1
|
Feng X, Guo J, An G, Wu Y, Liu Z, Meng B, He N, Zhao X, Chen S, Zhu Y, Xia J, Li X, Yu Z, Li R, Ren G, Chen J, Wu M, He Y, Qiu L, Zhou J, Zhou W. Genetic Aberrations and Interaction of NEK2 and TP53 Accelerate Aggressiveness of Multiple Myeloma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104491. [PMID: 35088582 PMCID: PMC8948659 DOI: 10.1002/advs.202104491] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/11/2022] [Indexed: 05/31/2023]
Abstract
It has been previously shown that (never in mitosis gene A)-related kinase 2 (NEK2) is upregulated in multiple myeloma (MM) and contributes to drug resistance. However, the mechanisms behind this upregulation remain poorly understood. In this study, it is found that amplification of NEK2 and hypermethylation of distal CpG islands in its promoter correlate strongly with increased NEK2 expression. Patients with NEK2 amplification have a poor rate of survival and often exhibit TP53 deletion, which is an independent prognostic factor in MM. This combination of TP53 knockout and NEK2 overexpression induces asymmetric mitosis, proliferation, drug resistance, and tumorigenic behaviors in MM in vitro and in vivo. In contrast, delivery of wild type p53 and suppression of NEK2 in TP53-/- MM cell lines inhibit tumor formation and enhance the effect of Bortezomib against MM. It is also discovered that inactivating p53 elevates NEK2 expression genetically by inducing NEK2 amplification, transcriptionally by increased activity of cell cycle-related genes like E2F8 and epigenetically by upregulating DNA methyltransferases. Dual defects of TP53 and NEK2 may define patients with the poorest outcomes in MM with p53 inactivation, and NEK2 may serve as a novel therapeutic target in aggressive MM with p53 abnormalities.
Collapse
Affiliation(s)
- Xiangling Feng
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South University110 # Xiangya streetChangshaHunan410028China
- Xiang Ya School of Public HealthCentral South UniversityChangshaHunan410028China
| | - Jiaojiao Guo
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South University110 # Xiangya streetChangshaHunan410028China
| | - Gang An
- State Key Laboratory of Experimental HematologyInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Science & Peking Union Medical CollegeTianjin300041China
| | - Yangbowen Wu
- Xiang Ya School of Public HealthCentral South UniversityChangshaHunan410028China
| | - Zhenhao Liu
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Shanghai Center for Bioinformation TechnologyShanghai201203China
| | - Bin Meng
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South University110 # Xiangya streetChangshaHunan410028China
| | - Nihan He
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
| | - Xinying Zhao
- Xiang Ya School of Public HealthCentral South UniversityChangshaHunan410028China
| | - Shilian Chen
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
| | - Yinghong Zhu
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South University110 # Xiangya streetChangshaHunan410028China
| | - Jiliang Xia
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South University110 # Xiangya streetChangshaHunan410028China
| | - Xin Li
- The third Xiangya Hospital of Central South UniversityChangshaHunan410013China
| | - Zhiyong Yu
- Department of PathologyChangsha eighth hospitalChangshaHunan410199China
| | - Ruixuan Li
- The third Xiangya Hospital of Central South UniversityChangshaHunan410013China
| | - Guofeng Ren
- Xiang Ya School of Public HealthCentral South UniversityChangshaHunan410028China
| | - Jihua Chen
- Xiang Ya School of Public HealthCentral South UniversityChangshaHunan410028China
| | - Minghua Wu
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South University110 # Xiangya streetChangshaHunan410028China
| | - Yanjuan He
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
| | - Lugui Qiu
- State Key Laboratory of Experimental HematologyInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Science & Peking Union Medical CollegeTianjin300041China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental HematologyInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Science & Peking Union Medical CollegeTianjin300041China
| | - Wen Zhou
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South University110 # Xiangya streetChangshaHunan410028China
| |
Collapse
|
2
|
p53 abnormalities and potential therapeutic targeting in multiple myeloma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:717919. [PMID: 25028664 PMCID: PMC4083709 DOI: 10.1155/2014/717919] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/20/2014] [Indexed: 01/02/2023]
Abstract
p53 abnormalities are regarded as an independent prognostic marker in multiple myeloma. Patients harbouring this genetic anomaly are commonly resistant to standard therapy. Thus, various p53 reactivating agents have been developed in order to restore its tumour suppressive abilities. Small molecular compounds, especially, have gained popularity in its efficacy against myeloma cells. For instance, promising preclinical results have steered both nutlin-3 and PRIMA-1 into phase I/II clinical trials. This review summarizes different modes of p53 inactivation in myeloma and highlights the current p53-based therapies that are being utilized in the clinic. Finally, we discuss the potential and promise that the novel small molecules possess for clinical application in improving the treatment outcome of myeloma.
Collapse
|
3
|
Zhao J, Lu Y, Shen HM. Targeting p53 as a therapeutic strategy in sensitizing TRAIL-induced apoptosis in cancer cells. Cancer Lett 2011; 314:8-23. [PMID: 22030255 DOI: 10.1016/j.canlet.2011.09.040] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 09/18/2011] [Accepted: 09/28/2011] [Indexed: 01/10/2023]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has been intensively studied as a cancer therapeutic agent due to its unique ability to induce apoptosis in malignant cells but not in normal cells. However, as more human cancer cells are reported to be resistant to TRAIL treatment, it is important to develop new therapeutic strategies to overcome this resistance. p53 is an important tumor suppressor that is widely involved in cellular responses to various stresses. In this mini-review, we aim to provide an overview of the intricate relationship between p53 and the TRAIL-mediated apoptosis pathway, and to summarize the current approaches of targeting p53 as a therapeutic strategy to sensitize TRAIL-induced apoptosis in human cancer cells. Although in some cases TRAIL kills cancer cells in a p53-independent manner, it is believed that in cancers with wild-type and functional p53, targeting p53 may be an important strategy for overcoming TRAIL-resistance in cancer therapy.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Epidemiology and Public Health, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, Republic of Singapore
| | | | | |
Collapse
|
4
|
Oncolytic virotherapy for multiple myeloma: past, present, and future. BONE MARROW RESEARCH 2011; 2011:632948. [PMID: 22046569 PMCID: PMC3199974 DOI: 10.1155/2011/632948] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 03/01/2011] [Indexed: 12/27/2022]
Abstract
Multiple myeloma (MM) is a B-cell malignancy that is currently felt to be incurable. Despite recently approved novel targeted treatments such as lenalidomide and bortezomib, most MM patients' relapse is emphasizing the need for effective and well-tolerated therapies for this deadly disease. The use of oncolytic viruses has garnered significant interest as cancer therapeutics in recent years, and are currently under intense clinical investigation. Both naturally occurring and engineered DNA and RNA viruses have been investigated preclinically as treatment modalities for several solid and hematological malignancies. Presently, only a genetically modified measles virus is in human clinical trials for MM. The information obtained from this and other future clinical trials will guide clinical application of oncolytic viruses as anticancer agents for MM. This paper provides a timely overview of the history of oncolytic viruses for the treatment of MM and future strategies for the optimization of viral therapy for this disease.
Collapse
|
5
|
Abstract
Mutations in the p53 gene are the most frequent genetic alterations in human tumours, occurring in approximately 50% of all cancers. The p53 protein is pivotal in maintaining genetic integrity after DNA damage, and alterations in the p53 pathway, including mutations in the p53 gene, greatly increase the probability of tumour formation. Gene therapy using adenoviral p53 has emerged as a novel treatment option, with the potential to be safe and effective in a wide range of cancer types. INGN 201 (Ad5CMV-p53, Advexin), a replication-impaired adenoviral vector that carries the p53 gene, has been evaluated in both preclinical and clinical trials. Results show that Advexin is a well-tolerated and efficacious treatment for numerous cancers, both as monotherapy and in combination with radiation and/or chemotherapy agents. In addition, there is now data to support the use of Advexin in cancer immunotherapy.
Collapse
Affiliation(s)
- Dmitry I Gabrilovich
- University of South Florida, H. Lee Moffitt Cancer Center and the Department of Interdisciplinary Oncology, MRC 2067, 12902 Magnolia Dr., Tampa, FL 33612, USA.
| |
Collapse
|
6
|
Ren SP, Wu CT, Huang WR, Lu ZZ, Jia XX, Wang L, Lao MF, Wang LS. Adenoviral-mediated transfer of human wild-type p53, GM-CSF and B7-1 genes results in growth suppression and autologous anti-tumor cytotoxicity of multiple myeloma cells in vitro. Cancer Immunol Immunother 2006; 55:375-85. [PMID: 16001164 PMCID: PMC11030571 DOI: 10.1007/s00262-005-0011-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 04/09/2005] [Indexed: 10/25/2022]
Abstract
Multiple myeloma (MM) remains incurable despite the use of high-dose chemotherapy and stem cell transplantation. However, immunotherapy is expected to offer long-term disease control, or even possibly a cure. We have previously demonstrated the suppressive effect of a recombinant adenovirus carrying human wild-type p53, granulocyte-macrophage colony-stimulating factor, and B7-1 genes (Ad-p53/GM-CSF/B7-1) on the growth of laryngeal cancer cells. In the present study, we evaluated the effects of an Ad-p53/GM-CSF/B7-1-modified myeloma cell vaccine strategy aimed to induce apoptosis and to augment the immunogenicity of MM cells. Both MM cell lines and purified primary myeloma cells were infected with Ad-p53/GM-CSF/B7-1. High expression levels of these three genes were confirmed separately by Western blot, enzyme-linked immunosorbent assay (ELISA), and flow cytometry. When wild-type p53, GM-CSF and B7-1 genes were introduced, the growth of MM cells was inhibited via enhanced apoptosis and the immunogenicity of tumor cells was augmented. The combinatorial effect of these three genes on inducing cytotoxic T lymphocytes (CTLs) was more evident than that of p53 individually or any combinations of two (p53 plus GM-CSF or p53 plus B7-1). Furthermore, significant proliferation of autologous peripheral blood lymphocytes (PBLs) and specific cytotoxicity against autologous primary MM cells were induced in vitro. These results suggest that myeloma cell vaccination co-transferred with p53, GM-CSF and B7-1 genes may be a promising immunotherapeutic approach against MM.
Collapse
Affiliation(s)
- Su-Ping Ren
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850 People’s Republic of China
| | - Chu-Tse Wu
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850 People’s Republic of China
| | - Wen-Rong Huang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850 People’s Republic of China
| | - Zhuo-zhuang Lu
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850 People’s Republic of China
| | - Xiang-Xu Jia
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850 People’s Republic of China
| | - Lan Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850 People’s Republic of China
| | - Miao-Fen Lao
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850 People’s Republic of China
| | - Li-Sheng Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850 People’s Republic of China
| |
Collapse
|
7
|
Sauthoff H, Pipiya T, Chen S, Heitner S, Cheng J, Huang YQ, Rom WN, Hay JG. Modification of the p53 transgene of a replication-competent adenovirus prevents mdm2- and E1b-55kD-mediated degradation of p53. Cancer Gene Ther 2006; 13:686-95. [PMID: 16470212 DOI: 10.1038/sj.cgt.7700936] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Clinical efficacy of adenovirus-mediated cancer gene therapy has been limited thus far. To improve its oncolytic effect, a replication-competent adenoviral vector was previously constructed to express high levels of p53 at a late time point in the viral life cycle. p53 expression from this vector improved tumor cell killing and viral spread in vitro. However, p53 function is antagonized by cellular mdm2 and adenoviral E1b-55kD, both of which are known to bind to and inactivate p53. Therefore, a new vector (Adp53W23S) that expresses a modified p53 transgene, which does not bind to E1b-55kd and mdm2, was constructed. The modified p53 protein was demonstrated to have a substantially prolonged half-life, and its localization was predominantly nuclear. Viral replication was unaffected by expression of the modified p53 and cancer cell killing was improved in vitro. However, in a xenograft model, efficacy was not significantly different from control virus. In conclusion, expression of a degradation-resistant p53 transgene late in the life cycle of a replication-competent adenovirus improves p53 stability and cancer cell killing in vitro. However, other factors, such as the adenoviral E1b-19kD and E1a proteins, which oppose p53 function, and limitations to viral spread need to be addressed to further improve in vivo efficacy.
Collapse
Affiliation(s)
- H Sauthoff
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, New York University School of Medicine, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Liu Q, Gazitt Y. Potentiation of dexamethasone-, paclitaxel-, and Ad-p53-induced apoptosis by Bcl-2 antisense oligodeoxynucleotides in drug-resistant multiple myeloma cells. Blood 2003; 101:4105-14. [PMID: 12521996 DOI: 10.1182/blood-2002-10-3067] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Overexpression of Bcl-2 in myeloma cells results in resistance to drugs such as dexamethasone (DEX), adenovirus-mediated delivery of p53 (Ad-p53), and paclitaxel (TAX), which work through the intrinsic apoptotic pathway. Bcl-2 antisense oligodeoxynucleotides (Bcl-2-ASO) have been shown to induce apoptosis in cancer cells, as a single agent or, better, in combination with chemotherapy. We hypothesized that down-regulation of Bcl-2 by Bcl-2-ASO will sensitize drug-resistant myeloma cells to undergo apoptosis. In this paper we report a detailed time/dose study of the effect of Bcl-2-ASO on myeloma cells with varying levels of Bcl-2. Treatment of myeloma cells expressing relatively low levels of Bcl-2 with Bcl-2-ASO resulted in a substantial apoptosis concomitant with a substantial depletion of Bcl-2 protein. Maximal apoptosis was observed at 5 to 10 microg/mL Bcl-2-ASO, following 4 days of treatment. Down-regulation of Bcl-2 and apoptosis were time and dose dependent and were sequence specific. In these cell lines, apoptosis was accompanied by activation of caspase-9 and caspase-3 and by release of cytochrome c to the cytosol. In contrast, high Bcl-2-expressing myeloma cells were practically resistant to Bcl-2-ASO. Most important, however, pretreatment of myeloma cells expressing high levels of Bcl-2 with Bcl-2-ASO increased the extent of DEX-, TAX-, and Ad-p53-induced apoptosis from 10%-20% to 70%-90%. Increased apoptosis was accompanied by additional decrease in Bcl-2 protein. Similar results for down-regulation of Bcl-2 and apoptosis were obtained with freshly isolated myeloma cells. These data support development of clinical trials with combinations of Bcl-2-ASO and DEX, TAX, or Ad-p53 in the treatment of refractory myeloma patients.
Collapse
Affiliation(s)
- Qun Liu
- University of Texas Health Science Center, San Antonio, USA
| | | |
Collapse
|
9
|
Liu Q, Hilsenbeck S, Gazitt Y. Arsenic trioxide-induced apoptosis in myeloma cells: p53-dependent G1 or G2/M cell cycle arrest, activation of caspase-8 or caspase-9, and synergy with APO2/TRAIL. Blood 2003; 101:4078-87. [PMID: 12531793 DOI: 10.1182/blood-2002-10-3231] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Arsenic trioxide (ATO) has been shown to induce differentiation and apoptosis in acute promyelocytic leukemia (APL) cells concomitant with down-regulation of the PML-RARalpha fusion protein, a product of the t(15:17) translocation characteristic of APL leukemic cells. However, ATO is also a potent inducer of apoptosis in a number of other cancer cells lacking the t(15:17) translocation. The exact mechanism of ATO-induced apoptosis in these cells is not yet clear. We tested the effect of ATO on 7 myeloma cell lines with varying p53 status and report that in cells with mutated p53, ATO induced rapid and extensive (more than 90%) apoptosis in a time- and dose-dependent manner concomitant with arrest of cells in G(2)/M phase of the cell cycle. Myeloma cells with wild-type (wt) p53 were relatively resistant to ATO with maximal apoptosis of about 40% concomitant with partial arrest of cells in G(1) and up-regulation of p21. The use of caspase blocking peptides, fluorescence-tagged caspase-specific substrate peptides, and Western immunoblotting confirmed the involvement of primarily caspase-8 and -3 in ATO-induced apoptosis in myeloma cells with mutated p53 and primarily caspase-9 and -3 in cells expressing wt p53. We also observed up-regulation by ATO of R1 and R2 APO2/TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) receptors. Most important, however, we observed a synergy between ATO and APO2/TRAIL in the induction of apoptosis in the partially resistant myeloma cell lines and in myeloma cells freshly isolated from myeloma patients. Our results justify the use of the combination of these 2 drugs in clinical setting in myeloma patients.
Collapse
Affiliation(s)
- Qun Liu
- University of Texas Health Science Center, San Antonio, TX, USA
| | | | | |
Collapse
|
10
|
Turturro F. Recombinant adenovirus-mediated cytotoxic gene therapy of lymphoproliferative disorders: is CAR important for the vector to ride? Gene Ther 2003; 10:100-4. [PMID: 12571638 DOI: 10.1038/sj.gt.3301842] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The literature has seen an incredible booming of publications related to the use of recombinant adenoviruses as therapeutic tools for lymphoproliferative disorders over the last decade. Several approaches of adenovirus-mediated gene expression have been used to transfect cell lines that are derived from lymphoid tumors and would have otherwise been refractory to other transfection methods. The identification of high-affinity receptor for human adenoviruses serotype 2 and 5, the coxsackie-adenovirus receptor (CAR), has raised the question about its relevance for the efficacy of recombinant adenovirus-mediated gene therapy. We review published studies that have analyzed the use of recombinant adenovirus vectors expressing cytotoxic genes for gene therapy in lymphomas, chronic lymphocytic leukemia and multiple myeloma. For simplicity, we group all these diseases under the term lymphoproliferative disorders. We analyze the use of recombinant adenovirus-mediated cytotoxicity by assessing the importance of the biochemical and intrinsic signaling pathways interacting with the products of the exogenous viral-mediated expression. Ultimately, we discuss studies that have been finalized to by-pass the limitations of the biodistribution of CAR by modifying or targeting adenovirus to other membrane proteins in cells derived from lymphoproliferative disorders.
Collapse
Affiliation(s)
- F Turturro
- Department of Medicine, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| |
Collapse
|
11
|
Sauthoff H, Pipiya T, Heitner S, Chen S, Norman RG, Rom WN, Hay JG. Late expression of p53 from a replicating adenovirus improves tumor cell killing and is more tumor cell specific than expression of the adenoviral death protein. Hum Gene Ther 2002; 13:1859-71. [PMID: 12396618 DOI: 10.1089/104303402760372954] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gene transfer of p53 induces cell death in most cancer cells, and replication-defective adenoviral vectors expressing p53 are being evaluated in clinical trials. However, low transduction efficiency limits the efficacy of replication-defective vector systems for cancer therapy. The use of replication-competent vectors for gene delivery may have several advantages, holding the potential to multiply and spread the therapeutic agent after infection of only a few cells. However, expression of a transgene may adversely affect viral replication. We have constructed a replicating adenoviral vector (Adp53rc) that expresses high levels of p53 at a late time point in the viral life cycle and also contains a deletion of the adenoviral death protein (ADP). Adp53rc-infected cancer cells demonstrated high levels of p53 expression in parallel with the late expression pattern of the adenoviral fiber protein. p53 expression late in the viral life cycle did not impair effective virus propagation. Survival of several lung cancer cell lines was significantly diminished after infection with Adp53rc, compared with an identical p53-negative control virus. p53 expression also improved virus release and spread. Interestingly, p53 was more cytotoxic than the ADP in cancer cells but less cytotoxic than the ADP in normal cells. In conclusion, late expression of p53 from a replicating virus improves tumor cell killing and viral spread without impairing viral replication. In addition, in combination with a deletion of the ADP, specificity of tumor cell killing is improved.
Collapse
Affiliation(s)
- Harald Sauthoff
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Bashey A, Cantwell MJ, Kipps TJ. Adenovirus transduction to effect CD40 signalling improves the immune stimulatory activity of myeloma cells. Br J Haematol 2002; 118:506-13. [PMID: 12139739 DOI: 10.1046/j.1365-2141.2002.03603.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neoplastic plasma cells from patients with myeloma fail to stimulate an effective anti-myeloma immune response, which may be in part due to their deficient expression of immune accessory molecules. Attempting to alter this, we infected myeloma cell lines and patient-derived primary myeloma cells with an adenovirus encoding CD154 (Ad-CD154). Myeloma cells were made to express the CD154 transgene at multiplicity of infection (MOI) between 10 and 1000. Furthermore, infection of CD40(positive) myeloma cells with Ad-CD154, but not an adenovirus encoding an irrelevant transgene, beta-galactosidase (Ad-LacZ), induced enhanced expression of immune accessory molecules, such as CD54, HLA-DR and CD70. In addition, Ad-CD154-infected myeloma cells could activate bystander CD40(positive) antigen-presenting cells to express immune accessory molecules. Consequently, Ad-CD154 infected myeloma cells stimulated proliferation in allogeneic mixed lymphocyte reactions (MLR). Finally, co-infection of CD40(negative) myeloma cells with Ad-CD154 and an adenovirus encoding CD40 (Ad-CD40) induced expression of immune accessory molecules and enhanced the MLR stimulatory capacity of transduced myeloma cells. Collectively, these results indicate that infection of myeloma cells with Ad-CD154 or Ad-CD154/Ad-CD40 can induce changes in myeloma cells that enhance their ability to induce cellular immune activation. As such, this approach may have potential application for immune therapy of patients with this disease.
Collapse
Affiliation(s)
- Asad Bashey
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0663, USA
| | | | | |
Collapse
|
13
|
Tai YT, Podar K, Gupta D, Lin B, Young G, Akiyama M, Anderson KC. CD40 activation induces p53-dependent vascular endothelial growth factor secretion in human multiple myeloma cells. Blood 2002; 99:1419-27. [PMID: 11830495 DOI: 10.1182/blood.v99.4.1419] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It was previously demonstrated that p53 status in human multiple myeloma (MM) cells regulates distinct cell cycle responses to CD40 activation. In this study, the production of vascular endothelial growth factor (VEGF) and migration in MM cells triggered by CD40 activation was examined, and the influence of p53 status in regulating this process was determined. Two human MM cell lines that express wild-type p53 at permissive (28 degrees C) and mutant p53 at restrictive (37 degrees C) temperatures were used as a model system. CD40 activation induces a 4-fold (RPMI 8226) and a 6-fold (SV) increase in VEGF transcripts, respectively, under restrictive, but not permissive, temperatures. VEGF expression is significantly induced after CD40 activation in patient MM cells expressing mutant p53. Increased VEGF transcripts result in increased protein and secretion levels, as evidenced by immunoblotting and enzyme-linked immunosorbent assay. In a double-chamber transmigration assay, CD40 activation of MM cells induced a 3-fold (RPMI 8226) and a 5-fold (SV) increase in migration under restrictive, but not permissive, conditions. A 2- to 8-fold induction in migration of patient MM cells expressing mutant p53 was similarly observed. Transduction of MM cells with a luciferase reporter under the control of a human VEGF promoter further indicated that CD40-induced VEGF expression was mediated through a transcriptional control mechanism. Finally, adenovirus-mediated wild-type p53 overexpression down-regulated CD40-induced VEGF expression and transmigration in MM cells expressing mutant p53. These studies demonstrate that CD40 induces VEGF secretion and MM cell migration, suggesting a role for CD40 in regulating MM homing and angiogenesis.
Collapse
Affiliation(s)
- Yu-Tzu Tai
- Department of Adult Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Liu Q, El-Deiry WS, Gazitt Y. Additive effect of Apo2L/TRAIL and Adeno-p53 in the induction of apoptosis in myeloma cell lines. Exp Hematol 2001; 29:962-70. [PMID: 11495702 DOI: 10.1016/s0301-472x(01)00677-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE We have previously shown that Adenovirus-p53 (Ad-p53) is a potent inducer of apoptosis in myeloma cells expressing nonfunctional p53 and low levels of bcl-2 and that Apo2L/TRAIL is a potent inducer of apoptosis, independent of bcl-2. A study was designed to test the synergy between Ad-p53 and Apo2L/TRAIL in the induction of apoptosis in relation to the expression of DR4/DR5 and DcR1, in cells undergoing Ad-p53-induced apoptosis. METHODS Replication deficient Ad-p53 and human recombinant Apo2L/TRAIL were used. Myeloma cells with mutated/w.t. p53 and varying expression of bcl-2 were used to test the effect of Ad-p53, Apo2L/TRAIL, or both, on apoptosis, measured by annexin V. RESULTS Treatment with Ad-p53 resulted in a dose-dependent apoptosis concomitant with a dose-dependent increase in the expression of DR4/DR5 and a decrease in the expression of DcR1, in Ad-p53-sensitive cell lines. In these cells, addition of Apo2L/TRAIL to cells treated with Ad-p53 resulted in a dose-dependent increase in apoptosis. Myeloma cells resistant to Ad-p53 had high levels of DR4/DR5 and high levels of DcR1 and treatment with Ad-p53 did not reduce the expression of DcR1. Also, addition of Apo2L/TRAIL to Ad-p53 did not affect the level of apoptosis beyond the level of apoptosis observed with Apo2L/TRAIL alone. CONCLUSIONS 1) Cotreatment with Ad-p53 and Apo2L/TRAIL resulted in additive apoptosis in myeloma cells expressing nonfunctional p53 and low levels of bcl-2. 2) Resistance to Ad-p53 or to the combination of Ad-p53 and Apo2L/TRAIL was not due to the lack of adenovirus receptor (CAR) or low expression of DR4/DR5 but rather due to the relatively high expression of DcR1 receptor.
Collapse
Affiliation(s)
- Q Liu
- University of Texas Health Science Center, San Antonio, Tex., USA
| | | | | |
Collapse
|