1
|
Konzal J, Murley M, Wolter A, Camou L, Oberbroeckling A, Dekker M, Wagner G, Jennejohn K, Peters M, Hayes N, Franklin C, Tobin S, Collier E, MacKenzie I. Towards Designer Photocatalysts: Structure-Property Relationships in 2,6-Diaryl-pyryliums. Chemistry 2025; 31:e202403543. [PMID: 39551700 DOI: 10.1002/chem.202403543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 11/19/2024]
Abstract
Fully organic photocatalyst systems are highly attractive, not merely because they are transition-metal free, but more importantly due to their unique and often potent reactivity. A detailed understanding of the various redox states, both ground and excited state, and specifically what structural parameters control them is therefore crucial for harnessing the full potential of these systems in organic synthesis. However, unlike their organometallic counterparts, detailed structure-property relationships for organic photocatalysts are largely absent from the literature. In this study, we demonstrate linear free-energy relationships across a range of key photophysical and electrochemical properties of 2,6-diarylpyryliums. Electronic absorption and emission maxima can be carefully tuned over the ranges of 83 nm and 102 nm respectively. Intramolecular charge transfer (ICT) interactions were revealed in cases of substitution with polarizable heavy-atoms. A strong linear dependence of ground state reduction potentials on substituent electronics was observed. Notably, the excited state reduction potential, E*red, could be controlled over a range of nearly 1000 mV. Systematic errors in computational modeling of ground and excited state redox potentials were identified and corrected. We believe the quantitative structure-property relationships identified here provide foundational tools for rational and predictive organic photocatalyst design.
Collapse
Affiliation(s)
- Jenna Konzal
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818, USA
| | - McKenna Murley
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818, USA
| | - Alaina Wolter
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818, USA
| | - Lazlo Camou
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818, USA
| | - Alex Oberbroeckling
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818, USA
| | - Madilyn Dekker
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818, USA
| | - Gillianne Wagner
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818, USA
| | - Kate Jennejohn
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818, USA
| | - Madison Peters
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818, USA
| | - Natalie Hayes
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818, USA
| | - Cory Franklin
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818, USA
| | - Sydney Tobin
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818, USA
| | - Elizabeth Collier
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818, USA
| | - Ian MacKenzie
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818, USA
| |
Collapse
|
2
|
Dos Anjos Oliveira TM, Teles AV, Gambarini ML, de Oliveira Ribeiro K, Ducas ESA, Dos Santos KJG, Monteiro CJP, de Paula Silveira Lacerda E, Franchi LP, Gonçalves PJ, de Souza GRL. Photodisinfection of Alphaherpesvirus 1 in bovine semen. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 260:113036. [PMID: 39332312 DOI: 10.1016/j.jphotobiol.2024.113036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/14/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
Reproductive biotechnologies are widely consolidated as a methodology in cattle breeding and have an important impact on the genetic improvement of cattle herds. Semen is an important source of dissemination of pathogenic microorganisms during reproductive procedures. To ensure the sanitary quality of the semen, it is essential to consider the presence of various microorganisms including viruses. One of the main viral agents of reproductive interest is Bovine Alphaherpesvirus 1 (BoHV-1), the etiological agent responsible for bovine rhinotracheitis and vulvovaginitis and frequently associated with reproductive efficiency of matrices and bulls. In artificial insemination centers, semen treatment is generally based only on the use of antibiotics, ignoring the possibility of inactivating other non-bacterial infectious agents. In this context, photodisinfection emerges as a promising alternative to inactivate a wide range of microorganisms, offering a complementary or substitution approach to those conventional semen treatment methods. In this work, we evaluated the use of four halogenated sulfonated porphyrins as potential photosensitizers (PSs) for photodynamic inactivation of Bovine Alphaherpesvirus I (BoHV-1) for bovine semen disinfection. The PSs were synthesized and photophysical parameters, such as UV-Vis absorption spectra and singlet oxygen quantum yield (ΦΔ) were presented. Photoinactivation of BoHV-1 was first shown in cell culture and then confirmed in artificially infected bovine semen and then the phototoxicity of PSs against spermatozoa was evaluated. All PSs were effective in BoHV-1 inactivation; however, the photosensitizer containing two chlorine atoms, showed to be more efficient due to the shorter time required for complete viral inactivation. The slight alterations in sperm kinetics were observed, but remained within those acceptable by regulatory agencies for animal reproduction. Although the methodology used in this work only included bovine semen, we emphasize that the proposed photodisinfection methodology can be adapted and applied to a wide range of biological materials and microorganisms of animal or human interest.
Collapse
Affiliation(s)
| | - Amanda Vargas Teles
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Maria Lúcia Gambarini
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | | | | | - Carlos Jorge Pereira Monteiro
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | | | - Pablo José Gonçalves
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, Brazil; Instituto de Física, Universidade Federal de Goiás, Goiânia, GO, Brazil; Centro de Excelência em Hidrogênio e Tecnologias Energéticas Sustentáveis (CEHTES), Goiânia, GO, Brazil.
| | - Guilherme Rocha Lino de Souza
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, GO, Brazil; Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
3
|
Ezquerra Riega SD, Gutierrez Suburu ME, Rodríguez HB, Lantaño B, Kleinschmidt M, Marian CM, Strassert CA. A Case-Study on the Photophysics of Chalcogen-Substituted Zinc(II) Phthalocyanines. Chemistry 2024; 30:e202304083. [PMID: 38647352 DOI: 10.1002/chem.202304083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 04/25/2024]
Abstract
Singlet dioxygen has been widely applied in different disciplines such as medicine (photodynamic therapy or blood sterilization), remediation (wastewater treatment) or industrial processes (fine chemicals synthesis). Particularly, it can be conveniently generated by energy transfer between a photosensitizer's triplet state and triplet dioxygen upon irradiation with visible light. Among the best photosensitizers, substituted zinc(II) phthalocyanines are prominent due to their excellent photophysical properties, which can be tuned by structural modifications, such as halogen- and chalcogen-atom substitution. These patterns allow for the enhancement of spin-orbit coupling, commonly attributed to the heavy atom effect, which correlates with the atomic number ( Z ${Z}$ ) and the spin-orbit coupling constant ( ζ ${\zeta }$ ) of the introduced heteroatom. Herein, a fully systematic analysis of the effect exerted by chalcogen atoms on the photophysical characteristics (absorption and fluorescence properties, lifetimes and singlet dioxygen photogeneration), involving 30 custom-made β-tetrasubstituted chalcogen-bearing zinc(II) phthalocyanines is described and evaluated regarding the heavy atom effect. Besides, the intersystem crossing rate constants are estimated by several independent methods and a quantitative profile of the heavy atom is provided by using linear correlations between relative intersystem crossing rates and relative atomic numbers. Good linear trends for both intersystem crossing rates (S1-T1 and T1-S0) were obtained, with a dependency on the atomic number and the spin-orbit coupling constant scaling asZ 0 . 4 ${{Z}^{0.4}}$ andζ 0 . 2 ${{\zeta }^{0.2}}$ , respectively The trend shows to be independent of the solvent and temperature.
Collapse
Affiliation(s)
- Sergio D Ezquerra Riega
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Junín 956, C1113AAD, Buenos Aires, Argentina
- Universidad de Buenos Aires, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Junín 956, C1113AAD, Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE); Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, UBA., Ciudad Universitaria Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Matías E Gutierrez Suburu
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 28/30, D-48149, Münster, Germany
- CeNTech, SoN, CiMIC, Universität Münster, Heisenbergstraße 11, D-48149, Münster, Germany
| | - Hernán B Rodríguez
- CONICET - Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE); Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, UBA., Ciudad Universitaria Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Beatriz Lantaño
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Junín 956, C1113AAD, Buenos Aires, Argentina
- Universidad de Buenos Aires, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Martin Kleinschmidt
- Institut für Theoretische Chemie und Computerchemie, Fakultät für Mathematik und Naturwissenschaften, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Christel M Marian
- Institut für Theoretische Chemie und Computerchemie, Fakultät für Mathematik und Naturwissenschaften, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 28/30, D-48149, Münster, Germany
- CeNTech, SoN, CiMIC, Universität Münster, Heisenbergstraße 11, D-48149, Münster, Germany
| |
Collapse
|
4
|
Kim JH, Wu S, Zdrazil L, Denisov N, Schmuki P. 2D Metal-Organic Framework Nanosheets based on Pd-TCPP as Photocatalysts for Highly Improved Hydrogen Evolution. Angew Chem Int Ed Engl 2024; 63:e202319255. [PMID: 38157446 DOI: 10.1002/anie.202319255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
In this report, a 2D MOF nanosheet derived Pd single-atom catalyst, denoted as Pd-MOF, was fabricated and examined for visible light photocatalytic hydrogen evolution reaction (HER). This Pd-MOF can provide a remarkable photocatalytic activity (a H2 production rate of 21.3 mmol/gh in the visible range), which outperforms recently reported Pt-MOFs (with a H2 production rate of 6.6 mmol/gh) with a similar noble metal loading. Notably, this high efficiency of Pd-MOF is not due to different chemical environment of the metal center, nor by changes in the spectral light absorption. The higher performance of the Pd-MOF in comparison to the analogue Pt-MOF is attributed to the longer lifetime of the photogenerated electron-hole pairs and higher charge transfer efficiency.
Collapse
Affiliation(s)
- Ji Hyeon Kim
- Department of Materials Science WW4-LKO, Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Siming Wu
- Department of Materials Science WW4-LKO, Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Lukas Zdrazil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 78371, Olomouc, Czech Republic
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Nikita Denisov
- Department of Materials Science WW4-LKO, Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO, Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstrasse 7, 91058, Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| |
Collapse
|
5
|
Garcia-Orrit S, Vega-Mayoral V, Chen Q, Serra G, Paternò GM, Cánovas E, Narita A, Müllen K, Tommasini M, Cabanillas-González J. Nanographene-Based Decoration as a Panchromatic Antenna for Metalloporphyrin Conjugates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301596. [PMID: 37329205 DOI: 10.1002/smll.202301596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/16/2023] [Indexed: 06/18/2023]
Abstract
Porphyrins, a type of heterocyclic aromatic compounds consisting of tetrapyrroles connected by four substituted methine groups, are appealing building blocks for solar energy applications. However, their photosensitization capability is limited by their large optical energy gap, which results in a mismatch in absorption toward efficient harvesting of the solar spectrum. Porphyrin π-extension by edge-fusing with nanographenes can be employed for narrowing their optical energy gap from 2.35 to 1.08 eV, enabling the development of porphyrin-based panchromatic dyes with an optimized energy onset for solar energy conversion in dye-sensitized solar fuel and solar cell configurations. By combining time-dependent density functional theory with fs transient absorption spectroscopy, it is found that the primary singlets, which are delocalized across the entire aromatic part, are transferred into metal centred triplets in only 1.2 ps; and subsequently, relax toward ligand-delocalized triplets. This observation implies that the decoration of the porphyrin moiety with nanographenes, while having a large impact on the absorption onset of the novel dye, promotes the formation of a ligand-centred lowest triplet state of large spatial extension, potentially interesting for boosting interactions with electron scavengers. These results reveal a design strategy for broadening the applicability of porphyrin-based dyes in optoelectronics.
Collapse
Affiliation(s)
- Saül Garcia-Orrit
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, c/Faraday 9, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Victor Vega-Mayoral
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, c/Faraday 9, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Qiang Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Gianluca Serra
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Giuseppe M Paternò
- Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci 32, Milano, 20133, Italy
| | - Enrique Cánovas
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, c/Faraday 9, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute for Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Matteo Tommasini
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Juan Cabanillas-González
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, c/Faraday 9, Campus de Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
6
|
Photoantimicrobial activity of Schiff-base Morpholino phthalocyanines against drug resistant micro-organisms in their planktonic and biofilm forms. Photodiagnosis Photodyn Ther 2023; 42:103519. [PMID: 36931368 DOI: 10.1016/j.pdpdt.2023.103519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Antimicrobial photodynamic inactivation (aPDI) is an alternative treatment for the eradication of drug-resistant micro-organisms. One of the advantages of this technique, it that there is no possibility of microbial resistance. Hence, herein, the preparation and characterization of novel neutral and cationic morpholine containing Schiff base phthalocyanines are reported. The cationic complexes (4 and 5) gave moderate singlet oxygen quantum yields (ΦΔ) of ∼0.2 in aqueous media. Conversely, the neutral complexes generated very low ΦΔ values making them very poor candidates for antimicrobial studies. The cationic phthalocyanines showed excellent photodynamic activity against planktonic cells of all micro-organisms (Candida albicans, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Salmonella enterica subspecies enterica serovar Choleraesuis, vancomycin-resistant E. faecium, and methicillin-resistant Staphylococcus aureus). The efficiency of aPDI was shown to be both concentration and light-dose-dependent. Mono biofilms were susceptible when treated with 200 µM of cationic Pcs at 108 J/cm2. However, ∼10% of the mixed biofilm survived after treatment.
Collapse
|
7
|
Sarabando SN, Dias CJ, Vieira C, Bartolomeu M, Neves MGPMS, Almeida A, Monteiro CJP, Faustino MAF. Sulfonamide Porphyrins as Potent Photosensitizers against Multidrug-Resistant Staphylococcus aureus (MRSA): The Role of Co-Adjuvants. Molecules 2023; 28:molecules28052067. [PMID: 36903314 PMCID: PMC10004250 DOI: 10.3390/molecules28052067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Sulfonamides are a conventional class of antibiotics that are well-suited to combat infections. However, their overuse leads to antimicrobial resistance. Porphyrins and analogs have demonstrated excellent photosensitizing properties and have been used as antimicrobial agents to photoinactivate microorganisms, including multiresistant Staphylococcus aureus (MRSA) strains. It is well recognized that the combination of different therapeutic agents might improve the biological outcome. In this present work, a novel meso-arylporphyrin and its Zn(II) complex functionalized with sulfonamide groups were synthesized and characterized and the antibacterial activity towards MRSA with and without the presence of the adjuvant KI was evaluated. For comparison, the studies were also extended to the corresponding sulfonated porphyrin TPP(SO3H)4. Photodynamic studies revealed that all porphyrin derivatives were effective in photoinactivating MRSA (>99.9% of reduction) at a concentration of 5.0 μM upon white light radiation with an irradiance of 25 mW cm-2 and a total light dose of 15 J cm-2. The combination of the porphyrin photosensitizers with the co-adjuvant KI during the photodynamic treatment proved to be very promising allowing a significant reduction in the treatment time and photosensitizer concentration by six times and at least five times, respectively. The combined effect observed for TPP(SO2NHEt)4 and ZnTPP(SO2NHEt)4 with KI seems to be due to the formation of reactive iodine radicals. In the photodynamic studies with TPP(SO3H)4 plus KI, the cooperative action was mainly due to the formation of free iodine (I2).
Collapse
Affiliation(s)
- Sofia N. Sarabando
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cristina J. Dias
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cátia Vieira
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Bartolomeu
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos J. P. Monteiro
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (C.J.P.M.); (M.A.F.F.)
| | - Maria Amparo F. Faustino
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (C.J.P.M.); (M.A.F.F.)
| |
Collapse
|
8
|
The influence of structural effects and the solvent properties on spectral, generation characteristics, photostability and lipophilicity of 1,3,5,7-tetramethyl-BODIPY and its alkylated and iodinated derivatives. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
9
|
Phthalocyanine photosensitizers with bathochromic shift, of suitable brightness, capable of producing singlet oxygen with effective efficiency. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Neill JS, Boyle NM, Marques Passo T, Heintz K, Browne WR, Quilty B, Pryce MT. Photophysical and electrochemical properties of meso-tetrathien-2’-yl porphyrins compared to meso-tetraphenylporphyrin. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Mendes MIP, Arnaut LG. Redaporfin Development for Photodynamic Therapy and its Combination with Glycolysis Inhibitors. Photochem Photobiol 2022; 99:769-776. [PMID: 36564949 DOI: 10.1111/php.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Photodynamic therapy (PDT) remains an underutilized treatment modality in oncology. Many efforts have been dedicated to the development of better photosensitizers, better formulations and delivery methods, rigorous planning of light dose distribution in tissues, mechanistic insight, improvement of treatment protocols and combinations with other therapeutic agents. Hopefully, progress in all these fields will eventually expand the use of PDT. Here we offer a brief review of our own contribution to the development of a photosensitizer for PDT - redaporfin - currently in Phase II clinical trials, and present data on its combination with two glycolysis inhibitors: 2-deoxyglucose and 3-bromopyruvate. We show that 3-bromopyruvate is more cytotoxic to a carcinoma cell line (CT26) than to a normal fibroblast (3T3) cell line, and that this selectivity is maintained in the in vitro combination with redaporfin-PDT. This combination was investigated in BALB/c mice with large subcutaneous CT26 tumors and it is shown that the cure rate in the combination is higher (33% cures) than in PDT (11% cures) or in 3-bromopyruvate (no cures) alone. The combination of redaporfin-PDT with 3-bromopyruvate illustrates the potential of combination therapies and how PDT benefits can be enhanced by systemic drugs with complementary targets.
Collapse
Affiliation(s)
| | - Luis G Arnaut
- CQC-IMS, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
12
|
Ramzi NI, Mishiro K, Munekane M, Fuchigami T, Hu X, Jastrząb R, Kitamura Y, Kinuya S, Ogawa K. Synthesis and evaluation of radiolabeled porphyrin derivatives for cancer diagnoses and their nonradioactive counterparts for photodynamic therapy. RSC Med Chem 2022; 13:1565-1574. [PMID: 36561065 PMCID: PMC9749959 DOI: 10.1039/d2md00234e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/19/2022] [Indexed: 12/25/2022] Open
Abstract
Radioiodinated porphyrin derivatives and the corresponding nonradioactive iodine introduced compounds, [125I]I-TPPOH ([125I]3), [125I]I-l-tyrosine-TPP ([125I]9), I-TPPOH (3), and I-l-tyrosine-TPP (9) were designed, synthesized, and evaluated by in vitro and in vivo experiments. In cytotoxicity assays, 3 and 9 exhibited significant cytotoxicity under light conditions but did not show significant cytotoxicity without light irradiation. Biodistribution experiments with [125I]3 and [125I]9 showed similar distribution patterns with high retention in tumors. In photodynamic therapeutic (PDT) experiments, 3 and 9 at a dose of 13.6 μmol kg-1 weight with 50 W single light irradiation onto the tumor area significantly inhibited tumor growth. These results indicate that the iodinated porphyrin derivatives [123/natI]3 and [123/natI]9 are promising cancer theranostic agents.
Collapse
Affiliation(s)
- Nur Izni Ramzi
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Masayuki Munekane
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Takeshi Fuchigami
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Xiaojun Hu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University Shanghai 200444 China
| | - Renata Jastrząb
- Faculty of Chemistry, Adam Mickiewicz University of Poznan Uniwersytetu Poznanskiego 8 Poznan 61-614 Poland
| | - Yoji Kitamura
- Research Center for Experimental Modeling of Human Disease, Kanazawa University Takara-machi 13-1 Kanazawa Ishikawa 920-8640 Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University Takara-machi 13-1 Kanazawa Ishikawa 920-8641 Japan
| | - Kazuma Ogawa
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
- Institute for Frontier Science Initiative, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| |
Collapse
|
13
|
Porphyrin@Lignin nanoparticles: Reusable photocatalysts for effective aqueous degradation of antibiotics. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Yang Y, Tao F, Zhang L, Zhou Y, Zhong Y, Tian S, Wang Y. Preparation of a porphyrin-polyoxometalate hybrid and its photocatalytic degradation performance for mustard gas simulant 2-chloroethyl ethyl sulfide. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
QSPR model for estimation of photodegradation average rate of the porphyrin-TiO2 complexes and prediction of their biodegradation activity and toxicity: Engineering of two annihilators for water/waste contaminants. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Kulu I, Mantareva V, Kussovski V, Angelov I, Durmuş M. Effects of metal ion in cationic Pd(II) and Ni(II) phthalocyanines on physicochemical and photodynamic inactivation properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Mohamed Abdelmoniem A, Abdelshafy Abdelhamid I, Butenschön H. Bidirectional Synthesis, Photophysical and Electrochemical Characterization of Polycyclic Quinones Using Benzocyclobutenes and Benzodicyclobutenes as Precursors. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Amr Mohamed Abdelmoniem
- Institut für Organische Chemie Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Germany
- Department of Chemistry Faculty of Science Cairo University 12613 Giza A. R. Egypt
| | | | - Holger Butenschön
- Institut für Organische Chemie Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Germany
| |
Collapse
|
18
|
Deckers J, Cardeynaels T, Lutsen L, Champagne B, Maes W. Heavy-Atom-Free Bay-Substituted Perylene Diimide Donor-Acceptor Photosensitizers. Chemphyschem 2021; 22:1488-1496. [PMID: 34031956 DOI: 10.1002/cphc.202100269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Indexed: 11/05/2022]
Abstract
Perylene diimide (PDI) dyes are extensively investigated because of their favorable photophysical characteristics for a wide range of organic material applications. Fine-tuning of the optoelectronic properties is readily achieved by functionalization of the electron-deficient PDI scaffold. Here, we present four new donor-acceptor type dyads, wherein the electron donor units - benzo[1,2-b : 4,5-b']dithiophene, 9,9-dimethyl-9,10-dihydroacridine, dithieno[3,2-b : 2',3'-d]pyrrole, and triphenylamine-are attached to the bay-positions of the PDI acceptor. Intersystem crossing occurs for these systems upon photoexcitation, without the aid of heavy atoms, resulting in singlet oxygen quantum yields up to 80 % in toluene solution. Furthermore, this feature is retained when the system is directly irradiated with energy corresponding to the intramolecular charge-transfer absorption band (at 639 nm). Geometrical optimization and (time-dependent) density functional theory calculations afford more insights into the requirements for intersystem crossing such as spin-orbit coupling, dihedral angles, the involvement of charge-transfer states, and energy level alignment.
Collapse
Affiliation(s)
- Jasper Deckers
- UHasselt-Hasselt University, Institute for Materials Research (IMO), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan, 3590, Diepenbeek, Belgium.,IMEC, Associated Lab IMOMEC, Wetenschapspark 1, 3590, Diepenbeek, Belgium
| | - Tom Cardeynaels
- UHasselt-Hasselt University, Institute for Materials Research (IMO), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan, 3590, Diepenbeek, Belgium.,IMEC, Associated Lab IMOMEC, Wetenschapspark 1, 3590, Diepenbeek, Belgium.,UNamur-University of Namur, Laboratory of Theoretical Chemistry (LTC), Theoretical and Structural Physical Chemistry Unit, Namur Institute of Structured Matter, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Laurence Lutsen
- IMEC, Associated Lab IMOMEC, Wetenschapspark 1, 3590, Diepenbeek, Belgium
| | - Benoît Champagne
- UNamur-University of Namur, Laboratory of Theoretical Chemistry (LTC), Theoretical and Structural Physical Chemistry Unit, Namur Institute of Structured Matter, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Wouter Maes
- UHasselt-Hasselt University, Institute for Materials Research (IMO), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan, 3590, Diepenbeek, Belgium.,IMEC, Associated Lab IMOMEC, Wetenschapspark 1, 3590, Diepenbeek, Belgium
| |
Collapse
|
19
|
Taniguchi M, Lindsey JS, Bocian DF, Holten D. Comprehensive review of photophysical parameters (ε, Φf, τs) of tetraphenylporphyrin (H2TPP) and zinc tetraphenylporphyrin (ZnTPP) – Critical benchmark molecules in photochemistry and photosynthesis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2020.100401] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Liu LG, Sun YM, Liu ZY, Liao YH, Zeng L, Ye Y, Liu HY. Halogenated Gallium Corroles:DNA Interaction and Photodynamic Antitumor Activity. Inorg Chem 2021; 60:2234-2245. [PMID: 33480681 DOI: 10.1021/acs.inorgchem.0c03016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A series of halogenated gallium corroles were synthesized and characterized by UV-vis, HRMS, NMR, and FT-IR. The interaction between these gallium corroles and calf thymus DNA had been investigated by spectroscopic methods. These gallium corroles would interact with CT-DNA via an outside binding mode. The photodynamic antitumor activity in vitro of these gallium corroles toward different cell lines had also been tested. 3-Ga displayed low cytotoxicity to normal cells under both light and dark conditions but high phototoxicity to liver cancer cells HepG2. The vitro experiment results showed that 3-Ga could be efficiently absorbed by tumor cells. After light illumination, it may induce reactive oxygen species (ROS) and cause destruction of the mitochondrial membrane potential, which may finally trigger tumor cell apoptosis. Flow cytometry results showed that HepG2 cells were mainly distributed in the sub-G0 phase, which corresponds to cells with highly fragmented DNA or dead cells generally. This suggests that 3-Ga could lead to tumor cell apoptosis after light illumination.
Collapse
Affiliation(s)
- Ling-Gui Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Yan-Mei Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Ze-Yu Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Yu-Hui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Lei Zeng
- Foresea Life Insurance Guangzhou General Hospital, Guangzhou 511300, China
| | - Yong Ye
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Hai-Yang Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
21
|
Faustova M, Nikolskaya E, Sokol M, Fomicheva M, Petrov R, Yabbarov N. Metalloporphyrins in Medicine: From History to Recent Trends. ACS APPLIED BIO MATERIALS 2020; 3:8146-8171. [PMID: 35019597 DOI: 10.1021/acsabm.0c00941] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The history of metalloporphyrins dates back more than 200 years ago. Metalloporphyrins are excellent catalysts, capable of forming supramolecular systems, participate in oxygen photosynthesis, transport, and used as contrast agents or superoxide dismutase mimetics. Today, metalloporphyrins represent complexes of conjugated π-electron system and metals from the entire periodic system. However, the effect of these compounds on living systems has not been fully understood, and researchers are exploring the properties of metalloporphyrins thereby extending their further application. This review provides an overview of the variety of metalloporphyrins that are currently used in different medicine fields and how metalloporphyrins became the subject of scientists' interest. Currently, metalloporphyrins utilization has expanded significantly, which gave us an opprotunuty to summarize recent progress in metalloporphyrins derivatives and prospects of their application in the treatment and diagnosis of different diseases.
Collapse
Affiliation(s)
- Mariia Faustova
- MIREA-Russian Technological University, Lomonosov Institute of Fine Chemical Technologies, 119454 Moscow, Russia.,N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Nikolskaya
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria Sokol
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| | - Margarita Fomicheva
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| | - Rem Petrov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Nikita Yabbarov
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| |
Collapse
|
22
|
Deckers J, Cardeynaels T, Penxten H, Ethirajan A, Ameloot M, Kruk M, Champagne B, Maes W. Near‐Infrared BODIPY‐Acridine Dyads Acting as Heavy‐Atom‐Free Dual‐Functioning Photosensitizers. Chemistry 2020; 26:15212-15225. [DOI: 10.1002/chem.202002549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/23/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Jasper Deckers
- UHasselt-Hasselt University Institute for Materials Research (IMO) Design & Synthesis of Organic Semiconductors (DSOS) Agoralaan 3590 Diepenbeek Belgium
- IMEC Associated Lab IMOMEC Wetenschapspark 1 3590 Diepenbeek Belgium
| | - Tom Cardeynaels
- UHasselt-Hasselt University Institute for Materials Research (IMO) Design & Synthesis of Organic Semiconductors (DSOS) Agoralaan 3590 Diepenbeek Belgium
- IMEC Associated Lab IMOMEC Wetenschapspark 1 3590 Diepenbeek Belgium
- UNamur-University of Namur Laboratory of Theoretical Chemistry (LTC) Theoretical and Structural Physical Chemistry Unit Namur Institute of Structured Matter Rue de Bruxelles 61 5000 Namur Belgium
| | - Huguette Penxten
- UHasselt-Hasselt University Institute for Materials Research (IMO) Design & Synthesis of Organic Semiconductors (DSOS) Agoralaan 3590 Diepenbeek Belgium
| | - Anitha Ethirajan
- IMEC Associated Lab IMOMEC Wetenschapspark 1 3590 Diepenbeek Belgium
- UHasselt-Hasselt University Institute for Materials Research (IMO) Nano-Biophysics and Soft Matter Interfaces (NSI) Wetenschapspark 1 3590 Diepenbeek Belgium
| | - Marcel Ameloot
- UHasselt-Hasselt University Biomedical Research Institute (BIOMED) Agoralaan 3590 Diepenbeek Belgium
| | - Mikalai Kruk
- Belarusian State Technological University Sverdlov Str., 13a 220006 Minsk Belarus
| | - Benoît Champagne
- UNamur-University of Namur Laboratory of Theoretical Chemistry (LTC) Theoretical and Structural Physical Chemistry Unit Namur Institute of Structured Matter Rue de Bruxelles 61 5000 Namur Belgium
| | - Wouter Maes
- UHasselt-Hasselt University Institute for Materials Research (IMO) Design & Synthesis of Organic Semiconductors (DSOS) Agoralaan 3590 Diepenbeek Belgium
- IMEC Associated Lab IMOMEC Wetenschapspark 1 3590 Diepenbeek Belgium
| |
Collapse
|
23
|
Ghazal B, Ewies EF, Youssef ASA, Makhseed S. Photo-physicochemical properties of water-soluble non-aggregated indium(III) phthalocyanines. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 234:118244. [PMID: 32199313 DOI: 10.1016/j.saa.2020.118244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/27/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Phthalocyanines have interesting optoelectronic properties but typically suffer from aggregation in aqueous solution, which can limit their applicability, especially in photodynamic therapy. In this study, indium(III) phthalocyanine peripherally substituted with eight triazolyl-containing phenoxy groups (InOAc) and its water-soluble analogue (Q-InOAc) were synthesised and structurally characterised. Heavy metal effects, exerted by the central indium ion, on the photosensitising and photophysical properties (singlet oxygen quantum yield, singlet state lifetime and quantum yield, and triplet state lifetime) were investigated in both DMF and D2O. Highly efficient generation of the triplet excited state (T1), induced by the incorporation of a large atom, enhanced singlet oxygen formation, as revealed by both chemical and physical methods. Correspondingly, the singlet oxygen quantum yield (ΦΔ) of Q-InOAc was 0.603 in DMF and 0.433 in D2O. These values are higher than those previously reported for the corresponding metal-free, Mg-based, and Zn-based water-soluble phthalocyanines (HH, Mg, and Zn). Consequently, Q-InOAc is expected to be an excellent photosensitiser for photodynamic therapy.
Collapse
Affiliation(s)
- Basma Ghazal
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait; Organometallic and Organometalloid Chemistry Department, National Research Centre, Giza, Egypt
| | - Ewies F Ewies
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Giza, Egypt
| | - Ahmed S A Youssef
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, P.O. 11566, Cairo, Egypt
| | - Saad Makhseed
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait.
| |
Collapse
|
24
|
Vinagreiro CS, Zangirolami A, Schaberle FA, Nunes SCC, Blanco KC, Inada NM, da Silva GJ, Pais AACC, Bagnato VS, Arnaut LG, Pereira MM. Antibacterial Photodynamic Inactivation of Antibiotic-Resistant Bacteria and Biofilms with Nanomolar Photosensitizer Concentrations. ACS Infect Dis 2020; 6:1517-1526. [PMID: 31913598 DOI: 10.1021/acsinfecdis.9b00379] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Gram-negative bacteria and bacteria in biofilms are very difficult to eradicate and are the most antibiotic-resistant bacteria. Therapeutic alternatives less susceptible to mechanisms of resistance are urgently needed to respond to an alarming increase of resistant nosocomial infections. Antibacterial photodynamic inactivation (PDI) generates oxidative stress that triggers multiple cell death mechanisms that are more difficult to counteract by bacteria. We explore PDI of multidrug-resistant bacterial strains collected from patients and show how positive charge distribution in the photosensitizer drug impacts the efficacy of inactivation. We demonstrate the relevance of size for drug diffusion in biofilms. The designed meso-imidazolyl porphyrins of small size with positive charges surrounding the macrocycle enabled the inactivation of bacteria in biofilms by 6.9 log units at 5 nM photosensitizer concentration and 5 J cm-2, which offers new opportunities to treat biofilm infections.
Collapse
Affiliation(s)
| | - Amanda Zangirolami
- São Carlos Institute of Physics, University of São Paulo, 13566-590 São Carlos, São Paulo, Brazil
| | | | | | - Kate C. Blanco
- São Carlos Institute of Physics, University of São Paulo, 13566-590 São Carlos, São Paulo, Brazil
| | - Natalia M. Inada
- São Carlos Institute of Physics, University of São Paulo, 13566-590 São Carlos, São Paulo, Brazil
| | - Gabriela Jorge da Silva
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal
| | | | - Vanderlei S. Bagnato
- São Carlos Institute of Physics, University of São Paulo, 13566-590 São Carlos, São Paulo, Brazil
| | - Luis G. Arnaut
- Chemistry Department, University of Coimbra 3004-535 Coimbra, Portugal
| | | |
Collapse
|
25
|
Longevial JF, Lo M, Lebrun A, Laurencin D, Clément S, Richeter S. Molecular complexes and main-chain organometallic polymers based on Janus bis(carbenes) fused to metalloporphyrins. Dalton Trans 2020; 49:7005-7014. [PMID: 32186566 DOI: 10.1039/d0dt00594k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Janus bis(N-heterocyclic carbenes) composed of a porphyrin core with two N-heterocyclic carbene (NHC) heads fused to opposite pyrroles were used as bridging ligands for the preparation of metal complexes. We first focused our attention on the synthesis of gold(i) chloride complexes [(NHC)AuCl] and investigated the substitution of the chloride ligand by acetylides to obtain the corresponding [(NHC)AuC[triple bond, length as m-dash]CR] complexes. Polyacetylides were then used to obtain molecular multiporphyrinic systems with porphyrins fused to only one NHC ligand, while main-chain organometallic polymers (MCOPs) were obtained when using Janus porphyrin bis(NHCs). Interestingly, MCOPs incorporating zinc(ii) porphyrins proved to be efficient as heterogeneous photocatalysts for the generation of singlet oxygen upon visible light irradiation.
Collapse
Affiliation(s)
- Jean-François Longevial
- ICGM, Univ Montpellier, CNRS, ENSCM, CC 1701, Campus Triolet, Place Eugène Bataillon, Montpellier, France.
| | | | | | | | | | | |
Collapse
|
26
|
Melissari Z, Sample HC, Twamley B, Williams RM, Senge MO. Synthesis and Spectral Properties of
gem
‐Dimethyl Chlorin Photosensitizers. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Zoi Melissari
- Medicinal ChemistryTrinity Translational Medicine InstituteTrinity Centre for Health SciencesTrinity College DublinThe University of Dublin St James's Hospital Dublin 8 Ireland
- Van ‘t Hoff Institute for Molecular SciencesUniversity of Amsterdam P.O. Box 94157, 1090 GD Amsterdam (The Netherlands
| | - Harry C. Sample
- Medicinal ChemistryTrinity Translational Medicine InstituteTrinity Centre for Health SciencesTrinity College DublinThe University of Dublin St James's Hospital Dublin 8 Ireland
| | - Brendan Twamley
- School of ChemistryTrinity College DublinThe University of DublinCollege Green Dublin 2 Ireland
| | - René M. Williams
- Van ‘t Hoff Institute for Molecular SciencesUniversity of Amsterdam P.O. Box 94157, 1090 GD Amsterdam (The Netherlands
| | - Mathias O. Senge
- Medicinal ChemistryTrinity Translational Medicine InstituteTrinity Centre for Health SciencesTrinity College DublinThe University of Dublin St James's Hospital Dublin 8 Ireland
| |
Collapse
|
27
|
Gonçalves PJ, Bezzerra FC, Teles AV, Menezes LB, Alves KM, Alonso L, Alonso A, Andrade MA, Borissevitch IE, Souza GR, Iglesias BA. Photoinactivation of Salmonella enterica (serovar Typhimurium) by tetra-cationic porphyrins containing peripheral [Ru(bpy)2Cl]+ units. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112375] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Abstract
We fabricate artificial molecules composed of heavy atom lead on a van der Waals crystal. Pb atoms templated on a honeycomb charge-order superstructure of IrTe2 form clusters ranging from dimers to heptamers including benzene-shaped ring hexamers. Tunneling spectroscopy and electronic structure calculations reveal the formation of unusual relativistic molecular orbitals within the clusters. The spin–orbit coupling is essential both in forming such Dirac electronic states and stabilizing the artificial molecules by reducing the adatom–substrate interaction. Lead atoms are found to be ideally suited for a maximized relativistic effect. This work initiates the use of novel two-dimensional orderings to guide the fabrication of artificial molecules of unprecedented properties. Artificial molecules supported on templated surfaces attract enormous interest due to their tunable electronic properties. Here the authors use STM experiments and DFT calculations to show the formation of Pb artificial clusters on a IrTe2 honeycomb template that are maximally stabilized by relativistic effects.
Collapse
|
29
|
Liang L, Yan W, Qin X, Peng X, Feng H, Wang Y, Zhu Z, Liu L, Han Y, Xu Q, Qu J, Liu X. Designing Sub‐2 nm Organosilica Nanohybrids for Far‐Field Super‐Resolution Imaging. Angew Chem Int Ed Engl 2020; 59:746-751. [DOI: 10.1002/anie.201912404] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Liangliang Liang
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
| | - Wei Yan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Xian Qin
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
| | - Xiao Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Han Feng
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research InstituteInterdisciplinary Graduate ProgrammeNanyang Technological University Singapore 637141 Singapore
| | - Yu Wang
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen University Shenzhen 518060 China
- Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Ziyu Zhu
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
| | - Lingmei Liu
- King Abdullah University of Science and TechnologyPhysical Sciences and Engineering DivisionAdvanced Membranes and Porous Materials Center Thuwal Saudi Arabia
| | - Yu Han
- King Abdullah University of Science and TechnologyPhysical Sciences and Engineering DivisionAdvanced Membranes and Porous Materials Center Thuwal Saudi Arabia
| | - Qinghua Xu
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Xiaogang Liu
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen University Shenzhen 518060 China
| |
Collapse
|
30
|
Jiménez J, Prieto-Montero R, Maroto BL, Moreno F, Ortiz MJ, Oliden-Sánchez A, López-Arbeloa I, Martínez-Martínez V, de la Moya S. Manipulating Charge-Transfer States in BODIPYs: A Model Strategy to Rapidly Develop Photodynamic Theragnostic Agents. Chemistry 2019; 26:601-605. [PMID: 31846138 DOI: 10.1002/chem.201904257] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/14/2019] [Indexed: 12/20/2022]
Abstract
On the basis of a family of BINOL (1,1'-bi-2-naphthol)-based O-BODIPY (dioxyboron dipyrromethene) dyes, it is demonstrated that chemical manipulation of the chromophoric push-pull character, by playing with the electron-donating capability of the BINOL moiety (BINOL versus 3,3'-dibromoBINOL) and with the electron-acceptor ability of the BODIPY core (alkyl substitution degree), is a workable strategy to finely balance fluorescence (singlet-state emitting action) versus the capability to photogenerate cytotoxic reactive oxygen species (triplet-state photosensitizing action). It is also shown that the promotion of a suitable charge-transfer character in the involved chromophore upon excitation enhances the probability of an intersystem crossing phenomenon, which is required to populate the triple state enabling singlet oxygen production. The reported strategy opens up new perspectives for rapid development of smarter agents for photodynamic theragnosis, including heavy-atom-free agents, from a selected organic fluorophore precursor.
Collapse
Affiliation(s)
- Josué Jiménez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Ruth Prieto-Montero
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, 48080, Bilbao, Spain
| | - Beatriz L Maroto
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Florencio Moreno
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - María J Ortiz
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Ainhoa Oliden-Sánchez
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, 48080, Bilbao, Spain
| | - Iñigo López-Arbeloa
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, 48080, Bilbao, Spain
| | - Virginia Martínez-Martínez
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, 48080, Bilbao, Spain
| | - Santiago de la Moya
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| |
Collapse
|
31
|
Liang L, Yan W, Qin X, Peng X, Feng H, Wang Y, Zhu Z, Liu L, Han Y, Xu Q, Qu J, Liu X. Designing Sub‐2 nm Organosilica Nanohybrids for Far‐Field Super‐Resolution Imaging. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Liangliang Liang
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
| | - Wei Yan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Xian Qin
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
| | - Xiao Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Han Feng
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research InstituteInterdisciplinary Graduate ProgrammeNanyang Technological University Singapore 637141 Singapore
| | - Yu Wang
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen University Shenzhen 518060 China
- Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Ziyu Zhu
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
| | - Lingmei Liu
- King Abdullah University of Science and TechnologyPhysical Sciences and Engineering DivisionAdvanced Membranes and Porous Materials Center Thuwal Saudi Arabia
| | - Yu Han
- King Abdullah University of Science and TechnologyPhysical Sciences and Engineering DivisionAdvanced Membranes and Porous Materials Center Thuwal Saudi Arabia
| | - Qinghua Xu
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Xiaogang Liu
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen University Shenzhen 518060 China
| |
Collapse
|
32
|
Excited-state investigations of meso-mono-substituted-(amino-ferrocenyl)porphyrins: Experimental and theoretical approaches. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.112048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Mahammed A, Chen K, Vestfrid J, Zhao J, Gross Z. Phosphorus corrole complexes: from property tuning to applications in photocatalysis and triplet-triplet annihilation upconversion. Chem Sci 2019; 10:7091-7103. [PMID: 31588277 PMCID: PMC6677024 DOI: 10.1039/c9sc01463b] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022] Open
Abstract
Efficient triplet photosensitizers are important for fundamental photochemical studies and applications such as triplet-triplet annihilation upconversion (TTA UC), photoredox catalytic organic reactions and photovoltaics. We now report a series of phosphorus corrole compounds as efficient visible light-harvesting metal-free triplet photosensitizers. While the heavy-atom-free phosphorus corroles show absorption in the visible spectral region (centered at 573 nm) and have a decent triplet state quantum yield (Φ Δ = 49%), iodo-substitution on the corrole core induces red-shifted absorption (589 nm) and improves intersystem crossing significantly (Φ Δ = 67%). Nanosecond transient absorption spectra confirm triplet state formation upon photoexcitation (τ T = 312 μs) and the iodinated derivatives also display near IR phosphorescence in fluid solution at room temperature (λ em = 796 nm, τ p = 412 μs). Both singlet oxygen (1O2) and superoxide radical anions (O2 -˙) may be produced with the phosphorus corroles, which are competent photocatalysts for the oxidative coupling of benzylamine (the Aza Henry reaction). Very efficient TTA UC was observed with the phosphorus corroles as triplet photosensitizers and perylene as the triplet acceptor, with upconversion quantum yields of up to Φ UC = 38.9% (a factor of 2 was used in the equation) and a very large anti-Stokes effect of 0.5 eV.
Collapse
Affiliation(s)
- Atif Mahammed
- Schulich Faculty of Chemistry , Technion-Israel Institute of Technology , Haifa 32000 , Israel .
| | - Kepeng Chen
- State Key Laboratory of Fine Chemicals , School of Chemical Engineering , Dalian University of Technology , E-208 West Campus, 2 Ling-Gong Road , Dalian 116024 , P. R. China .
| | - Jenya Vestfrid
- Department of Chemistry , University of Toronto , Canada
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals , School of Chemical Engineering , Dalian University of Technology , E-208 West Campus, 2 Ling-Gong Road , Dalian 116024 , P. R. China .
| | - Zeev Gross
- Schulich Faculty of Chemistry , Technion-Israel Institute of Technology , Haifa 32000 , Israel .
| |
Collapse
|
34
|
Pinto SMA, Vinagreiro CS, Tomé VA, Piccirillo G, Damas L, Pereira MM. Nitrobenzene method: A keystone in meso-substituted halogenated porphyrin synthesis and applications. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619300039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review article briefly describes the available synthetic approaches for meso-arylporphyrins giving particular emphasis for one-pot nitrobenzene and nitrobenzene/NaY methods regarding the synthesis of meso-halogenated arylporphyrins. The review also describes the relevant applications of these halogenated porphyrins and their metalloporphyrin counterparts, prepared via nitrobenzene method, as photosensitizers for therapy (PDT and PDI), diagnostic (molecular contrast agents) and also for catalytic oxidation and CO2 cycloaddition reactions to epoxides.
Collapse
Affiliation(s)
- Sara M. A. Pinto
- Coimbra Chemistry Centre, CQC, Department of Chemistry, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Carolina S. Vinagreiro
- Coimbra Chemistry Centre, CQC, Department of Chemistry, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Vanessa A. Tomé
- Coimbra Chemistry Centre, CQC, Department of Chemistry, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Giusi Piccirillo
- Coimbra Chemistry Centre, CQC, Department of Chemistry, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Liliana Damas
- Coimbra Chemistry Centre, CQC, Department of Chemistry, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Mariette M. Pereira
- Coimbra Chemistry Centre, CQC, Department of Chemistry, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
35
|
Soy RC, Babu B, Oluwole DO, Nwaji N, Oyim J, Amuhaya E, Prinsloo E, Mack J, Nyokong T. Photophysicochemical properties and photodynamic therapy activity of chloroindium(III) tetraarylporphyrins and their gold nanoparticle conjugates. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424618501146] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Novel chloroindium(III) complexes of tetra(4-methylthiophenyl)porphyrin (2a) and tetra-2-thienylporphyrin (2b) dyes have been synthesized and characterized. The main goal of the project was to identify fully symmetric porphyrin dyes with Q-band regions that lie partially in the therapeutic window that are suitable for use in photodynamic therapy (PDT). 2a and 2b were found to have fluorescence quantum yield values [Formula: see text] 0.01 and moderately high singlet oxygen quantum yields (0.54−0.73) due to heavy atom effects associated with the sulfur and indium atoms. The dark toxicity and PDT activity against epithelial breast cancer cells (MCF-7) were investigated over a dose range of 3.0−40 [Formula: see text]g [Formula: see text] mL[Formula: see text]. The in vitro dark cytotoxicity of 2a is significantly lower than that of 2b at [Formula: see text] 40 [Formula: see text]g [Formula: see text] mL[Formula: see text]. 2a was conjugated with gold nanoparticles (AuNPs) to form a nanoconjugate (2a-AuNPs), which exhibited a higher singlet oxygen quantum yield ([Formula: see text] value and PDT activity than was observed for 2a alone. The results suggest that the AuNPs nanoconjugates of readily synthesized fully symmetric porphyrin dyes are potentially suitable for PDT applications, if meso-aryl substituents that provide scope for nanoparticle conjugation can be introduced that shift the Q bands into the therapeutic window.
Collapse
Affiliation(s)
- Rodah C. Soy
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Balaji Babu
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - David O. Oluwole
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Njemuwa Nwaji
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - James Oyim
- School of Pharmacy and Healthy Sciences, USIU-Africa, Nairobi, Kenya
| | - Edith Amuhaya
- School of Pharmacy and Healthy Sciences, USIU-Africa, Nairobi, Kenya
| | - Earl Prinsloo
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6140, South Africa
| | - John Mack
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
36
|
Pushpanandan P, Won D, Mori S, Yasutake Y, Fukatsu S, Ishida M, Furuta H. Doubly N‐Confused Calix[6]phyrin Bis‐Organopalladium Complexes: Photostable Triplet Sensitizers for Singlet Oxygen Generation. Chem Asian J 2019; 14:1729-1736. [DOI: 10.1002/asia.201801671] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/31/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Poornenth Pushpanandan
- Department of Chemistry and Biochemistry, Graduate School of Engineering and Center for Molecular SystemsKyushu University Fukuoka 819-0395 Japan
| | - Dong‐Hoon Won
- Department of Chemistry and Biochemistry, Graduate School of Engineering and Center for Molecular SystemsKyushu University Fukuoka 819-0395 Japan
| | - Shigeki Mori
- Advanced Research Support CenterEhime University Matsuyama 790-8577 Japan
| | - Yuhsuke Yasutake
- Graduate School of Arts and SciencesThe University of Tokyo Tokyo 153-8902 Japan
| | - Susumu Fukatsu
- Graduate School of Arts and SciencesThe University of Tokyo Tokyo 153-8902 Japan
| | - Masatoshi Ishida
- Department of Chemistry and Biochemistry, Graduate School of Engineering and Center for Molecular SystemsKyushu University Fukuoka 819-0395 Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering and Center for Molecular SystemsKyushu University Fukuoka 819-0395 Japan
| |
Collapse
|
37
|
Foletto P, Correa F, Dornelles L, A Iglesias B, H da Silveira C, A Nogara P, T da Rocha JB, F Faustino MA, D Rodrigues OE. A New Protocol for the Synthesis of New Thioaryl-Porphyrins Derived from 5,10,15,20-Tetrakis(pentafluorophenyl)porphyrin: Photophysical Evaluation and DNA-Binding Interactive Studies. Molecules 2018; 23:molecules23102588. [PMID: 30308960 PMCID: PMC6222446 DOI: 10.3390/molecules23102588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 12/23/2022] Open
Abstract
A new protocol for the preparation of thioaryl-porphyrins is described. The compounds were prepared from different disulfides employing NaBH4 as a reducing agent. The methodology allowed the preparation of four different thioaryl-porphyrins in very-good to excellent yields under soft conditions, such as short reaction times and smooth heating. Additionally, the photophysical properties of new compounds were determined and experimental and theoretical DNA interactions were assessed.
Collapse
Affiliation(s)
- Patrícia Foletto
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria-RS 97105-900, Brazil.
| | - Fabiula Correa
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria-RS 97105-900, Brazil.
| | - Luciano Dornelles
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria-RS 97105-900, Brazil.
| | - Bernardo A Iglesias
- Laboratório de Bioinorgânica e Materiais Porfirínicos, Departamento de Química, Universidade Federal de Santa Maria⁻UFSM, Santa Maria⁻RS 97105-900, Brazil.
| | - Carolina H da Silveira
- Laboratório de Bioinorgânica e Materiais Porfirínicos, Departamento de Química, Universidade Federal de Santa Maria⁻UFSM, Santa Maria⁻RS 97105-900, Brazil.
| | - Pablo A Nogara
- Laboratório de Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Univerisidade Federal de Santa Maria, Santa Maria⁻RS 97105-900, Brazil.
| | - João B T da Rocha
- Laboratório de Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Univerisidade Federal de Santa Maria, Santa Maria⁻RS 97105-900, Brazil.
| | - Maria A F Faustino
- QOPNA and Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal.
| | - Oscar E D Rodrigues
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria-RS 97105-900, Brazil.
| |
Collapse
|
38
|
Kuramoto Y, Nakagiri T, Matsui Y, Ohta E, Ogaki T, Ikeda H. A leaning amine-ketone dyad with a nonconjugated linker: solvatofluorochromism and dual fluorescence associated with intramolecular charge transfer. Photochem Photobiol Sci 2018; 17:1157-1168. [PMID: 30063241 DOI: 10.1039/c7pp00453b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dyad 4, comprising a triphenylamine (TPA) electron donor and 1,4-pentadien-3-one (pentadienone) electron acceptor tethered by a nonconjugated linker, displays solvatofluorochromism (SFC) and dual fluorescence associated with intramolecular charge transfer (ICT) in the excited state. While the fluorescence arises from a locally excited state of 4 (LE-4*) in saturated hydrocarbon solvents, the fluorescence from the ICT state of 4 (ICT-4*) occurs in aprotic solvents. ICT-4* has a much greater dipole moment than its corresponding ground state. The results of theoretical calculations suggest that the conversion of LE-4* to ICT-4* involves a unique structural change like a leaning of the pentadienone moiety. Two factors are responsible for the significant SFC displayed by 4, the first being the high electron-donating and -accepting abilities of the respective locally excited TPA and pentadienone moieties in LE-4* and the other being a rigid ethano bridge that links the two moieties in ICT-4*. The former property facilitates photoinduced electron-transfer (PET) and the latter prevents full single electron transfer (SET) by prohibiting direct π-conjugation and the spatial approach of the two dyad components. Consequently, these electronic and geometrical features lead to SFC arising from a large dipole moment change caused by ICT and partial intramolecular SET.
Collapse
Affiliation(s)
- Yutaro Kuramoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Cyza M, Gut A, Łapok Ł, Solarski J, Knyukshto V, Kępczyński M, Nowakowska M. Iodinated zinc phthalocyanine – The novel visible-light activated photosensitizer for efficient generation of singlet oxygen. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.03.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
40
|
Auras BL, De Lucca Meller S, da Silva MP, Neves A, Cocca LH, De Boni L, da Silveira CH, Iglesias BA. Synthesis, spectroscopic/electrochemical characterization and DNA interaction study of novel ferrocenyl-substituted porphyrins. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Bruna L. Auras
- Laboratório de Bioinorgânica e Cristalografia (LABINC), Departamento de Química; Universidade Federal de Santa Catarina; 88040-900 Florianópolis SC Brazil
| | - Sheila De Lucca Meller
- Laboratório de Bioinorgânica e Cristalografia (LABINC), Departamento de Química; Universidade Federal de Santa Catarina; 88040-900 Florianópolis SC Brazil
| | - Marcos Paulo da Silva
- Laboratório de Bioinorgânica e Cristalografia (LABINC), Departamento de Química; Universidade Federal de Santa Catarina; 88040-900 Florianópolis SC Brazil
| | - Ademir Neves
- Laboratório de Bioinorgânica e Cristalografia (LABINC), Departamento de Química; Universidade Federal de Santa Catarina; 88040-900 Florianópolis SC Brazil
| | - Leandro H.Z. Cocca
- Instituto de Física de São Carlos; Universidade de São Paulo, CP 369 13560-970 São Carlos SP Brazil
| | - Leonardo De Boni
- Instituto de Física de São Carlos; Universidade de São Paulo, CP 369 13560-970 São Carlos SP Brazil
| | - Carolina Hahn da Silveira
- Departamento de Química, Universidade Federal de Santa Maria - UFSM, 97105-900 Santa Maria RS Brazil
| | - Bernardo A. Iglesias
- Departamento de Química, Universidade Federal de Santa Maria - UFSM, 97105-900 Santa Maria RS Brazil
| |
Collapse
|
41
|
De Simone BC, Mazzone G, Russo N, Sicilia E, Toscano M. Computational Investigation of the Influence of Halogen Atoms on the Photophysical Properties of Tetraphenylporphyrin and Its Zinc(II) Complexes. J Phys Chem A 2018; 122:2809-2815. [PMID: 29457905 DOI: 10.1021/acs.jpca.8b00414] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
How the tetraphenylporphyrin (TPP) and its zinc(II) complexes (ZnTPP) photophysical properties (absorption energies, singlet-triplet energy gap and spin-orbit coupling contributions) can change due to the presence of an increasing number of heavy atoms in their molecular structures has been investigated by means of density functional theory and its time-dependent formulation. Results show that the increase of the atomic mass of the substituted halogen strongly enhances the spin-orbit coupling values, allowing a more efficient singlet-triplet intersystem crossing. Different deactivation channels have been considered and rationalized on the basis of El-Sayed and Kasha rules. Most of the studied compounds possess the appropriate properties to generate cytotoxic singlet molecular oxygen (1Δg) and, consequently, they can be proposed as photosensitizers in photodynamic therapy.
Collapse
Affiliation(s)
- Bruna C De Simone
- Dipartimento di Chimica e Tecnologie Chimiche , Università della Calabria , 87036 Rende , Cosenza , Italy
| | - Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche , Università della Calabria , 87036 Rende , Cosenza , Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche , Università della Calabria , 87036 Rende , Cosenza , Italy
| | - Emilia Sicilia
- Dipartimento di Chimica e Tecnologie Chimiche , Università della Calabria , 87036 Rende , Cosenza , Italy
| | - Marirosa Toscano
- Dipartimento di Chimica e Tecnologie Chimiche , Università della Calabria , 87036 Rende , Cosenza , Italy
| |
Collapse
|
42
|
Syntheses and photophysical properties of diaminotetraphenylporphyrins and their corresponding polyimides. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.09.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Biellmann T, Galanti A, Boixel J, Wytko JA, Guerchais V, Samorì P, Weiss J. Fluorescence Commutation and Surface Photopatterning with Porphyrin Tetradithienylethene Switches. Chemistry 2017; 24:1631-1639. [DOI: 10.1002/chem.201704222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Thomas Biellmann
- Institut de Chimie de Strasbourg; UMR 7177; CNRS-Université de Strasbourg; 4 rue Blaise Pascal 67000 Strasbourg France
| | - Agostino Galanti
- University of Strasbourg; CNRS; ISIS UMR 7006; 8 allée Gaspard Monge 67000 Strasbourg France
| | - Julien Boixel
- Institut des Sciences Chimiques de Rennes, UMR 6226 ; CNRS-Université de Rennes 1; 263 avenue du Général Leclerc 35042 Rennes Cedex France
| | - Jennifer A. Wytko
- Institut de Chimie de Strasbourg; UMR 7177; CNRS-Université de Strasbourg; 4 rue Blaise Pascal 67000 Strasbourg France
| | - Véronique Guerchais
- Institut des Sciences Chimiques de Rennes, UMR 6226 ; CNRS-Université de Rennes 1; 263 avenue du Général Leclerc 35042 Rennes Cedex France
| | - Paolo Samorì
- University of Strasbourg; CNRS; ISIS UMR 7006; 8 allée Gaspard Monge 67000 Strasbourg France
| | - Jean Weiss
- Institut de Chimie de Strasbourg; UMR 7177; CNRS-Université de Strasbourg; 4 rue Blaise Pascal 67000 Strasbourg France
| |
Collapse
|
44
|
Gut A, Łapok Ł, Drelinkiewicz D, Pędziński T, Marciniak B, Nowakowska M. Visible-Light Photoactive, Highly Efficient Triplet Sensitizers Based on Iodinated Aza-BODIPYs: Synthesis, Photophysics and Redox Properties. Chem Asian J 2017; 13:55-65. [PMID: 29120080 DOI: 10.1002/asia.201701485] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/08/2017] [Indexed: 12/21/2022]
Abstract
A series of novel iodinated NO2 -substituted aza-BODIPYs have been synthesized and characterized. Highly desirable photophysical and photochemical properties were induced in NO2 -substituted aza-BODIPYs by iodination of the pyrrole rings. In particular, high values of singlet oxygen quantum yields (ΦΔ ) ranging from 0.79 to 0.85 were measured. The photooxygenation process proceeds via a Type II mechanism under the experimental conditions applied. The compounds studied exhibited an absorption band within the so-called "therapeutic window", with λmax located between 645 nm to 672 nm. They were non-fluorescent at room temperature with excited singlet-state lifetimes within the picosecond range as measured by femtosecond transient absorption. Nanosecond laser flash photolysis experiments revealed T1 →Tn absorption spanning from ca. 400 nm to ca. 500 nm and allowed determination of the triplet-state lifetimes. The estimated triplet lifetimes (τT ) in deaerated acetonitrile ranged between 2.74 μs and 3.50 μs. As estimated by CV/DPV measurements, all iodinated aza-BODIPYs studied exhibited one irreversible oxidation and two quasi-reversible reductions processes. Estimation of the EHOMO gave the value of -6.06 to -6.26 eV while the ELUMO was found to be located at ca. -4.6 eV. Thermogravimetric (TGA) analysis revealed that iodinated aza-BODIPYs were stable up to approximately 300 °C. All compounds studied exhibit high photostability in toluene solution.
Collapse
Affiliation(s)
- Arkadiusz Gut
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Łukasz Łapok
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Dawid Drelinkiewicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Tomasz Pędziński
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, 89b Umultowska, 61-614, Poznań, Poland
| | - Bronisław Marciniak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, 89b Umultowska, 61-614, Poznań, Poland
| | - Maria Nowakowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| |
Collapse
|
45
|
Pucelik B, Paczyński R, Dubin G, Pereira MM, Arnaut LG, Dąbrowski JM. Properties of halogenated and sulfonated porphyrins relevant for the selection of photosensitizers in anticancer and antimicrobial therapies. PLoS One 2017; 12:e0185984. [PMID: 29016698 PMCID: PMC5634595 DOI: 10.1371/journal.pone.0185984] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/24/2017] [Indexed: 01/10/2023] Open
Abstract
The impact of substituents on the photochemical and biological properties of tetraphenylporphyrin-based photosensitizers for photodynamic therapy of cancer (PDT) as well as photodynamic inactivation of microorganisms (PDI) was examined. Spectroscopic and physicochemical properties were related with therapeutic efficacy in PDT of cancer and PDI of microbial cells in vitro. Less polar halogenated, sulfonamide porphyrins were most readily taken up by cells compared to hydrophilic and anionic porphyrins. The uptake and PDT of a hydrophilic porphyrin was significantly enhanced with incorporation in polymeric micelles (Pluronic L121). Photodynamic inactivation studies were performed against Gram-positive (S. aureus, E. faecalis), Gram-negative bacteria (E. coli, P. aeruginosa, S. marcescens) and fungal yeast (C. albicans). We observed a 6 logs reduction of S. aureus after irradiation (10 J/cm2) in the presence of 20 μM of hydrophilic porphyrin, but this was not improved with incorporation in Pluronic L121. A 2–3 logs reduction was obtained for E. coli using similar doses, and a decrease of 3–4 logs was achieved for C. albicans. Rational substitution of tetraphenylporphyrins improves their photodynamic properties and informs on strategies to obtain photosensitizers for efficient PDT and PDI. However, the design of the photosensitizers must be accompanied by the development of tailored drug formulations.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, Poland
| | - Robert Paczyński
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grzegorz Dubin
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Luis G. Arnaut
- Chemistry Department, University of Coimbra, Coimbra, Portugal
| | - Janusz M. Dąbrowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, Poland
- * E-mail:
| |
Collapse
|
46
|
Potocny AM, Pistner AJ, Yap GPA, Rosenthal J. Electrochemical, Spectroscopic, and 1O 2 Sensitization Characteristics of Synthetically Accessible Linear Tetrapyrrole Complexes of Palladium and Platinum. Inorg Chem 2017; 56:12703-12711. [PMID: 28991441 DOI: 10.1021/acs.inorgchem.7b00796] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The synthesis, electrochemistry, and photophysical characterization of a 10,10-dimethyl-5,15-bis(pentafluorophenyl)biladiene (DMBil1) linear tetrapyrrole supporting PdII or PtII centers is presented. Both of these nonmacrocyclic tetrapyrrole platforms are robust and easily prepared via modular routes. X-ray diffraction experiments reveal that the Pd[DMBil1] and Pt[DMBil1] complexes adopt similar structures and incorporate a single PdII and PtII center, respectively. Additionally, electrochemical experiments revealed that both Pd[DMBil1] and Pt[DMBil1] can undergo two discrete oxidation and reduction processes. Spectroscopic experiments carried out for Pd[DMBil1] and Pt[DMBil1] provide further understanding of the electronic structure of these systems. Both complexes strongly absorb light in the UV-visible region, especially in the 350-600 nm range. Both Pd[DMBil1] and Pt[DMBil1] are luminescent under a nitrogen atmosphere. Upon photoexcitation of Pd[DMBil1], two emission bands are observed; fluorescence is detected from ∼500-700 nm and phosphorescence from ∼700-875 nm. Photoexcitation of Pt[DMBil1] leads only to phosphorescence, presumably due to enhanced intersystem crossing imparted by the heavier PtII center. Phosphorescence from both complexes is quenched under air due to energy transfer from the excited triplet state to ground state oxygen. Accordingly, irradiation with light of λ ≥ 500 nm prompts Pd[DMBil1] and Pt[DMBil1] to photosensitize the generation of 1O2 (singlet oxygen) with impressive quantum yields of 80% and 78%, respectively. The synthetic accessibility of these complexes coupled with their ability to efficiently photosensitize 1O2 may make them attractive platforms for development of new agents for photodynamic therapy.
Collapse
Affiliation(s)
- Andrea M Potocny
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Allen J Pistner
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Joel Rosenthal
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| |
Collapse
|
47
|
Wang X, Thiel I, Fedorov A, Copéret C, Mougel V, Fontecave M. Site-isolated manganese carbonyl on bipyridine-functionalities of periodic mesoporous organosilicas: efficient CO 2 photoreduction and detection of key reaction intermediates. Chem Sci 2017; 8:8204-8213. [PMID: 29568468 PMCID: PMC5857931 DOI: 10.1039/c7sc03512h] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/08/2017] [Indexed: 01/30/2023] Open
Abstract
Well-defined and fully characterized supported CO2 reduction catalysts are developed through the immobilization of an earth abundant Mn complex on bpy-PMO (bpy = bipyridine; PMO = Periodic Mesoporous Organosilica) platform materials. The resulting isolated Mn-carbonyl centers coordinated to bipyridine functionalities of bpy-PMO catalyze the photoreduction of CO2 into CO and HCOOH with up to ca. 720 TON in the presence of BIH (1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzoimidazole), used as the electron donor. A broad range of photochemical conditions (varying solvents, sacrificial electron donors, photosensitizer type and concentration, catalyst loading as well as the Mn loading within the PMO) are investigated, demonstrating high activity even for simple organic dyes and Zn-porphyrin as photosensitizers. Spectroscopic and catalytic data also indicate that site isolation of the Mn complex in the PMO framework probably inhibits bimolecular processes such as dimerisation and disproportionation and thus allows the spectroscopic observation of key reaction intermediates, namely the two meridional isomers of the carbonyl complexes and the bipyridine radical anion species.
Collapse
Affiliation(s)
- Xia Wang
- Laboratoire de Chimie des Processus Biologiques , UMR 8229 , CNRS , Collège de France , Université P. et M. Curie , PSL Research University , 11 Place Marcelin Berthelot , 75231 Paris Cedex 05 , France . ;
| | - Indre Thiel
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog-Weg 1-5 , CH-8093 Zürich , Switzerland
| | - Alexey Fedorov
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog-Weg 1-5 , CH-8093 Zürich , Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog-Weg 1-5 , CH-8093 Zürich , Switzerland
| | - Victor Mougel
- Laboratoire de Chimie des Processus Biologiques , UMR 8229 , CNRS , Collège de France , Université P. et M. Curie , PSL Research University , 11 Place Marcelin Berthelot , 75231 Paris Cedex 05 , France . ;
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques , UMR 8229 , CNRS , Collège de France , Université P. et M. Curie , PSL Research University , 11 Place Marcelin Berthelot , 75231 Paris Cedex 05 , France . ;
| |
Collapse
|
48
|
Solventless Coupling of Epoxides and CO2 in Compressed Medium Catalysed by Fluorinated Metalloporphyrins. Catalysts 2017. [DOI: 10.3390/catal7070210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
49
|
Metal Atom Effect on the Photophysical Properties of Mg(II), Zn(II), Cd(II), and Pd(II) Tetraphenylporphyrin Complexes Proposed as Possible Drugs in Photodynamic Therapy. Molecules 2017; 22:molecules22071093. [PMID: 28665328 PMCID: PMC6152236 DOI: 10.3390/molecules22071093] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/22/2017] [Accepted: 06/28/2017] [Indexed: 12/24/2022] Open
Abstract
The effects of Mg, Zn, Cd, and Pd dications on the photophysical properties of the tetraphenylporphyrin ligand have been explored, considering the corresponding complexes and by using the density functional theory and its time-dependent extension. Results show that absorption wavelengths do not change significantly when the metal ion changes contrary to what happens to the singlet–triplet energy gaps (ΔES−T) and the spin-orbit matrix elements 〈ΨSn|H^so|ΨTm〉. The most probable intersystem spin crossing (ISC) pathways for the population of the lowest triplet states have been explored. Our findings can contribute to rationalize the available experimental data and promote the potential therapeutic use of these compounds as photosensitizers in photodynamic therapy (PDT).
Collapse
|
50
|
Schaberle FA, Abreu AR, Gonçalves NPF, Sá GFF, Pereira MM, Arnaut LG. Ultrafast Dynamics of Manganese(III), Manganese(II), and Free-Base Bacteriochlorin: Is There Time for Photochemistry? Inorg Chem 2017; 56:2677-2689. [PMID: 28206747 DOI: 10.1021/acs.inorgchem.6b02871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Manganese(III) and manganese(II) complexes of halogenated sulfonamide tetraphenylbacteriochlorins were prepared for the first time via a transmetalation reaction and shown to be stable at room temperature. The behavior of the electronic states of the paramagnetic complexes is remarkably different from those of the metal-free bacteriochlorins or diamagnetic metallobacteriochlorins. The Mn3+ complex exhibits eight electronic transitions between different states from 300 to 1100 nm, with a very prominent band (molar absorption coefficient of ca. 50000 M-1 cm-1) at 829 nm. Ultrafast transient absorption showed the formation of an excited singquintet state that decays to a tripquintet state with a femtosecond lifetime. The tripquintet state decays in 5 ps, yielding a tripseptet state with a 570 ps lifetime. The electronic absorption of the Mn2+ complex more closely resembles those of diamagnetic metallobacteriochlorins, but the longest decay lifetime is only ca. 8 ps. The intense photoacoustic waves generated with near-infrared excitation suggest the use of these complexes in photoacoustic tomography.
Collapse
Affiliation(s)
- Fabio A Schaberle
- Luzitin SA, Ed. Bluepharma , S. Martinho do Bispo, 3045-016 Coimbra, Portugal.,Chemistry Department, University of Coimbra , 3004-535 Coimbra, Portugal
| | - Artur R Abreu
- Luzitin SA, Ed. Bluepharma , S. Martinho do Bispo, 3045-016 Coimbra, Portugal
| | - Nuno P F Gonçalves
- Luzitin SA, Ed. Bluepharma , S. Martinho do Bispo, 3045-016 Coimbra, Portugal
| | - Gonçalo F F Sá
- LaserLeap SA, IPN , R. Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Mariette M Pereira
- Chemistry Department, University of Coimbra , 3004-535 Coimbra, Portugal
| | - Luís G Arnaut
- Chemistry Department, University of Coimbra , 3004-535 Coimbra, Portugal
| |
Collapse
|