1
|
Rubio C, Ochoa E, Gatica F, Portilla A, Vázquez D, Rubio-Osornio M. The Role of the Vagus Nerve in the Microbiome and Digestive System in Relation to Epilepsy. Curr Med Chem 2024; 31:6018-6031. [PMID: 37855342 DOI: 10.2174/0109298673260479231010044020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
The Enteric Nervous System (ENS) is described as a division of the Peripheral Nervous System (PNS), located within the gut wall and it is formed by two main plexuses: the myenteric plexus (Auerbach's) and the submucosal plexus (Meissner's). The contribution of the ENS to the pathophysiology of various neurological diseases such as Parkinson's or Alzheimer's disease has been described in the literature, while some other studies have found a connection between epilepsy and the gastrointestinal tract. The above could be explained by cholinergic neurons and neurotransmission systems in the myenteric and submucosal plexuses, regulating the vagal excitability effect. It is also understandable, as the discharges arising in the amygdala are transmitted to the intestine through projections the dorsal motor nucleus of the vagus, giving rise to efferent fibers that stimulate the gastrointestinal tract and consequently the symptoms at this level. Therefore, this review's main objective is to argue in favor of the existing relationship of the ENS with the Central Nervous System (CNS) as a facilitator of epileptogenic or ictogenic mechanisms. The gut microbiota also participates in this interaction; however, it depends on many individual factors of each human being. The link between the ENS and the CNS is a poorly studied epileptogenic site with a big impact on one of the most prevalent neurological conditions such as epilepsy.
Collapse
Affiliation(s)
- Carmen Rubio
- Departamento de Neurofisiología, Instituto Nacional de Neurologìa y Neurocirugía, Mexico city, Mexico
| | - Ernesto Ochoa
- Departamento de Neurofisiología, Instituto Nacional de Neurologìa y Neurocirugía, Mexico city, Mexico
| | - Fernando Gatica
- Departamento de Neurofisiología, Instituto Nacional de Neurologìa y Neurocirugía, Mexico city, Mexico
- Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Alonso Portilla
- Departamento de Neurofisiología, Instituto Nacional de Neurologìa y Neurocirugía, Mexico city, Mexico
- Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - David Vázquez
- Departamento de Neurofisiología, Instituto Nacional de Neurologìa y Neurocirugía, Mexico city, Mexico
- Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Moisés Rubio-Osornio
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Mexico city, Mexico
| |
Collapse
|
2
|
Sethiya NK, Ghiloria N, Srivastav A, Bisht D, Chaudhary SK, Walia V, Alam MS. Therapeutic Potential of Myricetin in the Treatment of Neurological, Neuropsychiatric, and Neurodegenerative Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:865-882. [PMID: 37461364 DOI: 10.2174/1871527322666230718105358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 06/12/2024]
Abstract
Myricetin (MC), 3,5,7,3',4',5'-hexahydroxyflavone, chemically belongs to a flavonoid category known to confer antioxidant, antimicrobial, antidiabetic, and neuroprotective effects. MC is known to suppress the generation of Reactive Oxygen Species (ROS), lipid peroxidation (MDA), and inflammatory markers. It has been reported to improve insulin function in the human brain and periphery. Besides this, it modulates several neurochemicals including glutamate, GABA, serotonin, etc. MC has been shown to reduce the expression of the enzyme Mono Amine Oxidase (MAO), which is responsible for the metabolism of monoamines. MC treatment reduces levels of plasma corticosterone and restores hippocampal BDNF (full form) protein in stressed animals. Further, MC has shown its protective effect against amyloid-beta, MPTP, rotenone, 6-OHDA, etc. suggesting its potential role against neurodegenerative disorders. The aim of the present review is to highlight the therapeutic potential of MC in the treatment of several neurological, neuropsychiatric, and neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Neha Ghiloria
- Dr. Baba Saheb Ambedkar Hospital, Rohini, New Delhi 110085, India
| | | | - Dheeraj Bisht
- Department of Pharmaceutical Sciences, Sir J.C. Bose Technical Campus, Bhimtal, Kumaun University, Nainital, Uttarakhand 263002, India
| | | | - Vaibhav Walia
- Department of Pharmacology, SGT College of Pharmacy, SGT University, Gurugram, Haryana 122505, India
| | - Md Sabir Alam
- Department of Pharmaceutics, SGT College of Pharmacy, SGT University, Gurugram, Haryana 122505, India
| |
Collapse
|
3
|
Qiu P, Li D, Xiao C, Xu F, Chen X, Chang Y, Liu L, Zhang L, Zhao Q, Chen Y. The Eph/ephrin system symphony of gut inflammation. Pharmacol Res 2023; 197:106976. [PMID: 38032293 DOI: 10.1016/j.phrs.2023.106976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
The extent of gut inflammation depends largely on the gut barrier's integrity and enteric neuroimmune interactions. However, the factors and molecular mechanisms that regulate inflammation-related changes in the enteric nervous system (ENS) remain largely unexplored. Eph/ephrin signaling is critical for inflammatory response, neuronal activation, and synaptic plasticity in the brain, but its presence and function in the ENS have been largely unknown to date. This review discusses the critical role of Eph/ephrin in regulating gut homeostasis, inflammation, neuroimmune interactions, and pain pathways. Targeting the Eph/ephrin system offers innovative treatments for gut inflammation disorders, offering hope for enhanced patient prognosis, pain management, and overall quality of life.
Collapse
Affiliation(s)
- Peishan Qiu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Daojiang Li
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Cong Xiao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Fei Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Xiaoyu Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China.
| | - Yuhua Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China.
| |
Collapse
|
4
|
Tauskela JS, Brunette E, Aylsworth A, Zhao X. Neuroprotection against supra-lethal 'stroke in a dish' insults by an anti-excitotoxic receptor antagonist cocktail. Neurochem Int 2022; 158:105381. [PMID: 35764225 DOI: 10.1016/j.neuint.2022.105381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
The goal of this study was to identify cocktails of drugs able to protect cultured rodent cortical neurons against increasing durations of oxygen-glucose deprivation (OGD). As expected, a cocktail composed of an NMDA and AMPA receptor antagonists and a voltage gated Ca2+ channel blocker (MK-801, CNQX and nifedipine, respectively) provided complete neuroprotection against mild OGD. Increasingly longer durations of OGD necessitated increasing the doses of MK-801 and CNQX, until these cocktails ultimately failed to provide neuroprotection against supra-lethal OGD, even at maximal drug concentrations. Surprisingly, supplementation of any of these cocktails with blockers of TRPM7 channels for increasing OGD durations was not neuroprotective, unless these blockers possessed the ability to inhibit NMDA receptors. Supplementation of the maximally effective cocktail with other NMDA receptor antagonists augmented neuroprotection, suggesting insufficient NMDAR blockade by MK-801. Substitution of MK-801 in cocktails with high concentrations of a glycine site NMDA receptor antagonist caused the greatest improvements in neuroprotection, with the more potent SM-31900 superior to L689,560. Substitution of CQNX in cocktails with AMPA receptor antagonists at high concentrations also improved neuroprotection, particularly with the combination of SYM 2206 and NBQX. The most neuroprotective cocktail was thus composed of SM-31900, SYM2206, NBQX, nifedipine and the antioxidant trolox. Thus, the cumulative properties of antagonist potency and concentration in a cocktail dictate neuroprotective efficacy. The central target of supra-lethal OGD is excitotoxicity, which must be blocked to the greatest extent possible to minimize ion influx.
Collapse
Affiliation(s)
- Joseph S Tauskela
- National Research Council of Canada, Human Health Therapeutics, Building M-54, 1200 Montreal Road, Ottawa, ON, Canada, K1A 0R6.
| | - Eric Brunette
- National Research Council of Canada, Human Health Therapeutics, Building M-54, 1200 Montreal Road, Ottawa, ON, Canada, K1A 0R6
| | - Amy Aylsworth
- National Research Council of Canada, Human Health Therapeutics, Building M-54, 1200 Montreal Road, Ottawa, ON, Canada, K1A 0R6
| | - Xigeng Zhao
- National Research Council of Canada, Human Health Therapeutics, Building M-54, 1200 Montreal Road, Ottawa, ON, Canada, K1A 0R6
| |
Collapse
|
5
|
Glutamate Efflux across the Blood–Brain Barrier: New Perspectives on the Relationship between Depression and the Glutamatergic System. Metabolites 2022; 12:metabo12050459. [PMID: 35629963 PMCID: PMC9143347 DOI: 10.3390/metabo12050459] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Depression is a significant cause of disability and affects millions worldwide; however, antidepressant therapies often fail or are inadequate. Current medications for treating major depressive disorder can take weeks or months to reach efficacy, have troubling side effects, and are limited in their long-term capabilities. Recent studies have identified a new set of glutamate-based approaches, such as blood glutamate scavengers, which have the potential to provide alternatives to traditional antidepressants. In this review, we hypothesize as to the involvement of the glutamate system in the development of depression. We identify the mechanisms underlying glutamate dysregulation, offering new perspectives on the therapeutic modalities of depression with a focus on its relationship to blood–brain barrier (BBB) permeability. Ultimately, we conclude that in diseases with impaired BBB permeability, such as depression following stroke or traumatic brain injury, or in neurogenerative diseases, the glutamate system should be considered as a pathway to treatment. We propose that drugs such as blood glutamate scavengers should be further studied for treatment of these conditions.
Collapse
|
6
|
Chiu KM, Lin TY, Lee MY, Lu CW, Wang SJ. Lappaconitine inhibits glutamate release from rat cerebrocortical nerve terminals by suppressing Ca2+ influx and protein kinase A cascade. Neurotoxicology 2022; 91:218-227. [DOI: 10.1016/j.neuro.2022.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 05/02/2022] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
|
7
|
Huang SK, Lu CW, Lin TY, Wang SJ. Neuroprotective Role of the B Vitamins in the Modulation of the Central Glutamatergic Neurotransmission. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:292-301. [PMID: 34477538 DOI: 10.2174/1871527320666210902165739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/27/2021] [Accepted: 07/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Regulation of glutamate release is crucial for maintaining normal brain function, but excess glutamate release is implicated in many neuropathological conditions. Therefore, the minimum glutamate release from presynaptic nerve terminals is an important neuroprotective mechanism. OBJECTIVE In this mini-review, we analyze the three B vitamins, namely vitamin B2 (riboflavin), vitamin B6 (pyridoxine), and vitamin B12 (cyanocobalamin), that affect the 4-aminopyridine (4- AP)-evoked glutamate release from presynaptic nerve terminal in rat and discuss their neuroprotective role. METHODS In this study, the measurements include glutamate release, DiSC3(5), and Fura-2. RESULTS The riboflavin, pyridoxine, and cyanocobalamin produced significant inhibitory effects on 4-aminopyridine-evoked glutamate release from rat cerebrocortical nerve terminals (synaptosomes) in a dose-dependent relationship. These presynaptic inhibitory actions of glutamate release are attributed to inhibition of physiologic Ca2+-dependent vesicular exocytosis but not Ca2+-independent nonvesicular release. These effects also did not affect membrane excitability, while diminished cytosolic (Ca2+)c through a reduction of direct Ca2+ influx via Cav2.2 (N-type) and Cav2.1 (P/Q-type) Ca2+ channels, rather than through indirect Ca2+induced Ca2+ release from ryanodine-sensitive intracellular stores. Furthermore, their effects were attenuated by GF109203X and Ro318220, two protein kinase C (PKC) inhibitors, suggesting suppression of PKC activity. Taken together, these results suggest that riboflavin, pyridoxine, and cyanocobalamin inhibit presynaptic vesicular glutamate release from rat cerebrocortical synaptosomes, through the depression Ca2+ influx via voltage- dependent Cav2.2 (N-type) and Cav2.1 (P/Q-type) Ca2+ channels, and PKC signaling cascade. CONCLUSION Therefore, these B vitamins may reduce the strength of glutamatergic synaptic transmission and is of considerable importance as potential targets for therapeutic agents in glutamate- induced excitation-related diseases.
Collapse
Affiliation(s)
- Shu-Kuei Huang
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City, Taiwan, China
| | - Cheng-Wei Lu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City, Taiwan, China
| | - Tzu-Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City, Taiwan, China
| | - Su-Jane Wang
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, Taiwan, China
| |
Collapse
|
8
|
Chang A, Hung CF, Hsieh PW, Ko HH, Wang SJ. Eupafolin Suppresses P/Q-Type Ca 2+ Channels to Inhibit Ca 2+/ Calmodulin-Dependent Protein Kinase II and Glutamate Release at Rat Cerebrocortical Nerve Terminals. Biomol Ther (Seoul) 2021; 29:630-636. [PMID: 34475273 PMCID: PMC8551735 DOI: 10.4062/biomolther.2021.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/04/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022] Open
Abstract
Eupafolin, a constituent of the aerial parts of Phyla nodiflora, has neuroprotective property. Because reducing the synaptic release of glutamate is crucial to achieving pharmacotherapeutic effects of neuroprotectants, we investigated the effect of eupafolin on glutamate release in rat cerebrocortical synaptosomes and explored the possible mechanism. We discovered that eupafolin depressed 4-aminopyridine (4-AP)-induced glutamate release, and this phenomenon was prevented in the absence of extracellular calcium. Eupafolin inhibition of glutamate release from synaptic vesicles was confirmed through measurement of the release of the fluorescent dye FM 1-43. Eupafolin decreased 4-AP-induced [Ca2+]i elevation and had no effect on synaptosomal membrane potential. The inhibition of P/Q-type Ca2+ channels reduced the decrease in glutamate release that was caused by eupafolin, and docking data revealed that eupafolin interacted with P/Q-type Ca2+ channels. Additionally, the inhibition of calcium/calmodulin-dependent protein kinase II (CaMKII) prevented the effect of eupafolin on evoked glutamate release. Eupafolin also reduced the 4-AP-induced activation of CaMK II and the subsequent phosphorylation of synapsin I, which is the main presynaptic target of CaMKII. Therefore, eupafolin suppresses P/Q-type Ca2+ channels and thereby inhibits CaMKII/synapsin I pathways and the release of glutamate from rat cerebrocortical synaptosomes.
Collapse
Affiliation(s)
- Anna Chang
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan.,Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 22060, Taiwan
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Pei-Wen Hsieh
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan.,Graduate Institute of Natural Products, School of Traditional Chinese Medicine, and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
| | - Horng-Huey Ko
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Drug Development and Value Creation Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan.,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| |
Collapse
|
9
|
Mokrushin AA. Optimization of the Acidic–Alkaline Composition of the Incubation Medium for Long-Term and Reversible Cryopreservation of Brain Slices of Nonhibernating Animals. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921050134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Integrative Functional Genomic Analysis of Molecular Signatures and Mechanistic Pathways in the Cell Cycle Underlying Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5552623. [PMID: 34336099 PMCID: PMC8290224 DOI: 10.1155/2021/5552623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/25/2021] [Indexed: 11/18/2022]
Abstract
Objective Alzheimer's disease (AD) is associated with cell cycle reentry of mature neurons that subsequently undergo degeneration. This study is aimed to identify key regulators of the cell cycle and their underlying pathways for developing optimal treatment of AD. Methods RNA sequencing data were profiled to screen for differentially expressed genes in the cell cycle. Correlation of created modules with AD phenotype was computed by weight gene correlation network analysis (WGCNA). Signature genes for trophic factor receptors were determined using Pearson correlation coefficient (PCC) analysis. Results Among the 13,679 background genes, 775 cell cycle genes and 77 trophic factor receptors were differentially expressed in AD versus nondementia controls. Four coexpression modules were constructed by WGCNA, among which the turquoise module had the strongest correlation with AD. According to PCC analysis, 10 signature trophic receptors most strongly interacting with cell cycle genes were filtered and subsequently displayed in the global regulatory network. Further cross-talking pathways of signature receptors, such as glutamatergic synapse, long-term potentiation, PI3K-Akt, and MAPK signaling pathways, were identified. Conclusions Our findings highlighted the mechanistic pathways of signature trophic receptors in cell cycle perturbation underlying AD pathogenesis, thereby providing new molecular targets for therapeutic intervention in AD.
Collapse
|
11
|
Chiu KM, Lin TY, Lee MY, Lu CW, Wang MJ, Wang SJ. Typhaneoside Suppresses Glutamate Release Through Inhibition of Voltage-Dependent Calcium Entry in Rat Cerebrocortical Nerve Terminals. Chem Res Toxicol 2021; 34:1286-1295. [PMID: 33621091 DOI: 10.1021/acs.chemrestox.0c00446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the brain and is involved in many brain functions. In this study, we investigated whether typhaneoside, a flavonoid from Typhae angustifolia pollen, affects endogenous glutamate release from rat cortical synaptosomes. Using a one-line enzyme-coupled fluorometric assay, glutamate release stimulated by the K+ channel blocker 4-aminopyridine was monitored to explore the possible underlying mechanisms. The vesicular transporter inhibitor bafilomycin A1 and chelation of extracellular Ca2+ ions with EGTA suppressed the effect of typhaneoside on the induced glutamate release. Nevertheless, the typhaneoside activity has not been affected by the glutamate transporter inhibitor dl-threo-beta-benzyloxyaspartate. The synaptosomal plasma membrane potential was assayed using a membrane potential-sensitive dye DiSC3(5), and cytosolic Ca2+ concentrations ([Ca2+]C) was monitored by a Ca2+ indicator Fura-2. Results showed that typhaneoside did not alter the synaptosomal membrane potential but lowered 4-aminopyridine-induced increases in [Ca2+]C. Furthermore, the Cav2.2 (N-type) channel blocker ω-conotoxin GVIA blocked Ca2+ entry and inhibited the effect of typhaneoside on 4-aminopyridine-induced glutamate release. However, the inhibitor of intracellular Ca2+ release dantrolene and the mitochondrial Na+/Ca2+ exchanger blocker 7-chloro-5-(2-chloropheny)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one have no effect on the suppression of glutamate release mediated by typhaneoside. Moreover, inhibition of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) prevented the inhibitory effect of typhaneoside on induced glutamate release. Typhaneoside reduced 4-aminopyridine-induced phosphorylation of ERK1/2 and the major presynaptic ERK target synapsin I, which is a synaptic vesicle-associated protein. In conclusion, these findings suggest a role for typhaneoside in modulating glutamate release by suppressing voltage-dependent Ca2+ channel mediated presynaptic Ca2+ influx and the MAPK/ERK/synapsin I signaling cascade.
Collapse
Affiliation(s)
- Kuan-Ming Chiu
- Division of Cardiovascular Surgery, Cardiovascular Center, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan.,Department of Nursing, Oriental Institute of Technology, New Taipei City 22060, Taiwan.,Department of Photonics Engineering, Yuan Ze University, Taoyuan City 32003, Taiwan
| | - Tzu-Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan.,Department of Mechanical Engineering, Yuan Ze University, Taoyuan City 32003, Taiwan
| | - Ming-Yi Lee
- Division of Cardiovascular Surgery, Cardiovascular Center, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan
| | - Cheng-Wei Lu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan.,Department of Mechanical Engineering, Yuan Ze University, Taoyuan City 32003, Taiwan
| | - Ming-Jiuh Wang
- Department of Anesthesiology, National Taiwan University Hospital, Taipei City 100225, Taiwan
| | - Su-Jane Wang
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City 33303, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| |
Collapse
|
12
|
Jiang X, Yang Y, Liu P, Li M. Transcriptomics and metabolomics reveal Ca 2+ overload and osmotic imbalance-induced neurotoxicity in earthworms (Eisenia fetida) under tri-n-butyl phosphate exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:142169. [PMID: 33113685 DOI: 10.1016/j.scitotenv.2020.142169] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Tri-n-butyl phosphate (TNBP) is mass-produced and widely utilized in many products, which has increasingly drawn concern about its potential environmental risks. However, little is known about the toxic mechanism on soil-dwelling organisms caused by TNBP. In this study, earthworms (Eisenia fetida) were exposed to environmentally relevant or higher concentrations of TNBP (0, 0.1, 1, and 10 mg/kg) in artificial soil for 14 days. Our results showed that TNBP accumulated in earthworm nervous tissue (cerebral ganglions). In addition, the content of glutamate in cerebral ganglions decreased compared to the control (p < 0.05). The concentration of Ca2+ in earthworm cerebral ganglions increased. However, both Na+/K+-ATPase and Ca2+-ATPase activities were significantly reduced compared to the control (p < 0.05), which led to neurotoxicity in earthworm nervous tissue. Furthermore, the transcriptome and metabolomics revealed the toxic mechanism in earthworm nervous tissue caused by TNBP. Results indicated that the main neurotoxicity mechanisms induced by TNBP were an osmotic imbalance and Ca2+ overload in cerebral ganglions. Our findings fill a gap in the literature on neurotoxicity mechanisms of earthworm response to TNBP exposure and contribute to a better understanding of the adverse effects of TNBP on soil-dwelling organisms in terrestrial ecological systems.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yang Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
13
|
Yoshino K, Oda Y, Kimura M, Kimura H, Nangaku M, Shirayama Y, Iyo M. The alterations of glutamate transporter 1 and glutamine synthetase in the rat brain of a learned helplessness model of depression. Psychopharmacology (Berl) 2020; 237:2547-2553. [PMID: 32445055 DOI: 10.1007/s00213-020-05555-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/11/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Although glutamate transmission via astrocytes has been proposed to contribute to the pathophysiology of depression, the precise mechanisms are unknown. Herein, we investigated the levels of glutamate transporter-1 (GLT-1) and glutamine synthetase (GS) of astrocytes in learned helplessness (LH) rats (an animal model of depression) and non-LH rats (an animal model of resilience). METHODS We administered inescapable mild electric shock to rats and then discriminated the LH and non-LH rats by a post-shock test. Almost 55% of the rats acquired LH. We then measured the expressions of GLT-1 and GS in several brain regions of LH and non-LH rats by Western blot analysis. RESULTS The levels of GLT-1 and GS in the CA-1, CA-3, dentate gyrus (DG), medial prefrontal cortex (mPF), and nucleus accumbens (NAc) of the LH group were significantly higher than those of the control group. The GS levels in the amygdala of the LH rats were significantly decreased compared to the controls. There were significant differences in GLT-1 and GS levels between the non-LH and LH rats in the CA-1 and CA-3. CONCLUSIONS These results suggest that the LH rats experienced up-regulations of GLT-1 and GS in the CA-1, CA-3, DG, mPF, and NAc and a down-regulation of GS in the amygdala. It is possible that the effects of the GLT-1 and GS levels on astrocytes in the CA-1 and CA-3 are critical for the differentiation of resilience from vulnerability.
Collapse
Affiliation(s)
- Kouhei Yoshino
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana Chuou-ku, Chiba, Chiba, 260-8670, Japan
| | - Yasunori Oda
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana Chuou-ku, Chiba, Chiba, 260-8670, Japan.
| | - Makoto Kimura
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana Chuou-ku, Chiba, Chiba, 260-8670, Japan
| | - Hiroshi Kimura
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana Chuou-ku, Chiba, Chiba, 260-8670, Japan
| | - Masahito Nangaku
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana Chuou-ku, Chiba, Chiba, 260-8670, Japan
| | - Yukihiko Shirayama
- Department of Psychiatry, Teikyo University Chiba Medical Center, 3426-3 Anesaki, Ichihara, Chiba, 290-0111, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana Chuou-ku, Chiba, Chiba, 260-8670, Japan
| |
Collapse
|
14
|
Time-Dependent Bidirectional Neuroprotection by Adenosine 2A Receptor in Experimental Traumatic Brain Injury. World Neurosurg 2019; 125:e743-e753. [PMID: 30735877 DOI: 10.1016/j.wneu.2019.01.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) results in both focal and diffuse brain pathological features that become severely exacerbated after the initial injury. Owing to this disease complexity, no effective therapeutic measure has yet been devised aimed directly at these pathological processes. We developed a clinically relevant model of TBI and tested the bidirectional neuroprotective role of adenosine 2A receptors (A2ARs) at different times. METHODS Wistar rats were divided into 4 treatment groups (sham, TBI, A2AR agonist [CGS-21680], and A2AR antagonist [SCH-58261]) and 4 post-TBI intervals (15 minutes and 1, 12, and 24 hours). A2AR agonist and antagonist effects were tested by the neurological functional score (NFS) and levels of cyclic adenosine monophosphate, interleukin-1β, oxidative stress antioxidant markers, and caspase-3. RESULTS The A2AR agonist-treated group showed significant NFS improvement at 15 minutes and 1 hour after TBI compared with the TBI group. However, no improvement was observed at 12 and 24 hours. The A2AR antagonists resulted in no NFS improvement at 15 minutes and 1 hour, and significant improvement observed at 12 and 24 hours. Significant neuroprotective effect with an A2AR agonist were observed with cyclic adenosine monophosphate, interleukin-1β, oxidative stress markers, catalase, and caspase-3 levels at 15 minutes and 1 hour after TBI. The A2AR antagonist showed no effect at these intervals but showed a protective effect at 12 and 24 hours after TBI. CONCLUSIONS The A2AR agonist showed a beneficial neuroprotective effect at the early stages after TBI, and the A2AR antagonist showed a benefit at the later stages after TBI. These findings suggest that A2AR agonists and antagonists should be used in accordance with the point at which the TBI occurred.
Collapse
|
15
|
Apurinic endonuclease-1 preserves neural genome integrity to maintain homeostasis and thermoregulation and prevent brain tumors. Proc Natl Acad Sci U S A 2018; 115:E12285-E12294. [PMID: 30538199 DOI: 10.1073/pnas.1809682115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Frequent oxidative modification of the neural genome is a by-product of the high oxygen consumption of the nervous system. Rapid correction of oxidative DNA lesions is essential, as genome stability is a paramount determinant of neural homeostasis. Apurinic/apyrimidinic endonuclease 1 (APE1; also known as "APEX1" or "REF1") is a key enzyme for the repair of oxidative DNA damage, although the specific role(s) for this enzyme in the development and maintenance of the nervous system is largely unknown. Here, using conditional inactivation of murine Ape1, we identify critical roles for this protein in the brain selectively after birth, coinciding with tissue oxygenation shifting from a placental supply to respiration. While mice lacking APE1 throughout neurogenesis were viable with little discernible phenotype at birth, rapid and pronounced brain-wide degenerative changes associated with DNA damage were observed immediately after birth leading to early death. Unexpectedly, Ape1 Nes-cre mice appeared hypothermic with persistent shivering associated with the loss of thermoregulatory serotonergic neurons. We found that APE1 is critical for the selective regulation of Fos1-induced hippocampal immediate early gene expression. Finally, loss of APE1 in combination with p53 inactivation resulted in a profound susceptibility to brain tumors, including medulloblastoma and glioblastoma, implicating oxidative DNA lesions as an etiologic agent in these diseases. Our study reveals APE1 as a major suppressor of deleterious oxidative DNA damage and uncovers specific and broad pathogenic consequences of respiratory oxygenation in the postnatal nervous system.
Collapse
|
16
|
Bartollino S, Chiosi F, di Staso S, Uva M, Pascotto A, Rinaldi M, Hesselink JMK, Costagliola C. The retinoprotective role of phenytoin. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3485-3489. [PMID: 30410309 PMCID: PMC6198895 DOI: 10.2147/dddt.s169621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phenytoin is a non-sedative barbiturate derivate and has been recently rediscovered as a neuroprotective and retinoprotective compound in patients affected by optic neuritis secondary to multiple sclerosis. However, currently there are still no neuroprotective compounds registered and available in the clinic. We reviewed the literature supporting the retinoprotective properties of phenytoin and analyzed the various approaches and definitions from the first research periods onwards. The retinoprotective role of phenytoin was already known in the 1970s, but only recently has this effect been rediscovered, confirming that it could indeed provide structural protection of the retinal cells.
Collapse
Affiliation(s)
- Silvia Bartollino
- Eye Clinic, Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy,
| | - Flavia Chiosi
- Eye Clinic, Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy,
| | - Silvio di Staso
- Department of Surgical Science, Ophthalmic Clinic, University of L'Aquila, L'Aquila, Italy
| | - Maurizio Uva
- Eye Clinic, University of Catania, Catania, Italy
| | - Arduino Pascotto
- Eye Clinic, Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy,
| | - Michele Rinaldi
- Department of Ophthalmology, University della Campania Luigi Vanvitelli, Naples, Italy
| | | | - Ciro Costagliola
- Eye Clinic, Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy,
| |
Collapse
|
17
|
Erickson JD. Functional identification of activity-regulated, high-affinity glutamine transport in hippocampal neurons inhibited by riluzole. J Neurochem 2017; 142:29-40. [PMID: 28423185 DOI: 10.1111/jnc.14046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/17/2017] [Accepted: 04/05/2017] [Indexed: 12/23/2022]
Abstract
Glutamine (Gln) is considered the preferred precursor for the neurotransmitter pool of glutamate (Glu), the major excitatory transmitter in the mammalian CNS. Here, an activity-regulated, high-affinity Gln transport system is described in developing and mature neuron-enriched hippocampal cultures that is potently inhibited by riluzole (IC50 1.3 ± 0.5 μM), an anti-glutamatergic drug, and is blocked by low concentrations of 2-(methylamino)isobutyrate (MeAIB), a system A transport inhibitor. K+ -stimulated MeAIB transport displays an affinity (Km ) for MeAIB of 37 ± 1.2 μM, saturates at ~ 200 μM, is dependent on extracellular Ca2+ , and is blocked by inhibition of voltage-gated Ca2+ channels. Spontaneous MeAIB transport is also dependent on extracellullar Ca2+ and voltage-gated calcium channels, but is also blocked by the Na+ channel blocker tetrodotoxin, by Glu receptor antagonists, and by GABA indicating its dependence on intact neural circuits driven by endogenous glutamatergic activity. The transport of MeAIB itself does not rely on Ca2+ , but on Na+ ions, and is pH sensitive. Activity-regulated, riluzole-sensitive spontaneous and K+ -stimulated transport is minimal at 7-8 days in vitro, coordinately induced during the next 2 weeks and is maximally expressed by days in vitro > 20; the known period for maturation of the Glu/Gln cycle and regulated pre-synaptic Glu release. Competition analyses with various amino acids indicate that Gln is the most likely physiological substrate. Activity-regulated Gln/MeAIB transport is not observed in astrocytes. The functional identification of activity-regulated, high-affinity, riluzole-sensitive Gln/MeAIB transport in hippocampal neurons may have important ramifications in the neurobiology of activity-stimulated pre-synaptic Glu release, the Glu/Gln cycle between astrocytes and neurons, and neuronal Glu-induced excitotoxicity. Cover Image for this issue: doi: 10.1111/jnc.13805.
Collapse
Affiliation(s)
- Jeffrey D Erickson
- Neuroscience Center of Excellence, School of Medicine, Lousiania State University Health New Orleans, New Orleans, Louisiana, USA
| |
Collapse
|
18
|
Abstract
Lidocaine, the most commonly used local anesthetic, inhibits glutamate release from nerve terminals. Given the involvement of glutamate neurotoxicity in the pathogenesis of various neurological disorders, this study investigated the role of lidocaine in hippocampal neuronal death and inflammatory events induced by an i.p. injection of kainic acid (KA) (15 mg/kg), a glutamate analog. The results showed that KA significantly led to neuronal death in the CA3 pyramidal layers of the hippocampus and this effect was attenuated by the systemic administration of lidocaine (0.8 or 4 mg/kg, i.p.) 30 min before KA injection. Moreover, KA-induced microglia activation and gene expression of proinflammatory cytokines, namely, interleukin-1β, interleukin-6, and tumor necrosis factor-α, in the hippocampus were reduced by the lidocaine pretreatment. Altogether, the results suggest that lidocaine can effectively treat glutamate excitotoxicity-related brain disorders.
Collapse
|
19
|
Chang Y, Lin TY, Lu CW, Huang SK, Wang YC, Wang SJ. Xanthohumol-induced presynaptic reduction of glutamate release in the rat hippocampus. Food Funct 2016; 7:212-26. [PMID: 26667007 DOI: 10.1039/c5fo01005e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This study examined whether xanthohumol, a hop-derived prenylated flavonoid present in beer, affects glutamate release in the rat hippocampus. In the rat hippocampal nerve terminals (synaptosomes), xanthohumol inhibited the release of 4-aminopyridine (4-AP)-evoked glutamate and the elevation of cytosolic Ca(2+) concentration, whereas it had no effect on 4-AP-mediated depolarization. The inhibitory effect of xanthohumol on the evoked glutamate release was prevented by removing extracellular Ca(2+), using the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channel blocker ω-CgTX MVIIC, the calmodulin antagonists W7 and calmidazolium, and the protein kinase A inhibitor H89; however, no such effect was observed when the G-protein inhibitor N-ethylmaleimide was used. In addition, immunocytochemical data demonstrated that GABAA receptors are present in the hippocampal synaptosomes and that the xanthohumol effect on evoked glutamate release was antagonized by the GABAA receptor antagonist SR95531. Furthermore, in slice preparations, xanthohumol reduced the frequency of miniature excitatory postsynaptic currents without affecting their amplitude. We conclude that xanthohumol acts at GABAA receptors present in the hippocampal nerve terminals to decrease the Ca(2+) influx through N- and P/Q-type Ca(2+) channels, which subsequently suppresses the Ca(2+)-calmodulin/PKA cascade to decrease the evoked glutamate release.
Collapse
Affiliation(s)
- Yi Chang
- School of Medicine, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, Taiwan 24205 and Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan111
| | - Tzu Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City, Taiwan 22060 and Department of Mechanical Engineering, Yuan Ze University, Taoyuan 320, Taiwan
| | - Cheng Wei Lu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City, Taiwan 22060 and Department of Mechanical Engineering, Yuan Ze University, Taoyuan 320, Taiwan
| | - Shu Kuei Huang
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City, Taiwan 22060
| | - Ying Chou Wang
- Department of Clinical Psychology, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, Taiwan 24205
| | - Su Jane Wang
- School of Medicine, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, Taiwan 24205 and Graduate Institute of Basic Medicine, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, Taiwan 24205.
| |
Collapse
|
20
|
Effects of NMDA and non-NMDA ionotropic glutamate receptors in the medial preoptic area on body temperature in awake rats. J Therm Biol 2016; 61:1-7. [DOI: 10.1016/j.jtherbio.2016.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/21/2016] [Accepted: 07/28/2016] [Indexed: 11/30/2022]
|
21
|
Filpa V, Moro E, Protasoni M, Crema F, Frigo G, Giaroni C. Role of glutamatergic neurotransmission in the enteric nervous system and brain-gut axis in health and disease. Neuropharmacology 2016; 111:14-33. [PMID: 27561972 DOI: 10.1016/j.neuropharm.2016.08.024] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/18/2016] [Accepted: 08/18/2016] [Indexed: 02/07/2023]
Abstract
Several studies have been carried out in the last 30 years in the attempt to clarify the possible role of glutamate as a neurotransmitter/neuromodulator in the gastrointestinal tract. Such effort has provided immunohistochemical, biomolecular and functional data suggesting that the entire glutamatergic neurotransmitter machinery is present in the complex circuitries of the enteric nervous system (ENS), which participates to the local coordination of gastrointestinal functions. Glutamate is also involved in the regulation of the brain-gut axis, a bi-directional connection pathway between the central nervous system (CNS) and the gut. The neurotransmitter contributes to convey information, via afferent fibers, from the gut to the brain, and to send appropriate signals, via efferent fibers, from the brain to control gut secretion and motility. In analogy with the CNS, an increasing number of studies suggest that dysregulation of the enteric glutamatergic neurotransmitter machinery may lead to gastrointestinal dysfunctions. On the whole, this research field has opened the possibility to find new potential targets for development of drugs for the treatment of gastrointestinal diseases. The present review analyzes the more recent literature on enteric glutamatergic neurotransmission both in physiological and pathological conditions, such as gastroesophageal reflux, gastric acid hypersecretory diseases, inflammatory bowel disease, irritable bowel syndrome and intestinal ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Viviana Filpa
- Department of Clinical and Experimental Medicine, University of Insubria, via H. Dunant 5, I-21100 Varese, Italy
| | - Elisabetta Moro
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, via Ferrata 9, I-27100 Pavia, Italy
| | - Marina Protasoni
- Department of Surgical and Morphological Sciences, University of Insubria, via F. Guicciardini 9, I-21100 Varese, Italy
| | - Francesca Crema
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, via Ferrata 9, I-27100 Pavia, Italy
| | - Gianmario Frigo
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, via Ferrata 9, I-27100 Pavia, Italy
| | - Cristina Giaroni
- Department of Clinical and Experimental Medicine, University of Insubria, via H. Dunant 5, I-21100 Varese, Italy
| |
Collapse
|
22
|
Mystixin-7 Peptide Protects Ionotropic Glutamatergic Mechanisms against Glutamate-Induced Excitotoxicity In Vitro. INTERNATIONAL JOURNAL OF PEPTIDES 2016; 2016:5151843. [PMID: 27504123 PMCID: PMC4967679 DOI: 10.1155/2016/5151843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/01/2016] [Indexed: 12/03/2022]
Abstract
Hyperactivation of the N-methyl-D-aspartic acid type glutamate receptors (NMDARs) causes glutamate excitotoxicity, a process potentially important for many neurological diseases. This study aims to investigate protective effects of the synthetic corticotrophin-releasing factor-like peptide, mystixin-7 (MTX), on model glutamate-induced excitotoxicity in vitro. The technique online monitoring of electrophysiological parameters (excitatory glutamatergic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPAR) and NMDAR-dependent postsynaptic mechanisms) in the olfactory cortex slices was used. Application of L-glutamate in toxic concentration (20 mM) on slices evoked hyperactivation of NMDARs and weaker activation of the AMPARs. Upon further action agonist, the excessive activation of glutamate receptors was replaced by their irreversible blockade. Pretreatment of the slices using MTX in different concentrations (50 and 100 mg/mL) protected both NMDARs and AMPARs from glutamate-induced damage. An enzymatic treatment of MTX reduced hyperactivation of both NMDARs and AMPARs. The present study demonstrated that MTX minipeptide protected the functioning of both NMDARs and AMPARs against glutamate-induced damage. The MTX peptide is a prospective candidate for elaborated medication in treatment of neurological diseases.
Collapse
|
23
|
Takeda A, Tamano H, Nishio R, Murakami T. Behavioral Abnormality Induced by Enhanced Hypothalamo-Pituitary-Adrenocortical Axis Activity under Dietary Zinc Deficiency and Its Usefulness as a Model. Int J Mol Sci 2016; 17:ijms17071149. [PMID: 27438830 PMCID: PMC4964522 DOI: 10.3390/ijms17071149] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/06/2016] [Accepted: 07/09/2016] [Indexed: 02/06/2023] Open
Abstract
Dietary zinc deficiency increases glucocorticoid secretion from the adrenal cortex via enhanced hypothalamo-pituitary-adrenocortical (HPA) axis activity and induces neuropsychological symptoms, i.e., behavioral abnormality. Behavioral abnormality is due to the increase in glucocorticoid secretion rather than disturbance of brain zinc homeostasis, which occurs after the increase in glucocorticoid secretion. A major target of glucocorticoids is the hippocampus and their actions are often associated with disturbance of glutamatergic neurotransmission, which may be linked to behavioral abnormality, such as depressive symptoms and aggressive behavior under zinc deficiency. Glucocorticoid-mediated disturbance of glutamatergic neurotransmission in the hippocampus is also involved in the pathophysiology of, not only psychiatric disorders, such as depression, but also neurodegenerative disorders, e.g., Alzheimer’s disease. The evidence suggests that zinc-deficient animals are models for behavioral and psychological symptoms of dementia (BPSD), as well as depression. To understand validity to apply zinc-deficient animals as a behavioral abnormality model, this paper deals with the effect of antidepressive drugs and herbal medicines on hippocampal dysfunctions and behavioral abnormality, which are induced by enhanced HPA axis activity under dietary zinc deficiency.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Ryusuke Nishio
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Taku Murakami
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
24
|
Negis Y, Karabay A. Expression of cell cycle proteins in cortical neurons-Correlation with glutamate-induced neurotoxicity. Biofactors 2016; 42:358-67. [PMID: 27040651 DOI: 10.1002/biof.1282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/09/2016] [Indexed: 12/31/2022]
Abstract
Under physiological conditions, upon differentiation neurons become irreversibly post-mitotic by down-regulating cell cycle progression. However, recent studies have provided evidence that aberrant expression of cell cycle related proteins; especially cyclins, cyclin-dependent kinases, and their inhibitors are accompanied by programmed cell death in neurons. This abnormal phenotype has been postulated to contribute to the pathophysiology of different neurodegenerative diseases. Glutamate is the most abundant and major excitatory neurotransmitter in the central nervous system but high concentrations are reported to be involved in the pathology of many neurodegenerative diseases. The mechanisms of glutamate neurotoxicity have been intensively investigated over the past decades but still remain not fully understood. In this study, we hypothesized that aberrant regulation of cell cycle proteins may be involved in glutamate-induced neurotoxicity in primary cultures of rat cortical neurons. The results have shown that, glutamate treatment caused apoptosis by inducing active caspase-3 and p53 expression. Together with this, an increase in cyclin D1 and Cdk4 protein levels, localization of cyclin D1 to nucleus, and a decrease in the cell cycle inhibitor p27 were observed. After glutamate treatment we also detected up-regulation of protein kinase C-α (PKC-α) protein expression. Altogether, the data reported in this study show for the first time that glutamate in cortical neurons changes simultaneously the expression levels of a number of key cell cycle proteins and cell homeostasis regulators. © 2016 BioFactors, 42(4):358-367, 2016.
Collapse
Affiliation(s)
- Yesim Negis
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
- School of Medicine, Department of Medical Biochemistry, Bahcesehir University, Istanbul, Turkey
| | - Arzu Karabay
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
25
|
Lu CW, Lin TY, Huang SK, Wang SJ. Echinacoside Inhibits Glutamate Release by Suppressing Voltage-Dependent Ca(2+) Entry and Protein Kinase C in Rat Cerebrocortical Nerve Terminals. Int J Mol Sci 2016; 17:ijms17071006. [PMID: 27347934 PMCID: PMC4964382 DOI: 10.3390/ijms17071006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 02/07/2023] Open
Abstract
The glutamatergic system may be involved in the effects of neuroprotectant therapies. Echinacoside, a phenylethanoid glycoside extracted from the medicinal Chinese herb HerbaCistanche, has neuroprotective effects. This study investigated the effects of echinacoside on 4-aminopyridine-evoked glutamate release in rat cerebrocortical nerve terminals (synaptosomes). Echinacoside inhibited Ca2+-dependent, but not Ca2+-independent, 4-aminopyridine-evoked glutamate release in a concentration-dependent manner. Echinacoside also reduced the 4-aminopyridine-evoked increase in cytoplasmic free Ca2+ concentration but did not alter the synaptosomal membrane potential. The inhibitory effect of echinacoside on 4-aminopyridine-evoked glutamate release was prevented by ω-conotoxin MVIIC, a wide-spectrum blocker of Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels, but was insensitive to the intracellular Ca2+ release-inhibitors dantrolene and 7-chloro-5-(2-chloropheny)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one (CGP37157). Furthermore, echinacoside decreased the 4-aminopyridine-induced phosphorylation of protein kinase C, and protein kinase C inhibitors abolished the effect of echinacoside on glutamate release. According to these results, we suggest that the inhibitory effect of echinacoside on evoked glutamate release is associated with reduced voltage-dependent Ca2+ entry and subsequent suppression of protein kinase C activity.
Collapse
Affiliation(s)
- Cheng Wei Lu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan.
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan.
| | - Tzu Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan.
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan.
| | - Shu Kuei Huang
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan.
| | - Su Jane Wang
- School of Medicine, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei 24205, Taiwan.
| |
Collapse
|
26
|
Atorvastatin Prevents Glutamate Uptake Reduction Induced by Quinolinic Acid Via MAPKs Signaling. Neurochem Res 2016; 41:2017-28. [DOI: 10.1007/s11064-016-1913-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
|
27
|
Lopez MS, Dempsey RJ, Vemuganti R. Resveratrol neuroprotection in stroke and traumatic CNS injury. Neurochem Int 2015; 89:75-82. [PMID: 26277384 DOI: 10.1016/j.neuint.2015.08.009] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/07/2015] [Accepted: 08/08/2015] [Indexed: 02/02/2023]
Abstract
Resveratrol, a stilbene formed in many plants in response to various stressors, elicits multiple beneficial effects in vertebrates. Particularly, resveratrol was shown to have therapeutic properties in cancer, atherosclerosis and neurodegeneration. Resveratrol-induced benefits are modulated by multiple synergistic pathways that control oxidative stress, inflammation and cell death. Despite the lack of a definitive mechanism, both in vivo and in vitro studies suggest that resveratrol can induce a neuroprotective state when administered acutely or prior to experimental injury to the CNS. In this review, we discuss the neuroprotective potential of resveratrol in stroke, traumatic brain injury and spinal cord injury, with a focus on the molecular pathways responsible for this protection.
Collapse
Affiliation(s)
- Mary S Lopez
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Robert J Dempsey
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
28
|
Abstract
This review compares the biological and physiological function of Sigma receptors [σRs] and their potential therapeutic roles. Sigma receptors are widespread in the central nervous system and across multiple peripheral tissues. σRs consist of sigma receptor one (σ1R) and sigma receptor two (σ2R) and are expressed in numerous regions of the brain. The sigma receptor was originally proposed as a subtype of opioid receptors and was suggested to contribute to the delusions and psychoses induced by benzomorphans such as SKF-10047 and pentazocine. Later studies confirmed that σRs are non-opioid receptors (not an µ opioid receptor) and play a more diverse role in intracellular signaling, apoptosis and metabolic regulation. σ1Rs are intracellular receptors acting as chaperone proteins that modulate Ca2+ signaling through the IP3 receptor. They dynamically translocate inside cells, hence are transmembrane proteins. The σ1R receptor, at the mitochondrial-associated endoplasmic reticulum membrane, is responsible for mitochondrial metabolic regulation and promotes mitochondrial energy depletion and apoptosis. Studies have demonstrated that they play a role as a modulator of ion channels (K+ channels; N-methyl-d-aspartate receptors [NMDAR]; inositol 1,3,5 triphosphate receptors) and regulate lipid transport and metabolism, neuritogenesis, cellular differentiation and myelination in the brain. σ1R modulation of Ca2+ release, modulation of cardiac myocyte contractility and may have links to G-proteins. It has been proposed that σ1Rs are intracellular signal transduction amplifiers. This review of the literature examines the mechanism of action of the σRs, their interaction with neurotransmitters, pharmacology, location and adverse effects mediated through them.
Collapse
Affiliation(s)
- Colin G Rousseaux
- a Department of Pathology and Laboratory Medicine , University of Ottawa , Ottawa , ON , Canada and
| | | |
Collapse
|
29
|
Chang Y, Chang CY, Wang SJ, Huang SK. Myricetin inhibits the release of glutamate in rat cerebrocortical nerve terminals. J Med Food 2014; 18:516-23. [PMID: 25340625 DOI: 10.1089/jmf.2014.3219] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The excessive release of glutamate is a critical element in the neuropathology of acute and chronic brain disorders. The purpose of the present study was to investigate the effect and possible mechanism of myricetin, a naturally occurring flavonoid with a neuroprotective profile, on endogenous glutamate release in the nerve terminals (synaptosomes) of the rat cerebral cortex. The release of glutamate was evoked by the K(+) channel blocker 4-aminopyridine (4-AP) and measured by one-line enzyme-coupled fluorometric assay. We also used a membrane potential-sensitive dye to assay the synaptosomal plasma membrane potential, and a Ca(2+) indicator Fura-2 to monitor cytosolic Ca(2+) concentrations ([Ca(2+)]C). Results show that myricetin inhibited 4-AP-evoked glutamate release, and this effect was prevented by chelating extracellular Ca(2+) ions and the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor dl-threo-beta-benzyl-oxyaspartate had no effect on myricetin action. Myricetin did not alter the synaptosomal membrane potential, but decreased 4-AP-induced increases in the cytosolic free Ca(2+) concentration. Furthermore, the myricetin effect on 4-AP-evoked glutamate release was prevented by blocking the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels, but not by blocking intracellular Ca(2+) release. These results suggest that myricetin inhibits glutamate release from cerebrocortical synaptosomes by attenuating voltage-dependent Ca(2+) entry. This implies that the inhibition of glutamate release is an important pharmacological activity of myricetin that may play a critical role in the apparent clinical efficacy of this compound.
Collapse
Affiliation(s)
- Yi Chang
- 1 School of Medicine, Fu Jen Catholic University , New Taipei City, Taiwan
| | | | | | | |
Collapse
|
30
|
Lin TY, Huang WJ, Wu CC, Lu CW, Wang SJ. Acacetin inhibits glutamate release and prevents kainic acid-induced neurotoxicity in rats. PLoS One 2014; 9:e88644. [PMID: 24520409 PMCID: PMC3919813 DOI: 10.1371/journal.pone.0088644] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/08/2014] [Indexed: 12/28/2022] Open
Abstract
An excessive release of glutamate is considered to be a molecular mechanism associated with several neurological diseases that causes neuronal damage. Therefore, searching for compounds that reduce glutamate neurotoxicity is necessary. In this study, the possibility that the natural flavone acacetin derived from the traditional Chinese medicine Clerodendrum inerme (L.) Gaertn is a neuroprotective agent was investigated. The effect of acacetin on endogenous glutamate release in rat hippocampal nerve terminals (synaptosomes) was also investigated. The results indicated that acacetin inhibited depolarization-evoked glutamate release and cytosolic free Ca2+ concentration ([Ca2+]C) in the hippocampal nerve terminals. However, acacetin did not alter synaptosomal membrane potential. Furthermore, the inhibitory effect of acacetin on evoked glutamate release was prevented by the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channel blocker known as ω-conotoxin MVIIC. In a kainic acid (KA) rat model, an animal model used for excitotoxic neurodegeneration experiments, acacetin (10 or 50 mg/kg) was administrated intraperitoneally to the rats 30 min before the KA (15 mg/kg) intraperitoneal injection, and subsequently induced the attenuation of KA-induced neuronal cell death and microglia activation in the CA3 region of the hippocampus. The present study demonstrates that the natural compound, acacetin, inhibits glutamate release from hippocampal synaptosomes by attenuating voltage-dependent Ca2+ entry and effectively prevents KA-induced in vivo excitotoxicity. Collectively, these data suggest that acacetin has the therapeutic potential for treating neurological diseases associated with excitotoxicity.
Collapse
Affiliation(s)
- Tzu-Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei, Taiwan
- Department of Mechanical Engineering, Yuan Ze University, New Taipei, Taiwan
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Chia-Chan Wu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei, Taiwan
| | - Cheng-Wei Lu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei, Taiwan
- Department of Mechanical Engineering, Yuan Ze University, New Taipei, Taiwan
| | - Su-Jane Wang
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei, Taiwan
- * E-mail:
| |
Collapse
|
31
|
Qi SH, Hao LY, Yue J, Zong YY, Zhang GY. Exogenous nitric oxide negatively regulates the S-nitrosylation p38 mitogen-activated protein kinase activation during cerebral ischaemia and reperfusion. Neuropathol Appl Neurobiol 2013; 39:284-97. [PMID: 22639878 DOI: 10.1111/j.1365-2990.2012.01284.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AIMS A number of studies have suggested that nitric oxide (NO) plays an important role in the reactive phosphorylation of p38MAPKα (p38). However, whether S-nitrosylation of p38 is activated by NO and the details remain unclear. The aim of the present work was to assess the activation of p38, the S-nitrosylation site and the p38 signalling pathway in rat hippocampus and in HEK293 cell induced by exogenous NO. METHODS Primary hippocampal cultures, HEK293 cells and rat model of cerebral ischaemia/reperfusion (brain ischaemia was induced by four-vessel occlusion procedure) were used in this study. Biotin-switch method and immunoblotting were performed to study the S-nitrosylation and phosphorylation of p38, and neuronal loss was observed by histology. RESULTS Endogenous NO increased p38 phosphorylation and S-nitrosylation, and the activation of p38 was dependent on the S-nitrosylation of Cys-211, which was critical for the NO-mediated activation of p38. The exogenous NO donor sodium nitroprusside, S-nitrosoglutathione, 7-nitroindazole, the inhibitor of the neuronal nitric oxide synthase, inhibited the activation of p38 signal pathway induced by cerebral ischaemia/reperfusion and attenuated the damage in rat hippocampal neurones. Moreover, the N-methyl-D-aspartate receptor (NMDAR) is probably involved in the p38 activation process of S-nitrosylation and phosphorylation. CONCLUSION Endogenous NO induces the S-nitrosylation and phosphorylation of p38 and mediates p38 signalling pathway by NMDAR, and as exogenous NO inhibits this process and is neuroprotective in rat cerebral ischaemia/reperfusion, it may make a contribution to stroke therapy.
Collapse
Affiliation(s)
- S H Qi
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Xuzhou, China
| | | | | | | | | |
Collapse
|
32
|
Takeda A, Itoh H, Tamano H, Yuzurihara M, Oku N. Suppressive effect of Yokukansan on excessive release of glutamate and aspartate in the hippocampus of zinc-deficient rats. Nutr Neurosci 2013; 11:41-6. [DOI: 10.1179/147683008x301414] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
33
|
Lin TY, Lin YW, Lu CW, Huang SK, Wang SJ. Berberine Inhibits the Release of Glutamate in Nerve Terminals from Rat Cerebral Cortex. PLoS One 2013; 8:e67215. [PMID: 23840629 PMCID: PMC3686739 DOI: 10.1371/journal.pone.0067215] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/15/2013] [Indexed: 11/29/2022] Open
Abstract
Berberine, an isoquinoline plant alkaloid, protects neurons against neurotoxicity. An excessive release of glutamate is considered to be one of the molecular mechanisms of neuronal damage in several neurological diseases. In this study, we investigated whether berberine could affect endogenous glutamate release in nerve terminals of rat cerebral cortex (synaptosomes) and explored the possible mechanism. Berberine inhibited the release of glutamate evoked by the K+ channel blocker 4-aminopyridine (4-AP), and this phenomenon was prevented by the chelating extracellular Ca2+ ions and the vesicular transporter inhibitor bafilomycin A1, but was insensitive to the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate. Inhibition of glutamate release by berberine was not due to it decreasing synaptosomal excitability, because berberine did not alter 4-AP-mediated depolarization. The inhibitory effect of berberine on glutamate release was associated with a reduction in the depolarization-induced increase in cytosolic free Ca2+ concentration. Involvement of the Cav2.1 (P/Q-type) channels in the berberine action was confirmed by blockade of the berberine-mediated inhibition of glutamate release by the Cav2.1 (P/Q-type) channel blocker ω-agatoxin IVA. In addition, the inhibitory effect of berberine on evoked glutamate release was prevented by the mitogen-activated/extracellular signal-regulated kinase kinase (MEK) inhibitors. Berberine decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synapsin I, the main presynaptic target of ERK; this decrease was also blocked by the MEK inhibition. Moreover, the inhibitory effect of berberine on evoked glutamate release was prevented in nerve terminals from mice lacking synapsin I. Together, these results indicated that berberine inhibits glutamate release from rats cortical synaptosomes, through the suppression of presynaptic Cav2.1 channels and ERK/synapsin I signaling cascade. This finding may provide further understanding of the mode of berberine action in the brain and highlights the therapeutic potential of this compound in the treatment of a wide range of neurological disorders.
Collapse
Affiliation(s)
- Tzu-Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei, Taiwan
- Department of Mechanical Engineering, Yuan Ze University, New Taipei, Taiwan
| | - Yu-Wan Lin
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Cheng-Wei Lu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei, Taiwan
- Department of Mechanical Engineering, Yuan Ze University, New Taipei, Taiwan
| | - Shu-Kuei Huang
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei, Taiwan
| | - Su-Jane Wang
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei, Taiwan
- * E-mail:
| |
Collapse
|
34
|
Lin TY, Lu CW, Huang SK, Wang SJ. Tanshinone IIA, a constituent of Danshen, inhibits the release of glutamate in rat cerebrocortical nerve terminals. JOURNAL OF ETHNOPHARMACOLOGY 2013; 147:488-496. [PMID: 23542145 DOI: 10.1016/j.jep.2013.03.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/11/2013] [Accepted: 03/18/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danshen is a commonly used traditional Chinese medicine and has received considerable attention due to their beneficial effects on the health, including prevention of cardiovascular disease, and cancer. Tanshinone IIA, a major active constituent of Danshen, has been reported to have a neuroprotective profile. AIM OF THE STUDY An excessive release of glutamate is considered to be related to neuropathology of several neurological diseases. In this study, we investigated whether tanshinone IIA could affect endogenous glutamate release and explored the possible mechanism. MATERIALS AND METHODS The experimental model was the isolated nerve terminals (synaptosomes) purified from the rat cerebral cortex. The release of glutamate was evoked by the K(+) channel blocker 4-aminopyridine (4-AP) and measured by one-line enzyme-coupled fluorometric assay. We also used a membrane potential-sensitive dye to assay nerve terminal excitability and depolarization, and a Ca(2+) indicator, Fura-2-acetoxymethyl ester, to monitor cytosolic Ca(2+) concentrations ([Ca(2+)]C). RESULTS Tanshinone IIA inhibited the release of glutamate evoked by 4-AP in a concentration-dependent manner. Inhibition of glutamate release by tanshinone IIA was prevented by the chelating the extracellular Ca(2+) ions, and by the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate did not have any effect on the action of tanshinone IIA. Tanshinone IIA decreased the depolarization-induced increase in [Ca(2+)]C, whereas it did not alter the resting synaptosomal membrane potential or 4-AP-mediated depolarization. Furthermore, the effect of tanshinone IIA on evoked glutamate release was prevented by the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, but not by the ryanodine receptor blocker dantrolene or the mitochondrial Na(+)/Ca(2+) exchanger blocker CGP37157. Mitogen-activated protein kinase (MEK) inhibition also prevented the inhibitory effect of tanshinone IIA on evoked glutamate release. CONCLUSION These results show that tanshinone IIA inhibits glutamate release from cortical synaptosomes in rats through the suppression of presynaptic voltage-dependent Ca(2+) entry and MEK signaling cascade.
Collapse
Affiliation(s)
- Tzu Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan
| | | | | | | |
Collapse
|
35
|
Abstract
Glutamate (GLU)-induced excitotoxicity is considered to be a frequent cause of cell degeneration in basal ganglia disorders; it is normally prevented by uptake of GLU by astrocytes. We recently found that transient perfusion of GLU in the striatum induces persistent accumulation of GLU in striatal astrocytes that could be from the initial administration or caused by the slow release from neurons or astrocytes in response to it. Endogenous production of GLU, that is, "self-induced GLU accumulation" (SIGA), may occur under physiological and pathological conditions. Here we studied the possible induction of SIGA after injury induced by perfusion of GLU receptor agonists into the striatum of rats. The agonists induced local degeneration in neurons and myelinated axons and microgliosis and astrocytosis; there was also gliosis and remote degeneration of neurons in the ventral-posterior complex of the thalamus that project to the cerebral cortex across the striatum. Reactive astrocytes showed persistent GLU accumulation in the striatum (local SIGA) and thalamus (remote SIGA) that persisted for at least 6 weeks after the injury. Thus, SIGA can be induced by neuronal degeneration retrogradely triggered from a remote brain region after excessive release of endogenous GLU from astrocytes. This may be an additional factor to be considered in basal ganglia disorders with glutamatergic excitotoxicity.
Collapse
|
36
|
Lin TY, Chung CY, Lu CW, Huang SK, Shieh JS, Wang SJ. Local anesthetics inhibit glutamate release from rat cerebral cortex synaptosomes. Synapse 2013; 67:568-79. [DOI: 10.1002/syn.21661] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/05/2012] [Accepted: 02/23/2013] [Indexed: 11/11/2022]
Affiliation(s)
| | - Chih-Yang Chung
- Department of Anesthesiology; Far-Eastern Memorial Hospital; Pan-Chiao; New Taipei City; 220; Taiwan
| | | | - Shu-Kuei Huang
- Department of Anesthesiology; Far-Eastern Memorial Hospital; Pan-Chiao; New Taipei City; 220; Taiwan
| | - Jiann-Sing Shieh
- Department of Mechanical Engineering; Yuan Ze University; Taoyuan; 320; Taiwan
| | | |
Collapse
|
37
|
Yuk J, Simpson MJ, Simpson AJ. 1-D and 2-D NMR-based metabolomics of earthworms exposed to endosulfan and endosulfan sulfate in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 175:35-44. [PMID: 23333485 DOI: 10.1016/j.envpol.2012.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 11/29/2012] [Accepted: 12/14/2012] [Indexed: 06/01/2023]
Abstract
One-dimensional (1-D) and two-dimensional (2-D) nuclear magnetic resonance (NMR)-based metabolomics was used to investigate the toxic mode of action (MOA) of endosulfan, an organochlorine pesticide, and its degradation product, endosulfan sulfate, to Eisenia fetida earthworms in soil. Three soil concentrations (0.1, 1.0 and 10.0 mg/kg) were used for both endosulfan and endosulfan sulfate. Both earthworm coelomic fluid (CF) and tissues were extracted and then analyzed using (1)H and (1)H-(13)C NMR techniques. A similar separation trajectory was observed for endosulfan and endosulfan sulfate-exposed earthworms in the mean principal component analysis (PCA) scores plot for both the earthworm CF and tissue extracts. A neurotoxic and apoptotic MOA was postulated for both endosulfan and endosulfan sulfate exposed earthworms as significant fluctuations in glutamine/GABA-glutamate cycle metabolites and spermidine were detected respectively. This study highlights the application of NMR-based metabolomics to understand molecular-level toxicity of persistent organochlorine pesticides and their degradation products directly in soil.
Collapse
Affiliation(s)
- Jimmy Yuk
- Department of Chemistry, University of Toronto, Scarborough College, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| | | | | |
Collapse
|
38
|
Chen JF, Eltzschig HK, Fredholm BB. Adenosine receptors as drug targets--what are the challenges? Nat Rev Drug Discov 2013; 12:265-86. [PMID: 23535933 PMCID: PMC3930074 DOI: 10.1038/nrd3955] [Citation(s) in RCA: 689] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adenosine signalling has long been a target for drug development, with adenosine itself or its derivatives being used clinically since the 1940s. In addition, methylxanthines such as caffeine have profound biological effects as antagonists at adenosine receptors. Moreover, drugs such as dipyridamole and methotrexate act by enhancing the activation of adenosine receptors. There is strong evidence that adenosine has a functional role in many diseases, and several pharmacological compounds specifically targeting individual adenosine receptors--either directly or indirectly--have now entered the clinic. However, only one adenosine receptor-specific agent--the adenosine A2A receptor agonist regadenoson (Lexiscan; Astellas Pharma)--has so far gained approval from the US Food and Drug Administration (FDA). Here, we focus on the biology of adenosine signalling to identify hurdles in the development of additional pharmacological compounds targeting adenosine receptors and discuss strategies to overcome these challenges.
Collapse
Affiliation(s)
- Jiang-Fan Chen
- Department of Neurology and Pharmacology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
39
|
Qu X, Xu C, Wang H, Xu J, Liu W, Wang Y, Jia X, Xie Z, Xu Z, Ji C, Wu A, Yue Y. Hippocampal glutamate level and glutamate aspartate transporter (GLAST) are up-regulated in senior rat associated with isoflurane-induced spatial learning/memory impairment. Neurochem Res 2012; 38:59-73. [PMID: 23070469 DOI: 10.1007/s11064-012-0889-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 08/31/2012] [Accepted: 09/10/2012] [Indexed: 12/30/2022]
Abstract
Postoperative cognitive decline is a clinical concern especially for senior patients. It is generally recognized that glutamatergic system plays a crucial role in the physiopathologic process of neurocognitive deterioration. However, alterations of glutamatergic system in prolonged isoflurane-induced learning/memory decline are still unclear. This study investigates the question whether glutamate concentration and corresponding transporters or receptors display any alternations in aged rat suffering from isoflurane-induced learning/memory impairment. 111 male Sprague-Dawley rats (>18 months) were randomly divided into two main groups: hippocampal microdialysis group (n = 38) and western blotting group (n = 73). Each group was subdivided into three subgroups including (1) control subgroup (n = 6 and 10, receiving no behavioral trial, anesthesia or air exposure); (2) air-exposed subgroup (n = 7 and 15, receiving behavioral trial and air exposure but not anesthesia); (3) isoflurane anesthesia subgroup (n = 25 and 48, receiving both behavioral trial and anesthesia). The isoflurane-exposed rats were further divided into a learning/memory-impaired subgroup and a non-learning/memory-impaired subgroup according to their behavioral performance, which was measured using Morris water maze. Hippocampal glutamate concentrations in microdialysates were determined by high-performance liquid chromatography. Expression levels of GLAST, GLT-1, NMDAR1, NMDAR2A/B, AMPAR and tau in hippocampus were assessed via quantitative Western blotting. The incidences of learning/memory impairment of isoflurane-exposed rats in hippocampal microdialysis group and western blotting group were 12.0 (3/25) and 10.4 % (5/48) respectively. The intra-anesthesia hippocampal glutamate levels were significantly lower than those of non-anesthesized rats. The learning/memory-impaired rats showed a long-lasting increased glutamate level from 24 h after isoflurane exposure to the end of the study, but the other 22 isoflurane-exposed rats did not. The learning/memory-impaired subgroup displayed a significantly higher GLAST level than the other three subgroups (p = 0.026, 0.02 and 0.032 respectively). The expression levels of GLT-1, NMDAR1, NMDAR2A/B and AMPAR of every subgroup were comparable. We found a continuous raised hippocampal glutamate and an up-regulation of GLAST rather than GLT-1, NMDAR1, NMDAR2A/B, AMPAR or tau in hippocampus of aged rats associated with isoflurane-induced learning/memory impairment.
Collapse
Affiliation(s)
- Xiangdong Qu
- Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lin TY, Lu CW, Huang SK, Wang SJ. Curcumin inhibits glutamate release from rat prefrontal nerve endings by affecting vesicle mobilization. Int J Mol Sci 2012; 13:9097-9109. [PMID: 22942754 PMCID: PMC3430285 DOI: 10.3390/ijms13079097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/11/2012] [Accepted: 07/16/2012] [Indexed: 02/03/2023] Open
Abstract
Curcumin, one of the major constituents of Curcuma longa, has been shown to inhibit depolarization-evoked glutamate release from rat prefrontocortical nerve terminals by reducing voltage-dependent Ca2+ entry. This study showed that curcumin inhibited ionomycin-induced glutamate release and KCl-evoked FM1-43 release, suggesting that some steps after Ca2+ entry are regulated by curcumin. Furthermore, disrupting the cytoskeleton organization using cytochalasin D abolished the inhibitory action of curcumin on ionomycin-induced glutamate release. Mitogen-activated protein kinase kinase (MEK) inhibition also prevented the inhibitory effect of curcumin on ionomycin-induced glutamate release. Western blot analyses showed that curcumin decreased the ionomycin-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synaptic vesicle-associated protein synapsin I, the main presynaptic target of ERK. These results show that curcumin-mediated inhibition of glutamate release involves modulating downstream events by controlling synaptic vesicle recruitment and exocytosis, possibly through a decrease of MAPK/ERK activation and synapsin I phosphorylation, thereby decreasing synaptic vesicle availability for exocytosis.
Collapse
Affiliation(s)
- Tzu Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan; E-Mails: (T.Y.L.); (C.W.L.); (S.K.H.)
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 320, Taiwan
| | - Cheng Wei Lu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan; E-Mails: (T.Y.L.); (C.W.L.); (S.K.H.)
| | - Shu Kuei Huang
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan; E-Mails: (T.Y.L.); (C.W.L.); (S.K.H.)
| | - Su Jane Wang
- Graduate Institute of Basic Medicine, Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang District, New Taipei City 24205, Taiwan
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang District, New Taipei City 24205, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-2-29053465; Fax: +886-2-29052096
| |
Collapse
|
41
|
Monošík R, Streďanský M, Šturdík E. A Biosensor Utilizing l-Glutamate Dehydrogenase and Diaphorase Immobilized on Nanocomposite Electrode for Determination of l-Glutamate in Food Samples. FOOD ANAL METHOD 2012. [DOI: 10.1007/s12161-012-9468-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Morales I, Rodriguez M. Self-induced accumulation of glutamate in striatal astrocytes and basal ganglia excitotoxicity. Glia 2012; 60:1481-94. [PMID: 22715058 DOI: 10.1002/glia.22368] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 05/10/2012] [Accepted: 05/21/2012] [Indexed: 01/18/2023]
Abstract
Excitotoxicity induced by high levels of extracellular glutamate (GLU) has been proposed as a cause of cell degeneration in basal ganglia disorders. This phenomenon is normally prevented by the astrocytic GLU-uptake and the GLU-catabolization to less dangerous molecules. However, high-GLU can induce reactive gliosis which could change the neuroprotective role of astrocytes. The striatal astrocyte response to high GLU was studied here in an in vivo rat preparation. The transient striatal perfusion of GLU (1 h) by reverse microdialysis induced complex reactive gliosis which persisted for weeks and which was different for radial-like glia, protoplasmic astrocytes and fibrous astrocytes. This gliosis was accompanied by a persistent cytosolic accumulation of GLU (immunofluorescence quantified by confocal microscope), which persisted for weeks (self-induced glutamate accumulation), and which was associated to a selective decrease of glutamine synthetase activity. This massive and persistent self-induced glutamate accumulation in striatal astrocytes could be an additional factor for the GLU-induced excitotoxicity, which has been implicated in the progression of different basal ganglia disorders.
Collapse
Affiliation(s)
- Ingrid Morales
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, La Laguna, Tenerife, Canary Islands, Spain
| | | |
Collapse
|
43
|
Lu CW, Lin TY, Wang CC, Wang SJ. σ-1 Receptor agonist SKF10047 inhibits glutamate release in rat cerebral cortex nerve endings. J Pharmacol Exp Ther 2012; 341:532-42. [PMID: 22357973 DOI: 10.1124/jpet.111.191189] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
σ-1 Receptors are expressed in the brain, and their activation has been shown to prevent neuronal death associated with glutamate toxicity. This study investigates the possible mechanism and effect of [2S-(2α,6α,11R*]-1,2,3,4,5,6-hexahydro-6,11-dimethyl-3-(2-propenyl)-2,6-methano-3-benzazocin-8-ol (SKF10047), a σ-1 receptor agonist, on endogenous glutamate release in the nerve terminals of rat cerebral cortex. Results show that SKF10047 inhibited the release of glutamate evoked by the K⁺ channel blocker 4-aminopyridine (4-AP), and the σ-1 receptor antagonist N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine (BD1047) blocked this phenomenon. The effects of SKF10047 on the evoked glutamate release were prevented by the chelating extracellular Ca²⁺ions and the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor DL-threo-β-benzyl-oxyaspartate did not have any effect on the action of SKF10047. SKF10047 decreased the depolarization-induced increase in the cytosolic free Ca²⁺ concentration ([Ca²⁺](C)), but did not alter 4-AP-mediated depolarization. Furthermore, the effects of SKF10047 on evoked glutamate release were prevented by blocking the Ca(v)2.2 (N-type) and Ca(v)2.1 (P/Q-type) channels, but not by blocking the ryanodine receptors or the mitochondrial Na⁺/Ca²⁺ exchange. In addition, conventional protein kinase C (PKC) inhibitors abolished the SKF10047 effect on 4-AP-evoked glutamate release. Western blot analyses showed that SKF10047 decreased the 4-AP-induced phosphorylation of PKC and PKCα. These results show that σ-1 receptor activation inhibits glutamate release from rat cortical nerve terminals. This effect is linked to a decrease in [Ca²⁺](C) caused by Ca²⁺ entry through presynaptic voltage-dependent Ca²⁺ channels and the suppression of the PKC signaling cascade.
Collapse
Affiliation(s)
- Cheng-Wei Lu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei, Taiwan
| | | | | | | |
Collapse
|
44
|
Baier CJ, Katunar MR, Adrover E, Pallarés ME, Antonelli MC. Gestational restraint stress and the developing dopaminergic system: an overview. Neurotox Res 2012; 22:16-32. [PMID: 22215534 DOI: 10.1007/s12640-011-9305-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 12/15/2011] [Accepted: 12/20/2011] [Indexed: 12/22/2022]
Abstract
Prenatal stress exerts a strong impact on fetal brain development in rats impairing adaptation to stressful conditions, subsequent vulnerability to anxiety, altered sexual function, and enhanced propensity to self-administer drugs. Most of these alterations have been attributed to changes in the neurotransmitter dopamine (DA). In humans; dysfunction of dopaminergic system is associated with development of several neurological disorders, such as Parkinson disease, schizophrenia, attention-deficit hyperactivity disorder, and depression. Evidences provided by animal research, as well as retrospective studies in humans, pointed out that exposure to adverse events in early life can alter adult behaviors and neurochemical indicators of midbrain DA activity, suggesting that the development of the DA system is sensitive to disruption by exposure to early stressors. The purpose of this article is to provide a general overview of published studies and our own study related to the effect of prenatal insults on the development of DA metabolism and biology, focusing mainly in articles involving prenatal-restraint stress protocols in rats. We will also attempt to make a correlation between theses alterations and DA-related pathological processes in humans.
Collapse
Affiliation(s)
- Carlos J Baier
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
45
|
Chen T, Fei F, Jiang XF, Zhang L, Qu Y, Huo K, Fei Z. Down-regulation of Homer1b/c attenuates glutamate-mediated excitotoxicity through endoplasmic reticulum and mitochondria pathways in rat cortical neurons. Free Radic Biol Med 2012; 52:208-17. [PMID: 22080088 DOI: 10.1016/j.freeradbiomed.2011.10.451] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/18/2011] [Accepted: 10/18/2011] [Indexed: 11/28/2022]
Abstract
Glutamate-mediated excitotoxicity is involved in many acute and chronic brain diseases. Homer proteins, a new member of the postsynaptic scaffolding proteins, regulate glutamatergic signaling and intracellular calcium mobilization in the central nervous system. Here we investigated the effects of down-regulating Homer1b/c, a constitutively expressed long form of Homer proteins, on glutamate excitotoxicity-induced neuronal injury. In our in vitro excitotoxic models, we demonstrated that glutamate insults led to a dose-dependent neuronal injury, which was mediated by the intracellular calcium-dependent reactive oxygen species (ROS) production. We found that down-regulation of Homer1b/c with specific small interfering RNA (siRNA) improved neuronal survival, inhibited intracellular ROS production, and reduced apoptotic cell death after neurotoxicity. Homer1b/c knockdown decreased the intracellular calcium overload through inhibition of the group I metabotropic glutamate receptor (mGluR)/inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ release from the endoplasmic reticulum (ER) in injured neurons. In addition, Homer1b/c siRNA transfection attenuated the activation of eukaryotic initiation factor 2α (eIF2α), RNA-dependent protein kinase-like ER kinase (PERK) and caspase-12, and inhibited the up-regulation of glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) after glutamate treatment. Homer1b/c knockdown also preserved the mitochondrial membrane potential (MMP), reduced cytochrome c (Cyt. c) release, and partly blocked the increase of capase-9 activity and Bax/Bcl-2 ratio. Taken together, these results suggest that down-regulation of Homer1b/c protects cortical neurons against glutamate-induced excitatory damage, and this neuroprotection may be dependent at least in part on the inhibition of calcium-dependent ROS production and the preservation of the ER and mitochondrial function.
Collapse
Affiliation(s)
- Tao Chen
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Tamoxifen depresses glutamate release through inhibition of voltage-dependent Ca2+ entry and protein kinase Cα in rat cerebral cortex nerve terminals. Neurochem Int 2012; 60:105-14. [DOI: 10.1016/j.neuint.2011.11.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 12/30/2022]
|
47
|
Mirsal H, Yalug I, Tan D, Stern TA, Kalyoncu A, Pektas O, Erdogan G, Beyazyürek M. Delirium-associated disulfiram and ethanol interactions. PRIMARY CARE COMPANION TO THE JOURNAL OF CLINICAL PSYCHIATRY 2011; 7:235-7. [PMID: 16308580 PMCID: PMC1257409 DOI: 10.4088/pcc.v07n0505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2005] [Accepted: 08/01/2005] [Indexed: 10/20/2022]
Abstract
BACKGROUND Disulfiram, an agent used for the treatment of alcohol dependence, can exacerbate psychiatric syndromes (including psychosis, catatonia, delirium, depression, and mania) after extended use. However, delirium has yet to be reported following the short-term use of disulfiram in the setting of alcohol use. OBJECTIVES We report a case with a neuropsychiatric presentation and discuss the prevention and the progression of delirium associated with an interaction of disulfiram and ethanol. CASE REPORT We report the case of a 51-year-old woman who developed disorganized speech, diminished communication, a decrease in appetite, and thoughts of suicide 10 days after she began taking disulfiram (250 mg/day), to which she added 1 glass of alcoholic beverage for 2 days. Delirium developed in association with an interaction between disulfiram and alcohol. The patient met DSM-IV criteria for major depressive disorder, alcohol dependence, and delirium. DISCUSSION Neuropsychiatric manifestations may develop in association with co-administration of disulfiram and alcohol; timely recognition and treatment are recommended.
Collapse
Affiliation(s)
- Hasan Mirsal
- Department of Psychiatry, Maltepe University, Istanbul, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Inhibitory effect of glutamate release from rat cerebrocortical nerve terminals by α2 adrenoceptor agonist dexmedetomidine. Eur J Pharmacol 2011; 670:137-47. [DOI: 10.1016/j.ejphar.2011.08.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/21/2011] [Accepted: 08/17/2011] [Indexed: 11/21/2022]
|
49
|
Lin TY, Lu CW, Chang CC, Huang SK, Wang SJ. Luteolin inhibits the release of glutamate in rat cerebrocortical nerve terminals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:8458-8466. [PMID: 21721589 DOI: 10.1021/jf201637u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The present study investigated the effect and possible mechanism of luteolin, a food-derived flavonoid, on endogenous glutamate release in nerve terminals of rat cerebral cortex (synaptosomes). Luteolin inhibited the release of glutamate evoked by the K(+) channel blocker 4-aminopyridine (4-AP), and this phenomenon was concentration-dependent. The effect of luteolin on the evoked glutamate release was prevented by the chelation of the extracellular Ca(2+) ions and by the vesicular transporter inhibitor, but was insensitive to the glutamate transporter inhibitor. Luteolin decreased the 4-AP-induced increase in [Ca(2+)](C), whereas it did not alter 4-AP-mediated depolarization. Furthermore, the effect of luteolin on evoked glutamate release was abolished by blocking the Ca(v)2.2 (N-type) and Ca(v)2.1 (P/Q-type) channels, but not by blocking the ryanodine receptors or the mitochondrial Na(+)/Ca(2+) exchange. In addition, the inhibitory effect of luteolin on evoked glutamate release was prevented by the mitogen-activated/extracellular signal-regulated kinase (MEK) inhibitors. Western blot analyses showed that luteolin decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synapsin I, the main presynaptic target of ERK. Thus, it was concluded that luteolin inhibits glutamate release from rat cortical synaptosomes through the suppression of presynaptic voltage-dependent Ca(2+) entry and MEK/ERK signaling cascade.
Collapse
Affiliation(s)
- Tzu Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City, Taiwan
| | | | | | | | | |
Collapse
|
50
|
Blaylock RL, Maroon J. Immunoexcitotoxicity as a central mechanism in chronic traumatic encephalopathy-A unifying hypothesis. Surg Neurol Int 2011; 2:107. [PMID: 21886880 PMCID: PMC3157093 DOI: 10.4103/2152-7806.83391] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/06/2011] [Indexed: 12/17/2022] Open
Abstract
Some individuals suffering from mild traumatic brain injuries, especially repetitive mild concussions, are thought to develop a slowly progressive encephalopathy characterized by a number of the neuropathological elements shared with various neurodegenerative diseases. A central pathological mechanism explaining the development of progressive neurodegeneration in this subset of individuals has not been elucidated. Yet, a large number of studies indicate that a process called immunoexcitotoxicity may be playing a central role in many neurodegenerative diseases including chronic traumatic encephalopathy (CTE). The term immunoexcitotoxicity was first coined by the lead author to explain the evolving pathological and neurodevelopmental changes in autism and the Gulf War Syndrome, but it can be applied to a number of neurodegenerative disorders. The interaction between immune receptors within the central nervous system (CNS) and excitatory glutamate receptors trigger a series of events, such as extensive reactive oxygen species/reactive nitrogen species generation, accumulation of lipid peroxidation products, and prostaglandin activation, which then leads to dendritic retraction, synaptic injury, damage to microtubules, and mitochondrial suppression. In this paper, we discuss the mechanism of immunoexcitotoxicity and its link to each of the pathophysiological and neurochemical events previously described with CTE, with special emphasis on the observed accumulation of hyperphosphorylated tau.
Collapse
Affiliation(s)
- Russell L Blaylock
- Theoretical Neurosciences, LLC Visiting Professor of Biology, Belhaven University, Jackson, MS 315 Rolling Meadows Rd, Ridgeland, MS 39157, USA
| | | |
Collapse
|