1
|
Bosi G, Maynard BJ, Pironi F, Sayyaf Dezfuli B. Parasites and the neuroendocrine control of fish intestinal function: an ancient struggle between pathogens and host. Parasitology 2022; 149:1842-1861. [PMID: 36076315 PMCID: PMC11010486 DOI: 10.1017/s0031182022001160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/29/2022]
Abstract
Most individual fish in wild and farmed populations can be infected with parasites. Fish intestines can harbour protozoans, myxozoans and helminths, which include several species of digeneans, cestodes, nematodes and acanthocephalans. Enteric parasites often induce inflammation of the intestine; the pathogen provokes changes in the host physiology, which will be genetically selected for if they benefit the parasite. The host response to intestinal parasites involves neural, endocrine and immune systems and interaction among these systems is coordinated by hormones, chemokines, cytokines and neurotransmitters including peptides. Intestinal fish parasites have effects on the components of the enteric nervous and endocrine systems; mechanical/chemical changes impair the activity of these systems, including gut motility and digestion. Investigations on the role of the neuroendocrine system in response to fish intestinal parasites are very few. This paper provides immunohistochemical and ultrastructural data on effects of parasites on the enteric nervous system and the enteric endocrine system in several fish–parasite systems. Emphasis is on the occurrence of 21 molecules including cholecystokinin-8, neuropeptide Y, enkephalins, galanin, vasoactive intestinal peptide and serotonin in infected tissues.
Collapse
Affiliation(s)
- Giampaolo Bosi
- Department of Veterinary Medicine and Animal Science, University of Milan, St. dell'Università 6, 26900 Lodi, Italy
| | - Barbara J. Maynard
- The Institute for Learning and Teaching, Colorado State University, Fort Collins, CO 80523, USA
| | - Flavio Pironi
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| | - Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Peter MCS, Gayathry R, Peter VS. Inducible Nitric Oxide Synthase/Nitric Oxide System as a Biomarker for Stress and Ease Response in Fish: Implication on Na+ Homeostasis During Hypoxia. Front Physiol 2022; 13:821300. [PMID: 35655956 PMCID: PMC9152262 DOI: 10.3389/fphys.2022.821300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
The cellular and organismal response to stressor-driven stimuli evokes stress response in vertebrates including fishes. Fishes have evolved varied patterns of stress response, including ionosmotic stress response, due to their sensitivity to both intrinsic and extrinsic stimuli. Fishes that experience hypoxia, a detrimental stressor that imposes systemic and cellular stress response, can evoke disturbed ion homeostasis. In addition, like other vertebrates, fishes have also developed mechanisms to recover from the impact of stress by way of shifting stress response into ease response that could reduce the magnitude of stress response with the aid of certain neuroendocrine signals. Nitric oxide (NO) has been identified as a potent molecule that attenuates the impact of ionosmotic stress response in fish, particularly during hypoxia stress. Limited information is, however, available on this important aspect of ion transport physiology that contributes to the mechanistic understanding of survival during environmental challenges. The present review, thus, discusses the role of NO in Na+ homeostasis in fish particularly in stressed conditions. Isoforms of nitric oxide synthase (NOS) are essential for the synthesis and availability of NO at the cellular level. The NOS/NO system, thus, appears as a unique molecular drive that performs both regulatory and integrative mechanisms of control within and across varied fish ionocytes. The activation of the inducible NOS (iNOS)/NO system during hypoxia stress and its action on the dynamics of Na+/K+-ATPase, an active Na+ transporter in fish ionocytes, reveal that the iNOS/NO system controls cellular and systemic Na+ transport in stressed fish. In addition, the higher sensitivity of iNOS to varied physical stressors in fishes and the ability of NO to lower the magnitude of ionosmotic stress in hypoxemic fish clearly put forth NO as an ease-promoting signal molecule in fishes. This further points to the signature role of the iNOS/NO system as a biomarker for stress and ease response in the cycle of adaptive response in fish.
Collapse
Affiliation(s)
- M. C. Subhash Peter
- Inter-University Centre for Evolutionary and Integrative Biology iCEIB, School of Life Science, University of Kerala, Kariavattom, Thiruvananthapuram, India
- Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram, India
- *Correspondence: M. C. Subhash Peter,
| | - R. Gayathry
- Inter-University Centre for Evolutionary and Integrative Biology iCEIB, School of Life Science, University of Kerala, Kariavattom, Thiruvananthapuram, India
| | - Valsa S. Peter
- Inter-University Centre for Evolutionary and Integrative Biology iCEIB, School of Life Science, University of Kerala, Kariavattom, Thiruvananthapuram, India
| |
Collapse
|
3
|
Peter MCS, Gayathry R. Nitric oxide synthase (NOS) inhibitor L-NAME activates inducible NOS/NO system and drives multidimensional regulation of Na + /K + -ATPase in ionocyte epithelia of immersion-stressed air-breathing fish (Anabas testudineus Bloch). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:396-416. [PMID: 33734617 DOI: 10.1002/jez.2454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/20/2023]
Abstract
Nitric oxide (NO) has been implicated in Na+ homeostatic control in water-breathing fishes. It is, however, uncertain whether air-breathing fish relies on NO to coordinate Na+ /K+ -ATPase (NKA)-driven Na+ transport during acute hypoxemia. We, thus, examined the action of nitric oxide synthase (NOS) inhibitor, L-NAME on NO availability, inducible NOS (iNOS) protein abundance and the regulatory dynamics of NKA in osmoregulatory epithelia of Anabas testudineus kept at induced hypoxemia. As expected in nonstressed fish, in vivo L-NAME (100 ng g-1 ) challenge for 30 min declined NO production in serum (40%) and osmoregulatory tissues (average 51.6%). Surprisingly, the magnitude of such reduction was less in hypoxemic fish after L-NAME challenge due to the net gain of NO (average 23.7%) in these tissues. Concurrently, higher iNOS protein abundance was found in branchial and intestinal epithelia of these hypoxemic fish. In nonstressed fish, L-NAME treatment inhibited the NKA activity in branchial and intestinal epithelia while stimulating its activity in renal epithelia. Interestingly in hypoxemic fish, L-NAME challenge restored the hypoxemia-inhibited NKA activity in branchial and renal epithelia. Similar recovery response was evident in the NKAα protein abundance in immunoblots and immunofluorescence images of branchial epithelia of these fish. Analysis of Nkaα1 isoform transcript abundance (Nkaα1a, α1b, α1c) also showed spatial and preferential regulation of Nkaα1 isoform switching. Collectively, the data indicate that L-NAME challenge activates iNOS/NO system in the branchial ionocyte epithelia of hypoxemia-stressed Anabas and demands multidimensional regulation of NKA to restore the Na+ transport rate probably to defend against acute hypoxemia.
Collapse
Affiliation(s)
- M C Subhash Peter
- Inter-University Centre for Evolutionary and Integrative Biology iCEIB, Thiruvananthapuram, Kerala, India.,Department of Zoology, University of Kerala, Thiruvananthapuram, Kerala, India
| | - R Gayathry
- Department of Zoology, University of Kerala, Thiruvananthapuram, Kerala, India
| |
Collapse
|
4
|
Gerber L, Jensen FB, Madsen SS. Dynamic changes in nitric oxide synthase expression are involved in seawater acclimation of rainbow trout Oncorhynchus mykiss. Am J Physiol Regul Integr Comp Physiol 2017; 314:R552-R562. [PMID: 29351430 DOI: 10.1152/ajpregu.00519.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent research has shown that nitric oxide (NO) produced by nitric oxide synthases (NOS) is an inhibitor of ion transporter activity and a modulator of epithelial ion transport in fish, but little is known on changes in the NOS/NO system during osmotic stress. We hypothesized that the NOS/NO system responds to salinity changes as an integrated part of the acclimation process. Expression and localization of nos1/Nos1 and nos2/Nos2 were investigated in gill, kidney, and intestine of freshwater (FW)- and seawater (SW)-transferred trout using quantitative PCR, Western blotting, and immunohistochemistry, along with expressional changes of major ion transporters in the gill. The classical branchial ion transporters showed expected expressional changes upon SW transfer, there among a rapid decrease in Slc26a6 mRNA, coding a branchial Cl-/[Formula: see text] exchanger. There was a major downregulation of nos1/ nos2/Nos2 expression in the gill during SW acclimation. A significant decrease in plasma nitrite supported an overall decreased Nos activity and NO production. In the middle intestine, Nos1 was upregulated during SW acclimation, whereas no changes in nos/Nos expression were observed in the posterior intestine and the kidney. Nos1 was localized along the longitudinal axis of the gill filament, beneath smooth muscle fibers of the intestine wall and in blood vessel walls of the kidney. Nos2 was localized within the epithelium adjacent to the gill filament axis and in hematopoietic tissues of the kidney. We conclude that downregulation of branchial NOS is integrated to the SW acclimation process likely to avoid the inhibitory effects of NO on active ion extrusion.
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - Frank B Jensen
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - Steffen S Madsen
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
5
|
Azeredo R, Machado M, Kreuz E, Wuertz S, Oliva-Teles A, Enes P, Costas B. The European seabass (Dicentrarchus labrax) innate immunity and gut health are modulated by dietary plant-protein inclusion and prebiotic supplementation. FISH & SHELLFISH IMMUNOLOGY 2017; 60:78-87. [PMID: 27836721 DOI: 10.1016/j.fsi.2016.11.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/25/2016] [Accepted: 11/06/2016] [Indexed: 06/06/2023]
Abstract
Inclusion of prebiotics in aqua feeds, though a costly strategy, has increased as a means to improve growth. Still, its effects on health improvement are not fully disclosed. Regarding their immunestimulatory properties, research has focused on carbohydrates such as fructooligosaccharides and xylooligosaccharides demonstrating their modulatory effects on immune defences in higher vertebrates but few studies have been done on their impact on fish immunity. Replacing fish meal (FM) by plant protein (PP) sources is a current practice in the aquaculture business but their content in antinutrients is still a drawback in terms of gut well-functioning. This work intends to evaluate the short-term effect (7 or 15 days feeding the experimental diets) on juvenile European seabass (Dicentrarchus labrax) immune status of dietary i) replacement of FM by PP sources; ii) prebiotics supplementation. Six isoproteic (46%) and isolipidic (15%) diets were tested including a FM control diet (FMCTRL), a PP control diet (PPCTRL, 30 FM:70 PP) and four other diets based on either FM or PP to which short-chain fructooligosaccharides (scFOS) or xylooligosaccharides (XOS) were added at 1% (FMFOS, PPFOS, FMXOS, PPXOS). The replacement of FM by PP in the diets induced nitric oxide (NO) and lysozyme production, while immunoglobulins (Ig), monocytes percentage and gut interleukin 10 (IL10) gene expression were inhibited. Dietary scFOS supplementation inhibited total bactericidal activity and neutrophils relative percentage regardless protein source and increased plasma NO and thrombocytes percentage in fish fed FM-based diets, while monocytes percentage was increased in PPFOS-fed fish. XOS supplementation down-regulated immune gene expression in the gut while it partly enhanced systemic response. Inconsistency among results regarding FM replacement by PP-based ingredients exposes the need for further research considering both local and systemic responses. Distinct outcomes of prebiotic supplementation were highlighted reflecting sight-specific effects with no clear interaction with protein source.
Collapse
Affiliation(s)
- Rita Azeredo
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal.
| | - Marina Machado
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Eva Kreuz
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany
| | - Sven Wuertz
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany
| | - Aires Oliva-Teles
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Paula Enes
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Benjamín Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
6
|
Gerber L, Madsen SS, Jensen FB. Cortisol regulates nitric oxide synthase in freshwater and seawater acclimated rainbow trout, Oncorhynchus mykiss. Comp Biochem Physiol A Mol Integr Physiol 2016; 204:1-8. [PMID: 27838356 DOI: 10.1016/j.cbpa.2016.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 12/16/2022]
Abstract
Cortisol and nitric oxide (NO) are regulators of ion transport and metabolic functions in fish. In the gill, they show opposite effects on Na+/K+-ATPase (NKA) activity: cortisol stimulates NKA activity while NO inhibits NKA activity. We hypothesized that cortisol may impact NO production in osmoregulatory tissues by regulating NO synthase (NOS) expression. We evaluated the influence of cortisol treatment on mRNA expression of Nos1 and Nos2 in gill, kidney and middle intestine of both freshwater (FW) and seawater (SW) acclimated rainbow trout and found both tissue- and salinity-dependent effects. Nos2 expression was down-regulated in the gill by cortisol injection in both FW and SW trout. This was substantiated by incubating gill tissue with cortisol ex vivo. Similarly, cortisol injection significantly down-regulated Nos2 expression in kidney of SW fish but not in FW fish. In the middle intestine, Nos2 expression was up-regulated by cortisol injection in FW but unchanged in SW fish. Nos1 expression was up-regulated by cortisol injection in FW kidney and down-regulated in SW kidney, whereas it was unaffected in gill and middle intestine of FW and SW fish. Our data provide the first evidence that cortisol may influence NO production in fish by regulating Nos expression. Indeed, the down-regulation of Nos2 expression by cortisol in the gill may prevent the inhibitory effect of NO on NKA activity thereby furthering the stimulatory effect of cortisol on ion-transport.
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | - Steffen S Madsen
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Frank B Jensen
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
7
|
Induction of Inducible Nitric Oxide Synthase by Lipopolysaccharide and the Influences of Cell Volume Changes, Stress Hormones and Oxidative Stress on Nitric Oxide Efflux from the Perfused Liver of Air-Breathing Catfish, Heteropneustes fossilis. PLoS One 2016; 11:e0150469. [PMID: 26950213 PMCID: PMC4780830 DOI: 10.1371/journal.pone.0150469] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 02/15/2016] [Indexed: 12/28/2022] Open
Abstract
The air-breathing singhi catfish (Heteropneustes fossilis) is frequently being challenged by bacterial contaminants, and different environmental insults like osmotic, hyper-ammonia, dehydration and oxidative stresses in its natural habitats throughout the year. The main objectives of the present investigation were to determine (a) the possible induction of inducible nitric oxide synthase (iNOS) gene with enhanced production of nitric oxide (NO) by intra-peritoneal injection of lipopolysaccharide (LPS) (a bacterial endotoxin), and (b) to determine the effects of hepatic cell volume changes due to anisotonicity or by infusion of certain metabolites, stress hormones and by induction of oxidative stress on production of NO from the iNOS-induced perfused liver of singhi catfish. Intra-peritoneal injection of LPS led to induction of iNOS gene and localized tissue specific expression of iNOS enzyme with more production and accumulation of NO in different tissues of singhi catfish. Further, changes of hydration status/cell volume, caused either by anisotonicity or by infusion of certain metabolites such as glutamine plus glycine and adenosine, affected the NO production from the perfused liver of iNOS-induced singhi catfish. In general, increase of hydration status/cell swelling due to hypotonicity caused decrease, and decrease of hydration status/cell shrinkage due to hypertonicity caused increase of NO efflux from the perfused liver, thus suggesting that changes in hydration status/cell volume of hepatic cells serve as a potent modulator for regulating the NO production. Significant increase of NO efflux from the perfused liver was also observed while infusing the liver with stress hormones like epinephrine and norepinephrine, accompanied with decrease of hydration status/cell volume of hepatic cells. Further, oxidative stress, caused due to infusion of t-butyl hydroperoxide and hydrogen peroxide separately, in the perfused liver of singhi catfish, resulted in significant increase of NO efflux accompanied with decrease of hydration status/cell volume of hepatic cells. However, the reasons for these cell volume-sensitive changes of NO efflux from the liver of singhi catfish are not fully understood with the available data. Nonetheless, enhanced or decreased production of NO from the perfused liver under osmotic stress, in presence of stress hormones and oxidative stress reflected its potential role in cellular homeostasis and also for better adaptations under environmental challenges. This is the first report of osmosensitive and oxidative stress-induced changes of NO production and efflux from the liver of any teleosts. Further, the level of expression of iNOS in this singhi catfish could also serve as an important indicator to determine the pathological status of the external environment.
Collapse
|
8
|
Elasmobranch Cardiovascular System. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/b978-0-12-801286-4.00001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
9
|
González PM, Abele D, Puntarulo S. A kinetic approach to assess oxidative metabolism related features in the bivalve Mya arenaria. Theory Biosci 2012; 131:253-64. [PMID: 22829190 DOI: 10.1007/s12064-012-0159-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 07/06/2012] [Indexed: 12/24/2022]
Abstract
Electron paramagnetic resonance uses the resonant microwave radiation absorption of paramagnetic substances to detect highly reactive and, therefore, short-lived oxygen and nitrogen centered radicals. Previously, steady state concentrations of nitric oxide, ascorbyl radical (A·) and the labile iron pool (LIP) were determined in digestive gland of freshly collected animals from the North Sea bivalve Mya arenaria. The application of a simple kinetic analysis of these data based on elemental reactions allowed us to estimate the steady state concentrations of superoxide anion, the rate of A· disappearance and the content of unsaturated lipids. This analysis applied to a marine invertebrate opens the possibility of a mechanistic understanding of the complexity of free radical and LIP interactions in a metabolically slow, cold water organism under unstressed conditions. This data can be further used as a basis to assess the cellular response to stress in a simple system as the bivalve M. arenaria that can then be compared to cells of higher organisms.
Collapse
Affiliation(s)
- Paula Mariela González
- Physical Chemistry-PRALIB, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | | | | |
Collapse
|
10
|
Velarde E, Alonso-Gómez AL, Azpeleta C, Isorna E, De Pedro N, Delgado MJ. Melatonin effects on gut motility are independent of the relaxation mediated by the nitrergic system in the goldfish. Comp Biochem Physiol A Mol Integr Physiol 2011; 159:367-71. [PMID: 21539928 DOI: 10.1016/j.cbpa.2011.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/27/2010] [Accepted: 01/17/2011] [Indexed: 11/19/2022]
Abstract
Melatonin is a key neuroendocrine transducer in the circadian organization of vertebrates. However, its role in gastrointestinal physiology has not been explored in depth. In goldfish, a role for melatonin as a modulator of intestinal motility has been reported, whereby it attenuates the cholinergic contraction. The aim of the present work was to investigate this relaxation induced by melatonin in the gut smooth muscle of the goldfish, studying the possible involvement of nitric oxide. An in vitro model of isolated goldfish intestine was used to test the effects on intestinal motility. The addition of melatonin (10 pM-100 μM) to the organ bath relaxed acetylcholine- and serotonin-stimulated gut strips, but no effect was observed on KCl-contracted preparations. The addition of L-NAME (nitric oxide synthase inhibitor) increased the amplitude of the spontaneous slow waves, while sodium nitroprusside (SNP, nitric oxide donor) abolished them. All these results support a role for the nitrergic system in goldfish gut motility. However, neither L-NAME, nor SNP nor the nitric oxide precursor, l-arginine, modified the melatonin relaxing effect. These results highlight the existence of a basal nitrergic tone in the gut of goldfish, where melatonin would exert a calcium-dependent, nitric oxide-independent relaxing effect on serotonergic and cholinergic contraction.
Collapse
Affiliation(s)
- Elena Velarde
- Department of Physiology (Animal Physiology II), Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Gräns A, Albertsson F, Axelsson M, Olsson C. Postprandial changes in enteric electrical activity and gut blood flow in rainbow trout (Oncorhynchus mykiss) acclimated to different temperatures. ACTA ACUST UNITED AC 2009; 212:2550-7. [PMID: 19648399 DOI: 10.1242/jeb.030593] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Enteric electrical activity, cardiac output and gut blood flow were measured in rainbow trout (Oncorhynchus mykiss) acclimated to either 10 degrees C or 16 degrees C. Enteric electrical activity showed, in both the fasted and postprandial state, a distinct pattern with clusters of burst-like events interspersed by silent periods. The frequency of electrical events increased postprandially for both acclimation groups. Event frequency increased from 3.0+/-0.5 to 9.6+/-1.4 events min(-1) and from 5.9+/-0.9 to 11.8+/-2.0 events min(-1) in the 10 degrees C and 16 degrees C groups, respectively. Similarly, the number of events per cluster increased postprandially for both acclimation groups. Gut blood flow, cardiac output and heart rate increased after feeding. The gut blood flow significantly increased in both groups and peaked at 257+/-19% and 236+/-22% in the 10 degrees C and 16 degrees C groups, respectively. There was a strong correlation between the number of events and gut blood flow at both temperatures. Comparison between the two groups showed that fish acclimated to 16 degrees C may have an increased cost of sustaining the basal activity of the gut compared with the group acclimated to 10 degrees C. In conclusion, we have for the first time measured enteric electrical activity in vivo in a fish species and we have also demonstrated a strong correlation between gut blood flow and enteric electrical activity in fasted and postprandial fish.
Collapse
Affiliation(s)
- Albin Gräns
- Department of Zoology, University of Gothenburg, Göteborg, Sweden.
| | | | | | | |
Collapse
|
12
|
Nitric oxide and the zebrafish (Danio rerio): Developmental neurobiology and brain neurogenesis. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s1872-2423(07)01011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
13
|
NO in the development of fish. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s1872-2423(07)01012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
14
|
Serfözö Z, Szentmiklósi AJ, Elekes K. Characterization of nitric oxidergic neurons in the alimentary tract of the snailHelix pomatia L.: Histochemical and physiological study. J Comp Neurol 2007; 506:801-21. [DOI: 10.1002/cne.21585] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Pelster B, Grillitsch S, Schwerte T. NO as a mediator during the early development of the cardiovascular system in the zebrafish. Comp Biochem Physiol A Mol Integr Physiol 2005; 142:215-20. [PMID: 15958285 DOI: 10.1016/j.cbpb.2005.05.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2005] [Revised: 05/10/2005] [Accepted: 05/11/2005] [Indexed: 10/25/2022]
Abstract
As a general pattern innervation of the cardiovascular system appears late during development in vertebrate embryos, and cardiovascular control may be achieved by hormonal activity in early stages. However, very little is known about the onset of NO-responsiveness during development, which in adult vertebrates is known to play a key function in many physiological processes such as control of vascular tone, neurotransmission, macrophage activity, and angiogenesis. Analysis of the effect of NO on the cardiovascular system in zebrafish (Danio rerio) embryos and larvae revealed almost no effect on cardiac activity during chronic exposure to NO-producing chemicals, whereas vascular reactivity was observed in veins and arteries of the zebrafish in early developmental stages (5-6 days post fertilization). Chronic exposure also modified the development of the vascular system. The presence of an NO donor (sodium nitroprusside) did not change the patterning of the vascular bed, but it induced an earlier appearance of some blood vessels in the trunk region of the zebrafish larvae. The data reveal that NO plays an important role in the development of the cardiovascular system and in the ontogeny of the cardiovascular control system in fish.
Collapse
Affiliation(s)
- Bernd Pelster
- Department of Zoology and Limnology, University of Innsbruck, Austria.
| | | | | |
Collapse
|
16
|
Krönström J, Holmgren S, Baguet F, Salpietro L, Mallefet J. Nitric oxide in control of luminescence from hatchetfish(Argyropelecus hemigymnus) photophores. J Exp Biol 2005; 208:2951-61. [PMID: 16043600 DOI: 10.1242/jeb.01712] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYNitric oxide synthase-like immunoreactivity (NOS-LI IR) was detected by immunohistochemistry in ventral light organs of the mesopelagic fish, Argyropelecus hemigymnus. Strong NOS-LI IR was present in nerve fibres and in other cells central for production or modulation of light:immunoreactive fibres surrounded the photophores, and were also present in the filter area. Filter cells, particularly in the outer layers, showed strong IR throughout the cytoplasm. Pharmacological studies suggested that nitric oxide(NO) modulates adrenaline-stimulated light emission, and that the modulation is correlated to the ability of the light organ to respond to adrenaline. Adrenaline is known to produce two different types of light response in isolated photophores from Argyropelecus: a slow, long-lasting, high intensity response, or a fast and weak response of short duration. Incubation of photophores in the NO donors sodium nitroprusside or S-nitroso-N-acetylpenicillamine prior to adrenaline stimulation reduced the intensity of the strong and long-lasting type of response, but had little or even a potentiating effect on the weakly responding photophores. Hydroxylamine, which is converted to NO if catalase activity is present in the tissue, reduced the duration and the intensity of the adrenaline response in all tested organs. The NOS-inhibitor l-thiocitrulline potentiated the adrenaline response in the weakly responding organs; the weaker the adrenaline effect, the stronger the potentiation caused by l-thiocitrulline. The strongly responding organs were instead inhibited by l-thiocitrulline. The results suggest that NO has an important role in the control of light emission from Argyropelecus hemigymnus photophores. The cGMP analogue dibutyryl cGMP, the guanylate cyclase inhibitor ODQ and the phosphodiesterase inhibitor pentoxiphylline had no effect, indicating that the NO effect does not involve cGMP.
Collapse
Affiliation(s)
- Jenny Krönström
- Department of Zoophysiology, Göteborg University, Box 463, SE 405 30 Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
17
|
Ebbesson LOE, Tipsmark CK, Holmqvist B, Nilsen T, Andersson E, Stefansson SO, Madsen SS. Nitric oxide synthase in the gill of Atlantic salmon: colocalization with and inhibition of Na+,K+-ATPase. J Exp Biol 2005; 208:1011-7. [PMID: 15767302 DOI: 10.1242/jeb.01488] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
We investigated the relationship between nitric oxide (NO) and Na+,K+-ATPase (NKA) in the gill of anadromous Atlantic salmon. Cells containing NO-producing enzymes were revealed by means of nitric oxide synthase (NOS) immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry, which can be used as an indicator of NOS activity, i.e. NO production. Antibodies against the two constitutive NOS isoforms, neuronal and endothelial NOS, both produced immunoreactivity restricted to large cells at the base and along the secondary lamellae. NADPHd-positive cells showed a corresponding distribution. Antibodies against the inducible NOS isoform only labeled small cells located deep in the filament. Using in situ hybridization and NKA immunoreactivity, cells expressing Na+,K+-ATPaseα-subunit mRNA were found to have a similar distribution to the NOS cells. Double labeling for NOS immunoreactivity and NKA α-subunit mRNA revealed cellular colocalization of NKA α-subunit mRNA and nNOS protein in putative chloride cells at the base of the lamellae and interlamellar space. Along the lamellae, some NOS- or NKA-immunoreactive cells possessed a relatively lower expression of NKA α-subunit mRNA in smolts. A clear increase in NADPHd staining in the gill was demonstrated from parr to smolt. The regulatory role of NO on gill NKA activity was studied in vitrousing sodium nitroprusside (SNP; 1 mmol l-1) and PAPA-NONOate(NOC-15; 0.5 mmol l-1) as NO donors. Both SNP and NOC-15 inhibited gill NKA activity by 30% when compared to controls. The study shows that NO systems are abundant in the gill of Atlantic salmon, that NO may be produced preferentially by a constitutive NOS isoform, and suggests that NO influence on gill functions is mediated via intracellular, possibly both auto/paracrine,inhibition of Na+,K+-ATPase activity in chloride cells. Furthermore, the increase in NADPHd in the gill during smoltification suggests a regulatory role of NO in the attenuation of the smoltification-related increase in Na+,K+-ATPase activity prior to entering seawater.
Collapse
Affiliation(s)
- Lars O E Ebbesson
- Department of Biology, University of Bergen, Bergen High Technology Centre, N-5020 Bergen, Norway.
| | | | | | | | | | | | | |
Collapse
|
18
|
Swenson KE, Eveland RL, Gladwin MT, Swenson ER. Nitric Oxide (NO) in normal and hypoxic vascular regulation of the spiny dogfish,Squalus acanthias. ACTA ACUST UNITED AC 2005; 303:154-60. [PMID: 15662661 DOI: 10.1002/jez.a.145] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nitric oxide (NO) is a potent vasodilator in terrestrial vertebrates, but whether vascular endothelial-derived NO plays a role in vascular regulation in fish remains controversial. To explore this issue, a study was made of spiny dogfish sharks (Squalus acanthias) in normoxia and acute hypoxia (60 min exposure to seawater equilibrated with 3% oxygen) with various agents known to alter NO metabolism or availability. In normoxia, nitroprusside (a NO donor) reduced blood pressure by 20%, establishing that vascular smooth muscle responds to NO. L-arginine, the substrate for NO synthase, had no hemodynamic effect. Acetylcholine, which stimulates endothelial NO and prostaglandin production in mammals, reduced blood pressure, but also caused marked bradycardia. L-NAME, an inhibitor of all NO synthases, caused a small 10% rise in blood pressure, but cell-free hemoglobin (a potent NO scavenger and hypertensive agent in mammals) had no effect. Acute hypoxia caused a 15% fall in blood pressure, which was blocked by L-NAME and cell-free hemoglobin. Serum nitrite, a marker of NO production, rose with hypoxia, but not with L-NAME. Results suggest that NO is not an endothelial-derived vasodilator in the normoxic elasmobranch. The hypertensive effect of L-NAME may represent inhibition of NO production in the CNS and nerves regulating blood pressure. In acute hypoxia, there is a rapid up-regulation of vascular NO production that appears to be responsible for hypoxic vasodilation.
Collapse
Affiliation(s)
- Kai E Swenson
- Mt Desert Island Biological Laboratory, Salsbury Cove, Maine 04672, USA
| | | | | | | |
Collapse
|
19
|
Abele D, Puntarulo S. Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp Biochem Physiol A Mol Integr Physiol 2004; 138:405-15. [PMID: 15369829 DOI: 10.1016/j.cbpb.2004.05.013] [Citation(s) in RCA: 317] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 05/18/2004] [Accepted: 05/25/2004] [Indexed: 12/21/2022]
Abstract
High oxygen solubility at cold-water temperature is frequently considered to be responsible for an apparently elevated level of antioxidant protection in marine ectotherms from polar environments. However, tissue oxidative stress is in most cases a function of elevated or variable pO2, rather than of an elevated tissue oxygen concentration. This review summarizes current knowledge on pro- and antioxidant processes in marine invertebrates and fish, and relates reactive oxygen species (ROS) formation in polar ectotherms to homeoviscous adaptations of membrane and storage lipids, as well as to tissue hypoxia and re-oxygenation during physiological stress.
Collapse
Affiliation(s)
- Doris Abele
- Alfred Wegener Institut for Polar and Marine Research, Marine Ecophysiology Ecotoxicology, Columbusstr. 27568 Bremerhaven, Germany.
| | | |
Collapse
|
20
|
Mommsen TP, Osachoff HL, Elliott ME. Metabolic zonation in teleost gastrointestinal tract. Effects of fasting and cortisol in tilapia. J Comp Physiol B 2003; 173:409-18. [PMID: 12783263 DOI: 10.1007/s00360-003-0349-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2003] [Indexed: 10/26/2022]
Abstract
Activities of several metabolic enzymes show distinct patterns of zonation along the intestinal tract of tilapia (Oreochromis niloticus), rainbow trout (Oncorhynchus mykiss) and copper rockfish (Sebastes caurinus). Zonation is species and enzyme specific, with different metabolic activities concentrated in specific areas, and few generalizations can be made. The rockfish show the smallest degree of zonation, with highest activities in the third quarter of the intestine, and shallow gradients to either side, and a general upswing in activity towards the distal end. In the trout, mitochondrial enzyme activities (citrate synthase, glutamate dehydrogenase, malate dehydrogenase) are highest in the pyloric caeca and decrease along the length of the small intestine. This pattern is accentuated for malic enzyme and glucose 6-phosphate dehydrogenase. These enzymes drop precipitously in activity after the first few sections of the small intestine, while other NADP-linked dehydrogenases (isocitrate dehydrogenase, and 6-phosphogluconate dehydrogenase) show moderate activity in pyloric caeca and peak toward the distal section of the small intestine. In tilapia, glutamate dehydrogenase shows a similar decrease as in trout, but citrate synthase peaks towards the distal sections. NADP-dependent dehydrogenases reveal distinct patterns, peaking in different sections of the intestine-malic enzyme in the proximal midsection, glucose 6-phosphate dehydrogenase in the distal mid-section, and isocitrate dehydrogenase in the anal section. Enzyme activities in the stomach of trout and tilapia also show zonation, with the midsection generally displaying the highest activities. A 5-day treatment of tilapia with an intraperitoneal cortisol deposit (25 mg kg(-1) wet mass) drastically alters metabolic performance along the gut in enzyme specific patterns, generally increasing enzyme activities in site-specific arrangements. Cortisol treatment also leads to the expected increases in activities of phosphoenolpyruvate carboxykinase, pyruvate kinase and aspartate aminotransferase in liver, but not in kidney. Aspartate aminotransferase is the only enzyme in brain significantly increased by cortisol treatment. Short-term food deprivation changes enzyme patterns, often resembling those observed after cortisol administration. We conclude that brain, liver and intestinal amino acid metabolism is an important target for cortisol action in fish and that metabolic zonation is a key factor to be reckoned with when analyzing physiological phenomena in the fish intestine.
Collapse
Affiliation(s)
- T P Mommsen
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, Victoria, B.C., V8W 3P6, Canada.
| | | | | |
Collapse
|
21
|
Jiménez A, Esteban FJ, Sánchez-López AM, Pedrosa JA, Del Moral ML, Hernández R, Blanco S, Barroso JB, Rodrigo J, Peinado MA. Immunohistochemical localisation of neuronal nitric oxide synthase in the rainbow trout kidney. J Chem Neuroanat 2001; 21:289-94. [PMID: 11429270 DOI: 10.1016/s0891-0618(01)00116-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The distribution of nitrergic nervous structures in the trout kidney was studied by peroxidase-linked ABC immunostaining procedures using a polyclonal antibody raised against the neuronal isoform of nitric oxide synthase. The nitrergic plexus reaches the kidney along the vasculature, mainly running with the postcardinal vein where nitrergic fibres, microganglia like cellular clusters and isolated neurones were detected. The atubular head-kidney only showed isolated nitrergic fibres close to the larger arteries. On the other hand, the collecting tubules, collecting ducts, large arteries and glomerular arterioles of the tubular middle and posterior trunks were innervated by nitrergic fibres even though immunoreactive neurones were also observed in close apposition to some tubular elements and large arteries. These results suggest that, according to morphofunctional differences between the fish and mammalian kidneys, nitrergic neural structures may be involved in the control of particular renal functions in the rainbow trout.
Collapse
Affiliation(s)
- A Jiménez
- Areas de Biología Celular, Bioquímica y Biología Molecular, Unidad Asociada C.S.I.C., Universidad de Jaén, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Smooth muscle relaxation in vertebrates is regulated by a variety of neuronal signalling molecules, including neuropeptides and nitric oxide (NO). The physiology of muscle relaxation in echinoderms is of particular interest because these animals are evolutionarily more closely related to the vertebrates than to the majority of invertebrate phyla. However, whilst in vertebrates there is a clear structural and functional distinction between visceral smooth muscle and skeletal striated muscle, this does not apply to echinoderms, in which the majority of muscles, whether associated with the body wall skeleton and its appendages or with visceral organs, are made up of non-striated fibres. The mechanisms by which the nervous system controls muscle relaxation in echinoderms were, until recently, unknown. Using the cardiac stomach of the starfish Asterias rubens as a model, it has been established that the NO-cGMP signalling pathway mediates relaxation. NO also causes relaxation of sea urchin tube feet, and NO may therefore function as a ‘universal’ muscle relaxant in echinoderms. The first neuropeptides to be identified in echinoderms were two related peptides isolated from Asterias rubens known as SALMFamide-1 (S1) and SALMFamide-2 (S2). Both S1 and S2 cause relaxation of the starfish cardiac stomach, but with S2 being approximately ten times more potent than S1. SALMFamide neuropeptides have also been isolated from sea cucumbers, in which they cause relaxation of both gut and body wall muscle. Therefore, like NO, SALMFamides may also function as ‘universal’ muscle relaxants in echinoderms. The mechanisms by which SALMFamides cause relaxation of echinoderm muscle are not known, but several candidate signal transduction pathways are discussed here. The SALMFamides do not, however, appear to act by promoting release of NO, and muscle relaxation in echinoderms is therefore probably regulated by at least two neuronal signalling systems acting in parallel. Recently, other neuropeptides that influence muscle tone have been isolated from the sea cucumber Stichopus japonicus using body wall muscle as a bioassay, but at present SALMFamide peptides are the only ones that have been found to have a direct relaxing action on echinoderm muscle. One of the Stichopus japonicus peptides (holothurin 1), however, causes a reduction in the magnitude of electrically evoked muscle contraction in Stichopus japonicus and also causes ‘softening’ of the body wall dermis, a ‘mutable connective tissue’. It seems most likely that this effect of holothurin 1 on body wall dermis is mediated by constituent muscle cells, and the concept of ‘mutable connective tissue’ in echinoderms may therefore need to be re-evaluated to incorporate the involvement of muscle, as proposed recently for the spine ligament in sea urchins.
Collapse
Affiliation(s)
- M R Elphick
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.
| | | |
Collapse
|
23
|
Schleiffer R, Raul F. Nitric oxide and the digestive system in mammals and non-mammalian vertebrates. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART A, PHYSIOLOGY 1997; 118:965-74. [PMID: 9505415 DOI: 10.1016/s0300-9629(97)00026-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The focus of the presentation will review the distribution of nitric oxide (NO)-producing sites in the digestive system in mammals and nonmammalian vertebrates and will center on the roles that NO plays in modulating physiological and pathophysiological functions in digestive system.
Collapse
Affiliation(s)
- R Schleiffer
- CJF INSERM 95-09, IRCAD, Hôpitaux Universitaires, Strasbourg, France
| | | |
Collapse
|