effect of vaccination also depends largely on the route of antigen delivery. In the case of recNcPDI, the intra-nasal route provides a platform to generate a highly protective immune response.
Collapse
|
14
|
Senti G, Graf N, Haug S, Rüedi N, von Moos S, Sonderegger T, Johansen P, Kündig TM. Epicutaneous allergen administration as a novel method of allergen-specific immunotherapy. J Allergy Clin Immunol 2009; 124:997-1002. [PMID: 19733905 DOI: 10.1016/j.jaci.2009.07.019] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 06/24/2009] [Accepted: 07/10/2009] [Indexed: 01/30/2023]
Abstract
BACKGROUND Subcutaneous allergen-specific immunotherapy is an effective treatment of IgE-mediated allergies, but it requires repeated allergen injections with a risk of systemic allergic reactions. Transcutaneous immunotherapy may improve patient compliance and safety. OBJECTIVE To assess the safety and efficacy of epicutaneous allergen immunotherapy. METHODS This monocentric, placebo-controlled, double-blind trial was conducted from March 2006 to December 2007 at the University Hospital Zurich. Thirty-seven adult patients with positive skin prick and nasal provocation tests to grass pollen were randomized to receive patches containing either allergen (n = 21) or placebo (n = 16). Treatment took place before and during the pollen season 2006, and follow-up visits took place before (n = 26) and after the pollen season 2007 (n = 30). The primary outcome measures were nasal provocation tests. RESULTS Allergen-treated patients showed significantly decreased scores in nasal provocation tests in the first (P < .001) and second year (P = .003) after treatment. In contrast, placebo-treated patients had decreased scores in the first treatment year, 2006 (P = .03), but the effect diminished in the second year (P = .53). Although improvement of nasal provocation test scores was not significantly better in the verum versus placebo group, the overall treatment success was rated significantly higher by the allergen-treated group than by the placebo group (2006, P = .02; 2007, P = .005). No severe adverse events were observed. Occurrence of eczema after allergen patch applications proved stimulation of specific T-cell responses, but was noted as an adverse effect of the treatment. CONCLUSION Epicutaneous allergen immunotherapy is a promising strategy to treat allergies and merits further investigation.
Collapse
Affiliation(s)
- Gabriela Senti
- Unit for Experimental Immunotherapy, University Hospital of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Carbohydrates in the form of capsular polysaccharides and/or lipopolysaccharides are the major components on the surface of bacteria. These molecules are important virulence factors in many bacteria isolated from infected persons. Immunity against these components confers protection against the disease. However, developing vaccines based on polysaccharides is difficult and several problems have to be solved. First of all, most of the bacterial polysaccharides are T-lymphocyte independent antigens. Anti-polysaccharide immune response is characterised by lack of T-lymphocyte memory, isotype restriction and delayed ontogeny. Children below 2 years of age and elderly respond poorly to polysaccharide antigens. Secondly, the wide structural heterogeneity among the polysaccharides within and between species is also a problem. Thirdly, some bacterial polysaccharides are poor immunogens in humans due to their structural similarities with glycolipids and glycoproteins present in man. The T-lymphocyte independent nature of a polysaccharide may be overcome by conjugating the native or depolymerised polysaccharide to a protein carrier. Such neoglycoconjugates have been proven to be efficient in inducing T-lymphocyte dependent immunity and to protect both infants as well as elderly from disease. Another approach to circumvent the T-lymphocyte independent property of polysaccharides is to select peptides mimicking the immunodominant structures. Several examples of such peptides have been described.
Collapse
Affiliation(s)
- Andrej Weintraub
- Karolinska Institute, Department of Laboratory Medicine, Division of Clinical Bacteriology, Huddinge University Hospital, S-141 86 Stockholm, Sweden.
| |
Collapse
|
16
|
Klimuk SK, Najar HM, Semple SC, Aslanian S, Dutz JP. Epicutaneous application of CpG oligodeoxynucleotides with peptide or protein antigen promotes the generation of CTL. J Invest Dermatol 2004; 122:1042-9. [PMID: 15102096 DOI: 10.1111/j.0022-202x.2004.22411.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Immunostimulatory oligodeoxynucleotides (ODN) are effective adjuvants in the induction of humoral and cellular immune responses when administered parenterally with antigen. The skin has recently become a target organ for the design of non-invasive vaccine technologies. Using ovalbumin (OVA) as a model antigen, we demonstrate that the application of ODN sequences to tape-stripped skin promotes the induction of potent cytotoxic T lymphocyte (CTL) responses to co-administered peptide. Induction of peptide-specific CTL required the presence of CpG motifs within the ODN. CTL afforded tumor protection against a tumor expressing an immunodominant OVA CTL epitope. CTL could also be induced to whole protein administered onto the skin. Differential CpG sequence activity was noted with respect to the induction of CTL to epicutaneous protein with an ODN sequence containing a poly-G motif having an optimal effect. Peptide-specific CTL could be detected in the peripheral blood as early as 6 d after a single immunization. These results highlight the potential of the bare skin as a route for vaccine development and indicate an important role for immunostimulatory ODN as adjuvants to generate functional CTL with the help of the skin immune system.
Collapse
Affiliation(s)
- Sandra K Klimuk
- Inex Pharmaceuticals Corporation, Burnaby, British Columbia, Canada
| | | | | | | | | |
Collapse
|
17
|
Yano A, Onozuka A, Matin K, Imai S, Hanada N, Nisizawa T. RGD motif enhances immunogenicity and adjuvanicity of peptide antigens following intranasal immunization. Vaccine 2004; 22:237-43. [PMID: 14615151 DOI: 10.1016/s0264-410x(03)00561-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of peptides for various aspects of medical science has been a significant advance. Peptide-based vaccines are promising, but weak immunogenic potency is impeding the clinical application. We have remarkably enhanced the immunogenicity of peptide antigens by addition of motifs that bind to cell attachment proteins, such as arginine-glysine-aspartate (RGD), to the amino acid sequence. The modified peptides induced antigen-specific serum antibodies by intranasal immunization without adjuvants. RGD, an integrin-binding motif was the strongest, among several molecules tested in this experiment, giving an average of 10 times enhancement of antibody titers when incorporated into several peptide antigens. The peptides also acted as an efficient adjuvant following the intranasal immunization with protein antigens. Our data support the feasibility of developing peptide vaccines and peptide adjuvants for intranasal vaccination.
Collapse
Affiliation(s)
- Akira Yano
- Department of Oral Health, National Institute of Public Health, Toyama 1-23-1, Shinjuku-ku, 163-8640, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Berry JD, Licea A, Popkov M, Cortez X, Fuller R, Elia M, Kerwin L, Kubitz D, Barbas CF. Rapid monoclonal antibody generation via dendritic cell targeting in vivo. HYBRIDOMA AND HYBRIDOMICS 2003; 22:23-31. [PMID: 12713687 DOI: 10.1089/153685903321538053] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dendritic cells (DC) are the professional antigen-presenting cells of the immune system. Previous studies have demonstrated that targeting foreign antigens to DC leads to enhanced antigen (Ag)-specific responses in vivo. However, the utility of this strategy for the generation of MAbs has not been investigated. To address this question we immunized mice with IgG-peptide conjugates prepared with the hamster anti-murine CD11c MAb N418. Synthetic peptides corresponding to two different exposed regions of DC-specific ICAM-3 grabbing nonintegrin (DC-SIGN), a human C-type lectin, were conjugated to N418 using thiol-based chemistry. The N418 MAb served as the targeting molecule and synthetic peptides as the Ag (MAb-Ag). A rapid and peptide specific serum IgG response was produced by Day 7 when the synthetic peptides were linked to the N418 MAb, compared to peptide co-delivered with the N418 without linkage. Spleen cells from N418-peptide immunized mice were fused on Day 10, and three IgG1/k monoclonal antibodies (MAbs) were selected to one of the peptide epitopes (MID-peptide). One of the MAbs, Novik 2, bound to two forms of recombinant DC-SIGN protein in enzyme-linked immunosorbent assay (ELISA), and was specifically inhibited by the MID-peptide in solution. Two of these MAbs show specific binding to DC-SIGN expressed by cultured human primary DC. We conclude that in vivo DC targeting enhances the immunogenicity of synthetic peptides and is an effective method for the rapid generation of MAbs to predetermined epitopes.
Collapse
Affiliation(s)
- Jody D Berry
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, BCC-515, 10550 North Torrey Pines Road, La Jolla, CA 92126, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ben-Yedidia T, Beignon AS, Partidos CD, Muller S, Arnon R. A retro-inverso peptide analogue of influenza virus hemagglutinin B-cell epitope 91-108 induces a strong mucosal and systemic immune response and confers protection in mice after intranasal immunization. Mol Immunol 2002; 39:323-31. [PMID: 12220890 DOI: 10.1016/s0161-5890(02)00095-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this study, a novel approach for the development of a peptide-based vaccine has been tested. We investigated the possibility of replacing an all-L amino acid peptide sequence corresponding to the protective B-cell epitope hemagglutinin (HA) 91-108 from influenza HA with a retro-inverso analogue encompassing this sequence. Retro-inverso peptides are composed of D-amino acids assembled in a reverse order from that of the parent L-sequence, thus maintaining the overall topology of the native sequence. This explains the observed antigenic cross-reactivity with anti-influenza virus antibodies. Mice immunized intranasally with the ovalbumin-conjugated retro-inverso analogue and cholera toxin as an adjuvant, produced strong systemic (serum IgG) and mucosal (lung IgA) antibody responses, and were protected against intranasal challenge with a lethal dose of influenza virus. The weight loss pattern in the protected group indicated that the vaccinated animals developed a disease of low severity resulting in a quick recovery. Furthermore, splenocytes of the immunized mice cultured in the presence of inactivated influenza virus, secreted high levels of IFN-gamma. The half-life of the retro-inverso analogue in the presence of lung homogenate proteases was at least 700 times greater than that of the parent L-peptide. These results demonstrate that peptidomimetic analogues with high resistance to proteolytic degradation are very effective immunogens when administered via the intranasal route, inducing protective immunity against a viral infection. This approach might be advantageous for vaccine development.
Collapse
Affiliation(s)
- Tamar Ben-Yedidia
- Department of Immunology, The Weizmann Institute of Science, P.O. Box 26, 76100, Rehovot, Israel
| | | | | | | | | |
Collapse
|
20
|
Gaur R, Gupta PK, Banerjea AC, Singh Y. Effect of nasal immunization with protective antigen of Bacillus anthracis on protective immune response against anthrax toxin. Vaccine 2002; 20:2836-9. [PMID: 12034111 DOI: 10.1016/s0264-410x(02)00207-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Anthrax toxin consists of three proteins: protective antigen (PA), lethal factor (LF) and edema factor (EF). PA in combination with LF (lethal toxin) is lethal to mammalian cells and is the major component of human anthrax vaccine. Immunization with PA elicits the production of neutralizing antibodies that form a major component of the protective immunity against anthrax. Recent reports have shown that neutralizing antibody titres can serve as a reliable surrogate marker for protection against anthrax. In the present study, the use of non-invasive routes such as bare skin and nose for immunization with PA on its protective immune response was investigated. Mice were inoculated intranasally (i.n.), subcutaneously (s.c.) or through the skin on days 0, 15 and 28 with purified PA. Intranasal and subcutaneous immunization with PA resulted in high IgG ELISA titers. The predominant subclass in each group was IgG1. High titres of IgA were observed only in i.n. immunized mice. In a cytotoxicity assay these sera protected J774A.1 cells from lethal toxin challenge. The results suggest that non-invasive nasal immunization may be useful in improving vaccination strategies against anthrax.
Collapse
Affiliation(s)
- Reetika Gaur
- Centre for Biochemical Technology Mall Road, Near Jubilee Hall, Delhi-110 007, India
| | | | | | | |
Collapse
|
21
|
Beignon AS, Briand JP, Rappuoli R, Muller S, Partidos CD. The LTR72 mutant of heat-labile enterotoxin of Escherichia coli enhances the ability of peptide antigens to elicit CD4(+) T cells and secrete gamma interferon after coapplication onto bare skin. Infect Immun 2002; 70:3012-9. [PMID: 12010992 PMCID: PMC128003 DOI: 10.1128/iai.70.6.3012-3019.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2001] [Revised: 01/23/2002] [Accepted: 03/11/2002] [Indexed: 01/08/2023] Open
Abstract
Application of antigens with an adjuvant onto bare skin is a needle-free and pain-free immunization procedure that delivers antigens to the immunocompetent cells of the epidermis. We tested here the immunogenicity and adjuvanticity of two mutants of heat-labile enterotoxin (LT) of Escherichia coli, LTK63 and LTR72. Both mutants were shown to be immunogenic, inducing serum and mucosal antibody responses. The application of LTK63 and LTR72 to bare skin induced significant protection against intraperitoneal challenge with a lethal dose of LT. In addition, both LT mutants enhanced the capacity of peptides TT:830-843 and HA:307-319 (representing T-helper epitopes from tetanus toxin and influenza virus hemagglutinin, respectively) to elicit antigen-specific CD4(+) T cells after coapplication onto bare skin. However, only mutant LTR72 was capable of stimulating the secretion of high levels of gamma interferon. These findings demonstrate that successful skin immunization protocols require the selection of the right adjuvant in order to induce the appropriate type of antigen-specific immune responses in a selective and reliable way. Moreover, the use of adjuvants such the LTK63 and LTR72 mutants, with no or low residual toxicity, holds a lot of promise for the future application of vaccines to the bare skin of humans.
Collapse
Affiliation(s)
- A.-S. Beignon
- UPR 9021, Institut de Biologie Moléculaire et Cellulaire, CNRS, F-67084 Strasbourg, France, IRIS, Chiron, SpA, 53100 Siena, Italy
| | - J.-P. Briand
- UPR 9021, Institut de Biologie Moléculaire et Cellulaire, CNRS, F-67084 Strasbourg, France, IRIS, Chiron, SpA, 53100 Siena, Italy
| | - R. Rappuoli
- UPR 9021, Institut de Biologie Moléculaire et Cellulaire, CNRS, F-67084 Strasbourg, France, IRIS, Chiron, SpA, 53100 Siena, Italy
| | - S. Muller
- UPR 9021, Institut de Biologie Moléculaire et Cellulaire, CNRS, F-67084 Strasbourg, France, IRIS, Chiron, SpA, 53100 Siena, Italy
| | - C. D. Partidos
- UPR 9021, Institut de Biologie Moléculaire et Cellulaire, CNRS, F-67084 Strasbourg, France, IRIS, Chiron, SpA, 53100 Siena, Italy
| |
Collapse
|
22
|
Abstract
Factors affecting the development of smallpox vaccination techniques are discussed and 11 different techniques for inoculating the vaccine are identified and described. The earliest, the simple cut or scratch, was already widely used for smallpox inoculation (variolation). Later, when it became evident that Jenner's claim of lifelong protection was not being achieved parallel, cross-hatched and rotatory methods which produced more severe reactions were introduced, often at more than one site. These methods were then discontinued and even prohibited in some countries, when improved vaccine quality resulted in excessively-severe reactions with such techniques. They were replaced by improved methods such as multiple pressure and multiple puncture with the bifurcated needle, both of which were used extensively. However, the simple scratch method remained popular until the end of the vaccination era. Although the instruments used are not discussed in detail, representative examples of the wide variety used at various times and for the various techniques are illustrated. Again, the simplest and earliest designs remained in use throughout.
Collapse
Affiliation(s)
- Derrick Baxby
- Department of Medical Microbiology, Liverpool University, L69 3GA, UK
| |
Collapse
|
23
|
Abstract
Although influenza activity throughout the world has been relatively low during the past year, epidemics of influenza A, in particular, which are caused by new virus variants, continue to be a major public health problem. Widespread vaccination is the only rational measure that can be used for the prevention of illness in key risk groups. Although current inactivated split/subunit vaccines are reasonably effective, significant improvements have been shown to be possible in the boosting of responses by the use of particular adjuvants and/or the direct administration of vaccines to the respiratory tract. Live attenuated vaccines, also administered directly to the respiratory tract, have continued to be shown to be safe and effective, and, in the longer term, probably will have a major role in influenza prophylaxis, especially in children and young adults.
Collapse
|
24
|
Beignon AS, Briand JP, Muller S, Partidos CD. Immunization onto bare skin with synthetic peptides: immunomodulation with a CpG-containing oligodeoxynucleotide and effective priming of influenza virus-specific CD4+ T cells. Immunology 2002; 105:204-12. [PMID: 11872096 PMCID: PMC1782656 DOI: 10.1046/j.0019-2805.2001.01357.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2001] [Revised: 09/06/2001] [Accepted: 10/24/2001] [Indexed: 12/18/2022] Open
Abstract
Exploiting the immune system of the skin for vaccine administration offers an attractive alternative to the currently used invasive immunization procedures. In this study we report that a synthetic peptide representing a T-helper (Th) epitope from influenza virus haemagglutinin (aa 307--319) can be an effective immunogen when coapplied with cholera toxin (CT) onto bare skin. Proliferation of both peptide- and influenza virus-specific CD4+ T cells was measured in lymphocyte cultures from spleens and regional lymph nodes. The presence of the CpG oligodeoxynucleotide 1826 in the peptide/CT formulation, enhanced the proliferation of peptide- and virus-specific T cells as measured by the conventional [(3)H]thymidine uptake and interleukin (IL)-2 assays. Furthermore, the bias towards Th2-type of responses stimulated by CT was shifted towards Th1 as demonstrated (i) by the increase of interferon-gamma and decrease of IL-4 cytokine levels measured in culture supernatants, (ii) by the predominance of IG2a anti-CT antibodies in the serum, and (iii) by the down-regulation of total serum IgE antibody levels. These findings demonstrate the potential of the bare skin as a non-invasive route for administration of small molecular size peptide antigens. Furthermore, with the selection and combination of the appropriate type of adjuvants, immune responses can be modulated towards the desired type of Th phenotype.
Collapse
Affiliation(s)
- Anne-Sophie Beignon
- Immunologie et Chimie Thérapeutiques, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, F-67084 Strasbourg, France
| | | | | | | |
Collapse
|
25
|
Nasal vaccination: a non-invasive vaccine delivery method that holds great promise for the future. Adv Drug Deliv Rev 2001. [DOI: 10.1016/s0169-409x(01)00176-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|