1
|
Zhuang Z, Zhuo J, Yuan Y, Chen Z, Zhang S, Zhu A, Zhao J, Zhao J. Harnessing T-Cells for Enhanced Vaccine Development against Viral Infections. Vaccines (Basel) 2024; 12:478. [PMID: 38793729 PMCID: PMC11125924 DOI: 10.3390/vaccines12050478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Despite significant strides in vaccine research and the availability of vaccines for many infectious diseases, the threat posed by both known and emerging infectious diseases persists. Moreover, breakthrough infections following vaccination remain a concern. Therefore, the development of novel vaccines is imperative. These vaccines must exhibit robust protective efficacy, broad-spectrum coverage, and long-lasting immunity. One promising avenue in vaccine development lies in leveraging T-cells, which play a crucial role in adaptive immunity and regulate immune responses during viral infections. T-cell recognition can target highly variable or conserved viral proteins, and memory T-cells offer the potential for durable immunity. Consequently, T-cell-based vaccines hold promise for advancing vaccine development efforts. This review delves into the latest research advancements in T-cell-based vaccines across various platforms and discusses the associated challenges.
Collapse
Affiliation(s)
- Zhen Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Jianfen Zhuo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Yaochang Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Zhao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Shengnan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
- Guangzhou National Laboratory, Guangzhou 510005, China
| |
Collapse
|
2
|
Joseph J, Sandel G, Kulkarni R, Alatrash R, Herrera BB, Jain P. Antibody and Cell-Based Therapies against Virus-Induced Cancers in the Context of HIV/AIDS. Pathogens 2023; 13:14. [PMID: 38251321 PMCID: PMC10821063 DOI: 10.3390/pathogens13010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Infectious agents, notably viruses, can cause or increase the risk of cancer occurrences. These agents often disrupt normal cellular functions, promote uncontrolled proliferation and growth, and trigger chronic inflammation, leading to cancer. Approximately 20% of all cancer cases in humans are associated with an infectious pathogen. The International Agency for Research on Cancer (IARC) recognizes seven viruses as direct oncogenic agents, including Epstein-Barr Virus (EBV), Kaposi's Sarcoma-associated herpesvirus (KSHV), human T-cell leukemia virus type-1 (HTLV-1), human papilloma virus (HPV), hepatitis C virus (HCV), hepatitis B virus (HBV), and human immunodeficiency virus type 1 (HIV-1). Most viruses linked to increased cancer risk are typically transmitted through contact with contaminated body fluids and high-risk behaviors. The risk of infection can be reduced through vaccinations and routine testing, as well as recognizing and addressing risky behaviors and staying informed about public health concerns. Numerous strategies are currently in pre-clinical phases or undergoing clinical trials for targeting cancers driven by viral infections. Herein, we provide an overview of risk factors associated with increased cancer incidence in people living with HIV (PLWH) as well as other chronic viral infections, and contributing factors such as aging, toxicity from ART, coinfections, and comorbidities. Furthermore, we highlight both antibody- and cell-based strategies directed against virus-induced cancers while also emphasizing approaches aimed at discovering cures or achieving complete remission for affected individuals.
Collapse
Affiliation(s)
- Julie Joseph
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.J.); (G.S.)
| | - Grace Sandel
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.J.); (G.S.)
| | - Ratuja Kulkarni
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.J.); (G.S.)
| | - Reem Alatrash
- Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA; (R.A.); (B.B.H.)
- Department of Medicine, Division of Allergy, Immunology and Infectious Diseases, Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Bobby Brooke Herrera
- Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA; (R.A.); (B.B.H.)
- Department of Medicine, Division of Allergy, Immunology and Infectious Diseases, Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Pooja Jain
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.J.); (G.S.)
| |
Collapse
|
3
|
Mulherkar TH, Gómez DJ, Sandel G, Jain P. Co-Infection and Cancer: Host–Pathogen Interaction between Dendritic Cells and HIV-1, HTLV-1, and Other Oncogenic Viruses. Viruses 2022; 14:v14092037. [PMID: 36146843 PMCID: PMC9503663 DOI: 10.3390/v14092037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Dendritic cells (DCs) function as a link between innate and adaptive immune responses. Retroviruses HIV-1 and HTLV-1 modulate DCs to their advantage and utilize them to propagate infection. Coinfection of HTLV-1 and HIV-1 has implications for cancer malignancies. Both viruses initially infect DCs and propagate the infection to CD4+ T cells through cell-to-cell transmission using mechanisms including the formation of virologic synapses, viral biofilms, and conduits. These retroviruses are both neurotrophic with neurovirulence determinants. The neuropathogenesis of HIV-1 and HTLV-1 results in neurodegenerative diseases such as HIV-associated neurocognitive disorders (HAND) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Infected DCs are known to traffic to the brain (CNS) and periphery (PNS, lymphatics) to induce neurodegeneration in HAND and HAM/TSP patients. Elevated levels of neuroinflammation have been correlated with cognitive decline and impairment of motor control performance. Current vaccinations and therapeutics for HIV-1 and HTLV-1 are assessed and can be applied to patients with HIV-1-associated cancers and adult T cell leukemia/lymphoma (ATL). These diseases caused by co-infections can result in both neurodegeneration and cancer. There are associations with cancer malignancies and HIV-1 and HTLV-1 as well as other human oncogenic viruses (EBV, HBV, HCV, HDV, and HPV). This review contains current knowledge on DC sensing of HIV-1 and HTLV-1 including DC-SIGN, Tat, Tax, and current viral therapies. An overview of DC interaction with oncogenic viruses including EBV, Hepatitis viruses, and HPV is also provided. Vaccines and therapeutics targeting host–pathogen interactions can provide a solution to co-infections, neurodegeneration, and cancer.
Collapse
Affiliation(s)
- Tania H. Mulherkar
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Daniel Joseph Gómez
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
- Department of Biological Sciences, California State University, 25800 Carlos Bee Blvd, Hayward, CA 94542, USA
| | - Grace Sandel
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
- Correspondence:
| |
Collapse
|
4
|
Imaging of anthrax intoxication in mice reveals shared and individual functions of surface receptors CMG-2 and TEM-8 in cellular toxin entry. J Biol Chem 2021; 298:101467. [PMID: 34871548 PMCID: PMC8716333 DOI: 10.1016/j.jbc.2021.101467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
Bacillus anthracis lethal toxin and edema toxin are binary toxins that consist of a common cell-binding moiety, protective antigen (PA), and the enzymatic moieties, lethal factor (LF) and edema factor (EF). PA binds to either of two receptors, capillary morphogenesis protein-2 (CMG-2) or tumor endothelial marker-8 (TEM-8), which triggers the binding and cytoplasmic translocation of LF and EF. However, the distribution of functional TEM-8 and CMG-2 receptors during anthrax toxin intoxication in animals has not been fully elucidated. Herein, we describe an assay to image anthrax toxin intoxication in animals, and we use it to visualize TEM-8- and CMG-2-dependent intoxication in mice. Specifically, we generated a chimeric protein consisting of the N-terminal domain of LF fused to a nuclear localization signal-tagged Cre recombinase (LFn-NLS-Cre). When PA and LFn-NLS-Cre were coadministered to transgenic mice expressing a red fluorescent protein in the absence of Cre and a green fluorescent protein in the presence of Cre, intoxication could be visualized at single-cell resolution by confocal microscopy or flow cytometry. Using this assay, we found that: (a) CMG-2 is critical for intoxication in the liver and heart, (b) TEM-8 is required for intoxication in the kidney and spleen, (c) CMG-2 and TEM-8 are redundant for intoxication of some organs, (d) combined loss of CMG-2 and TEM-8 completely abolishes intoxication, and (e) CMG-2 is the dominant receptor on leukocytes. The novel assay will be useful for basic and clinical/translational studies of Bacillus anthracis infection and for clinical development of reengineered toxin variants for cancer treatment.
Collapse
|
5
|
Peron G, de Lima Thomaz L, Camargo da Rosa L, Thomé R, Cardoso Verinaud LM. Modulation of dendritic cell by pathogen antigens: Where do we stand? Immunol Lett 2018; 196:91-102. [PMID: 29427742 DOI: 10.1016/j.imlet.2018.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) are essential players in the activation of T cells and in the development of adaptive immune response towards invading pathogens. Upon antigen (Ag) recognition of Pathogen Associated Molecular Patterns (PAMPs) by their receptors (PRRs), DCs are activated and acquire an inflammatory profile. DCs have the ability to direct the profile of helper T (Th) cells towards Th1, Th2, Th17, Th9 and regulatory (Treg) cells. Each subset of Th cells presents a unique gene expression signature and is endowed with the ability to conduct or suppress effector cells in inflammation. Pathogens target DCs during infection. Many studies demonstrated that antigens and molecules derived from pathogens have the ability to dampen DC maturation and activation, leading these cells to a permissive state or tolerogenic profile (tolDCs). Although tolDCs may represent a hindrance in infection control, they could be positively used to modulate inflammatory disorders, such as autoimmune diseases. In this review, we focus on discussing findings that use pathogen-antigen modulated DCs and tolDCs in prophylactics and therapeutics approaches for vaccination against infectious diseases or inflammatory disorders.
Collapse
Affiliation(s)
- Gabriela Peron
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, SP, Brazil.
| | - Livia de Lima Thomaz
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Larissa Camargo da Rosa
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Rodolfo Thomé
- Department of Neurology, Thomas Jefferson University, Philadelphia, USA
| | - Liana Maria Cardoso Verinaud
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
6
|
Bagirova M, Allahverdiyev AM, Abamor ES, Ullah I, Cosar G, Aydogdu M, Senturk H, Ergenoglu B. Overview of dendritic cell-based vaccine development for leishmaniasis. Parasite Immunol 2017; 38:651-662. [PMID: 27591404 DOI: 10.1111/pim.12360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/20/2016] [Indexed: 12/24/2022]
Abstract
Leishmaniasis is one of the most serious vector-borne diseases in the world and is distributed over 98 countries. It is estimated that 350 million people are at risk for leishmaniasis. There are three different generation of vaccines that have been developed to provide immunity and protection against leishmaniasis. However, their use has been limited due to undesired side effects. These vaccines have also failed to provide effective and reliable protection and, as such, currently, there is no safe and effective vaccine for leishmaniasis. Dendritic cells (DCs) are a unique population of cells that come from bone marrow and become specialized to take up, process and present antigens to helper T cells in a mechanism similar to macrophages. By considering these significant features, DCs stimulated with different kinds of Leishmania antigens have been used in recent vaccine studies for leishmaniasis with promising results so far. In this review, we aim to review and combine the latest studies about this issue after defining potential problems in vaccine development for leishmaniasis and considering the importance of DCs in the immunopathogenesis of the disease.
Collapse
Affiliation(s)
- M Bagirova
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - A M Allahverdiyev
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey.
| | - E S Abamor
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - I Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - G Cosar
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - M Aydogdu
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - H Senturk
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - B Ergenoglu
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey
| |
Collapse
|
7
|
Ghasemi M, Erturk M, Buruk K, Sonmez M. Induction of potent protection against acute and latent herpes simplex virus infection in mice vaccinated with dendritic cells. Cytotherapy 2013; 15:352-61. [PMID: 23579060 DOI: 10.1016/j.jcyt.2012.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 10/07/2012] [Accepted: 11/11/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND AIMS Dendritic cells (DCs) are the most potent antigen presenting cells of the immune system and have been under intense study with regard to their use in immunotherapy against cancer and infectious disease agents. In the present study, DCs were employed to assess their value in protection against live virus challenge in an experimental model using lethal and latent herpes simplex virus (HSV) infection in Balb/c mice. METHODS DCs obtained ex vivo in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 were loaded with HSV-1 proteins (DC/HSV-1 vaccine). Groups of mice were vaccinated twice, 7 days apart, via subcutaneous, intraperitoneal or intramuscular routes with DC/HSV-1 and with mock (DC without virus protein) and positive (alum adjuvanted HSV-1 proteins [HSV-1/ALH]) control vaccines. After measuring anti-HSV-1 antibody levels in blood samples, mice were given live HSV-1 intraperitoneally or via ear pinna to assess the protection level of the vaccines with respect to lethal or latent infection challenge. RESULTS Intramuscular, but not subcutaneous or intraperitoneal, administration of DC/HSV-1 vaccine provided complete protection against lethal challenge and establishment of latent infection as assessed by death and virus recovery from the trigeminal ganglia. It was also shown that the immunity was not associated with antibody production because DC/HSV-1 vaccine, as opposed to HSV-1/ALH vaccine, produced very little, if any, HSV-1-specific antibody. CONCLUSIONS Overall, our results may have some impact on the design of vaccines against genital HSV as well as chronic viral infections such as hepatitis B virus, hepatitis C virus and human immunodeficiency virus.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Medical Microbiology Department, Medical School, Karadeniz Technical University, Trabzon, Turkey.
| | | | | | | |
Collapse
|
8
|
Takagi A, Kobayashi N, Taneichi M, Uchida T, Akatsuka T. Coupling to the surface of liposomes alters the immunogenicity of hepatitis C virus-derived peptides and confers sterile immunity. Biochem Biophys Res Commun 2012; 430:183-9. [PMID: 23159619 PMCID: PMC7124229 DOI: 10.1016/j.bbrc.2012.11.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 11/08/2012] [Indexed: 12/16/2022]
Abstract
We have previously demonstrated that antigens chemically coupled to the surface of liposomes consisting of unsaturated fatty acids were cross-presented by antigen presenting cells to cytotoxic T lymphocytes (CTLs). Liposomal form of immunodominant CTL epitope peptides derived from lymphocytic choriomeningitis virus exhibited highly efficient antiviral CTL responses in immunized mice. In this study, we coupled 15 highly conserved immunodominant CTL epitope peptides derived from hepatitis C virus (HCV) to the surface of liposomes. We also emulsified the peptides in incomplete Freund’s adjuvant, and compared the immune responses of the two methods of presenting the peptides by cytotoxicity induction and interferon-gamma (IFN-γ) production by CD8+ T cells of the immunized mice. We noticed significant variations of the immunogenicity of each peptide between the two antigen delivery systems. In addition, the immunogenicity profiles of the peptides were also different from those observed in the mice infected with recombinant adenoviruses expressing HCV proteins as previously reported. Induction of anti-viral immunity by liposomal peptides was tested by the challenge experiments using recombinant vaccinia viruses expressing corresponding HCV epitopes. One Db-restricted and three HLA-A*0201-restricted HCV CTL epitope peptides on the surface of liposomes were found to confer complete protection to immunized mice with establishment of long-term memory. Interestingly, their protective efficacy seemed to correlate with the induction of IFN-γ producing cells rather than the cytotoxicity induction suggesting that the immunized mice were protected through non-cytolytic mechanisms. Thus, these liposomal peptides might be useful as HCV vaccines not only for prevention but also for therapeutic use.
Collapse
Affiliation(s)
- Akira Takagi
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495, Japan
| | | | | | | | | |
Collapse
|
9
|
Zhou Y, Zhang Y, Yao Z, Moorman JP, Jia Z. Dendritic cell-based immunity and vaccination against hepatitis C virus infection. Immunology 2012; 136:385-96. [PMID: 22486354 DOI: 10.1111/j.1365-2567.2012.03590.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) has chronically infected an estimated 170 million people worldwide. There are many impediments to the development of an effective vaccine for HCV infection. Dendritic cells (DC) remain the most important antigen-presenting cells for host immune responses, and are capable of either inducing productive immunity or maintaining the state of tolerance to self and non-self antigens. Researchers have recently explored the mechanisms by which DC function is regulated during HCV infection, leading to impaired antiviral T-cell responses and so to persistent viral infection. Recently, DC-based vaccines against HCV have been developed. This review summarizes the current understanding of DC function during HCV infection and explores the prospects of DC-based HCV vaccine. In particular, it describes the biology of DC, the phenotype of DC in HCV-infected patients, the effect of HCV on DC development and function, the studies on new DC-based vaccines against HCV infection, and strategies to improve the efficacy of DC-based vaccines.
Collapse
Affiliation(s)
- Yun Zhou
- Centre of Diagnosis and Treatment for Infectious Diseases of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | | | | | | | | |
Collapse
|
10
|
Dolganiuc A, Szabo G. Dendritic cells in hepatitis C infection: can they (help) win the battle? J Gastroenterol 2011; 46:432-47. [PMID: 21327958 DOI: 10.1007/s00535-011-0377-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 12/13/2010] [Indexed: 02/04/2023]
Abstract
Infection with hepatitis C virus (HCV) is a public health problem; it establishes a chronic course in ~85% of infected patients and increases their risk for developing liver cirrhosis, hepatocellular carcinoma, and significant extrahepatic manifestations. The mechanisms of HCV persistence remain elusive and are largely related to inefficient clearance of the virus by the host immune system. Dendritic cells (DCs) are the most efficient inducers of immune responses; they are capable of triggering productive immunity and maintaining the state of tolerance to self- and non-self antigens. During the past decade, multiple research groups have focused on DCs, in hopes of unraveling an HCV-specific DC signature or DC-dependent mechanisms of antiviral immunity which would lead to a successful HCV elimination strategy. This review incorporates the latest update in the current status of knowledge on the role of DCs in anti-HCV immunity as it relates to several challenging questions: (a) the phenotype and function of diverse DC subsets in HCV-infected patients; (b) the characteristics of non-human HCV infection models from the DCs' point of view; (c) how can in vitro systems, ranging from HCV protein- or peptide-exposed DC to HCV protein-expressing DCs, and in vivo systems, ranging from HCV protein-expressing transgenic mice to HCV-infected non-human primates, be employed to dissect the role of DCs in triggering/maintaining a robust antiviral response; and (d) the prospect of DC-based strategy for managing and finding a cure for HCV infection.
Collapse
Affiliation(s)
- Angela Dolganiuc
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, LRB-270-H, Worcester, MA 01605, USA.
| | | |
Collapse
|
11
|
Duverger A, Carré JM, Jee J, Leppla SH, Cormet-Boyaka E, Tang WJ, Tomé D, Boyaka PN. Contributions of edema factor and protective antigen to the induction of protective immunity by Bacillus anthracis edema toxin as an intranasal adjuvant. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:5943-52. [PMID: 20952678 PMCID: PMC4053574 DOI: 10.4049/jimmunol.0902795] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have shown that intranasal coapplication of Bacillus anthracis protective Ag (PA) together with a B. anthracis edema factor (EF) mutant having reduced adenylate cyclase activity (i.e., EF-S414N) enhances anti-PA Ab responses, but also acts as a mucosal adjuvant for coadministered unrelated Ags. To elucidate the role of edema toxin (EdTx) components in its adjuvanticity, we examined how a PA mutant lacking the ability to bind EF (PA-U7) or another mutant that allows the cellular uptake of EF, but fails to efficiently mediate its translocation into the cytosol (PA-dFF), would affect EdTx-induced adaptive immunity. Native EdTx promotes costimulatory molecule expression by macrophages and B lymphocytes, and a broad spectrum of cytokine responses by cervical lymph node cells in vitro. These effects were reduced or abrogated when cells were treated with EF plus PA-dFF, or PA-U7 instead of PA. We also intranasally immunized groups of mice with a recombinant fusion protein of Yersinia pestis F1 and LcrV Ags (F1-V) together with EdTx variants consisting of wild-type or mutants PA and EF. Analysis of serum and mucosal Ab responses against F1-V or EdTx components (i.e., PA and EF) revealed no adjuvant activity in mice that received PA-U7 instead of PA. In contrast, coimmunization with PA-dFF enhanced serum Ab responses. Finally, immunization with native PA and an EF mutant lacking adenylate cyclase activity (EF-K346R) failed to enhance Ab responses. In summary, a fully functional PA and a minimum of adenylate cyclase activity are needed for EdTx to act as a mucosal adjuvant.
Collapse
Affiliation(s)
- Alexandra Duverger
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Yu H, Babiuk LA, van Drunen Littel-van den Hurk S. Strategies for loading dendritic cells with hepatitis C NS5a antigen and inducing protective immunity. J Viral Hepat 2008; 15:459-70. [PMID: 18221298 DOI: 10.1111/j.1365-2893.2008.00959.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dendritic cell (DC)-based vaccination strategies are promising for the treatment of cancers and infectious diseases including hepatitis C virus (HCV). As the induction of T cell-mediated immune responses by DC vaccination is highly dependent on efficient antigen loading of the DCs, the purpose of this study was to identify an optimal nonviral DC loading strategy for HCV NS5a. Furthermore, the efficacy of immunization with the NS5a-loaded DCs in comparison to plasmid encoding NS5a and NS5a protein was evaluated. Transfection of DCs with mRNA was most efficient with close to 100% of DCs expressing NS5a, whereas approximately 10% of protein-pulsed DCs and <1% of plasmid-transfected DCs expressed NS5a, suggesting remarkably different loading efficiencies. Vaccination of mice with NS5a mRNA-transfected DCs or NS5a protein-pulsed DCs resulted in significantly stronger CD4(+) and CD8(+) T-cell responses and protection from challenge with vaccinia virus expressing NS3/NS4/NS5, in comparison to vaccination with NS5a DNA-transfected DCs, plasmid encoding NS5 or rNS5a protein formulated with alum. Furthermore, vaccination with NS5a mRNA-transfected DCs was superior to vaccination with rNS5a-pulsed DCs. These data have important clinical implications, with mRNA-transfected DCs providing a safe and effective vaccination strategy against hepatitis C and possibly other pathogens.
Collapse
Affiliation(s)
- H Yu
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | |
Collapse
|
13
|
|
14
|
Wintermeyer P, Wands JR. Vaccines to prevent chronic hepatitis C virus infection: current experimental and preclinical developments. J Gastroenterol 2007; 42:424-32. [PMID: 17671756 DOI: 10.1007/s00535-007-2057-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 03/07/2007] [Indexed: 02/04/2023]
Affiliation(s)
- Philip Wintermeyer
- The Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | |
Collapse
|
15
|
Yan J, Ling S, Liu H, Zhang H, Song X, Xiu B, Chen K, Wang G, Zhu C. Induction of strong cytotoxic T-lymphocyte responses to hepatitis C virus with recombinant poly-epitope in BALB/c mice. Viral Immunol 2006; 19:64-73. [PMID: 16553551 DOI: 10.1089/vim.2006.19.64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- J Yan
- Department of Vaccine Engineering, Beijing Institute of Basic Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Martin P, Inchauspé G. Hepatitis C vaccines. DRUG DISCOVERY TODAY: THERAPEUTIC STRATEGIES 2006; 3:203-209. [DOI: 10.1016/j.ddstr.2006.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Yu H, Huang H, Xiang J, Babiuk LA, van Drunen Littel-van den Hurk S. Dendritic cells pulsed with hepatitis C virus NS3 protein induce immune responses and protection from infection with recombinant vaccinia virus expressing NS3. J Gen Virol 2006; 87:1-10. [PMID: 16361412 DOI: 10.1099/vir.0.81423-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infections with Hepatitis C virus (HCV) pose a serious health problem worldwide. In this study, the hypothesis that adoptive transfer of dendritic cells (DCs) pulsed with HCV NS3 protein and matured with an oligodeoxynucleotide (ODN) containing CpG motifs (CpG) ex vivo would initiate potent HCV-specific protective immune responses in vivo was tested. NS3 protein was efficiently transduced into DCs and treatment of DCs with CpG ODN induced phenotypic maturation and specifically increased the expression of CD40. DCs matured with CpG ODN produced higher interleukin 12 levels and a stronger allogeneic T-cell response compared with untreated DCs. Notably, there were no differences between NS3-pulsed DCs and DCs pulsed with a control protein with respect to phenotype, cytokine production or mixed lymphocyte reaction, indicating that transduction with NS3 protein did not impair DC functions. Compared with the untreated NS3-pulsed DCs, the NS3-pulsed DCs matured with CpG ODN induced stronger cellular immune responses including enhanced cytotoxicity, higher interferon-gamma production and stronger lymphocyte proliferation. Upon challenge with a recombinant vaccinia virus expressing NS3, all mice immunized with NS3-pulsed DCs showed a significant reduction in vaccinia virus titres when compared with mock-immunized mice. However, the NS3-pulsed DCs matured with CpG ODN induced higher levels of protection compared with the untreated NS3-pulsed DCs. These data are the first to show that NS3-pulsed DCs induce specific immune responses and provide protection from viral challenge, and also demonstrate that CpG ODNs, which have a proven safety profile, would be useful in the development of DC vaccines.
Collapse
Affiliation(s)
- Hong Yu
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7N 5E3
| | - Hui Huang
- Department of Oncology, Research Unit, Saskatchewan Cancer Agency, 20 Campus Drive, Saskatoon, SK, Canada S7N 0W0
| | - Jim Xiang
- Department of Oncology, Research Unit, Saskatchewan Cancer Agency, 20 Campus Drive, Saskatoon, SK, Canada S7N 0W0
| | - Lorne A Babiuk
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7N 5E3
| | | |
Collapse
|
18
|
Encke J, Findeklee J, Geib J, Pfaff E, Stremmel W. Prophylactic and therapeutic vaccination with dendritic cells against hepatitis C virus infection. Clin Exp Immunol 2005; 142:362-9. [PMID: 16232225 PMCID: PMC1809503 DOI: 10.1111/j.1365-2249.2005.02919.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antigen uptake and presentation capacities enable DC to prime and activate T cells. Recently, several studies demonstrated a diminished DC function in hepatitis C virus (HCV) infected patients showing impaired abilities to stimulate allogenic T cells and to produce IFN-gamma in HCV infected patients. Moreover, DC of patients who have resolved HCV infection behave like DC from healthy donors responding to maturation stimuli, decrease antigen uptake, up-regulate expression of appropriate surface marker, and are potent stimulators of allogenic T cells. A number of studies have demonstrated in tumour models and models of infectious diseases strong induction of immune responses after DC vaccination. Because DC are essential for T-cell activation and since viral clearance in HCV infected patients is associated with a vigorous T-cell response, we propose a new type of HCV vaccine based on ex vivo stimulated and matured DC loaded with HCV specific antigens. This vaccine circumvents the impaired DC maturation and the down regulated DC function of HCV infected patients in vivo by giving the necessary maturation stimuli and the HCV antigens in a different setting and location ex vivo. Strong humoral and cellular immune responses were detected after HCV core DC vaccination. Furthermore, DC vaccination shows partial protection in a therapeutic and prophylactic model of HCV infection. In conclusion, mice immunized with HCV core pulsed DC generated a specific antiviral response in a mouse HCV challenge model. Our results indicate that HCV core pulsed DC may serve as a new modality for immunotherapy of HCV especially in chronically infected patients.
Collapse
Affiliation(s)
- J Encke
- Department of Internal Medicine IV, University of Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
19
|
Gehring S, Gregory SH, Kuzushita N, Wands JR. Type 1 interferon augments DNA-based vaccination against hepatitis C virus core protein. J Med Virol 2005; 75:249-57. [PMID: 15602727 DOI: 10.1002/jmv.20264] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Eradication of chronic hepatitis C virus (HCV) infection depends upon a broad-based cellular immune response. Genetic immunization stimulates such a response, but the resultant activity is generally weak. Type 1 interferons (IFNs), which are known for their direct anti-viral and anti-proliferative properties, possess vigorous immunomodulatory properties. The aim of this study was to assess the capacity of IFN-alpha to augment the cellular immune response to DNA vaccination against HCV core protein. Three types of IFN-alpha were investigated: the non-species-specific hybrid IFN A/D, human pegylated IFN-alpha, and a plasmid that expressed murine IFN-alpha. Low doses of hIFN-A/D and hPegIFN-alpha augmented three to fourfold the cellular immune response to DNA-based vaccination, determined in conventional CTL assays, as well as in an in vivo tumor challenge model. Importantly, augmentation occurred within a narrow concentration range; a further increase in IFN dosage suppressed the CTL response significantly. Humoral immunity showed a very similar pattern of augmentation. These findings demonstrate that the immunomodulatory properties of IFN-alpha can be exploited to augment DNA based immunization, but it is important to consider the effects of dose on both cellular and humoral immune response for optimal augmentation.
Collapse
Affiliation(s)
- Stephan Gehring
- The Liver Research Center, Rhode Island Hospital and Brown Medical School, Providence, Rhode Island 02903, USA
| | | | | | | |
Collapse
|
20
|
Bulmus V. Biomembrane-Active Molecular Switches as Tools for Intracellular Drug Delivery. Aust J Chem 2005. [DOI: 10.1071/ch05066] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Many therapeutic strategies, such as gene therapy and vaccine development require the delivery of polar macromolecules (e.g. DNA, RNA, and proteins) to intracellular sites at a therapeutic concentration. For such macromolecular therapeutics, cellular membranes constitute a major transport barrier that must be overcome before these drugs can exert their biological activity inside cells. A number of biological organisms, e.g. viruses and toxins, efficiently destabilize the cellular membranes upon a trigger, such as low pH, and facilitate the delivery of their biological cargo to the cytoplasm of host cell. pH-responsive synthetic peptides and polymers have been designed to mimic the function of membrane-destabilizing natural organisms and evaluated as a part of drug delivery systems. In this Review, pH-dependent membrane activity of natural and synthetic systems is reviewed, focussing on fundamental and practical aspects of pH-responsive, membrane-disruptive synthetic polymers in intracellular drug delivery.
Collapse
|
21
|
Larsson M, Babcock E, Grakoui A, Shoukry N, Lauer G, Rice C, Walker C, Bhardwaj N. Lack of phenotypic and functional impairment in dendritic cells from chimpanzees chronically infected with hepatitis C virus. J Virol 2004; 78:6151-61. [PMID: 15163708 PMCID: PMC416524 DOI: 10.1128/jvi.78.12.6151-6161.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2003] [Accepted: 02/10/2004] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs), which are potent antigen-presenting cells (APCs), are used as adjuvants for the treatment of cancer and infectious diseases in human and nonhuman primates, with documented clinical efficacy. The hepatitis C virus (HCV)-chimpanzee model is the best available model for testing the immunotherapeutic effects of DCs in the setting of a chronic infection, as chimpanzees develop a persistent infection resembling that seen in humans. However, several reports have suggested that DCs derived from chronically infected individuals or nonhuman primates are functionally compromised. As a prelude to clinical studies, we evaluated whether functionally mature DCs could be generated in chimpanzee plasma by good manufacturing practice using CD14(+) mononuclear precursors from chronically infected chimpanzees. DCs generated in a medium with HCV-negative plasma and treated with a defined cocktail of cytokines or a CD40 ligand trimer matured fully, as measured by the induction of CD83 expression and the upregulation of costimulatory molecules. Furthermore, the expression of CCR7 was induced, suggesting an acquisition of migration capacity. Mature DCs were capable of stimulating allogeneic T cells, antigen-specific memory CD4(+) T cells, and HCV-specific CD8(+)-T-cell clones. In all cases, there was no evidence of HCV infection in DCs. Furthermore, these DCs maintained their phenotype and APC function after cryopreservation. Finally, no discernible differences were noted between DCs derived from HCV-infected and uninfected chimpanzees. In summary, precursor cells from HCV-infected chimpanzees are fully capable of differentiating into functional, mature DCs, which can now be reproducibly prepared for investigations of their immunotherapeutic potential in the setting of chronic HCV infection.
Collapse
Affiliation(s)
- Marie Larsson
- New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Anthrax toxin consists of three nontoxic proteins that associate in binary or ternary combinations to form toxic complexes at the surface of mammalian cells. One of these proteins, protective antigen (PA), transports the other two, edema factor (EF) and lethal factor (LF), to the cytosol. LF is a Zn2+-protease that cleaves certain MAP kinase kinases, leading to death of the host via a poorly defined sequence of events. EF, a calmodulin- and Ca2+-dependent adenylate cyclase, is responsible for the edema seen in the disease. Both enzymes are believed to benefit the bacteria by inhibiting cells of the host's innate immune system. Assembly of toxic complexes begins after PA binds to cellular receptors and is cleaved into two fragments by furin proteases. The smaller fragment dissociates, allowing the receptor-bound fragment, PA63 (63 kDa), to self-associate and form a ring-shaped, heptameric pore precursor (prepore). The prepore binds up to three molecules of EF and/or LF, and the resulting complexes are endocytosed and trafficked to an acidic compartment. There, the prepore converts to a transmembrane pore, mediating translocation of EF and LF to the cytosol. Recent studies have revealed (a) the identity of receptors; (b) crystallographic structures of the three toxin proteins and the heptameric PA63 prepore; and (c) information about toxin assembly, entry, and action within the cytosol. Knowledge of the structure and mode of action of the toxin has unveiled potential applications in medicine, including approaches to treating anthrax infections.
Collapse
Affiliation(s)
- R John Collier
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
23
|
Feng ZH, Wang QC, Zhou YX, Hao CQ, Nie QH. Construction and expression of chrimeid plasmid pHCV-IgFc. Shijie Huaren Xiaohua Zazhi 2003; 11:697-700. [DOI: 10.11569/wcjd.v11.i6.697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To construct a recombinant cherimal plasmid of HCV-Fc that can express HCV core protein and IgG Fc.
METHODS The HCV core gene derived from the plasmid pBRTM/HCV1-3011 by using polymerase chain reaction (PCR) was inserted into the backward position of cytomegalovirus (CMV) immediate early promotor element of Fc plasmid (pIgFc), then the recombinant plasmid pHCV-IgFc was obtained.
RESULTS The insert DNA of pHCV-IgFc was HCV core and Fc gene conformed by endonuclease, PCR and sequencing. HCV core gene and Fc gene expressed transiently with Lipofectamine 2000 coated in human hepatoblastoma 7721 cells, which was conformed by immunofluorescence.
CONCLUSION Recombinant cherimal plasmid vector pHCV-IgFc can express HCV core and Fc gene transiently in 7721 cells. It may be useful in transfection of dendritic cells and development into dendritic cell vaccince.
Collapse
Affiliation(s)
- Zhi-Hua Feng
- Quan-Chu Wang, Yong-Xing Zhou, Chun-Qiu Hao, Qing-He Nie, The Center of Diagnosis and Treatment of Infection Diseases of PLA, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, Shan'xi Province, China
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Matsui M, Moriya O, Akatsuka T. Enhanced induction of hepatitis C virus-specific cytotoxic T lymphocytes and protective efficacy in mice by DNA vaccination followed by adenovirus boosting in combination with the interleukin-12 expression plasmid. Vaccine 2003; 21:1629-39. [PMID: 12639484 DOI: 10.1016/s0264-410x(02)00704-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We evaluated the prime-boost immunization consisting of hepatitis C virus (HCV)-core expression plasmid (pCEP4-core) and replication-defective adenovirus expressing HCV-core (Adex1SR3ST) for core-specific CTL induction in mice. Compared to a single booster, double boosters after priming enhance CTL induction. The prime-double boosts immunization involving pCEP4-core priming followed by pCEP4-core and Adex1SR3ST boostings (pC/pC/aC) can induce core-specific CTLs as well as other combinations: pC/aC/aC; aC/pC/pC; aC/aC/aC, whereas pC/pC/pC does not induce CTLs. Furthermore, co-administration of interleukin-12 (IL-12) expression plasmid leads to the highly efficient CTL induction and clearance of HCV-core expressing vaccinia virus challenged. Thus, the prime-double boosts immunization together with IL-12 may be promising for HCV vaccine.
Collapse
Affiliation(s)
- Masanori Matsui
- Department of Microbiology, Saitama Medical School, Moroyama-Cho, Iruma-Gun, 350-0495, Saitama, Japan.
| | | | | |
Collapse
|
26
|
Cheng YQ, Nie QH, Zhou YX, Huang XF, Luo H, Yang HG. Ultrastructure characteristics of HCV infected human trophoblast cells in culture. Shijie Huaren Xiaohua Zazhi 2003; 11:151-156. [DOI: 10.11569/wcjd.v11.i2.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether the cultured trophoblastic cells can be infected with hepatitis C virus (HCV) and observe the ultrastructural features of infected cells.
METHODS: Human placentae were digested with trypsin and then centrifuged with percoll density gradient to obtain trophoblastic cells, and then incubated in HCV positive serum. The HCV RNA in HCV infected syncytiotroblasts was quantitated with RT-PCR. Ultrastructural characteristics of infected syncytiotroblasts were observed with transmission electron microscope.
RESULTS: HCV RNA was detected in supernatant of the cultured medium during 40 day periods of incubation. The antibody of HCV NS5 was observed around the nucleus with confocal microscope. The Ultrastructure of infected throphotoblast cells differed obviously from that of normal cells, and manifested with hyperplasia of lysosomes and rough endoplasmic, appearance of vacuoles and virus-like particles, and decreased lipid droplets.
CONCLUSION: Trophoblastic cells could be infected by HCV, and the cellular ultrastructure changed dramatically following infection of HCV.
Collapse
|
27
|
Abstract
Any program aimed at the development of a vaccine should consider several important issues because they may greatly influence the choice of immunogen used in the vaccine, the delivery system selected for its application, the population to be vaccinated, and the type of vaccine to be developed (ie, preventive or therapeutic). These issues concern the epidemiology of the infectious disease targeted, the actual routes of transmission, the antigenic diversity of the infectious agent, the existing therapies, and their rate of success. In the case of hepatitis C virus, a viral agent whose clinical existence was recognized in the 1970s but which was only identified by the use of molecular cloning technology in the late 1980s, some of these issues are particularly relevant.
Collapse
Affiliation(s)
- Genevieve Inchauspé
- Unité Mixte CNRS-BioMérieux, UMR 2142, Ecole Normale Supérieure, 46 Allée d' Italie, Lyon 17-6934, France.
| | | |
Collapse
|
28
|
Matsui M, Moriya O, Abdel-Aziz N, Matsuura Y, Miyamura T, Akatsuka T. Induction of hepatitis C virus-specific cytotoxic T lymphocytes in mice by immunization with dendritic cells transduced with replication-defective recombinant adenovirus. Vaccine 2002; 21:211-20. [PMID: 12450696 DOI: 10.1016/s0264-410x(02)00460-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We studied the potential of dendritic cells (DCs) in priming hepatitis C virus (HCV)-specific cytotoxic T lymphocytes (CTLs) in mice. Recombinant adenovirus expressing HCV core (Adex1SR3ST) was employed to express core in DCs. Core-specific CTLs are effectively elicited by injecting Adex1SR3ST-transduced DCs, whereas injection of Adex1SR3ST does not result in effective priming. Further, Adex1SR3ST-transduced DCs more efficiently prime core-specific CTLs than Adex1SR3ST-transduced macrophages, or DCs treated with an anthrax toxin fusion protein reported previously. Upon challenge with recombinant HCV-core-expressing vaccinia virus, vaccinia titers are significantly reduced in mice immunized with Adex1SR3ST-transduced DCs. Thus, adenovirus-transduced DCs may be a promising candidate for a CTL-based vaccine against HCV.
Collapse
Affiliation(s)
- Masanori Matsui
- Department of Microbiology, Saitama Medical School, Moroyama-Cho, Iruma-Gun, Saitama 350-0495, Japan
| | | | | | | | | | | |
Collapse
|