1
|
Azargoonjahromi A. The duality of amyloid-β: its role in normal and Alzheimer's disease states. Mol Brain 2024; 17:44. [PMID: 39020435 PMCID: PMC11256416 DOI: 10.1186/s13041-024-01118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024] Open
Abstract
Alzheimer's disease (AD) is a degenerative neurological condition that gradually impairs cognitive abilities, disrupts memory retention, and impedes daily functioning by impacting the cells of the brain. A key characteristic of AD is the accumulation of amyloid-beta (Aβ) plaques, which play pivotal roles in disease progression. These plaques initiate a cascade of events including neuroinflammation, synaptic dysfunction, tau pathology, oxidative stress, impaired protein clearance, mitochondrial dysfunction, and disrupted calcium homeostasis. Aβ accumulation is also closely associated with other hallmark features of AD, underscoring its significance. Aβ is generated through cleavage of the amyloid precursor protein (APP) and plays a dual role depending on its processing pathway. The non-amyloidogenic pathway reduces Aβ production and has neuroprotective and anti-inflammatory effects, whereas the amyloidogenic pathway leads to the production of Aβ peptides, including Aβ40 and Aβ42, which contribute to neurodegeneration and toxic effects in AD. Understanding the multifaceted role of Aβ, particularly in AD, is crucial for developing effective therapeutic strategies that target Aβ metabolism, aggregation, and clearance with the aim of mitigating the detrimental consequences of the disease. This review aims to explore the mechanisms and functions of Aβ under normal and abnormal conditions, particularly in AD, by examining both its beneficial and detrimental effects.
Collapse
|
2
|
Isu UH, Badiee SA, Polasa A, Tabari SH, Derakhshani-Molayousefi M, Moradi M. Cholesterol Dependence of the Conformational Changes in Metabotropic Glutamate Receptor 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589854. [PMID: 38659864 PMCID: PMC11042357 DOI: 10.1101/2024.04.17.589854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metabotropic glutamate receptors (mGluRs) are class C G protein-coupled receptors that function as obligate dimers in regulating neurotransmission and synaptic plasticity in the central nervous system. The mGluR1 subtype has been shown to be modulated by the membrane lipid environment, particularly cholesterol, though the molecular mechanisms remain elusive. In this study, we employed all-atom molecular dynamics simulations to investigate the effects of cholesterol on the conformational dynamics of the mGluR1 seven-transmembrane (7TM) domain in an inactive state model. Simulations were performed with three different cholesterol concentrations (0%, 10%, and 25%) in a palmitoyl-oleoyl phosphatidylcholine (POPC) lipid bilayer system. Our results demonstrate that cholesterol induces conformational changes in the mGluR1 dimer more significantly than in the individual protomers. Notably, cholesterol modulates the dynamics and conformations of the TM1 and TM2 helices at the dimer interface. Interestingly, an intermediate cholesterol concentration of 10% elicits more pronounced conformational changes compared to both cholesterol-depleted (0%) and cholesterol-enriched (25%) systems. Specific electrostatic interaction unique to the 10% cholesterol system further corroborate these conformational differences. Given the high sequence conservation of the 7TM domains across mGluR subtypes, the cholesterol-dependent effects observed in mGluR1 are likely applicable to other members of this receptor family. Our findings provide atomistic insights into how cholesterol modulates the conformational landscape of mGluRs, which could impact their function and signaling mechanisms.
Collapse
|
3
|
Isu UH, Badiee SA, Khodadadi E, Moradi M. Cholesterol in Class C GPCRs: Role, Relevance, and Localization. MEMBRANES 2023; 13:301. [PMID: 36984688 PMCID: PMC10056374 DOI: 10.3390/membranes13030301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
G-protein coupled receptors (GPCRs), one of the largest superfamilies of cell-surface receptors, are heptahelical integral membrane proteins that play critical roles in virtually every organ system. G-protein-coupled receptors operate in membranes rich in cholesterol, with an imbalance in cholesterol level within the vicinity of GPCR transmembrane domains affecting the structure and/or function of many GPCRs, a phenomenon that has been linked to several diseases. These effects of cholesterol could result in indirect changes by altering the mechanical properties of the lipid environment or direct changes by binding to specific sites on the protein. There are a number of studies and reviews on how cholesterol modulates class A GPCRs; however, this area of study is yet to be explored for class C GPCRs, which are characterized by a large extracellular region and often form constitutive dimers. This review highlights specific sites of interaction, functions, and structural dynamics involved in the cholesterol recognition of the class C GPCRs. We summarize recent data from some typical family members to explain the effects of membrane cholesterol on the structural features and functions of class C GPCRs and speculate on their corresponding therapeutic potential.
Collapse
Affiliation(s)
| | | | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
4
|
Yadav P, Podia M, Kumari SP, Mani I. Glutamate receptor endocytosis and signaling in neurological conditions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:167-207. [PMID: 36813358 DOI: 10.1016/bs.pmbts.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The non-essential amino acid glutamate acts as a major excitatory neurotransmitter and plays a significant role in the central nervous system (CNS). It binds with two different types of receptors, ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs), responsible for the postsynaptic excitation of neurons. They are important for memory, neural development and communication, and learning. Endocytosis and subcellular trafficking of the receptor are essential for the regulation of receptor expression on the cell membrane and excitation of the cells. The endocytosis and trafficking of the receptor are dependent on its type, ligand, agonist, and antagonist present. This chapter discusses the types of glutamate receptors, their subtypes, and the regulation of their internalization and trafficking. The roles of glutamate receptors in neurological diseases are also briefly discussed.
Collapse
Affiliation(s)
- Prerna Yadav
- Department of Microbiology, University of Delhi, New Delhi, India
| | - Mansi Podia
- Department of Microbiology, University of Delhi, New Delhi, India
| | - Shashi Prabha Kumari
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
5
|
Zhai J, He X, Sun Y, Wan Z, Ji B, Liu S, Li S, Wang J. In silico binding affinity prediction for metabotropic glutamate receptors using both endpoint free energy methods and a machine learning-based scoring function. Phys Chem Chem Phys 2022; 24:18291-18305. [PMID: 35880533 PMCID: PMC9460939 DOI: 10.1039/d2cp01727j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) play an important role in regulating glutamate signal pathways, which are involved in neuropathy and periphery homeostasis. mGluR4, which belongs to Group III mGluRs, is most widely distributed in the periphery among all the mGluRs. It has been proved that the regulation of this receptor is involved in diabetes, colorectal carcinoma and many other diseases. However, the application of structure-based drug design to identify small molecules to regulate the mGluR4 receptor is limited due to the absence of a resolved mGluR4 protein structure. In this work, we first built a homology model of mGluR4 based on a crystal structure of mGluR8, and then conducted hierarchical virtual screening (HVS) to identify possible active ligands for mGluR4. The HVS protocol consists of three hierarchical filters including Glide docking, molecular dynamic (MD) simulation and binding free energy calculation. We successfully prioritized active ligands of mGluR4 from a set of screening compounds using HVS. The predicted active ligands based on binding affinities can almost cover all the experiment-determined active ligands, with only one ligand missed. The correlation between the measured and predicted binding affinities is significantly improved for the MM-PB/GBSA-WSAS methods compared to the Glide docking method. More importantly, we have identified hotspots for ligand binding, and we found that SER157 and GLY158 tend to contribute to the selectivity of mGluR4 ligands, while ALA154 and ALA155 could account for the ligand selectivity to mGluR8. We also recognized other 5 key residues that are critical for ligand potency. The difference of the binding profiles between mGluR4 and mGluR8 can guide us to develop more potent and selective modulators. Moreover, we evaluated the performance of IPSF, a novel type of scoring function trained by a machine learning algorithm on residue-ligand interaction profiles, in guiding drug lead optimization. The cross-validation root-mean-square errors (RMSEs) are much smaller than those by the endpoint methods, and the correlation coefficients are comparable to the best endpoint methods for both mGluRs. Thus, machine learning-based IPSF can be applied to guide lead optimization, albeit the total number of actives/inactives are not big, a typical scenario in drug discovery projects.
Collapse
Affiliation(s)
- Jingchen Zhai
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Yuchen Sun
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Zhuoya Wan
- Department of Pharmaceutical Sciences and Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Beihong Ji
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Shuhan Liu
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Song Li
- Department of Pharmaceutical Sciences and Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
6
|
Locke GM, Bernhard SSR, Senge MO. Nonconjugated Hydrocarbons as Rigid-Linear Motifs: Isosteres for Material Sciences and Bioorganic and Medicinal Chemistry. Chemistry 2019; 25:4590-4647. [PMID: 30387906 DOI: 10.1002/chem.201804225] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/20/2018] [Indexed: 01/02/2023]
Abstract
Nonconjugated hydrocarbons, like bicyclo[1.1.1]pentane, bicyclo[2.2.2]octane, triptycene, and cubane are a unique class of rigid linkers. Due to their similarity in size and shape they are useful mimics of classic benzene moieties in drugs, so-called bioisosteres. Moreover, they also fulfill an important role in material sciences as linear linkers, in order to arrange various functionalities in a defined spatial manner. In this Review article, recent developments and usages of these special, rectilinear systems are discussed. Furthermore, we focus on covalently linked, nonconjugated linear arrangements and discuss the physical and chemical properties and differences of individual linkers, as well as their application in material and medicinal sciences.
Collapse
Affiliation(s)
- Gemma M Locke
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Stefan S R Bernhard
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Mathias O Senge
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| |
Collapse
|
7
|
Chung G, Kim SJ, Kim SK. Metabotropic Glutamate Receptor 5 in the Medial Prefrontal Cortex as a Molecular Determinant of Pain and Ensuing Depression. Front Mol Neurosci 2018; 11:376. [PMID: 30349459 PMCID: PMC6186831 DOI: 10.3389/fnmol.2018.00376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 09/21/2018] [Indexed: 12/27/2022] Open
Abstract
Pain and depression affect one another, and this bidirectional interaction implies the existence of common or interacting neural pathways. Among the neural circuits relevant to negative affection, the medial prefrontal cortex (mPFC) is known to be involved in both pain and depression. Persistent stress from physical pain and mental distress can evoke maladaptive changes in mPFC circuits to induce depression. Conversely, the unpleasant mood condition alters mPFC circuits to distort the appraisal of aversion and make individuals vulnerable to pain. In this article, recent findings regarding mPFC in chronic pain and/or depression are reviewed, with particular focus on the metabotropic glutamate receptor 5 (mGluR5). Although the involvement of mGluR5 within the mPFC in both pain and depressive disorders has been extensively studied, there are controversies regarding changes in the activity of the mPFC during chronic pain and depression, and the functional roles of mGluR5 on altered mPFC activity. We discuss alterations in the availability of mGluR5 in the mPFC in these disorders, its role in behavioral manifestations, and its possible influence on cellular subpopulations that mediate dysfunction in the mPFC. We also propose molecular mechanisms that may cause expressional changes in mGluR5 within the mPFC circuitry.
Collapse
Affiliation(s)
- Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Sang Jeong Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
8
|
Chen GF, Xu TH, Yan Y, Zhou YR, Jiang Y, Melcher K, Xu HE. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 2017; 38:1205-1235. [PMID: 28713158 PMCID: PMC5589967 DOI: 10.1038/aps.2017.28] [Citation(s) in RCA: 1159] [Impact Index Per Article: 144.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/02/2017] [Indexed: 12/12/2022]
Abstract
Amyloid beta peptide (Aβ) is produced through the proteolytic processing of a transmembrane protein, amyloid precursor protein (APP), by β- and γ-secretases. Aβ accumulation in the brain is proposed to be an early toxic event in the pathogenesis of Alzheimer's disease, which is the most common form of dementia associated with plaques and tangles in the brain. Currently, it is unclear what the physiological and pathological forms of Aβ are and by what mechanism Aβ causes dementia. Moreover, there are no efficient drugs to stop or reverse the progression of Alzheimer's disease. In this paper, we review the structures, biological functions, and neurotoxicity role of Aβ. We also discuss the potential receptors that interact with Aβ and mediate Aβ intake, clearance, and metabolism. Additionally, we summarize the therapeutic developments and recent advances of different strategies for treating Alzheimer's disease. Finally, we will report on the progress in searching for novel, potentially effective agents as well as selected promising strategies for the treatment of Alzheimer's disease. These prospects include agents acting on Aβ, its receptors and tau protein, such as small molecules, vaccines and antibodies against Aβ; inhibitors or modulators of β- and γ-secretase; Aβ-degrading proteases; tau protein inhibitors and vaccines; amyloid dyes and microRNAs.
Collapse
Affiliation(s)
- Guo-Fang Chen
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ting-Hai Xu
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yan Yan
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yu-Ren Zhou
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Jiang
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Karsten Melcher
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - H Eric Xu
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
9
|
Chung G, Kim CY, Yun YC, Yoon SH, Kim MH, Kim YK, Kim SJ. Upregulation of prefrontal metabotropic glutamate receptor 5 mediates neuropathic pain and negative mood symptoms after spinal nerve injury in rats. Sci Rep 2017; 7:9743. [PMID: 28851991 PMCID: PMC5575341 DOI: 10.1038/s41598-017-09991-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/01/2017] [Indexed: 12/28/2022] Open
Abstract
Patients with chronic pain easily accompany the negative mood symptoms such as depression and anxiety, and these disturbances in turn affect the aversive perception of pain. However, the underlying mechanisms are largely unknown. We hypothesized that the alteration of metabotropic glutamate receptor 5 (mGluR5) in the brain region underlies such a comorbidity of aversive states. We scanned the brain of chronic neuropathic pain model rats using positron emission tomography (PET) technique with an mGluR5-selective radiotracer [11C] ABP688 and found various brain regions with higher or lower level of mGluR5 compared to control rats. Among the brain areas, a prominent upregulation of mGluR5 was shown in the prelimbic region (PrL) of the medial prefrontal cortex (mPFC) of chronic neuropathic pain animals. A pharmacological blockade of upregulated mGluR5 in the PrL ameliorated the negative symptoms including tactile hypersensitivity and depressive-like behavior, which relieved the subjects from the unpleasant state of chronic neuropathic pain condition. Conversely, lentiviral overexpression of the mGluR5 in the PrL of naïve rats successfully induced comorbid pain and negative moods. Our data provide deeper insight into the shared mechanism of pain perception and negative emotions, identifying a therapeutic target for the treatment of chronic pain and mood disorders.
Collapse
Affiliation(s)
- Geehoon Chung
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Chae Young Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Yeong-Chan Yun
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Ho Yoon
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Myoung-Hwan Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Vincent A, Sportouch C, Covinhes A, Barrère C, Gallot L, Delgado-Betancourt V, Lattuca B, Solecki K, Boisguérin P, Piot C, Nargeot J, Barrère-Lemaire S. Cardiac mGluR1 metabotropic receptors in cardioprotection. Cardiovasc Res 2017; 113:644-655. [PMID: 28453728 DOI: 10.1093/cvr/cvx024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/31/2017] [Indexed: 10/21/2023] Open
Abstract
AIMS In a previous study using a genome-wide microarray strategy, we identified metabotropic glutamate receptor 1 (mGluR1) as a putative cardioprotective candidate in ischaemic postconditioning (PostC). In the present study, we investigated the role of cardiac mGluR1 receptors during cardioprotection against myocardial ischaemia-reperfusion injury in the mouse myocardium. METHODS AND RESULTS mGluR1 activation by glutamate administered 5 min before reperfusion in C57Bl/6 mice subjected to a myocardial ischaemia protocol strongly decreased both infarct size and DNA fragmentation measured at 24 h reperfusion. This cardioprotective effect was mimicked by the mGluR1 agonist, DHPG (10 μM), and abolished when glutamate was coinjected with the mGluR1 antagonist YM298198 (100 nM). Wortmannin (100 nM), an inhibitor of PI3-kinase, was able to prevent glutamate-induced cardioprotection. A glutamate bolus at the onset of reperfusion failed to protect the heart of mGluR1 knockout mice subjected to a myocardial ischaemia-reperfusion protocol, although PostC still protected the mGluR1 KO mice. Glutamate-treatment improved post-infarction functional recovery as evidenced by an echocardiographic study performed 15 days after treatment and by a histological evaluation of fibrosis 21 days post-treatment. Interestingly, restoration of functional mGluR1s by a PostC stimulus was evidenced at the transcriptional level. Since mGluR1s were localized at the surface membrane of cardiomyocytes, they might contribute to the cardioprotective effect of ischaemic PostC as other Gq-coupled receptors. CONCLUSION This study provides the first demonstration that mGluR1 activation at the onset of reperfusion induces cardioprotection and might represent a putative strategy to prevent ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- Anne Vincent
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | - Catherine Sportouch
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
- Département de cardiologie interventionnelle, Clinique du Millénaire, F-34000 Montpellier, France
| | - Aurélie Covinhes
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | - Christian Barrère
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | - Laura Gallot
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | - Viviana Delgado-Betancourt
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | - Benoît Lattuca
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | - Kamila Solecki
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | | | - Christophe Piot
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
- Département de cardiologie interventionnelle, Clinique du Millénaire, F-34000 Montpellier, France
| | - Joël Nargeot
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | - Stéphanie Barrère-Lemaire
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| |
Collapse
|
11
|
The activation of metabotropic glutamate 5 receptors in the rat ventral tegmental area increases dopamine extracellular levels. Neuroreport 2017; 28:28-34. [DOI: 10.1097/wnr.0000000000000708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Pittaluga A. Presynaptic Release-Regulating mGlu1 Receptors in Central Nervous System. Front Pharmacol 2016; 7:295. [PMID: 27630571 PMCID: PMC5006178 DOI: 10.3389/fphar.2016.00295] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/22/2016] [Indexed: 01/14/2023] Open
Abstract
Group I metabotropic glutamate (mGlu) receptors consists of mGlu1 and mGlu5 receptor subtypes. These receptors are widely distributed in the central nervous system (CNS), where they preferentially mediate facilitatory signaling in neurones and glial cells, mainly by favoring phospholipase (PLC) translocation. Based on the literature so far available, group I Metabotropic glutamate receptors (mGluRs) are preferentially expressed at the postsynaptic side of chemical synapsis, where they participate in the progression of the chemical stimulus. Studies, however, have shown the presence of these receptors also at the presynaptic level, where they exert several functions, including the modulation of transmitter exocytosis. Presynaptic Group I mGluRs can be both autoreceptors regulating release of glutamate and heteroreceptors regulating the release of various transmitters, including GABA, dopamine, noradrenaline, and acetylcholine. While the existence of presynaptic release-regulating mGlu5 receptors is largely recognized, the possibility that mGlu1 receptors also are present at this level has been a matter of discussion for a long time. A large body of evidence published in the last decade, however, supports this notion. This review aims at revisiting the data from in vitro studies concerning the existence and the role of release-regulating mGlu1 receptors presynaptically located in nerve terminals isolated from selected regions of the CNS. The functional interaction linking mGlu5 and mGlu1 receptor subtypes at nerve terminals and their relative contributions as modulators of central transmission will also be discussed. We apologize in advance for omission in our coverage of the existing literature.
Collapse
Affiliation(s)
- Anna Pittaluga
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of GenoaGenoa, Italy
- Center of Excellence for Biomedical Research, University of GenoaGenoa, Italy
| |
Collapse
|
13
|
Bhattacharyya S. Inside story of Group I Metabotropic Glutamate Receptors (mGluRs). Int J Biochem Cell Biol 2016; 77:205-12. [PMID: 26987586 DOI: 10.1016/j.biocel.2016.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/31/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) are G-protein coupled receptors (GPCRs) that are activated by the neurotransmitter glutamate in the central nervous system. Among the eight subtypes, mGluR1 and mGluR5 belong to the group I family. These receptors play important roles in the brain and are believed to be involved in multiple forms of experience dependent synaptic plasticity including learning and memory. In addition, group I mGluRs also have been implicated in various neuropsychiatric disorders like Fragile X syndrome, autism etc. The normal signaling depends on the precise location of these receptors in specific region of the neuron and the process of receptor trafficking plays a crucial role in controlling this localization. Intracellular trafficking could also regulate the desensitization, resensitization, down-regulation and intracellular signaling of these receptors. In this review I focus on the current understanding of group I mGluR regulation in the central nervous system and also their role in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Samarjit Bhattacharyya
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge city, Sector-81, SAS Nagar, PO: 140306, Punjab, India.
| |
Collapse
|
14
|
Peterlik D, Flor PJ, Uschold-Schmidt N. The Emerging Role of Metabotropic Glutamate Receptors in the Pathophysiology of Chronic Stress-Related Disorders. Curr Neuropharmacol 2016; 14:514-39. [PMID: 27296643 PMCID: PMC4983752 DOI: 10.2174/1570159x13666150515234920] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/04/2015] [Accepted: 05/12/2015] [Indexed: 12/28/2022] Open
Abstract
Chronic stress-related psychiatric conditions such as anxiety, depression, and alcohol abuse are an enormous public health concern. The etiology of these pathologies is complex, with psychosocial stressors being among the most frequently discussed risk factors. The brain glutamatergic neurotransmitter system has often been found involved in behaviors and pathophysiologies resulting from acute stress and fear. Despite this, relatively little is known about the role of glutamatergic system components in chronic psychosocial stress, neither in rodents nor in humans. Recently, drug discovery efforts at the metabotropic receptor subtypes of the glutamatergic system (mGlu1-8 receptors) led to the identification of pharmacological tools with emerging potential in psychiatric conditions. But again, the contribution of individual mGlu subtypes to the manifestation of physiological, molecular, and behavioral consequences of chronic psychosocial stress remains still largely unaddressed. The current review will describe animal models typically used to analyze acute and particularly chronic stress conditions, including models of psychosocial stress, and there we will discuss the emerging roles for mGlu receptor subtypes. Indeed, accumulating evidence indicates relevance and potential therapeutic usefulness of mGlu2/3 ligands and mGlu5 receptor antagonists in chronic stress-related disorders. In addition, a role for further mechanisms, e.g. mGlu7-selective compounds, is beginning to emerge. These mechanisms are important to be analyzed in chronic psychosocial stress paradigms, e.g. in the chronic subordinate colony housing (CSC) model. We summarize the early results and discuss necessary future investigations, especially for mGlu5 and mGlu7 receptor blockers, which might serve to suggest improved therapeutic strategies to treat stress-related disorders.
Collapse
Affiliation(s)
| | - Peter J Flor
- Faculty of Biology and Preclinical Medicine, University of Regensburg, D-93053 Regensburg, Germany.
| | - Nicole Uschold-Schmidt
- Faculty of Biology and Preclinical Medicine, University of Regensburg, D-93053 Regensburg, Germany.
| |
Collapse
|
15
|
Hong J, Lu S, Xu R, Liow JS, Woock AE, Jenko KJ, Gladding RL, Zoghbi SS, Innis RB, Pike VW. [carbonyl-11C]4-Fluoro-N-methyl-N-(4-(6-(methylamino)pyrimidin-4-yl)thiazol-2-yl)benzamide ([11C]FIMX) is an effective radioligand for PET imaging of metabotropic glutamate receptor 1 (mGluR1) in monkey brain. Nucl Med Biol 2015; 42:967-74. [PMID: 26320813 PMCID: PMC4658304 DOI: 10.1016/j.nucmedbio.2015.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/14/2015] [Accepted: 07/18/2015] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Metabotropic glutamate subtype receptor 1 (mGluR1) is implicated in several neuropsychiatric disorders and is a target for drug development. [(18)F]FIMX ([(18)F]4-fluoro--N-methyl-N--(4-(6-(methylamino)pyrimidin-4-yl)thiazol-2-yl)benzamide) is an effective radioligand for imaging brain mGluR1 with PET. A similarly effective radioligand with a shorter half-life would usefully allow PET studies of mGluR1 at baseline and after pharmacological or other challenge on the same day. Here we describe the preparation of [(11)C]FIMX for evaluation in monkey with PET. METHODS [(11)C]FIMX was prepared via Pd-promoted carbonylation of 1-fluoro-4-iodobenzene with [(11)C]carbon monoxide, aminolysis of the [(11)C]acyl-palladium complex with the requisite Boc-protected amine, and deprotection with HCl in THF. PET scans of [(11)C]FIMX injected into a monkey were performed at baseline and after preblock of mGluR1 with measurement of the arterial input function. RESULTS The radiosynthesis required 42 min and gave [(11)C]FIMX in about 5% overall decay-corrected radiochemical yield and with a specific activity of about 100 GBq/μmol. PET in rhesus monkey at baseline showed that radioactivity peaked high in receptor-rich cerebellum and much lower in receptor-poor occipital cortex. Radioactivity in cerebellum declined to 32% of peak at 85 min. VT at baseline appeared stable in all brain regions after 60 min. Under mGluR1 pre-blocked condition, radioactivity uptake in all regions declined more rapidly to a low level. Receptor pre-block reduced VT from 13.0 to 1.5 in cerebellum and from 2.9 to 1.4 in occipital cortex. CONCLUSION [(11)C]FIMX is an effective radioligand for imaging mGluR1 in monkey with PET.
Collapse
Affiliation(s)
- Jinsoo Hong
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD, 20892-1003, United States
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD, 20892-1003, United States
| | - Rong Xu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD, 20892-1003, United States
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD, 20892-1003, United States
| | - Alicia E Woock
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD, 20892-1003, United States
| | - Kimberly J Jenko
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD, 20892-1003, United States
| | - Robert L Gladding
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD, 20892-1003, United States
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD, 20892-1003, United States
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD, 20892-1003, United States
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD, 20892-1003, United States.
| |
Collapse
|
16
|
Calderwood S, Collier TL, Gouverneur V, Liang SH, Vasdev N. Synthesis of 18F-Arenes from Spirocyclic Iodonium(III) Ylides via Continuous-Flow Microfluidics. J Fluor Chem 2015; 178:249-253. [PMID: 27512233 PMCID: PMC4976495 DOI: 10.1016/j.jfluchem.2015.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Spirocyclic hypervalent iodine(III) ylides have proven to be synthetically versatile precursors for efficient radiolabelling of a diverse range of non-activated (hetero)arenes, highly functionalised small molecules, building blocks and radiopharmaceuticals from [18F]fluoride ion. Herein, we report the implementation of these reactions onto a continuous-flow microfluidic platform, thereby offering an alterative and automated synthetic procedure of a radiopharmaceutical, 3-[18F]fluoro-5-[(pyridin-3-yl)ethynyl]benzonitrile ([18F]FPEB) and a routinely used building block for click-radiochemistry, 4-[18F]fluorobenzyl azide. This new protocol was applied to the synthesis of [18F]FPEB (radiochemical conversion (RCC) = 68 ± 5%) and 4-[18F]fluorobenzyl azide (RCC=68 ± 5%; isolated radiochemical yield = 24±0%). We anticipate that the high throughput microfluidic platform will accelerate the discovery and applications of 18F-labelled building blocks and labelled compounds prepared by iodonium ylide precursors as well as the production of radiotracers for preclinical imaging studies.
Collapse
Affiliation(s)
- Samuel Calderwood
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, UK
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, 55 Fruit Street, Boston, USA
| | - Thomas Lee Collier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, 55 Fruit Street, Boston, USA
- Department of Radiology, Harvard Medical School, 55 Fruit Street, Boston, USA
- Advion BioSystems, 10 Brown Road, Suite 101, Ithaca, New York, USA
| | - Véronique Gouverneur
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, UK
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, 55 Fruit Street, Boston, USA
- Department of Radiology, Harvard Medical School, 55 Fruit Street, Boston, USA
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, 55 Fruit Street, Boston, USA
- Department of Radiology, Harvard Medical School, 55 Fruit Street, Boston, USA
| |
Collapse
|
17
|
Shifting towards a model of mGluR5 dysregulation in schizophrenia: Consequences for future schizophrenia treatment. Neuropharmacology 2015; 115:73-91. [PMID: 26349010 DOI: 10.1016/j.neuropharm.2015.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/02/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022]
Abstract
Metabotropic glutamate receptor subtype 5 (mGluR5), encoded by the GRM5 gene, represents a compelling novel drug target for the treatment of schizophrenia. mGluR5 is a postsynaptic G-protein coupled glutamate receptor strongly linked with several critical cellular processes that are reported to be disrupted in schizophrenia. Accordingly, mGluR5 positive allosteric modulators show encouraging therapeutic potential in preclinical schizophrenia models, particularly for the treatment of cognitive dysfunctions against which currently available therapeutics are largely ineffective. More work is required to support the progression of mGluR5-targeting drugs into the clinic for schizophrenia treatment, although some obstacles may be overcome by comprehensively understanding how mGluR5 itself is involved in the neurobiology of the disorder. Several processes that are necessary for the regulation of mGluR5 activity have been identified, but not examined, in the context of schizophrenia. These processes include protein-protein interactions, dimerisation, subcellular trafficking, the impact of genetic variability or mutations on protein function, as well as epigenetic, post-transcriptional and post-translational processes. It is essential to understand these aspects of mGluR5 to determine whether they are affected in schizophrenia pathology, and to assess the consequences of mGluR5 dysfunction for the future use of mGluR5-based drugs. Here, we summarise the known processes that regulate mGluR5 and those that have already been studied in schizophrenia, and discuss the consequences of this dysregulation for current mGluR5 pharmacological strategies. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
|
18
|
Discovery and biological evaluation of tetrahydrothieno[2,3-c]pyridine derivatives as selective metabotropic glutamate receptor 1 antagonists for the potential treatment of neuropathic pain. Eur J Med Chem 2015; 97:245-58. [DOI: 10.1016/j.ejmech.2015.04.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/30/2015] [Accepted: 04/28/2015] [Indexed: 12/31/2022]
|
19
|
Qiu JL, Zhu WL, Lu YJ, Bai ZF, Liu ZG, Zhao P, Sun C, Zhang YB, Li H, Liu W. The selective mGluR5 agonist CHPG attenuates SO2-induced oxidative stress and inflammation through TSG-6/NF-κB pathway in BV2 microglial cells. Neurochem Int 2015; 85-86:46-52. [PMID: 25953665 DOI: 10.1016/j.neuint.2015.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 11/16/2022]
Abstract
Sulfur dioxide (SO2) is a common air pollutant and can cause harmful insults on neurons. Microglial activation has been implicated in the signaling cascades that contribute to neuronal cell death in various neurological disorders. In the present study, we found that SO2 derivatives decreased cell viability via inducing oxidative stress, inflammatory responses and apoptotic cell death in BV2 microglial cells. Pretreatment with (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), an mGluR5 agonist, significantly attenuated the SO2-induced cytotoxicity, which was fully prevented by the mGluR5 antagonist MPEP. CHPG increased the expression of TNF-α stimulated gene/protein 6 (TSG-6), but decreased the activation of nuclear factor-κB (NF-κB) after SO2 derivatives treatment in BV2 cells. In addition, knockdown of TSG-6 expression by specific targeted short interfering RNA (siRNA) partially reversed the protection induced by CHPG. Therefore, our findings reveal a mechanistic basis for exploring the association between SO2 exposure and neurological disorders, and also for opening up therapeutic approaches of ameliorating neuronal injury resulting from exposure in atmospheric polluting environment.
Collapse
Affiliation(s)
- Jun-Ling Qiu
- Basic Medical Sciences Research Center, Shannxi Fourth People's Hospital, Xi'an, Shannxi 710043, China
| | - Wen-Li Zhu
- Department of Neurology, Shannxi Fourth People's Hospital, Xi'an, Shannxi 710043, China
| | - Yu-Jie Lu
- Basic Medical Sciences Research Center, Shannxi Fourth People's Hospital, Xi'an, Shannxi 710043, China
| | - Zheng-Fa Bai
- Basic Medical Sciences Research Center, Shannxi Fourth People's Hospital, Xi'an, Shannxi 710043, China
| | - Zhi-Gang Liu
- Department of Neurosurgery, Shannxi Fourth People's Hospital, Xi'an, Shannxi 710043, China
| | - Pei Zhao
- Department of Neurology, Shannxi Fourth People's Hospital, Xi'an, Shannxi 710043, China
| | - Chao Sun
- Basic Medical Sciences Research Center, Shannxi Fourth People's Hospital, Xi'an, Shannxi 710043, China
| | - Ya-Bin Zhang
- Basic Medical Sciences Research Center, Shannxi Fourth People's Hospital, Xi'an, Shannxi 710043, China
| | - Hua Li
- Department of Neurosurgery, Shannxi Fourth People's Hospital, Xi'an, Shannxi 710043, China.
| | - Wei Liu
- Basic Medical Sciences Research Center, Shannxi Fourth People's Hospital, Xi'an, Shannxi 710043, China.
| |
Collapse
|
20
|
Jia N, Li Q, Sun H, Song Q, Tang G, Sun Q, Wang W, Chen R, Li H, Zhu Z. Alterations of Group I mGluRs and BDNF Associated with Behavioral Abnormity in Prenatally Stressed Offspring Rats. Neurochem Res 2015; 40:1074-82. [DOI: 10.1007/s11064-015-1565-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/20/2015] [Accepted: 03/30/2015] [Indexed: 12/26/2022]
|
21
|
Nógrádi K, Wágner G, Domány G, Bobok A, Magdó I, Kolok S, Mikó-Bakk ML, Vastag M, Sághy K, Gyertyán I, Kóti J, Gál K, Farkas S, Keserű GM, Greiner I, Szombathelyi Z. Thieno[2,3- b ]pyridines as negative allosteric modulators of metabotropic GluR5 receptors: Lead optimization. Bioorg Med Chem Lett 2015; 25:1724-1729. [DOI: 10.1016/j.bmcl.2015.02.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
|
22
|
Hamilton A, Zamponi GW, Ferguson SSG. Glutamate receptors function as scaffolds for the regulation of β-amyloid and cellular prion protein signaling complexes. Mol Brain 2015; 8:18. [PMID: 25888324 PMCID: PMC4395978 DOI: 10.1186/s13041-015-0107-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/27/2015] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects 36 million people worldwide, but currently has no effective treatment options. One of the original hallmarks of AD are plaques comprised of beta amyloid (Aβ) and neurofibrillary tangles comprised of phosphorylated Tau protein. However, it is soluble oligomeric Aβ which is more closely correlated with cognitive decline and is therefore considered to be the neurotoxic species. Oligomeric Aβ has recently been shown to form complexes with the glycosylphosphatidylinositol (GPI)-anchored membrane protein, cellular prion protein (PrP(c)), and these complexes are believed to play an important role in the progression of AD pathogenesis. Glutamate, the major excitatory neurotransmitter is responsible for mediating learning and memory under normal physiological conditions. However, the dysregulation of glutamatergic signaling has also been implicated in a number of neurodegenerative diseases including AD. Glutamate acts via both ionotropic glutamate receptors (iGluR) and metabotropic glutamate receptors (mGluR), each of which have been implicated in AD. There is now growing evidence to suggest that mGluR5 may contribute the AD pathogenesis by acting as scaffolds for the PrP(c)/Aβ oligomer complex, enabling the propagation of neurotoxic signaling in AD. In addition, PrP(c) and Aβ oligomer signaling via NMDARs may also contribute to AD pathology. The current review overviews our current understanding of the role of PrP(c) and Aβ oligomers in regulating glutamate receptor signaling, as well as highlights the importance of understanding these signaling complexes to develop more effective therapeutic strategies to treat AD.
Collapse
Affiliation(s)
- Alison Hamilton
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, University of Western Ontario, 100 Perth Dr, London, Ontario, N6A 5 K8, Canada.
- Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada.
| | - Gerald W Zamponi
- Department of Physiology & Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Stephen S G Ferguson
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, University of Western Ontario, 100 Perth Dr, London, Ontario, N6A 5 K8, Canada.
- Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
23
|
Erichsen JL, Blaabjerg M, Bogetofte H, Serrano AM, Meyer M. Group I Metabotropic Glutamate Receptors: A Potential Target for Regulation of Proliferation and Differentiation of an Immortalized Human Neural Stem Cell Line. Basic Clin Pharmacol Toxicol 2014; 116:329-36. [DOI: 10.1111/bcpt.12324] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 09/03/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Julie Ladeby Erichsen
- Department of Neurobiology Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - Morten Blaabjerg
- Department of Neurology; Odense University Hospital; Odense Denmark
| | - Helle Bogetofte
- Department of Neurobiology Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - Alberto Martinez Serrano
- Department of Molecular Biology and Center of Molecular Biology Severo Ochoa; University Autonoma Madrid-C.S.I.C. Campus Cantoblanco; Madrid Spain
| | - Morten Meyer
- Department of Neurobiology Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| |
Collapse
|
24
|
Age-dependent suppression of hippocampal epileptic afterdischarges by metabotropic glutamate receptor 5 antagonist MTEP. Pharmacol Rep 2014; 66:927-30. [DOI: 10.1016/j.pharep.2014.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 11/21/2022]
|
25
|
Ribeiro FM, Hamilton A, Doria JG, Guimaraes IM, Cregan SP, Ferguson SS. Metabotropic glutamate receptor 5 as a potential therapeutic target in Huntington's disease. Expert Opin Ther Targets 2014; 18:1293-304. [PMID: 25118797 DOI: 10.1517/14728222.2014.948419] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a polyglutamine expansion in the amino-terminal region of the huntingtin (htt) protein, which underlies the loss of striatal and cortical neurons. Glutamate has been implicated in a number of neurodegenerative diseases, and several studies suggest that the metabotropic glutamate receptor 5 (mGluR5) may represent a target for the treatment of HD. AREAS COVERED The main goal of this review is to discuss the current data in the literature regarding the role of mGluR5 in HD and evaluate the potential of mGluR5 as a therapeutic target for the treatment of HD. mGluR5 is highly expressed in the brain regions affected in HD and is involved in movement control. Moreover, mGluR5 interacts with htt and mutated htt profoundly affects mGluR5 signaling. However, mGluR5 stimulation can activate both neuroprotective and neurotoxic signaling pathways, depending on the context of activation. EXPERT OPINION Although the data published so far strongly indicate that mGluR5 plays a major role in HD-associated neurodegeneration, htt aggregation and motor symptoms, it is not clear whether mGluR5 stimulation can diminish or intensify neuronal cell loss and HD progression. Thus, future experiments will be necessary to further investigate the outcome of drugs acting on mGluR5 for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fabiola M Ribeiro
- Universidade Federal de Minas Gerais, Departamento de Bioquimica e Imunologia, ICB , Belo Horizonte 31270-901 , Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Nógrádi K, Wágner G, Domány G, Bobok A, Magdó I, Kiss B, Kolok S, Fónagy K, Gyertyán I, Háda V, Kóti J, Gál K, Farkas S, Keserű GM, Greiner I, Szombathelyi Z. Thieno[2,3-b]pyridines as negative allosteric modulators of metabotropic GluR5 receptors: Hit-to-lead optimization. Bioorg Med Chem Lett 2014; 24:3845-9. [DOI: 10.1016/j.bmcl.2014.06.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 11/16/2022]
|
27
|
Gonzalez J, Jurado-Coronel JC, Ávila MF, Sabogal A, Capani F, Barreto GE. NMDARs in neurological diseases: a potential therapeutic target. Int J Neurosci 2014; 125:315-27. [PMID: 25051426 DOI: 10.3109/00207454.2014.940941] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
N-methyl-D-aspartate ionotropic glutamate receptor (NMDARs) is a ligand-gated ion channel that plays a critical role in excitatory neurotransmission, brain development, synaptic plasticity associated with memory formation, central sensitization during persistent pain, excitotoxicity and neurodegenerative diseases in the central nervous system (CNS). Within iGluRs, NMDA receptors have been the most actively investigated for their role in neurological diseases, especially neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases. It has been demonstrated that excessive activation of NMDA receptors (NMDARs) plays a key role in mediating some aspects of synaptic dysfunction in several CNS disorders, so extensive research has been directed on the discovery of compounds that are able to reduce NMDARs activity. This review discusses the role of NMDARs on neurological pathologies and the possible therapeutic use of agents that target this receptor. Additionally, we delve into the role of NMDARs in Alzheimer's and Parkinson's diseases and the receptor antagonists that have been tested on in vivo models of these pathologies. Finally, we put into consideration the importance of antioxidants to counteract oxidative capacity of the signaling cascade in which NMDARs are involved.
Collapse
Affiliation(s)
- Janneth Gonzalez
- 1Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | | | | | | | | | | |
Collapse
|
28
|
Turlington M, Malosh C, Jacobs J, Manka JT, Noetzel MJ, Vinson PN, Jadhav S, Herman EJ, Lavreysen H, Mackie C, Bartolomé-Nebreda JM, Conde-Ceide S, Martín-Martín ML, Tong HM, López S, MacDonald GJ, Steckler T, Daniels JS, Weaver CD, Niswender CM, Jones CK, Conn PJ, Lindsley CW, Stauffer SR. Tetrahydronaphthyridine and dihydronaphthyridinone ethers as positive allosteric modulators of the metabotropic glutamate receptor 5 (mGlu₅). J Med Chem 2014; 57:5620-37. [PMID: 24914612 PMCID: PMC4096224 DOI: 10.1021/jm500259z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGlu5) represent a promising therapeutic strategy for the treatment of schizophrenia. Starting from an acetylene-based lead from high throughput screening, an evolved bicyclic dihydronaphthyridinone was identified. We describe further refinements leading to both dihydronaphthyridinone and tetrahydronaphthyridine mGlu5 PAMs containing an alkoxy-based linkage as an acetylene replacement. Exploration of several structural features including western pyridine ring isomers, positional amides, linker connectivity/position, and combinations thereof, reveal that these bicyclic modulators generally exhibit steep SAR and within specific subseries display a propensity for pharmacological mode switching at mGlu5 as well as antagonist activity at mGlu3. Structure-activity relationships within a dihydronaphthyridinone subseries uncovered 12c (VU0405372), a selective mGlu5 PAM with good in vitro potency, low glutamate fold-shift, acceptable DMPK properties, and in vivo efficacy in an amphetamine-based model of psychosis.
Collapse
Affiliation(s)
- Mark Turlington
- Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
DeStefano GM, Kurban M, Anyane-Yeboa K, Dall'Armi C, Di Paolo G, Feenstra H, Silverberg N, Rohena L, López-Cepeda LD, Jobanputra V, Fantauzzo KA, Kiuru M, Tadin-Strapps M, Sobrino A, Vitebsky A, Warburton D, Levy B, Salas-Alanis JC, Christiano AM. Mutations in the cholesterol transporter gene ABCA5 are associated with excessive hair overgrowth. PLoS Genet 2014; 10:e1004333. [PMID: 24831815 PMCID: PMC4022463 DOI: 10.1371/journal.pgen.1004333] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 03/07/2014] [Indexed: 01/09/2023] Open
Abstract
Inherited hypertrichoses are rare syndromes characterized by excessive hair growth that does not result from androgen stimulation, and are often associated with additional congenital abnormalities. In this study, we investigated the genetic defect in a case of autosomal recessive congenital generalized hypertrichosis terminalis (CGHT) (OMIM135400) using whole-exome sequencing. We identified a single base pair substitution in the 5' donor splice site of intron 32 in the ABC lipid transporter gene ABCA5 that leads to aberrant splicing of the transcript and a decrease in protein levels throughout patient hair follicles. The homozygous recessive disruption of ABCA5 leads to reduced lysosome function, which results in an accumulation of autophagosomes, autophagosomal cargos as well as increased endolysosomal cholesterol in CGHT keratinocytes. In an unrelated sporadic case of CGHT, we identified a 1.3 Mb cryptic deletion of chr17q24.2-q24.3 encompassing ABCA5 and found that ABCA5 levels are dramatically reduced throughout patient hair follicles. Collectively, our findings support ABCA5 as a gene underlying the CGHT phenotype and suggest a novel, previously unrecognized role for this gene in regulating hair growth.
Collapse
Affiliation(s)
- Gina M. DeStefano
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| | - Mazen Kurban
- Department of Dermatology, Columbia University, New York, New York, United States of America
| | - Kwame Anyane-Yeboa
- Department of Pediatrics, Columbia University Medical Center, New York, New York, United States of America
| | - Claudia Dall'Armi
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York, United States of America
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York, United States of America
| | - Heather Feenstra
- St. Luke's-Roosevelt Hospital Center, New York, New York, United States of America
| | - Nanette Silverberg
- St. Luke's-Roosevelt Hospital Center, New York, New York, United States of America
| | - Luis Rohena
- Department of Pediatrics, Columbia University Medical Center, New York, New York, United States of America
| | | | - Vaidehi Jobanputra
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Katherine A. Fantauzzo
- Department of Dermatology, Columbia University, New York, New York, United States of America
| | - Maija Kiuru
- Department of Dermatology, Columbia University, New York, New York, United States of America
| | - Marija Tadin-Strapps
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| | - Antonio Sobrino
- New York Presbyterian Hospital, New York, New York, United States of America
| | - Anna Vitebsky
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| | - Dorothy Warburton
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
- Department of Pediatrics, Columbia University Medical Center, New York, New York, United States of America
| | - Brynn Levy
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | | | - Angela M. Christiano
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
- Department of Dermatology, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
30
|
Noninvasive quantification of metabotropic glutamate receptor type 1 with [¹¹C]ITDM: a small-animal PET study. J Cereb Blood Flow Metab 2014; 34:606-12. [PMID: 24398932 PMCID: PMC3982087 DOI: 10.1038/jcbfm.2013.243] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/06/2013] [Accepted: 12/12/2013] [Indexed: 12/13/2022]
Abstract
Because of its role in multiple central nervous system (CNS) pathways, metabotropic glutamate receptor type 1 (mGluR1) is a crucial target in the development of pharmaceuticals for CNS disorders. N-[4-[6-(isopropylamino)-pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methyl-4-[(11)C]-methylbenzamide ([(11)C]ITDM) was recently developed as a positron emission tomography (PET) ligand for mGluR1. To devise a method for measurement of the binding potential (BPND) of [(11)C]ITDM to mGluR1, reference tissue methods aimed at replacing measurement of the arterial input function are desirable. In this study, we evaluated a noninvasive quantification method of mGluR1 with [(11)C]ITDM, demonstrating its accuracy using Huntington disease model R6/2 mice. The BPND measurements based on the Logan reference (Logan Ref) method have closely approximated that based on the arterial input method. We performed PET analysis with Logan Ref to assess its accuracy in quantifying the decline of mGluR1 expression in R6/2 mice. Significant decreases in BPND values in R6/2 mice were detected in cerebellum, thalamus, striatum, and cingulate cortex. We compared autoradiographs of R6/2 mouse brain sections with immunohistochemical images, and found a close correlation between changes in radioactive signal intensity and degree of mGluR1 expression. In conclusion, [(11)C]ITDM-PET is a promising tool for in vivo quantification of mGluR1 expression.
Collapse
|
31
|
Abstract
Computer-aided drug discovery/design methods have played a major role in the development of therapeutically important small molecules for over three decades. These methods are broadly classified as either structure-based or ligand-based methods. Structure-based methods are in principle analogous to high-throughput screening in that both target and ligand structure information is imperative. Structure-based approaches include ligand docking, pharmacophore, and ligand design methods. The article discusses theory behind the most important methods and recent successful applications. Ligand-based methods use only ligand information for predicting activity depending on its similarity/dissimilarity to previously known active ligands. We review widely used ligand-based methods such as ligand-based pharmacophores, molecular descriptors, and quantitative structure-activity relationships. In addition, important tools such as target/ligand data bases, homology modeling, ligand fingerprint methods, etc., necessary for successful implementation of various computer-aided drug discovery/design methods in a drug discovery campaign are discussed. Finally, computational methods for toxicity prediction and optimization for favorable physiologic properties are discussed with successful examples from literature.
Collapse
Affiliation(s)
- Gregory Sliwoski
- Jr., Center for Structural Biology, 465 21st Ave South, BIOSCI/MRBIII, Room 5144A, Nashville, TN 37232-8725.
| | | | | | | |
Collapse
|
32
|
Chen M, Zhang X, Xu H, Ma X, Jiang W, Xu T. Inhibitory effect of spinal mGlu(5) receptor antisense oligonucleotide on the up-regulated expression of spinal G protein associated with chronic morphine treatment. Eur J Pharmacol 2013; 723:253-8. [PMID: 24296320 DOI: 10.1016/j.ejphar.2013.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/12/2013] [Accepted: 11/20/2013] [Indexed: 11/19/2022]
Abstract
Knockdown of spinal metabotropic glutamate 5 (mGlu5) receptor was shown to inhibit the development of intrathecal morphine antinociceptive tolerance. The present work was designed to evaluate the expression of spinal G-protein during morphine tolerance and knockdown of spinal mGlu5 receptor with antisense oligonucleotide (ODN). Rats were treated with saline, morphine, mGlu5 receptor antisense or mismatch ODN intrathecally. Behavioral tests were employed to test the thermal and mechanical pain thresholds. Five days later, rats were scarified and spinal expression of spinal Gαi, Gαo, Gαq and Gβ were detected. Consistent with the previous results, knockdown of spinal mGlu5 receptor could inhibit spinal morphine antinociceptive tolerance in behavioral tests (P<0.05). The mGlu5 receptor antisense ODN produced a significant reduction in mGlu5 receptor protein of about 56.6% compared with the control group (P<0.05). Expression of spinal Gαi, Gαo, Gαq and Gβ were up-regulated while morphine tolerance developed (P<0.05). Antisense ODN of spinal mGlu5 receptor, but not mismatched ODN, reduced the spinal dorsal horn levels of Gαi, Gαo, Gαs, Gαq and Gβ (P<0.05). We conclude that expression of spinal G (αi, αo, αs, αq and β) protein may be up-regulated after chronic morphine treatment which could be attenuated by knockdown of spinal mGlu5 receptor with antisense ODN.
Collapse
Affiliation(s)
- Moxi Chen
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yi Shan Road, Shanghai 200233, China
| | - Xiaoli Zhang
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yi Shan Road, Shanghai 200233, China
| | - Hao Xu
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yi Shan Road, Shanghai 200233, China
| | - Xiaqing Ma
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yi Shan Road, Shanghai 200233, China
| | - Wei Jiang
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yi Shan Road, Shanghai 200233, China.
| | - Tao Xu
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yi Shan Road, Shanghai 200233, China.
| |
Collapse
|
33
|
Rae CD. A Guide to the Metabolic Pathways and Function of Metabolites Observed in Human Brain 1H Magnetic Resonance Spectra. Neurochem Res 2013; 39:1-36. [PMID: 24258018 DOI: 10.1007/s11064-013-1199-5] [Citation(s) in RCA: 347] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 12/20/2022]
|
34
|
Xu R, Zanotti-Fregonara P, Zoghbi SS, Gladding RL, Woock AE, Innis RB, Pike VW. Synthesis and evaluation in monkey of [(18)F]4-fluoro-N-methyl-N-(4-(6-(methylamino)pyrimidin-4-yl)thiazol-2-yl)benzamide ([(18)F]FIMX): a promising radioligand for PET imaging of brain metabotropic glutamate receptor 1 (mGluR1). J Med Chem 2013; 56:9146-55. [PMID: 24147864 DOI: 10.1021/jm4012017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We sought to develop a PET radioligand that would be useful for imaging human brain metabotropic subtype 1 receptors (mGluR1) in neuropsychiatric disorders and in drug development. 4-Fluoro-N-methyl-N-(4-(6-(methylamino)pyrimidin-4-yl)thiazol-2-yl)benzamide (FIMX, 11) was identified as having favorable properties for development as a PET radioligand. We developed a method for preparing [(18)F]11 in useful radiochemical yield and in high specific activity from [(18)F]fluoride ion and an N-Boc-protected (phenyl)aryliodonium salt precursor (15). In baseline experiments in rhesus monkey, [(18)F]11 gave high brain radioactivity uptake, reflecting the expected distribution of mGluR1 with notably high uptake in cerebellum, which became 47% lower by 120 min after radioligand injection. Pharmacological challenges demonstrated that a very high proportion of the radioactivity in monkey brain was bound specifically and reversibly to mGluR1. [(18)F]11 is concluded to be an effective PET radioligand for imaging mGluR1 in monkey brain and therefore merits further evaluation in human subjects.
Collapse
Affiliation(s)
- Rong Xu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health , Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | | | | | | | | | | | | |
Collapse
|
35
|
Yui J, Xie L, Fujinaga M, Yamasaki T, Hatori A, Kumata K, Nengaki N, Zhang MR. Monitoring Neuroprotective Effects Using Positron Emission Tomography With [
11
C]ITMM, a Radiotracer for Metabotropic Glutamate 1 Receptor. Stroke 2013; 44:2567-72. [DOI: 10.1161/strokeaha.113.001178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Recent pharmacological evidence shows that antagonists for the metabotropic glutamate 1 (mGlu1) receptor exhibit neuroprotective effects in an ischemic brain. The aim of this study was to visualize the mGlu1 receptor and to monitor neuroprotective effects in a rat model of mild focal ischemia using positron emission tomography (PET) with
N
-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-4-[
11
C]methoxy-
N-
methylbenzamide ([
11
C]ITMM), a radiotracer for mGlu1.
Methods—
Rats were subjected to a 30-minute transient right middle cerebral artery occlusion. Saline or minocycline, a neuroprotective agent, was intravenously injected immediately after surgery and then daily during the subsequent 7 days. PET imaging with [
11
C]ITMM was performed on the rats on days 1 to 7 after ischemia. In vitro autoradiography and histopathologic staining were conducted to confirm the results of in vivo PET.
Results—
PET with [
11
C]ITMM demonstrated a gradual decrease of radioactivity in the ipsilateral sides of the ischemic brains. The radioactivity uptake ratio between the ipsilateral and contralateral sides also decreased with time. Minocycline treatment slowed down the decrease in the radioactivity level in the ipsilateral sides. Pretreatment with JNJ16259685, an mGlu1-selective ligand, significantly reduced brain radioactivity, confirming that the uptake of [
11
C]ITMM primarily reflects mGlu1 levels in the brain regions, including the ischemic area. In vitro autoradiography and histopathology confirmed the changes in mGlu1 levels in the brains.
Conclusions—
[
11
C]ITMM-PET may be a useful technique for characterizing the change in mGlu1 level during the occurrence and progression of neuronal damage and for evaluating the neuroprotective effects of drugs after ischemia.
Collapse
Affiliation(s)
- Joji Yui
- From the Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (J.Y., L.X., M.F., T.Y., A.H., K.K., N.N., M.-R.Z.); and SHI Accelerator Service Co Ltd, Tokyo, Japan (N.N.)
| | - Lin Xie
- From the Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (J.Y., L.X., M.F., T.Y., A.H., K.K., N.N., M.-R.Z.); and SHI Accelerator Service Co Ltd, Tokyo, Japan (N.N.)
| | - Masayuki Fujinaga
- From the Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (J.Y., L.X., M.F., T.Y., A.H., K.K., N.N., M.-R.Z.); and SHI Accelerator Service Co Ltd, Tokyo, Japan (N.N.)
| | - Tomoteru Yamasaki
- From the Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (J.Y., L.X., M.F., T.Y., A.H., K.K., N.N., M.-R.Z.); and SHI Accelerator Service Co Ltd, Tokyo, Japan (N.N.)
| | - Akiko Hatori
- From the Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (J.Y., L.X., M.F., T.Y., A.H., K.K., N.N., M.-R.Z.); and SHI Accelerator Service Co Ltd, Tokyo, Japan (N.N.)
| | - Katsushi Kumata
- From the Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (J.Y., L.X., M.F., T.Y., A.H., K.K., N.N., M.-R.Z.); and SHI Accelerator Service Co Ltd, Tokyo, Japan (N.N.)
| | - Nobuki Nengaki
- From the Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (J.Y., L.X., M.F., T.Y., A.H., K.K., N.N., M.-R.Z.); and SHI Accelerator Service Co Ltd, Tokyo, Japan (N.N.)
| | - Ming-Rong Zhang
- From the Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (J.Y., L.X., M.F., T.Y., A.H., K.K., N.N., M.-R.Z.); and SHI Accelerator Service Co Ltd, Tokyo, Japan (N.N.)
| |
Collapse
|
36
|
Iscru E, Goddyn H, Ahmed T, Callaerts-Vegh Z, D'Hooge R, Balschun D. Improved spatial learning is associated with increased hippocampal but not prefrontal long-term potentiation in mGluR4 knockout mice. GENES BRAIN AND BEHAVIOR 2013; 12:615-25. [PMID: 23714430 DOI: 10.1111/gbb.12052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/13/2013] [Accepted: 05/21/2013] [Indexed: 01/08/2023]
Abstract
Although much information about metabotropic glutamate receptors (mGluRs) and their role in normal and pathologic brain function has been accumulated during the last decades, the role of group III mGluRs is still scarcely documented. Here, we examined mGluR4 knockout mice for types of behavior and synaptic plasticity that depend on either the hippocampus or the prefrontal cortex (PFC). We found improved spatial short- and long-term memory in the radial arm maze, which was accompanied by enhanced long-term potentiation (LTP) in hippocampal CA1 region. In contrast, LTP in the PFC was unchanged when compared with wild-type controls. Changes in paired-pulse facilitation that became overt in the presence of the GABAA antagonist picrotoxin indicated a function of mGluR4 in maintaining the excitation/inhibition balance, which is of crucial importance for information processing in the brain and the deterioration of these processes in neuropsychological disorders such as autism, epilepsy and schizophrenia.
Collapse
Affiliation(s)
- E Iscru
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
37
|
Ceccom J, Bouhsira E, Halley H, Daumas S, Lassalle JM. Differential needs of zinc in the CA3 area of dorsal hippocampus for the consolidation of contextual fear and spatial memories. Learn Mem 2013; 20:348-51. [PMID: 23772088 DOI: 10.1101/lm.029017.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
One peculiarity of the hippocampal CA3 mossy fiber terminals is the co-release of zinc and glutamate upon synaptic transmission. How these two players act on hippocampal-dependent memories is still unclear. To decipher their respective involvement in memory consolidation, a pharmacological approach was chosen. Using two hippocampal-dependent behavioral paradigms (water maze and contextual fear conditioning) we now report that glutamate at CA3 synapses is necessary and sufficient for the spatial learning consolidation process, whereas glutamate and zinc released by mossy fibers are both mandatory and exert cumulative effects on contextual fear consolidation, a form of learning with a strong emotional component.
Collapse
Affiliation(s)
- Johnatan Ceccom
- Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale, F-31062 Toulouse Cedex 9, France
| | | | | | | | | |
Collapse
|
38
|
Sulkowski G, Dąbrowska-Bouta B, Chalimoniuk M, Strużyńska L. Effects of antagonists of glutamate receptors on pro-inflammatory cytokines in the brain cortex of rats subjected to experimental autoimmune encephalomyelitis. J Neuroimmunol 2013; 261:67-76. [PMID: 23746391 DOI: 10.1016/j.jneuroim.2013.05.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/18/2013] [Accepted: 05/10/2013] [Indexed: 10/26/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Inflammatory cytokines and glutamate neurotoxicity have been proposed as major determinants accompanying the demyelination and axonal degeneration observed during the course of MS. The present study using the animal model of MS known as experimental autoimmune encephalomyelitis (EAE) demonstrates that pharmacological inhibition of ionotropic NMDA glutamate receptors by their antagonists (amantadine and memantine) suppresses neurological symptoms of disease in EAE rats and reduces expression of pro-inflammatory cytokines in the brain. Conversely, antagonists of group I metabotropic glutamate receptors, mGluRs (LY 367385 and MPEP), do not affect the inflammatory process and the neurological condition of EAE rats.
Collapse
Affiliation(s)
- Grzegorz Sulkowski
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawińskiego str., 02-106 Warsaw, Poland.
| | | | | | | |
Collapse
|
39
|
Liu MG, Kang SJ, Shi TY, Koga K, Zhang MM, Collingridge GL, Kaang BK, Zhuo M. Long-term potentiation of synaptic transmission in the adult mouse insular cortex: multielectrode array recordings. J Neurophysiol 2013; 110:505-21. [PMID: 23636718 DOI: 10.1152/jn.01104.2012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The insular cortex (IC) is widely believed to be an important forebrain structure involved in cognitive and sensory processes such as memory and pain. However, little work has been performed at the cellular level to investigate the synaptic basis of IC-related brain functions. To bridge the gap, the present study was designed to characterize the basic synaptic mechanisms for insular long-term potentiation (LTP). Using a 64-channel recording system, we found that an enduring form of late-phase LTP (L-LTP) could be reliably recorded for at least 3 h in different layers of IC slices after theta burst stimulation. The induction of insular LTP is protein synthesis dependent and requires activation of both GluN2A and GluN2B subunits of the NMDA receptor, L-type voltage-gated calcium channels, and metabotropic glutamate receptor 1. The paired-pulse facilitation ratio was unaffected by insular L-LTP induction, and expression of insular L-LTP required the recruitment of postsynaptic calcium-permeable AMPA receptors. Our results provide the first in vitro report of long-term multichannel recordings of L-LTP in the IC in adult mice and suggest its potential important roles in insula-related memory and chronic pain.
Collapse
Affiliation(s)
- Ming-Gang Liu
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Rojas A, Dingledine R. Ionotropic glutamate receptors: regulation by G-protein-coupled receptors. Mol Pharmacol 2013; 83:746-52. [PMID: 23348498 PMCID: PMC6067632 DOI: 10.1124/mol.112.083352] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 01/23/2013] [Indexed: 11/22/2022] Open
Abstract
The function of many ion channels is under dynamic control by coincident activation of G-protein-coupled receptors (GPCRs), particularly those coupled to the Gαs and Gαq family members. Such regulation is typically dependent on the subunit composition of the ionotropic receptor or channel as well as the GPCR subtype and the cell-specific panoply of signaling pathways available. Because GPCRs and ion channels are so highly represented among targets of U.S. Food and Drug Administration-approved drugs, functional cross-talk between these drug target classes is likely to underlie many therapeutic and adverse effects of marketed drugs. GPCRs engage a myriad of signaling pathways that involve protein kinases A and C (PKC) and, through PKC and interaction with β-arrestin, Src kinase, and hence the mitogen-activated-protein-kinase cascades. We focus here on the control of ionotropic glutamate receptor function by GPCR signaling because this form of regulation can influence the strength of synaptic plasticity. The amino acid residues phosphorylated by specific kinases have been securely identified in many ionotropic glutamate (iGlu) receptor subunits, but which of these sites are GPCR targets is less well known even when the kinase has been identified. N-methyl-d-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and heteromeric kainate receptors are all downstream targets of GPCR signaling pathways. The details of GPCR-iGlu receptor cross-talk should inform a better understanding of how synaptic transmission is regulated and lead to new therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Asheebo Rojas
- Department of Pharmacology, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
41
|
Kinetic analysis of the metabotropic glutamate subtype 5 tracer [(18)F]FPEB in bolus and bolus-plus-constant-infusion studies in humans. J Cereb Blood Flow Metab 2013; 33:532-41. [PMID: 23250105 PMCID: PMC3618388 DOI: 10.1038/jcbfm.2012.195] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
[(18)F]FPEB is a positron emission tomography tracer which, in preclinical studies, has shown high specificity and selectivity toward the metabotropic glutamate receptor 5 (mGluR5). It possesses the potential to be used in human studies to evaluate mGluR5 function in a range of neuropsychiatric disorders, such as anxiety and Fragile X syndrome. To define optimal scan methodology, healthy human subjects were scanned for 6 hours following either a bolus injection (n=5) or bolus-plus-constant-infusion (n=5) of [(18)F]FPEB. Arterial blood samples were collected and parent fraction measured by high-performance liquid chromatography (HPLC) to determine the metabolite-corrected plasma input function. Time activity curves were extracted from 13 regions and fitted by various models to estimate V(T) and BPND. [(18)F]FPEB was well fitted by the two-tissue compartment model, MA1 (t*=30), and MRTM (using cerebellum white matter as a reference). Highest V(T) values were observed in the anterior cingulate and caudate, and lowest V(T) values were observed in the cerebellum and pallidum. For kinetic modeling studies, VT and BPND were estimated from bolus or bolus-plus-constant-infusion scans as short as 90 minutes. Bolus-plus-constant-infusion of [(18)F]FPEB reduced intersubject variability in V(T) and allowed equilibrium analysis to be completed with a 30-minute scan, acquired 90-120 minutes after the start of injection.
Collapse
|
42
|
Son MH, Kim JY, Lim EJ, Baek DJ, Choi K, Lee JK, Pae AN, Min SJ, Cho YS. Synthesis and biological evaluation of 2-(arylethynyl)quinoline derivatives as mGluR5 antagonists for the treatment of neuropathic pain. Bioorg Med Chem Lett 2013; 23:1472-6. [DOI: 10.1016/j.bmcl.2012.12.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/13/2012] [Accepted: 12/15/2012] [Indexed: 10/27/2022]
|
43
|
Wong DF, Waterhouse R, Kuwabara H, Kim J, Brašić JR, Chamroonrat W, Hamill TG, Mozley PD, Dannals RF, Hamill TG, Mozley PD. 18F-FPEB, a PET radiopharmaceutical for quantifying metabotropic glutamate 5 receptors: a first-in-human study of radiochemical safety, biokinetics, and radiation dosimetry. J Nucl Med 2013; 54:388-96. [PMID: 23404089 PMCID: PMC9911749 DOI: 10.2967/jnumed.112.107995] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Identification of safe and valid PET radioligands for metabotropic glutamate receptor, type 5 (mGluR5), is essential to measure changes in brain mGluR5 in neuropsychiatric disorders, to confirm central mGluR5 occupancy of drug candidates, and to guide dose selection for obtaining an optimum therapeutic window. Here we present the results of a first-in-human study assessing the safety and effectiveness of a novel PET radiopharmaceutical, (18)F-3-fluoro-5-[(pyridin-3-yl)ethynyl]benzonitrile ((18)F-FPEB), for quantifying regional brain concentrations of mGluR5. METHODS Quantification of whole-body biokinetics was conducted in 6 healthy adults (3 men and 3 women). The radiation safety profile was estimated with OLINDA/EXM software. Subsequently, pairs of dynamic brain scans were obtained for 11 healthy men to identify optimal methods for derivation of regional distribution volume and binding potential and to determine the repeatability of measurement. RESULTS The whole-body effective radiation dose was approximately 17 μSv/MBq (62 mrem/mCi), with the gallbladder receiving the highest dose of 190 μSv/MBq. In brain studies, time-activity curves showed high accumulation in the insula/caudate nucleus, moderate uptake in the thalamus, and the lowest concentration in the cerebellum/pons. The plasma reference graphical analysis method appeared optimal for (18)F-FPEB; it showed acceptable test-retest variability of nondisplaceable binding potential (<10%) and identified the highest nondisplaceable binding potential values (from ∼0.5 in the globus pallidus to ∼3.5 in the insula) for target regions. Safety assessments revealed no clinically meaningful changes in vital signs, electrocardiogram, or laboratory values. CONCLUSION (18)F-FPEB is safe and well tolerated, and its regional cerebral distribution is consistent with previous reports in the literature for metabotropic glutamate receptors. The repeatability of measurement suggests that (18)F-FPEB is suitable for quantifying mGluR5 in humans.
Collapse
Affiliation(s)
- Dean F. Wong
- Department of Psychiatry, Johns Hopkins University School of Medicine, 601 N. Caroline St., JHOC, Baltimore, MD 21287-0807, USA,Department of Neuroscience, Johns Hopkins University School of Medicine, 601 N. Caroline St., JHOC, Baltimore, MD 21287-0807, USA,Department of Environmental Health Sciences, Johns Hopkins University School of Medicine, 601 N. Caroline St., JHOC, Baltimore, MD 21287-0807, USA,The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N. Caroline St., JHOC, Baltimore, MD 21287-0807, USA,Honorary Professor of Neuroscience and Pharmacology, University of Copenhagen, Denmark,Corresponding author: Dean F. Wong, MD, PhD, Telephone Number: 410-955-8433, Fax: 410-955-0696, , Postal Address: 601 N. Caroline St., JHOC Room 3245, Johns Hopkins Medical Institutions, Baltimore, MD 21287-0807, USA
| | | | - Hiroto Kuwabara
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N. Caroline St., JHOC, Baltimore, MD 21287-0807, USA
| | - Jongho Kim
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N. Caroline St., JHOC, Baltimore, MD 21287-0807, USA
| | - James R. Brašić
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N. Caroline St., JHOC, Baltimore, MD 21287-0807, USA
| | - Wichana Chamroonrat
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N. Caroline St., JHOC, Baltimore, MD 21287-0807, USA
| | | | | | | | | | | |
Collapse
|
44
|
Toyohara J, Sakata M, Fujinaga M, Yamasaki T, Oda K, Ishii K, Zhang MR, Moriguchi Jeckel CM, Ishiwata K. Preclinical and the first clinical studies on [11C]ITMM for mapping metabotropic glutamate receptor subtype 1 by positron emission tomography. Nucl Med Biol 2013; 40:214-20. [DOI: 10.1016/j.nucmedbio.2012.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/19/2012] [Accepted: 11/19/2012] [Indexed: 01/29/2023]
|
45
|
McQuail JA, Davis KN, Miller F, Hampson RE, Deadwyler SA, Howlett AC, Nicolle MM. Hippocampal Gαq/₁₁ but not Gαo-coupled receptors are altered in aging. Neuropharmacology 2013; 70:63-73. [PMID: 23347951 DOI: 10.1016/j.neuropharm.2013.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
Normal aging may limit the signaling efficacy of certain GPCRs by disturbing the function of specific Gα-subunits and leading to deficient modulation of intracellular functions that subserve synaptic plasticity, learning and memory. Evidence suggests that Gαq/₁₁ is more sensitive to the effects of aging relative to other Gα-subunits, including Gαo. To test this hypothesis, the functionality of Gαq/₁₁ and Gαo were compared in the hippocampus of young (6 months) and aged (24 months) F344 × BNF₁ hybrid rats assessed for spatial learning ability. Basal GTPγS-binding to Gαq/₁₁ was significantly elevated in aged rats relative to young and but not reliably associated with spatial learning. mAChR stimulation of Gαq/₁₁ with oxotremorine-M produced equivocal GTPγS-binding between age groups although values tended to be lower in the aged hippocampus and were inversely related to basal activity. Downstream Gαq/₁₁ function was measured in hippocampal subregion CA₁ by determining changes in [Ca(2+)]i after mAChR and mGluR (DHPG) stimulation. mAChR-stimulated peak change in [Ca(2+)]i was lower in aged CA₁ relative to young while mGluR-mediated integrated [Ca(2+)]i responses tended to be larger in aged. GPCR modulation of [Ca(2+)]i was observed to depend on intracellular stores to a greater degree in aged than young. In contrast, measures of Gαo-mediated GTPγS-binding were stable across age, including basal, mAChR-, GABABR (baclofen)-stimulated levels. Overall, the data indicate that aging selectively modulates the activity of Gαq/₁₁ within the hippocampus leading to deficient modulation of [Ca(2+)]i following stimulation of mAChRs but these changes are not related to spatial learning.
Collapse
Affiliation(s)
- Joseph A McQuail
- Neuroscience Program, Wake Forest University Graduate School of Arts & Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Fujinaga M, Yamasaki T, Maeda J, Yui J, Xie L, Nagai Y, Nengaki N, Hatori A, Kumata K, Kawamura K, Zhang MR. Development of N-[4-[6-(Isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methyl-4-[11C]methylbenzamide for Positron Emission Tomography Imaging of Metabotropic Glutamate 1 Receptor in Monkey Brain. J Med Chem 2012. [DOI: 10.1021/jm301597s] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Masayuki Fujinaga
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1
Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tomoteru Yamasaki
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1
Anagawa, Inage-ku, Chiba 263-8555, Japan
- Graduate School of Pharmaceutical
Sciences, Tohoku University, Aoba-ku, Sendai
980-8574, Japan
| | - Jun Maeda
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1
Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Joji Yui
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1
Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Lin Xie
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1
Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yuji Nagai
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1
Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Nobuki Nengaki
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1
Anagawa, Inage-ku, Chiba 263-8555, Japan
- SHI Accelerator Service Co. Ltd., 5-9-11 Kitashinagawa, Shinagawa-ku, Tokyo
141-8686, Japan
| | - Akiko Hatori
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1
Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Katsushi Kumata
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1
Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kazunori Kawamura
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1
Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1
Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
47
|
Huang Y, Narendran R, Bischoff F, Guo N, Bae SA, Hwang DR, Lesage AS, Laruelle M. Synthesis and characterization of two PET radioligands for the metabotropic glutamate 1 (mGlu1) receptor. Synapse 2012; 66:1002-14. [PMID: 22927303 DOI: 10.1002/syn.21606] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/20/2012] [Indexed: 11/09/2022]
Abstract
The metabotropic glutamate 1 receptor (mGlu1) is an important protein in the regulation of glutamate transmission in the brain, and believed to be involved in disorders such as ischemia, epilepsy, neuropathic pain, anxiety, and schizophrenia. The goal of this study was to evaluate two selective mGlu1 antagonists [(11) C]3 and [(18) F]4 as potential PET radioligands for the in vivo imaging of the mGlu1 receptor. Biodistribution studies in rats indicated high uptake of [(11) C]3 and [(18) F]4 in the brain. The highest activity level was found in the cerebellum, followed by striatum, hippocampus, frontal cortex, and medulla, in a pattern consistent with the distribution of mGlu1 receptor in rat. At 30 min postinjection, the activity ratio of cerebellum to medulla was 4.5 for [(11) C]3, indicating a high degree of specific binding, while specific binding was lower for [(18) F]4 (cerebellum to medulla activity ratio of 2.0). Moreover, binding of the radioligands [(11) C]3 and [(18) F]4 in mGlu1 receptor-rich region such as cerebellum was blocked by pretreatment of the rats with their respective unlabeled compound or the selective mGlu1 antagonist (compound 5, 2 mg/kg each), but not by the selective mGlu2 antagonist LY341495, or the selective mGlu5 antagonist MPEP (2 mg/kg), thus indicating the binding specificity and selectivity of [(11) C]3 and [(18) F]4 to the mGlu1 receptor. However, in imaging experiments in baboons [(11) C]3 displayed a small specific binding signal only in the cerebellum, while the specific binding of [(18) F]4 was difficult to detect. Species differences in receptor density and affinity of the radioligands in large part account for the differences in the behavior of [(11) C]3 and [(18) F]4 in rats and baboons. Radioligands with higher affinity and/or lower lipophilicity are needed to successfully image the mGlu1 receptor in humans.
Collapse
Affiliation(s)
- Yiyun Huang
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Martinez-Galan JR, Perez-Martinez FC, Juiz JM. Signalling routes and developmental regulation of group I metabotropic glutamate receptors in rat auditory midbrain neurons. J Neurosci Res 2012; 90:1913-23. [PMID: 22714707 DOI: 10.1002/jnr.23087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/19/2012] [Accepted: 04/18/2012] [Indexed: 11/11/2022]
Abstract
Group I metabotropic glutamate receptors (mGluRs) are linked to intracellular Ca(2+) signalling and play important roles related to synaptic plasticity and development. In neurons from the central nucleus of the inferior colliculus (CIC), the activation of these receptors evokes large [Ca(2+) ](i) responses. By using optical imaging of the fluorescent Ca(2+) -sensitive dye Fura-2, we have explored which [Ca(2+) ](i) routes are triggered by group I mGluR activation in young CIC neurons and whether mGluR-induced [Ca(2+) ](i) responses are regulated during postnatal development. In addition, real-time quantitative RT-PCR was used to study the developmental expression of both group I mGluR subtypes, mGluR1 and mGluR5. Application of DHPG, a specific agonist of group I mGluRs, was used on CIC slices from young rats to elicit [Ca(2+) ](i) responses. A majority of responses consisted of an initial thapsigargin-sensitive Ca(2+) peak, related to store depletion, followed by a plateau phase, sensitive to the store-operated Ca(2+) entry blocker 2-APB. During postnatal development, from P6 to P17, DHPG-induced [Ca(2+) ](i) responses changed. The largest Ca(2+) responses were reached at P6, whereas lower peak and plateau responses were found after hearing onset, at P13-P14 and P17. qRT-PCR analysis also revealed important differences in the expression of both mGluR1 and mGluR5 subtypes during development, with the highest levels of both subtypes at P7 and a developmental decrease of both transcripts. Our results suggest both intra- and extracellular routes for [Ca(2+) ](i) increases linked to group I mGluRs in CIC neurons and a regulation of group I mGluR activity and expression during auditory development.
Collapse
Affiliation(s)
- Juan R Martinez-Galan
- Instituto de Investigación en Discapacidades Neurológicas/Medical School, Universidad de Castilla-La Mancha, Albacete, Spain.
| | | | | |
Collapse
|
49
|
The antinociceptive activity of harmicine on chemical-induced neurogenic and inflammatory pain models in mice. Pharmacol Biochem Behav 2012; 102:133-8. [PMID: 22507912 DOI: 10.1016/j.pbb.2012.03.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 03/29/2012] [Accepted: 03/31/2012] [Indexed: 11/21/2022]
Abstract
Harmicine is a β-carboline alkaloid isolated and identified as a major active compound present in many plant species and marine invertebrates. This alkaloid exhibits a wide spectrum of pharmacological activities, including antispasmodic, antipyretic, and anticancer properties. This report described the antinociceptive properties of harmicine by means of chemical experimental models in order to evaluate the use for pain relief. The results demonstrating the potential analgesic properties of harmicine administered intraperitoneally were shown with the writhing test, reducing writhes around 60% (1 mg/kg), and in the formalin test, where harmicine was more effective toward neurogenic (reducing reaction time around 60%, 1 mg/kg) than inflammatory (68% reduction, 10 mg/kg) pain responses. Furthermore, these effects may operate via vanilloid receptors as revealed by the capsaicin test (41% reduction, with 3 mg/kg), as well as via peripheral glutamate receptors as shown by the glutamate test (50% reduction, with 1 mg/kg). Moreover, the opioid antagonist naloxone hydrochloride did not interfere in the antinociceptive properties of harmicine in the writhing test, revealing that this effect may not have a relationship with the opioid systems. Concluding, this report highlights harmicine as a new candidate to be used as analgesic in the future. Therefore, further studies are being undertaken in order to understand the exact mechanisms involved with the antinociceptive properties of harmicine.
Collapse
|
50
|
Fujinaga M, Yamasaki T, Yui J, Hatori A, Xie L, Kawamura K, Asagawa C, Kumata K, Yoshida Y, Ogawa M, Nengaki N, Fukumura T, Zhang MR. Synthesis and evaluation of novel radioligands for positron emission tomography imaging of metabotropic glutamate receptor subtype 1 (mGluR1) in rodent brain. J Med Chem 2012; 55:2342-52. [PMID: 22316010 DOI: 10.1021/jm201590g] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We designed three novel positron emission tomography ligands, N-(4-(6-(isopropylamino)pyrimidin-4-yl)-1,3-thiazol-2-yl)-4-[(11)C]methoxy-N-methylbenzamide ([(11)C]6), 4-[(18)F]fluoroethoxy-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide ([(18)F]7), and 4-[(18)F]fluoropropoxy-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide ([(18)F]8), for imaging metabotropic glutamate receptor type 1 (mGluR1) in rodent brain. Unlabeled compound 6 was synthesized by benzoylation of 4-pyrimidinyl-2-methylaminothiazole 10, followed by reaction with isopropylamine. Removal of the methyl group in 6 gave phenol precursor 12 for radiosynthesis. Two fluoroalkoxy analogues 7 and 8 were prepared by reacting 12 with tosylates 13 and 14. Radioligands [(11)C]6, [(18)F]7, and [(18)F]8 were synthesized by O-[(11)C]methylation or [(18)F]fluoroalkylation of 12. Compound 6 showed high in vitro binding affinity for mGluR1, whereas 7 and 8 had weak affinity. Autoradiography using rat brain sections showed that [(11)C]6 binding is aligned with the reported distribution of mGluR1 with high specific binding in the cerebellum and thalamus. PET study with [(11)C]6 in rats showed high brain uptake and a similar distribution pattern to that in autoradiography, indicating the usefulness of [(11)C]6 for imaging brain mGluR1.
Collapse
Affiliation(s)
- Masayuki Fujinaga
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|