1
|
Ahn J, Yu JE, Kim H, Sung J, Han G, Sohn MH, Seong BL. AB 5-Type Toxin as a Pentameric Scaffold in Recombinant Vaccines against the Japanese Encephalitis Virus. Toxins (Basel) 2023; 15:425. [PMID: 37505694 PMCID: PMC10467048 DOI: 10.3390/toxins15070425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Japanese encephalitis virus (JEV) is an enveloped icosahedral capsid virus with a prime neutralizing epitope present in E protein domain III (EDIII). E dimers are rearranged into a five-fold symmetry of icosahedrons. Cholera toxin B (CTB) and heat-labile enterotoxin B (LTB) of AB5-type toxin was used as the structural scaffold for emulating the pentameric axis of EDIII. We produced homo-pentameric EDIII through the genetic fusion of LTB or CTB in E. coli without recourse to additional refolding steps. Harnessing an RNA-mediated chaperone further enhanced the soluble expression and pentameric assembly of the chimeric antigen. The pentameric assembly was validated by size exclusion chromatography (SEC), non-reduced gel analysis, and a GM1 binding assay. CTB/LTB-EDIII chimeric antigen triggered high neutralizing antibodies against the JEV Nakayama strain after immunization in mice. Altogether, our proof-of-principle study creating a JEV-protective antigen via fusion with an AB5-type toxin as both a pentameric scaffold and a built-in adjuvant posits the bacterially produced recombinant chimeric antigen as a cost-effective alternative to conventional inactivated vaccines against JEV.
Collapse
Affiliation(s)
- Jina Ahn
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea
| | - Ji Eun Yu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03708, Republic of Korea (H.K.)
| | - Hanna Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03708, Republic of Korea (H.K.)
| | - Jemin Sung
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03708, Republic of Korea (H.K.)
| | - Gyoonhee Han
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03708, Republic of Korea (H.K.)
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul 03722, Republic of Korea
| | - Myung Hyun Sohn
- Department of Pediatrics, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Baik-Lin Seong
- Department of Microbiology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul 03721, Republic of Korea
| |
Collapse
|
2
|
LTA1 and dmLT enterotoxin-based proteins activate antigen-presenting cells independent of PKA and despite distinct cell entry mechanisms. PLoS One 2020; 15:e0227047. [PMID: 31929548 PMCID: PMC6957164 DOI: 10.1371/journal.pone.0227047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 12/11/2019] [Indexed: 01/19/2023] Open
Abstract
Enterotoxin-based proteins are powerful manipulators of mucosal immunity. The A1 domain of heat-labile enterotoxin from E. coli, or LTA1, is a newer adjuvant from this family under investigation for intranasal vaccines. Although LTA1 has been examined in mouse vaccination studies, its ability to directly stimulate immune cells compared to related adjuvant proteins has not been well explored. Here, we perform the first rigorous examination of LTA1’s effect on antigen presenting cells (APC) using a human monocyte cell line THP-1. To better understand LTA1’s stimulatory effects, we compared it to dmLT, or LT-R192G/L211A, a related AB5 adjuvant in clinical trials for oral or parenteral vaccines. LTA1 and dmLT both activated APCs to upregulate MHC-II (HLA-DR), CD86, cytokine secretion (e.g., IL-1β) and inflammasome activation. The effect of LTA1 on surface marker changes (e.g., MHC-II) was highly dose-dependent whereas dmLT exhibited high MHC-II expression regardless of dose. In contrast, cytokine secretion profiles were similar and dose-dependent after both LTA1 and dmLT treatment. Cellular activation by LTA1 was independent of ganglioside binding, as pre-treatment with purified GM1 blocked the effect of dmLT but not LTA1. Unexpectedly, while activation of the inflammasome and cytokine secretion by LTA1 or dmLT was blocked by the protein kinase A inhibitor H89 (similar to previous reports), these responses were not inhibited by a more specific PKA peptide inhibitor or antagonist; thus Indicating that a novel and unknown mechanism is responsible for inflammasome activation and cytokine secretion by LT proteins. Lastly, LTA1 stimulated a similar cytokine profile in primary human monocytes as it did in THP1 cells, including IL-1β, IL-6, IL-8, MIP-1α, MIP-1β, and TNFα. Thus, we report that LTA1 protein programs a dendritic cell-like phenotype in APCs similar to dmLT in a mechanism that is independent of PKA activation and GM1 binding and entry.
Collapse
|
3
|
Su QD, He SH, Yi Y, Qiu F, Lu XX, Jia ZY, Meng QL, Fan XT, Tian RG, Audet J, Qiu XG, Bi SL. Intranasal vaccination with ebola virus GP amino acids 258-601 protects mice against lethal challenge. Vaccine 2018; 36:6053-6060. [PMID: 30195490 DOI: 10.1016/j.vaccine.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/06/2018] [Accepted: 09/01/2018] [Indexed: 02/06/2023]
Abstract
Ebola virus (EBOV) disease (EVD) leads to lethal hemorrhagic fever with a case fatality rate as high as 90%, thus posing a serious global public health concern. However, while several vaccines based on the EBOV glycoprotein have been confirmed to be effective in animal experiments, no licensed vaccines or effective treatments have been approved since the first outbreak was reported in 1976. In this study, we prepared the extracellular domain of the EBOV GP protein (designated as N20) by prokaryotic expression and purification via chromatography. Using CTA1-DD (designated as H45) as a mucosal adjuvant, we evaluated the immunogenicity of N20 by intranasal administration and the associated protective efficacy against mouse-adapted EBOV challenge in mice. We found that intranasal vaccination with H45-adjuvanted N20 could stimulate humoral immunity, as supported by GP-specific IgG titers; Th1 cellular immunity, based on IgG subclasses and IFN-γ/IL-4 secreting cells; and mucosal immunity, based on the presence of anti-EBOV IgA in vaginal lavages. We also confirmed that the vaccine could completely protect mice against a lethal mouse-adapted EBOV (MA-EBOV) challenge with few side effects (based on weight loss). In comparison, mice that received N20 or H45 alone succumbed to lethal MA-EBOV challenge. Therefore, mucosal vaccination with H45-adjuvanted N20 represents a potential vaccine candidate for the prevention of EBOV in an effective, safe, and convenient manner.
Collapse
Affiliation(s)
- Qiu-Dong Su
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Shi-Hua He
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Yao Yi
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Feng Qiu
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Xue-Xin Lu
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Zhi-Yuan Jia
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Qing-Ling Meng
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Xue-Ting Fan
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Rui-Guang Tian
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Jonathan Audet
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Xiang-Guo Qiu
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Depatment of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Sheng-Li Bi
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China.
| |
Collapse
|
4
|
Kim HJ, Ahn KY, Bae KD, Lee J, Sim SJ, Lee J. Adjuvant effect of B domain of staphyloccocal protein A displayed on the surface of hepatitis B virus capsid. Biotechnol Bioeng 2015. [DOI: 10.1002/bit.25716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hyun Jin Kim
- Department of Chemical and Biological Engineering; Korea University, Anam-Dong 5-1; Seongbuk-Gu, Seoul 136-713; Seoul Sungbuk-Ku Republic of Korea
| | - Keum-Young Ahn
- Department of Chemical and Biological Engineering; Korea University, Anam-Dong 5-1; Seongbuk-Gu, Seoul 136-713; Seoul Sungbuk-Ku Republic of Korea
| | - Kyung Dong Bae
- Berna Biotech Korea Corp.; Incheon Yeonsu-gu Republic of Korea
| | - Jiyun Lee
- Department of Chemical and Biological Engineering; Korea University, Anam-Dong 5-1; Seongbuk-Gu, Seoul 136-713; Seoul Sungbuk-Ku Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering; Korea University, Anam-Dong 5-1; Seongbuk-Gu, Seoul 136-713; Seoul Sungbuk-Ku Republic of Korea
| | - Jeewon Lee
- Department of Chemical and Biological Engineering; Korea University, Anam-Dong 5-1; Seongbuk-Gu, Seoul 136-713; Seoul Sungbuk-Ku Republic of Korea
| |
Collapse
|
5
|
Fang Y, Xiang Z. Roles and relevance of mast cells in infection and vaccination. J Biomed Res 2015; 30:253-63. [PMID: 26565602 PMCID: PMC4946316 DOI: 10.7555/jbr.30.20150038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/08/2015] [Accepted: 04/26/2015] [Indexed: 01/06/2023] Open
Abstract
In addition to their well-established role in allergy mast cells have been described as contributing to functional regulation of both innate and adaptive immune responses in host defense. Mast cells are of hematopoietic origin but typically complete their differentiation in tissues where they express immune regulatory functions by releasing diverse mediators and cytokines. Mast cells are abundant at mucosal tissues which are portals of entry for common infectious agents in addition to allergens. Here, we review the current understanding of the participation of mast cells in defense against infection. We also discuss possibilities of exploiting mast cell activation to provide adequate adjuvant activity that is needed in high-quality vaccination against infectious diseases.
Collapse
Affiliation(s)
- Yu Fang
- Department of Microbiology and Immunology; Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Zou Xiang
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Research Center, Institute of Biomedicine, University of Gothenburg, Gothenburg 40530, Sweden.
| |
Collapse
|
6
|
Lapointe JF, Dunphy GB, Mandato CA. Hemocyte-hemocyte adhesion and nodulation reactions of the greater wax moth, Galleria mellonella are influenced by cholera toxin and its B-subunit. RESULTS IN IMMUNOLOGY 2012; 2:54-65. [PMID: 24371567 DOI: 10.1016/j.rinim.2012.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 02/15/2012] [Accepted: 02/17/2012] [Indexed: 10/28/2022]
Abstract
Nodulation, the lepidopteran insect immune response to large numbers of microbes in the blood (hemolymph) consists of the coordination of the blood cell (hemocyte) types the granular cells and plasmatocytes in terms of granular cell-bacteria adhesion and hemocyte-hemocyte adhesion (microaggregation). Hemocyte-microbe adhesion is influenced by the secondary messenger, cAMP, and cAMP-dependent protein kinase A. In the present study, cholera toxin, an AB5 protein known to indirectly stimulate adenylate cyclase, is used to examine the hemocyte responses to glass, bacteria and hemocyte-hemocyte microaggregates. In vitro, this toxin induces a bimodal hemocyte adhesion response that varies with the holotoxin concentration in terms of the individual and aggregated hemocyte adhesion responses: the lower CTX concentration (1.2 nM) increases microaggregate adhesion and decreases individual hemocyte binding to glass, as does higher concentrations (6-120 nM), however microaggregates induced by lower concentrations do not adhere to glass. Cholera toxin-induced microaggregation is inhibited by RGDS, suggestive of integrin involvement. In vivo, cholera toxin (1.2-120 nM) injected into larvae induces also a bimodal hemocytic response: low levels (1.2-6 nM) cause reduced hemocyte adhesion, while high levels (12-120 nM) increase hemocyte release or mobilization of adhesive hemocyte counts in the hemolymph. Increasing levels of cholera toxin concomitantly injected with the non-pathogenic bacterium, Bacillus subtilis produces a bimodal pattern in bacterial removal from the hemolymph which correlates with nodule frequency in larvae injected with cholera toxin only. The effects of higher concentrations of cholera toxin in vitro (6-120 nM) and in vivo (12-120 nM) are mediated by the B-subunit, whereas the isolated A-subunit has no effect on hemocyte activity. Cholera toxin and its individual subunits did not detectably alter levels of intracellular cAMP in the hemocytes, suggesting a cAMP-independent mechanism stimulating the nodulation response.
Collapse
Affiliation(s)
- Jason F Lapointe
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, Canada H3A 2B2
| | - Gary B Dunphy
- Department of Natural Resource Sciences, Macdonald Campus of McGill University, 21, 111 Lakeshore Road, Ste. Anne de Bellevue, Québec, Canada H9X 3V9
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, Canada H3A 2B2
| |
Collapse
|
7
|
Mattsson J, Yrlid U, Stensson A, Schön K, Karlsson MCI, Ravetch JV, Lycke NY. Complement activation and complement receptors on follicular dendritic cells are critical for the function of a targeted adjuvant. THE JOURNAL OF IMMUNOLOGY 2011; 187:3641-52. [PMID: 21880985 DOI: 10.4049/jimmunol.1101107] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A detailed understanding of how activation of innate immunity can be exploited to generate more effective vaccines is critically required. However, little is known about how to target adjuvants to generate safer and better vaccines. In this study, we describe an adjuvant that, through complement activation and binding to follicular dendritic cells (FDC), dramatically enhances germinal center (GC) formation, which results in greatly augmented Ab responses. The nontoxic CTA1-DD adjuvant hosts the ADP-ribosylating CTA1 subunit from cholera toxin and a dimer of the D fragment from Staphylococcus aureus protein A. We found that T cell-dependent, but not -independent, responses were augmented by CTA1-DD. GC reactions and serum Ab titers were both enhanced in a dose-dependent manner. This effect required complement activation, a property of the DD moiety. Deposition of CTA1-DD to the FDC network appeared to occur via the conduit system and was dependent on complement receptors on the FDC. Hence, Cr2(-/-) mice failed to augment GC reactions and exhibited dramatically reduced Ab responses, whereas Ribi adjuvant demonstrated unperturbed adjuvant function in these mice. Noteworthy, the adjuvant effect on priming of specific CD4 T cells was found to be intact in Cr2(-/-) mice, demonstrating that the CTA1-DD host both complement-dependent and -independent adjuvant properties. This is the first demonstration, to our knowledge, of an adjuvant that directly activates complement, enabling binding of the adjuvant to the FDC, which subsequently strongly promoted the GC reaction, leading to augmented serum Ab titers and long-term memory development.
Collapse
Affiliation(s)
- Johan Mattsson
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
8
|
Azizi A, Ghunaim H, Diaz-Mitoma F, Mestecky J. Mucosal HIV vaccines: A holy grail or a dud? Vaccine 2010; 28:4015-26. [DOI: 10.1016/j.vaccine.2010.04.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/08/2010] [Accepted: 04/05/2010] [Indexed: 12/13/2022]
|
9
|
Cholera toxin and Escherichia coli heat-labile enterotoxin, but not their nontoxic counterparts, improve the antigen-presenting cell function of human B lymphocytes. Infect Immun 2009; 77:1924-35. [PMID: 19223474 DOI: 10.1128/iai.01559-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
B lymphocytes play an important role in the immune response induced by mucosal adjuvants. In this study we investigated the in vitro antigen-presenting cell (APC) properties of human B cells upon treatment with cholera toxin (CT) and Escherichia coli heat-labile enterotoxin (LT) and nontoxic counterparts of these toxins, such as the B subunit of CT (CT-B) and the mutant of LT lacking ADP ribosyltransferase activity (LTK63). Furthermore, forskolin (FSK), a direct activator of adenylate cyclase, and cyclic AMP (cAMP) analogues were used to investigate the role of the increase in intracellular cAMP caused by the A subunit of CT and LT. B lymphocytes were cultured with adjuvants and polyclonal stimuli necessary for activation of B cells in the absence of CD4 T cells. Data indicated that treatment with CT, LT, FSK, or cAMP analogues, but not treatment with CT-B or LTK63, upregulated surface activation markers on B cells, such as CD86 and HLA-DR, and induced inhibition of the proliferation of B cells at early time points, while it increased cell death in long-term cultures. Importantly, B cells treated with CT, LT, or FSK were able to induce pronounced proliferation of both CD4(+) and CD8(+) allogeneic T cells compared with untreated B cells and B cells treated with CT-B and LTK63. Finally, only treatment with toxins or FSK induced antigen-specific T-cell proliferation in Mycobacterium tuberculosis purified protein derivative or tetanus toxoid responder donors. Taken together, these results indicated that the in vitro effects of CT and LT on human B cells are mediated by cAMP.
Collapse
|
10
|
De Filette M, Fiers W, Martens W, Birkett A, Ramne A, Löwenadler B, Lycke N, Jou WM, Saelens X. Improved design and intranasal delivery of an M2e-based human influenza A vaccine. Vaccine 2006; 24:6597-601. [PMID: 16814430 DOI: 10.1016/j.vaccine.2006.05.082] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
M2 is the third integral membrane protein of influenza A. M2e, the extracellular, 23 amino acid residues of M2, has been remarkably conserved in all human influenza A strains. This prompted us to evaluate the use of M2e as a potential broad-spectrum immunogen in a mouse model for influenza infection. Genetic fusion of the M2e and hepatitis B virus core (HBc) coding sequences allowed us to obtain highly immunogenic virus-like particles. This M2e-HBc vaccine induced complete protection in mice against a lethal influenza challenge. Protective immunity was obtained regardless of the position of M2e in the M2e-HBc chimera at the amino-terminus or inserted in the immuno-dominant loop of the HBc protein. Increasing the copy number of M2e inserted at the N-terminus from one to three per monomer (240-720 per particle) significantly enhanced the immune response and reduced the number of vaccinations required for complete protection against a lethal challenge with influenza A virus. A series of M2e-HBc constructs was subsequently combined with CTA1-DD, a recombinant cholera toxin A1 derived mucosal adjuvant, to test its efficacy as an intranasally delivered vaccine. All hybrid VLPs tested with CTA1-DD completely protected mice from a potentially lethal infection and, in addition, significantly reduced morbidity. Overall, increased resistance to influenza challenge in the mice correlated with an enhanced Th1-type M2e-specific antibody response induced by vaccination. These results show that M2e is a valid and versatile vaccine candidate to protect against any strain of human influenza A.
Collapse
Affiliation(s)
- Marina De Filette
- Department for Molecular Biomedical Research, VIB-Ghent University, FSVM Building, Technologiepark 927, B-9052 Ghent, Zwijnaarde, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Qu B, Boyer PJ, Johnston SA, Hynan LS, Rosenberg RN. Abeta42 gene vaccination reduces brain amyloid plaque burden in transgenic mice. J Neurol Sci 2006; 244:151-8. [PMID: 16556449 PMCID: PMC1531642 DOI: 10.1016/j.jns.2006.02.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Accepted: 02/02/2006] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To demonstrate that in APPswe/PS1DeltaE9 transgenic mice, gene gun mediated Abeta42 gene vaccination elicits a high titer of anti-Abeta42 antibodies causal of a significant reduction of Abeta42 deposition in brain. METHODS Gene gun immunization is conducted with transgenic mice using the Abeta42 gene in a bacterial plasmid with the pSP72-E3L-Abeta42 construct. Enzyme-linked immunoabsorbent assays (ELISA) and Western blots are used to monitor anti-Abeta42 antibody levels in serum and Abeta42 levels in brain tissues. Enzyme-linked immunospot (ELISPOT) assays are used for detection of peripheral blood T cells to release gamma-interferon. Immunofluorescence detection of Abeta42 plaques and quantification of amyloid burden of brain tissue were measured and sections were analyzed with Image J (NIH) software. RESULTS Gene gun vaccination with the Abeta42 gene resulted in high titers of anti-Abeta42 antibody production of the Th2-type. Levels of Abeta42 in treated transgenic mouse brain were reduced by 60-77.5%. The Mann-Whitney U-test P=0.0286. INTERPRETATION We have developed a gene gun mediated Abeta42 gene vaccination method that is efficient to break host Abeta42 tolerance without using adjuvant and induces a Th2 immune response. Abeta42 gene vaccination significantly reduces the Abeta42 burden of the brain in treated APPswe/PS1DeltaE9 transgenic mice with no overlap between treated and control mice.
Collapse
Affiliation(s)
- Baoxi Qu
- Alzheimer's Diseases Center, Department of Neurology, University of Texas Southwestern Medical Center, 5323, Harry Hines, Dallas, 75390-9036, USA
| | | | | | | | | |
Collapse
|
12
|
Helgeby A, Robson NC, Donachie AM, Beackock-Sharp H, Lövgren K, Schön K, Mowat A, Lycke NY. The combined CTA1-DD/ISCOM adjuvant vector promotes priming of mucosal and systemic immunity to incorporated antigens by specific targeting of B cells. THE JOURNAL OF IMMUNOLOGY 2006; 176:3697-706. [PMID: 16517738 DOI: 10.4049/jimmunol.176.6.3697] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The cholera toxin A1 (CTA1)-DD/QuilA-containing, immune-stimulating complex (ISCOM) vector is a rationally designed mucosal adjuvant that greatly potentiates humoral and cellular immune responses. It was developed to incorporate the distinctive properties of either adjuvant alone in a combination that exerted additive enhancing effects on mucosal immune responses. In this study we demonstrate that CTA1-DD and an unrelated Ag can be incorporated together into the ISCOM, resulting in greatly augmented immunogenicity of the Ag. To demonstrate its relevance for protection against infectious diseases, we tested the vector incorporating PR8 Ag from the influenza virus. After intranasal immunization we found that the immunogenicity of the PR8 proteins were significantly augmented by a mechanism that was enzyme dependent, because the presence of the enzymatically inactive CTA1R7K-DD mutant largely failed to enhance the response over that seen with ISCOMs alone. The combined vector was a highly effective enhancer of a broad range of immune responses, including specific serum Abs and balanced Th1 and Th2 CD4(+) T cell priming as well as a strong mucosal IgA response. Unlike unmodified ISCOMs, Ag incorporated into the combined vector could be presented by B cells in vitro and in vivo as well as by dendritic cells; it also accumulated in B cell follicles of draining lymph nodes when given s.c. and stimulated much enhanced germinal center reactions. Strikingly, the enhanced adjuvant activity of the combined vector was absent in B cell-deficient mice, supporting the idea that B cells are important for the adjuvant effects of the combined CTA1-DD/ISCOM vector.
Collapse
Affiliation(s)
- Anja Helgeby
- Department of Clinical Immunology, University of Goteborg, 413 46 Goteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Maier M, Seabrook TJ, Lemere CA. Modulation of the humoral and cellular immune response in Abeta immunotherapy by the adjuvants monophosphoryl lipid A (MPL), cholera toxin B subunit (CTB) and E. coli enterotoxin LT(R192G). Vaccine 2006; 23:5149-59. [PMID: 16054274 DOI: 10.1016/j.vaccine.2005.06.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 06/02/2005] [Accepted: 06/15/2005] [Indexed: 11/15/2022]
Abstract
Abeta vaccination or passive transfer of human-specific anti-Abeta antibodies are approaches under investigation to prevent and/or treat Alzheimer's disease (AD). Successful active Abeta vaccination requires a strong and safe adjuvant to induce anti-Abeta antibody formation. We compared the adjuvants monophosphoryl lipid A (MPL)/trehalose dicorynomycolate (TDM), cholera toxin B subunit (CTB) and Escherichia coli heat-labile enterotoxin LT(R192G) for their ability to induce a humoral and cellular immune reaction, using fibrillar Abeta1-40/42 as a common immunogen in wildtype B6D2F1 mice. Subcutaneous (s.c.) administration with MPL/TDM resulted in anti-Abeta antibodies levels up to four times higher compared to s.c. LT(R192G). Using MPL/TDM, the anti-Abeta antibodies induced were mainly IgG2b, IgG1 and lower levels of IgG2a and IgM, with a moderate splenocyte proliferation and IFN-gamma production in vitro upon stimulation with Abeta1-40/42. LT(R192G), previously shown by us to induce robust titers of anti-Abeta antibodies, generated predominantly IgG2b and IgG1 anti-Abeta antibodies with very low splenocyte proliferation and IFN-gamma production. Weekly intranasal (i.n.) administration over 11 weeks of Abeta40/42 with CTB induced only moderate levels of antibodies. All immunogens generated antibodies that recognized mainly the Abeta1-7 epitope and specifically detected amyloid plaques on AD brain sections. In conclusion, MPL/TDM, in addition to LT(R192G), is an effective adjuvant when combined with Abeta40/42 and may aid in the design of Abeta immunotherapy.
Collapse
Affiliation(s)
- Marcel Maier
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
14
|
De Filette M, Ramne A, Birkett A, Lycke N, Löwenadler B, Min Jou W, Saelens X, Fiers W. The universal influenza vaccine M2e-HBc administered intranasally in combination with the adjuvant CTA1-DD provides complete protection. Vaccine 2006; 24:544-51. [PMID: 16169634 DOI: 10.1016/j.vaccine.2005.08.061] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 08/16/2005] [Indexed: 10/25/2022]
Abstract
Mucosal vaccination requires effective and safe adjuvants. We have evaluated the non-toxic adjuvant CTA1-DD for mucosal vaccination against influenza. CTA1-DD contains the enzymatically active CTA1 subunit of cholera toxin (CT) genetically fused to a gene encoding a dimer of the D-fragment from Staphylococcus aureus protein A. CTA1-DD only binds to Ig-receptor carrying cells of the immune system. Nasal administration of the universal influenza vaccine M2e-HBc in combination with CTA1-DD completely protected mice from a potentially lethal infection and significantly reduced morbidity. Sera of mice immunized with M2e-HBc + CTA1-DD revealed IgG subclass profiles consistent with an enhanced Th1-type immunity. When the vaccine was administered intraperitoneally, the adjuvant improved the M2e antibody titer in circulation, but did not significantly reduce the morbidity.
Collapse
Affiliation(s)
- Marina De Filette
- DMBR, Ghent University-VIB, FSVM-Building, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Arakawa T, Komesu A, Otsuki H, Sattabongkot J, Udomsangpetch R, Matsumoto Y, Tsuji N, Wu Y, Torii M, Tsuboi T. Nasal immunization with a malaria transmission-blocking vaccine candidate, Pfs25, induces complete protective immunity in mice against field isolates of Plasmodium falciparum. Infect Immun 2005; 73:7375-80. [PMID: 16239536 PMCID: PMC1273902 DOI: 10.1128/iai.73.11.7375-7380.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria transmission-blocking vaccines based on antigens expressed in sexual stages of the parasites are considered one promising strategy for malaria control. To investigate the feasibility of developing noninvasive mucosal transmission-blocking vaccines against Plasmodium falciparum, intranasal immunization experiments with Pichia pastoris-expressed recombinant Pfs25 proteins were conducted. Mice intranasally immunized with the Pfs25 proteins in the presence of a potent mucosal adjuvant cholera toxin induced robust systemic as well as mucosal antibodies. All mouse immunoglobulin G (IgG) subclasses except IgG3 were found in serum at comparable levels, suggesting that the immunization induced mixed Th1 and Th2 responses. Consistent with the expression patterns of the Pfs25 proteins in the parasites, the induced immune sera specifically recognized ookinetes but not gametocytes. In addition, the immune sera recognized Pfs25 proteins with the native conformation but not the denatured forms, indicating that mucosal immunization induced biologically active antibodies capable of recognizing conformational epitopes of native Pfs25 proteins. Feeding Anopheles dirus mosquitoes with a mixture of the mouse immune sera and gametocytemic blood derived from patients infected with P. falciparum resulted in complete interference with oocyst development in mosquito midguts. The observed transmission-blocking activities were strongly correlated with specific serum antibody titers. Our results demonstrated for the first time that a P. falciparum transmission-blocking vaccine candidate is effective against field-isolated parasites and may justify the investigation of noninvasive mucosal vaccination regimens for control of malaria, a prototypical mucosa-unrelated mosquito-borne parasitic disease.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Administration, Intranasal
- Animals
- Antibodies, Protozoan/blood
- Antibodies, Protozoan/immunology
- Antigens, Protozoan/immunology
- Antigens, Surface/immunology
- Dose-Response Relationship, Drug
- Female
- Malaria Vaccines/administration & dosage
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/transmission
- Mice
- Mice, Inbred BALB C
- Oocysts
- Plasmodium falciparum/genetics
- Plasmodium falciparum/growth & development
- Plasmodium falciparum/immunology
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
Collapse
Affiliation(s)
- Takeshi Arakawa
- Division of Molecular Microbiology, Center for Molecular Biosciences, University of Ryukyus, Nishihara, Okinawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|