1
|
Wilson CA, Batzel P, Postlethwait JH. Direct male development in chromosomally ZZ zebrafish. Front Cell Dev Biol 2024; 12:1362228. [PMID: 38529407 PMCID: PMC10961373 DOI: 10.3389/fcell.2024.1362228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
The genetics of sex determination varies across taxa, sometimes even within a species. Major domesticated strains of zebrafish (Danio rerio), including AB and TU, lack a strong genetic sex determining locus, but strains more recently derived from nature, like Nadia (NA), possess a ZZ male/ZW female chromosomal sex-determination system. AB fish pass through a juvenile ovary stage, forming oocytes that survive in fish that become females but die in fish that become males. To understand mechanisms of gonad development in NA zebrafish, we studied histology and single cell transcriptomics in developing ZZ and ZW fish. ZW fish developed oocytes by 22 days post-fertilization (dpf) but ZZ fish directly formed testes, avoiding a juvenile ovary phase. Gonads of some ZW and WW fish, however, developed oocytes that died as the gonad became a testis, mimicking AB fish, suggesting that the gynogenetically derived AB strain is chromosomally WW. Single-cell RNA-seq of 19dpf gonads showed similar cell types in ZZ and ZW fish, including germ cells, precursors of gonadal support cells, steroidogenic cells, interstitial/stromal cells, and immune cells, consistent with a bipotential juvenile gonad. In contrast, scRNA-seq of 30dpf gonads revealed that cells in ZZ gonads had transcriptomes characteristic of testicular Sertoli, Leydig, and germ cells while ZW gonads had granulosa cells, theca cells, and developing oocytes. Hematopoietic and vascular cells were similar in both sex genotypes. These results show that juvenile NA zebrafish initially develop a bipotential gonad; that a factor on the NA W chromosome, or fewer than two Z chromosomes, is essential to initiate oocyte development; and without the W factor, or with two Z doses, NA gonads develop directly into testes without passing through the juvenile ovary stage. Sex determination in AB and TU strains mimics NA ZW and WW zebrafish, suggesting loss of the Z chromosome during domestication. Genetic analysis of the NA strain will facilitate our understanding of the evolution of sex determination mechanisms.
Collapse
|
2
|
Wilson CA, Batzel P, Postlethwait JH. Direct Male Development in Chromosomally ZZ Zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573483. [PMID: 38234788 PMCID: PMC10793451 DOI: 10.1101/2023.12.27.573483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The genetics of sex determination varies across taxa, sometimes even within a species. Major domesticated strains of zebrafish ( Danio rerio ), including AB and TU, lack a strong genetic sex determining locus, but strains more recently derived from nature, like Nadia (NA), possess a ZZ male/ZW female chromosomal sex-determination system. AB strain fish pass through a juvenile ovary stage, forming oocytes that survive in fish that become females but die in fish that become males. To understand mechanisms of gonad development in NA zebrafish, we studied histology and single cell transcriptomics in developing ZZ and ZW fish. ZW fish developed oocytes by 22 days post-fertilization (dpf) but ZZ fish directly formed testes, avoiding a juvenile ovary phase. Gonads of some ZW and WW fish, however, developed oocytes that died as the gonad became a testis, mimicking AB fish, suggesting that the gynogenetically derived AB strain is chromosomally WW. Single-cell RNA-seq of 19dpf gonads showed similar cell types in ZZ and ZW fish, including germ cells, precursors of gonadal support cells, steroidogenic cells, interstitial/stromal cells, and immune cells, consistent with a bipotential juvenile gonad. In contrast, scRNA-seq of 30dpf gonads revealed that cells in ZZ gonads had transcriptomes characteristic of testicular Sertoli, Leydig, and germ cells while ZW gonads had granulosa cells, theca cells, and developing oocytes. Hematopoietic and vascular cells were similar in both sex genotypes. These results show that juvenile NA zebrafish initially develop a bipotential gonad; that a factor on the NA W chromosome or fewer than two Z chromosomes is essential to initiate oocyte development; and without the W factor or with two Z doses, NA gonads develop directly into testes without passing through the juvenile ovary stage. Sex determination in AB and TU strains mimics NA ZW and WW zebrafish, suggesting loss of the Z chromosome during domestication. Genetic analysis of the NA strain will facilitate our understanding of the evolution of sex determination mechanisms.
Collapse
|
3
|
Identification of Hypothalamic Long Noncoding RNAs Associated with Hypertension and the Behavior/Neurological Phenotype of Hypertensive ISIAH Rats. Genes (Basel) 2022; 13:genes13091598. [PMID: 36140769 PMCID: PMC9498762 DOI: 10.3390/genes13091598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 12/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play an important role in the control of many physiological and pathophysiological processes, including the development of hypertension and other cardiovascular diseases. Nonetheless, the understanding of the regulatory function of many lncRNAs is still incomplete. This work is a continuation of our earlier study on the sequencing of hypothalamic transcriptomes of hypertensive ISIAH rats and control normotensive WAG rats. It aims to identify lncRNAs that may be involved in the formation of the hypertensive state and the associated behavioral features of ISIAH rats. Interstrain differences in the expression of seven lncRNAs were validated by quantitative PCR. Differential hypothalamic expression of lncRNAs LOC100910237 and RGD1562890 between hypertensive and normotensive rats was shown for the first time. Expression of four lncRNAs (Snhg4, LOC100910237, RGD1562890, and Tnxa-ps1) correlated with transcription levels of many hypothalamic genes differentially expressed between ISIAH and WAG rats (DEGs), including genes associated with the behavior/neurological phenotype and hypertension. After functional annotation of these DEGs, it was concluded that lncRNAs Snhg4, LOC100910237, RGD1562890, and Tnxa-ps1 may be involved in the hypothalamic processes related to immune-system functioning and in the response to various exogenous and endogenous factors, including hormonal stimuli. Based on the functional enrichment analysis of the networks, an association of lncRNAs LOC100910237 and Tnxa-ps1 with retinol metabolism and an association of lncRNAs RGD1562890 and Tnxa-ps1 with type 1 diabetes mellitus are proposed for the first time. Based on a discussion, it is hypothesized that previously functionally uncharacterized lncRNA LOC100910237 is implicated in the regulation of hypothalamic processes associated with dopaminergic synaptic signaling, which may contribute to the formation of the behavioral/neurological phenotype and hypertensive state of ISIAH rats.
Collapse
|
4
|
Demin KA, Taranov AS, Ilyin NP, Lakstygal AM, Volgin AD, de Abreu MS, Strekalova T, Kalueff AV. Understanding neurobehavioral effects of acute and chronic stress in zebrafish. Stress 2021; 24:1-18. [PMID: 32036720 DOI: 10.1080/10253890.2020.1724948] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stress is a common cause of neuropsychiatric disorders, evoking multiple behavioral, endocrine and neuro-immune deficits. Animal models have been extensively used to understand the mechanisms of stress-related disorders and to develop novel strategies for their treatment. Complementing rodent and clinical studies, the zebrafish (Danio rerio) is one of the most important model organisms in biomedicine. Rapidly becoming a popular model species in stress neuroscience research, zebrafish are highly sensitive to both acute and chronic stress, and show robust, well-defined behavioral and physiological stress responses. Here, we critically evaluate the utility of zebrafish-based models for studying acute and chronic stress-related CNS pathogenesis, assess the advantages and limitations of these aquatic models, and emphasize their relevance for the development of novel anti-stress therapies. Overall, the zebrafish emerges as a powerful and sensitive model organism for stress research. Although these fish generally display evolutionarily conserved behavioral and physiological responses to stress, zebrafish-specific aspects of neurogenesis, neuroprotection and neuro-immune responses may be particularly interesting to explore further, as they may offer additional insights into stress pathogenesis that complement (rather than merely replicate) rodent findings. Compared to mammals, zebrafish models are also characterized by increased availability of gene-editing tools and higher throughput of drug screening, thus being able to uniquely empower translational research of genetic determinants of stress and resilience, as well as to foster innovative CNS drug discovery and the development of novel anti-stress therapies.
Collapse
Affiliation(s)
- Konstantin A Demin
- Institute of Experimental Biomedicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Alexander S Taranov
- Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Nikita P Ilyin
- Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Anton M Lakstygal
- Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Andrey D Volgin
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Tatyana Strekalova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Maastricht University, Maastricht, The Netherlands
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China
- Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
5
|
Tang Y, Chen B, Hong W, Chen L, Yao L, Zhao Y, Aguilar ZP, Xu H. ZnO Nanoparticles Induced Male Reproductive Toxicity Based on the Effects on the Endoplasmic Reticulum Stress Signaling Pathway. Int J Nanomedicine 2019; 14:9563-9576. [PMID: 31824151 PMCID: PMC6900315 DOI: 10.2147/ijn.s223318] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/14/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose The aim of this study was to evaluate the adverse effects of ZnO NPs on male reproductive system and explore the possible mechanism. Methods In this study, the effect of oral administration of 50, 150 and 450 mg/kg zinc oxide nanoparticles (ZnO NPs) in adult male mice was studied over a 14-day period. Results The results showed that the number of sperms in the epididymis and the concentration of testosterone in serum were decreased with an increased dose of ZnO NPs. Testicular histopathological lesions like detachment, atrophy and vacuolization of germ cells were observed. The results showed that increased dosage of ZnO NPs correspondingly up-regulated the IRE1α, XBP1s, BIP, and CHOP (P<0.05) which are genes related to ER stress. These observations indicated that ZnO NPs had adverse effects on the male reproductive system in a dose-dependent manner possibly through ER stress. The expression of caspase-3 was significantly increased in all the treated groups (P<0.001), which reflected the possible activation of apoptosis. Additionally, there was significant down-regulation of the gene StAR (P<0.05), a key player in testosterone synthesis. When an ER-stress inhibitor salubrinal was administered to the 450 mg/kg ZnO NPs treatment group, the damages to the seminiferous tube and vacuolization of Sertoli and Leydig cells were not observed. Furthermore, the testosterone levels in the serum were similar to the control group after the subsequent salubrinal treatment. Conclusion It may be inferred that the ZnO NP's reproductive toxicity in male mice occurred via apoptosis and ER-stress signaling pathway.
Collapse
Affiliation(s)
- Yizhou Tang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China
| | - Bolu Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China
| | - Wuding Hong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China
| | - Ling Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China.,The Second Affiliated Hospital of Nanchang University, Nanchang 330000, People's Republic of China
| | - Liyang Yao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China
| | | | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China
| |
Collapse
|
6
|
Fedoseeva LA, Klimov LO, Ershov NI, Efimov VM, Markel AL, Orlov YL, Redina OE. The differences in brain stem transcriptional profiling in hypertensive ISIAH and normotensive WAG rats. BMC Genomics 2019; 20:297. [PMID: 32039698 PMCID: PMC7226933 DOI: 10.1186/s12864-019-5540-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The development of essential hypertension is associated with a wide range of mechanisms. The brain stem neurons are essential for the homeostatic regulation of arterial pressure as they control baroreflex and sympathetic nerve activity. The ISIAH (Inherited Stress Induced Arterial Hypertension) rats reproduce the human stress-sensitive hypertensive disease with predominant activation of the neuroendocrine hypothalamic-pituitary-adrenal and sympathetic adrenal axes. RNA-Seq analysis of the brain stems from the hypertensive ISIAH and normotensive control WAG (Wistar Albino Glaxo) rats was performed to identify the differentially expressed genes (DEGs) and the main central mechanisms (biological processes and metabolic pathways) contributing to the hypertensive state in the ISIAH rats. RESULTS The study revealed 224 DEGs. Their annotation in databases showed that 22 of them were associated with hypertension and blood pressure (BP) regulation, and 61 DEGs were associated with central nervous system diseases. In accordance with the functional annotation of DEGs, the key role of hormonal metabolic processes and, in particular, the enhanced biosynthesis of aldosterone in the brain stem of ISIAH rats was proposed. Multiple DEGs associated with several Gene Ontology (GO) terms essentially related to modulation of BP were identified. Abundant groups of DEGs were related to GO terms associated with responses to different stimuli including response to organic (hormonal) substance, to external stimulus, and to stress. Several DEGs making the most contribution to the inter-strain differences were detected including the Ephx2, which was earlier defined as a major candidate gene in the studies of transcriptional profiles in different tissues/organs (hypothalamus, adrenal gland and kidney) of ISIAH rats. CONCLUSIONS The results of the study showed that inter-strain differences in ISIAH and WAG brain stem functioning might be a result of the imbalance in processes leading to the pathology development and those, exerting the compensatory effects. The data obtained in this study are useful for a better understanding of the genetic mechanisms underlying the complexity of the brain stem processes in ISIAH rats, which are a model of stress-sensitive form of hypertension.
Collapse
Affiliation(s)
- Larisa A. Fedoseeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva, 10, Novosibirsk, Russian Federation 630090
| | - Leonid O. Klimov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva, 10, Novosibirsk, Russian Federation 630090
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Nikita I. Ershov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva, 10, Novosibirsk, Russian Federation 630090
| | - Vadim M. Efimov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva, 10, Novosibirsk, Russian Federation 630090
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Arcady L. Markel
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva, 10, Novosibirsk, Russian Federation 630090
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Yuriy L. Orlov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva, 10, Novosibirsk, Russian Federation 630090
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Olga E. Redina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva, 10, Novosibirsk, Russian Federation 630090
- Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
7
|
Weger M, Diotel N, Weger BD, Beil T, Zaucker A, Eachus HL, Oakes JA, do Rego JL, Storbeck KH, Gut P, Strähle U, Rastegar S, Müller F, Krone N. Expression and activity profiling of the steroidogenic enzymes of glucocorticoid biosynthesis and the fdx1 co-factors in zebrafish. J Neuroendocrinol 2018; 30:e12586. [PMID: 29486070 DOI: 10.1111/jne.12586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/06/2018] [Accepted: 02/22/2018] [Indexed: 01/23/2023]
Abstract
The spatial and temporal expression of steroidogenic genes in zebrafish has not been fully characterised. Because zebrafish are increasingly employed in endocrine and stress research, a better characterisation of steroidogenic pathways is required to target specific steps in the biosynthetic pathways. In the present study, we have systematically defined the temporal and spatial expression of steroidogenic enzymes involved in glucocorticoid biosynthesis (cyp21a2, cyp11c1, cyp11a1, cyp11a2, cyp17a1, cyp17a2, hsd3b1, hsd3b2), as well as the mitochondrial electron-providing ferredoxin co-factors (fdx1, fdx1b), during zebrafish development. Our studies showed an early expression of all these genes during embryogenesis. In larvae, expression of cyp11a2, cyp11c1, cyp17a2, cyp21a2, hsd3b1 and fdx1b can be detected in the interrenal gland, which is the zebrafish counterpart of the mammalian adrenal gland, whereas the fdx1 transcript is mainly found in the digestive system. Gene expression studies using quantitative reverse transcriptase-PCR and whole-mount in situ hybridisation in the adult zebrafish brain revealed a wide expression of these genes throughout the encephalon, including neurogenic regions. Using ultra-high-performance liquid chromatography tandem mass spectrometry, we were able to demonstrate the presence of the glucocorticoid cortisol in the adult zebrafish brain. Moreover, we demonstrate de novo biosynthesis of cortisol and the neurosteroid tetrahydrodeoxycorticosterone in the adult zebrafish brain from radiolabelled pregnenolone. Taken together, the present study comprises a comprehensive characterisation of the steroidogenic genes and the fdx co-factors facilitating glucocorticoid biosynthesis in zebrafish. Furthermore, we provide additional evidence of de novo neurosteroid biosynthesising in the brain of adult zebrafish facilitated by enzymes involved in glucocorticoid biosynthesis. Our study provides a valuable source for establishing the zebrafish as a translational model with respect to understanding the roles of the genes for glucocorticoid biosynthesis and fdx co-factors during embryonic development and stress, as well as in brain homeostasis and function.
Collapse
Affiliation(s)
- M Weger
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - N Diotel
- INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Denis de La Réunion, France
| | - B D Weger
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland
| | - T Beil
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - A Zaucker
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - H L Eachus
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, The Bateson Centre, Sheffield, UK
| | - J A Oakes
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, The Bateson Centre, Sheffield, UK
| | - J L do Rego
- Plateforme d'Analyse Comportementale (SCAC), Institut de Recherche et d'Innovation Biomédicale, Inserm U1234, Université de Rouen, Rouen Cedex, France
| | - K-H Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - P Gut
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland
| | - U Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - S Rastegar
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - F Müller
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - N Krone
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, The Bateson Centre, Sheffield, UK
| |
Collapse
|
8
|
Klimov LO, Ershov NI, Efimov VM, Markel AL, Redina OE. Genome-wide transcriptome analysis of hypothalamus in rats with inherited stress-induced arterial hypertension. BMC Genet 2016; 17 Suppl 1:13. [PMID: 26822062 PMCID: PMC4895259 DOI: 10.1186/s12863-015-0307-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background The hypothalamus has an important role in the onset and maintenance of hypertension and stress responses. Rats with inherited stress-induced arterial hypertension (ISIAH), reproducing the human stress-sensitive hypertensive state with predominant involvement of the neuroendocrine hypothalamic-pituitary-adrenal and sympathoadrenal axes, were used for analysis of the hypothalamus transcriptome. Results RNA-seq analysis revealed 139 genes differentially expressed in the hypothalami of hypertensive ISIAH and normotensive Wistar Albino Glaxo (WAG) rats. According to the annotation in databases, 18 of the differentially expressed genes (DEGs) were associated with arterial hypertension. The Gene Ontology (GO) functional annotation showed that these genes were related to different biological processes that may contribute to the hypertension development in the ISIAH rats. The most significantly affected processes were the following: regulation of hormone levels, immune system process, regulation of response to stimulus, blood circulation, response to stress, response to hormone stimulus, transport, metabolic processes, and endocrine system development. The most significantly affected metabolic pathways were those associated with the function of the immune system and cell adhesion molecules and the metabolism of retinol and arachidonic acid. Of the top 40 DEGs making the greatest contribution to the interstrain differences, there were 3 genes (Ephx2, Cst3 and Ltbp2) associated with hypertension that were considered to be suitable for further studies as potential targets for the stress-sensitive hypertension therapy. Seven DEGs were found to be common between hypothalamic transcriptomes of ISIAH rats and Schlager mice with established neurogenic hypertension. Conclusions The results of this study revealed multiple DEGs and possible mechanisms specifying the hypothalamic function in the hypertensive ISIAH rats. These results provide a basis for further investigation of the signalling mechanisms that affect hypothalamic output related to stress-sensitive hypertension development. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0307-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leonid O Klimov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation.
| | - Nikita I Ershov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation.
| | - Vadim M Efimov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation. .,Novosibirsk State University, Novosibirsk, Russian Federation.
| | - Arcady L Markel
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation. .,Novosibirsk State University, Novosibirsk, Russian Federation.
| | - Olga E Redina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation.
| |
Collapse
|
9
|
Ren Y, Yang X, Zhang Y, Wang Y, Li X. Effects and mechanisms of acupuncture and moxibustion on reproductive endocrine function in male rats with partial androgen deficiency. Acupunct Med 2015; 34:136-43. [PMID: 26508663 DOI: 10.1136/acupmed-2014-010734] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2015] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Partial androgen deficiency of the aging male (PADAM) is characterised by a deficiency in serum androgen levels. Both electroacupuncture (EA) and mild moxibustion (MM) can raise serum testosterone levels in PADAM. We investigated the mechanisms underlying the use of EA and MM in a rodent model of PADAM. METHODS Fifty rats received cyclophosphamide injection over 5 consecutive days to induce PADAM, which was verified by comparing total testosterone (TT) and free testosterone (FT) levels with 10 non-PADAM healthy control rats (CON). Successful modelling was confirmed in 43 of 50 rats, 40 of which were randomly divided into untreated (PADAM), EA-treated (PADAM+EA), MM-treated (PADAM+MM), and androlin (AD)-treated (PADAM+AD) groups (n=10 each). EA and MM were administered at BL23 and CV4 acupuncture points for 8 weeks, and no treatment was given to rats in the PADAM and CON groups. Serum levels of luteinising hormone (LH) and follicle-stimulating hormone (FSH), mRNA expression of cytochrome P450c17 (P450c17) and 3β-hydroxysteroid dehydrogenase 1 (3β-HSD1), and protein levels of cytochrome P450 side chain cleavage (P450scc), 17β-hydroxysteroid dehydrogenase 3 (17β-HSD3) and steroidogenic factor 1 (SF-1) were evaluated after 8 weeks. RESULTS Both EA and mild MM significantly increased serum TT and FT levels with MM displaying superiority. P450scc, 17β-HSD3 and SF-1 protein expression, and P450c17 and 3β-HSD1 mRNA expression, were significantly increased and serum LH and FSH levels were significantly decreased in PADAM+EA and PADAM+MM relative to PADAM rats. Moreover, serum LH and FSH levels were significantly lower and 17β-HSD3 protein expression significantly higher in PADAM+MM relative to PADAM+EA rats. CONCLUSIONS EA and MM at the BL23 and CV4 acupuncture points appear to be effective treatments for PADAM, and MM displays superior efficacy to EA.
Collapse
Affiliation(s)
- Yi Ren
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xiaoguang Yang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Yu Zhang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Ying Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xuezhi Li
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Shin HS, Song JA, Choi JY, Kim NN, Choi YJ, Sung SN, Park MS, Min BH, Choi CY. Effects of various photoperiods on Kisspeptin and reproductive hormones in the goldfish,Carassius auratus. Anim Cells Syst (Seoul) 2014. [DOI: 10.1080/19768354.2014.902863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
11
|
Shin HS, Habibi HR, Choi CY. The environmental regulation of maturation in goldfish, Carassius auratus: effects of various LED light spectra. Comp Biochem Physiol A Mol Integr Physiol 2013; 168:17-24. [PMID: 24239668 DOI: 10.1016/j.cbpa.2013.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 10/26/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
Abstract
While there have been a number of studies on the effects of photoperiod and duration of light and dark exposure, much less information is available on the importance of light intensity. This study investigated the effects of exposure of goldfish, Carassius auratus exposed to white fluorescent bulbs, and red (peak at 630nm), and green (530nm) light emitting diodes (LEDs) at approximately 0.9W/m(2) (12-h light:12-h dark) for four months on a number of hormones of the hypothalamus-pituitary-gonad (HPG) axis, in vivo and in vitro. We investigated the effects of native GnRH molecules (gonadotropin-releasing hormones; salmon GnRH, sGnRH; and chicken GnRH-II, cGnRH-II), gonadotropin hormones (GTHα; follicle-stimulating hormone, FSH-β; luteinizing hormone, LH-β2), kisspeptin 1 (Kiss1) and G protein-coupled receptor 54 (GPR54) mRNA levels. Furthermore, we measured LH and 17α-hydroxypregnenolone levels in plasma and we performed gonad histological observations. GnRHs, Kiss1, GPR54 and GTH mRNA and plasma LH and 17α-hydroxypregnenolone levels in the in vivo and in vitro groups exposed to green LEDs were significantly higher than the other groups. Histological analysis revealed the presence of oocytes in the yolk stage in fish exposed to green light. These results suggest that green wavelengths regulate the HPG axis and enhance sexual maturation in goldfish.
Collapse
Affiliation(s)
- Hyun Suk Shin
- Division of Marine Environment & BioScience, Korea Maritime and Ocean University, Busan 606-791, Republic of Korea
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W. Calgary, Alberta T3B 2V4, Canada.
| | - Cheol Young Choi
- Division of Marine Environment & BioScience, Korea Maritime and Ocean University, Busan 606-791, Republic of Korea.
| |
Collapse
|
12
|
Kim NN, Shin HS, Choi YJ, Choi CY. Kisspeptin regulates the hypothalamus-pituitary-gonad axis gene expression during sexual maturation in the cinnamon clownfish, Amphiprion melanopus. Comp Biochem Physiol B Biochem Mol Biol 2013; 168:19-32. [PMID: 24239680 DOI: 10.1016/j.cbpb.2013.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/24/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
Abstract
Kisspeptins (Kiss) have been recognized as potent regulators of reproduction in teleosts, and Kiss is suggested to be a key regulator of the hypothalamus-pituitary-gonad axis (HPG). However, its regulatory role on reproduction in fish remains unclear. Therefore, to investigate the role of Kiss on fish reproduction, this study aimed to test differences in the hormones of the HPG axis, Kiss as neuropeptides, and sex steroids on the sexual maturation of paired cinnamon clownfish, Amphiprion melanopus, following treatment with Kiss. We investigated the actions of sex maturation hormones, including HPG axis hormones and sex steroid hormones, such as gonadotropin-releasing hormones, gonadotropin hormones (GTHs), GTH receptors, estrogen receptors, and vitellogenin in the pituitary, gonads, and liver following treatment with Kiss. The expression levels of HPG axis genes increased after the Kiss injection. In addition, the levels of plasma 17α-hydroxypregnenolone, estradiol-17β, and 11-ketotestosterone increased. These results support the hypothesis that Kiss play important roles in the regulation of the HPG axis and are most likely involved in gonadal development and sexual maturation in cinnamon clownfish.
Collapse
Affiliation(s)
- Na Na Kim
- Division of Marine Environment and BioScience, Korea Maritime and Ocean University, Busan 606-791, Republic of Korea
| | - Hyun Suk Shin
- Division of Marine Environment and BioScience, Korea Maritime and Ocean University, Busan 606-791, Republic of Korea
| | - Young Jae Choi
- Division of Marine Environment and BioScience, Korea Maritime and Ocean University, Busan 606-791, Republic of Korea
| | - Cheol Young Choi
- Division of Marine Environment and BioScience, Korea Maritime and Ocean University, Busan 606-791, Republic of Korea.
| |
Collapse
|
13
|
Kurogi K, Liu TA, Sakakibara Y, Suiko M, Liu MC. The use of zebrafish as a model system for investigating the role of the SULTs in the metabolism of endogenous compounds and xenobiotics. Drug Metab Rev 2013; 45:431-40. [DOI: 10.3109/03602532.2013.835629] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Hori TS, Rise ML, Johnson SC, Afonso LOB, Gamperl AK. The mRNA expression of cortisol axis related genes differs in Atlantic cod (Gadus morhua) categorized as high or low responders. Gen Comp Endocrinol 2012; 175:311-20. [PMID: 22146795 DOI: 10.1016/j.ygcen.2011.11.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 01/06/2023]
Abstract
Cortisol is a major stress hormone in fish and is known, under normal or stressful conditions, to affect several physiological processes including growth and immunity. Thus, efforts have been made for several cultured finfish species, including the Atlantic cod, to determine whether fish with a high or low cortisol response to stress can be identified and selected. However, we have a limited understanding of the mechanisms that determine these two phenotypes. Thus, we measured total and free plasma cortisol levels in high and low responding cod when subjected to a 30 s handling stress, and the mRNA expression of four key genes in the glucocorticoid (i.e. cortisol) stress axis both pre- and post-stress. The cortisol data is consistent with our previous findings for cod, with high responding (HR) fish having ∼3-fold higher total and free plasma cortisol levels when compared to low responding (LR) fish. Three of the transcripts studied encode key proteins involved in steroidogenesis (StAR, P450scc and 3βHSD), and the constitutive mRNA expression of all three genes was significantly higher (∼2-fold) in the head kidney of HR fish when compared to LR cod. The other gene of interest was the glucocorticoid receptor (GR). We partly cloned and characterized a cDNA from Atlantic cod likely to be this fish's ortholog of the teleost GR1, and showed that while there was no difference in hepatic constitutive GR mRNA expression between groups, HR fish had liver GR mRNA levels that were significantly (1.8-fold) higher at 3 h post-stress as compared to LR fish. Our results suggest that the different magnitude of cortisol response between LR and HR fish is at least partially determined by the capacity of the interrenal tissue to produce steroids.
Collapse
Affiliation(s)
- Tiago S Hori
- Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada A1C 5S7.
| | | | | | | | | |
Collapse
|
15
|
Abstract
Fanconi anemia (FA) is a human disease of bone marrow failure, leukemia, squamous cell carcinoma, and developmental anomalies, including hypogonadism and infertility. Bone marrow transplants improve hematopoietic phenotypes but do not prevent other cancers. FA arises from mutation in any of the 15 FANC genes that cooperate to repair double stranded DNA breaks by homologous recombination. Zebrafish has a single ortholog of each human FANC gene and unexpectedly, mutations in at least two of them (fancl and fancd1(brca2)) lead to female-to-male sex reversal. Investigations show that, as in human, zebrafish fanc genes are required for genome stability and for suppressing apoptosis in tissue culture cells, in embryos treated with DNA damaging agents, and in meiotic germ cells. The sex reversal phenotype requires the action of Tp53 (p53), an activator of apoptosis. These results suggest that in normal sex determination, zebrafish oocytes passing through meiosis signal the gonadal soma to maintain expression of aromatase, an enzyme that converts androgen to estrogen, thereby feminizing the gonad and the individual. According to this model, normal male and female zebrafish differ in genetic factors that control the strength of the late meiotic oocyte-derived signal, probably by regulating the number of meiotic oocytes, which environmental factors can also alter. Transcripts from fancd1(brca2) localize at the animal pole of the zebrafish oocyte cytoplasm and are required for normal oocyte nuclear architecture, for normal embryonic development, and for preventing ovarian tumors. Embryonic DNA repair and sex reversal phenotypes provide assays for the screening of small molecule libraries for therapeutic substances for FA.
Collapse
|
16
|
Yasuda T, Yasuda S, Williams FE, Liu MY, Sakakibara Y, Bhuiyan S, Snow R, Carter G, Liu MC. Characterization and ontogenic study of novel steroid-sulfating SULT3 sulfotransferases from zebrafish. Mol Cell Endocrinol 2008; 294:29-36. [PMID: 18644423 DOI: 10.1016/j.mce.2008.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2007] [Revised: 06/16/2008] [Accepted: 06/20/2008] [Indexed: 10/21/2022]
Abstract
In vertebrates, sulfation as catalyzed by members of the cytosolic sulfotransferase (SULT) family has been suggested to be involved in the homeostasis of steroids. To establish the zebrafish as a model for investigating how sulfation functions to regulate steroid metabolism during the developmental process, we have embarked on the identification of steroid-sulfating SULTs in zebrafish. By searching the GenBank database, we identified two putative cytosolic SULT sequences from zebrafish, designated SULT3 ST1 and ST2. The recombinant proteins of these two zebrafish SULT3 STs were expressed in and purified from BL21 (DE3) cells transformed with the pGEX-2TK expression vector harboring SULT3 ST1 or ST2 cDNA. Upon enzymatic characterization, purified SULT3 ST1 displayed the strongest sulfating activity toward 17beta-estradiol among the endogenous substrates tested, while SULT3 ST2 exhibited substrate specificity toward hydroxysteroids, particularly dehydroepiandrosterone (DHEA). The pH-dependence and kinetic constants of these two enzymes with 17beta-estradiol and DHEA were determined. A developmental expression study revealed distinct patterns of the expression of SULT3 ST1 and ST2 during embryonic development and throughout the larval stage onto maturity. Collectively, these results imply that these two steroid-sulfating SULT3 STs may play differential roles in the metabolism and regulation of steroids during zebrafish development and in adulthood.
Collapse
Affiliation(s)
- Tomoko Yasuda
- Department of Pharmacology, College of Pharmacy, The University of Toledo, Toledo, OH 43606, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Schumacher M, Guennoun R, Stein DG, De Nicola AF. Progesterone: Therapeutic opportunities for neuroprotection and myelin repair. Pharmacol Ther 2007; 116:77-106. [PMID: 17659348 DOI: 10.1016/j.pharmthera.2007.06.001] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 06/01/2007] [Indexed: 11/24/2022]
Abstract
Progesterone and its metabolites promote the viability of neurons in the brain and spinal cord. Their neuroprotective effects have been documented in different lesion models, including traumatic brain injury (TBI), experimentally induced ischemia, spinal cord lesions and a genetic model of motoneuron disease. Progesterone plays an important role in developmental myelination and in myelin repair, and the aging nervous system appears to remain sensitive to some of progesterone's beneficial effects. Thus, the hormone may promote neuroregeneration by several different actions by reducing inflammation, swelling and apoptosis, thereby increasing the survival of neurons, and by promoting the formation of new myelin sheaths. Recognition of the important pleiotropic effects of progesterone opens novel perspectives for the treatment of brain lesions and diseases of the nervous system. Over the last decade, there have been a growing number of studies showing that exogenous administration of progesterone or some of its metabolites can be successfully used to treat traumatic brain and spinal cord injury, as well as ischemic stroke. Progesterone can also be synthesized by neurons and by glial cells within the nervous system. This finding opens the way for a promising therapeutic strategy, the use of pharmacological agents, such as ligands of the translocator protein (18 kDa) (TSPO; the former peripheral benzodiazepine receptor or PBR), to locally increase the synthesis of steroids with neuroprotective and neuroregenerative properties. A concept is emerging that progesterone may exert different actions and use different signaling mechanisms in normal and injured neural tissue.
Collapse
|
18
|
Yaspan BL, Breyer JP, Cai Q, Dai Q, Elmore JB, Amundson I, Bradley KM, Shu XO, Gao YT, Dupont WD, Zheng W, Smith JR. Haplotype analysis of CYP11A1 identifies promoter variants associated with breast cancer risk. Cancer Res 2007; 67:5673-82. [PMID: 17575134 PMCID: PMC2805128 DOI: 10.1158/0008-5472.can-07-0467] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The CYP11A1 gene encodes the cholesterol side chain cleavage enzyme that catalyzes the initial and rate-limiting step of steroidogenesis. A large number of epidemiologic studies have implicated the duration and degree of endogenous estrogen exposure in the development of breast cancer in women. Here, we conduct a systematic investigation of the role of genetic variation of the CYP11A1 gene in breast cancer risk in a study of 1193 breast cancer cases and 1310 matched controls from the Shanghai Breast Cancer Study. We characterize the genetic architecture of the CYP11A1 gene in a Chinese study population. We then genotype tagging polymorphisms to capture common variation at the locus for tests of association. Variants designating a haplotype encompassing the gene promoter are significantly associated with both increased expression (P = 1.6e-6) and increased breast cancer risk: heterozygote age-adjusted odds ratio (OR), 1.51 [95% confidence interval (95% CI), 1.19-1.91]; homozygote age-adjusted OR, 2.94 (95% CI, 1.22-7.12), test for trend, P = 5.0e-5. Among genes controlling endogenous estrogen metabolism, CYP11A1 harbors common variants that may influence expression to significantly modify risk of breast cancer.
Collapse
Affiliation(s)
- Brian L. Yaspan
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 529 Light Hall, 2215 Garland Avenue, Nashville, Tennessee
| | - Joan P. Breyer
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 529 Light Hall, 2215 Garland Avenue, Nashville, Tennessee
| | - Qiuyin Cai
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 529 Light Hall, 2215 Garland Avenue, Nashville, Tennessee
| | - Qi Dai
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 529 Light Hall, 2215 Garland Avenue, Nashville, Tennessee
| | - J. Bradford Elmore
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 529 Light Hall, 2215 Garland Avenue, Nashville, Tennessee
| | - Isaac Amundson
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 529 Light Hall, 2215 Garland Avenue, Nashville, Tennessee
| | - Kevin M. Bradley
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 529 Light Hall, 2215 Garland Avenue, Nashville, Tennessee
| | - Xiao-Ou Shu
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 529 Light Hall, 2215 Garland Avenue, Nashville, Tennessee
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - William D. Dupont
- Department of Biostatistics, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 529 Light Hall, 2215 Garland Avenue, Nashville, Tennessee
| | - Wei Zheng
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 529 Light Hall, 2215 Garland Avenue, Nashville, Tennessee
| | - Jeffrey R. Smith
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 529 Light Hall, 2215 Garland Avenue, Nashville, Tennessee
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 529 Light Hall, 2215 Garland Avenue, Nashville, Tennessee
- Medical Research Service, VA Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
19
|
Schumacher M, Guennoun R, Ghoumari A, Massaad C, Robert F, El-Etr M, Akwa Y, Rajkowski K, Baulieu EE. Novel perspectives for progesterone in hormone replacement therapy, with special reference to the nervous system. Endocr Rev 2007; 28:387-439. [PMID: 17431228 DOI: 10.1210/er.2006-0050] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The utility and safety of postmenopausal hormone replacement therapy has recently been put into question by large clinical trials. Their outcome has been extensively commented upon, but discussions have mainly been limited to the effects of estrogens. In fact, progestagens are generally only considered with respect to their usefulness in preventing estrogen stimulation of uterine hyperplasia and malignancy. In addition, various risks have been attributed to progestagens and their omission from hormone replacement therapy has been considered, but this may underestimate their potential benefits and therapeutic promises. A major reason for the controversial reputation of progestagens is that they are generally considered as a single class. Moreover, the term progesterone is often used as a generic one for the different types of both natural and synthetic progestagens. This is not appropriate because natural progesterone has properties very distinct from the synthetic progestins. Within the nervous system, the neuroprotective and promyelinating effects of progesterone are promising, not only for preventing but also for reversing age-dependent changes and dysfunctions. There is indeed strong evidence that the aging nervous system remains at least to some extent sensitive to these beneficial effects of progesterone. The actions of progesterone in peripheral target tissues including breast, blood vessels, and bones are less well understood, but there is evidence for the beneficial effects of progesterone. The variety of signaling mechanisms of progesterone offers exciting possibilities for the development of more selective, efficient, and safe progestagens. The recognition that progesterone is synthesized by neurons and glial cells requires a reevaluation of hormonal aging.
Collapse
Affiliation(s)
- Michael Schumacher
- INSERM UMR 788, 80, rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gracia T, Hilscherova K, Jones PD, Newsted JL, Zhang X, Hecker M, Higley EB, Sanderson JT, Yu RMK, Wu RSS, Giesy JP. The H295R system for evaluation of endocrine-disrupting effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2006; 65:293-305. [PMID: 16935330 DOI: 10.1016/j.ecoenv.2006.06.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 06/26/2006] [Accepted: 06/30/2006] [Indexed: 05/11/2023]
Abstract
The present studies were undertaken to evaluate the utility of the H295R system as an in vitro assay to assess the potential of chemicals to modulate steroidogenesis. The effects of four model chemicals on the expression of ten steroidogenic genes and on the production of three steroid hormones were examined. Exposures with individual model chemicals as well as binary mixtures were conducted. Although the responses reflect the known mode of action of the various compounds, the results show that designating a chemical as "specific inducer or inhibitor" is unwise. Not all changes in the mixture exposures could be predicted based on results from individual chemical exposures. Hormone production was not always directly related to gene expression. The H295R system integrates the effects of direct-acting hormone agonists and antagonists as well as chemicals affecting signal transduction pathways for steroid production and provides data on both gene expression and hormone secretion which makes this cell line a valuable tool to examine effects of chemicals on steroidogenesis.
Collapse
Affiliation(s)
- Tannia Gracia
- Department of Zoology, 218C National Food Safety and Toxicology Center, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824-1311, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yasuda S, Liu MY, Yang YS, Snow R, Takahashi S, Liu MC. Identification of novel hydroxysteroid-sulfating cytosolic SULTs, SULT2 ST2 and SULT2 ST3, from zebrafish: Cloning, expression, characterization, and developmental expression. Arch Biochem Biophys 2006; 455:1-9. [PMID: 17045951 DOI: 10.1016/j.abb.2006.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 08/18/2006] [Accepted: 09/04/2006] [Indexed: 10/24/2022]
Abstract
By searching the expressed sequence tag database, two zebrafish cDNAs encoding putative cytosolic sulfotransferases (SULTs) were identified. Sequence analysis indicated that these two zebrafish SULTs belong to the cytosolic SULT2 gene family. The recombinant form of these two novel zebrafish SULTs, designated SULT2 ST2 and SULT2 ST3, were expressed using the pGEX-2TK glutathione S-transferase (GST) gene fusion system and purified from transformed BL21 (DE3) Escherichia coli cells. Purified GST-fusion protein form of SULT2 ST2 and SULT2 ST3 exhibited strong sulfating activities toward dehydroepiandrosterone (DHEA) and corticosterone, respectively, among various endogenous compounds tested as substrates. Both enzymes displayed pH optima at approximately 6.5. Kinetic constants of the two enzymes, as well as the GST-fusion protein form of the previously identified SULT2 ST1, with DHEA and corticosterone as substrates were determined. Developmental stage-dependent expression experiments revealed distinct patterns of expression of SULT2 ST2 and SULT2 ST3, as well as the previously identified SULT2 ST1, during embryonic development and throughout the larval stage onto maturity.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cloning, Molecular
- Corticosterone/metabolism
- Cytosol/enzymology
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Dehydroepiandrosterone/metabolism
- Electrophoresis, Polyacrylamide Gel
- Female
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Hydrogen-Ion Concentration
- Hydroxysteroids/metabolism
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Male
- Molecular Sequence Data
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sulfates/metabolism
- Sulfotransferases/genetics
- Sulfotransferases/isolation & purification
- Sulfotransferases/metabolism
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/growth & development
- Zebrafish Proteins/genetics
- Zebrafish Proteins/isolation & purification
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Shin Yasuda
- Biomedical Research Center, The University of Texas Health Center, Tyler, TX 75708, USA
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Steroid hormones regulate physiological homeostasis for salt, sugar, and sex differentiation. All steroids are synthesized from a common precursor, cholesterol, in a step that converts cholesterol to pregnenolone. The enzyme carrying out this first conversion step is CYP11A1. To further investigate the importance of steroid biosynthesis, animal models with defects in the Cyp11a1 gene are used. Mice with targeted disruption of the Cyp11a1 gene produce no steroids with severe adrenal defects. These mice survive during embryogenesis, but die after birth. Zebrafish with a block in cyp11a1 gene function has an earlier defect, presumably because it lacks adequate maternal steroid supply. When cyp11a1 activity was compensated by the injection of antisense morpholino oligos, the embryos have shortened axis and a defect of epibolic cell movement during early embryogenesis. The discovery of steroid function in cell movement is novel, and should provide new insights into our understanding of diverse functions of steroids.
Collapse
Affiliation(s)
- Hwei-Jan Hsu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | | | |
Collapse
|
23
|
Winnay JN, Xu J, O'Malley BW, Hammer GD. Steroid receptor coactivator-1-deficient mice exhibit altered hypothalamic-pituitary-adrenal axis function. Endocrinology 2006; 147:1322-32. [PMID: 16339206 DOI: 10.1210/en.2005-0751] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Steroidogenic factor-1 (SF-1), has emerged as a critical nuclear receptor regulating development and differentiation at several levels of the hypothalamic-pituitary-steroidogenic axis. Although many coregulatory factors have been shown to physically and functionally interact with SF-1, the relative importance of these interactions in SF-1 target tissues has not been thoroughly established. In this study we assessed roles of steroid receptor coactivator-1 (SRC-1) in hypothalamic-pituitary-adrenal (HPA) axis function using SRC-1-deficient (SRC-1-/-) mice in the absence or presence of SF-1 haploinsufficiency. Surprisingly, SRC-1 deficiency did not alter baseline HPA axis function or the acute rise in corticosterone after ACTH administration and failed to exacerbate adrenocortical dysfunction in SF-1+/- mice. However, after exposure to paradigms of acute and chronic stress, SRC-1-/- mice exhibited an elevation in serum corticosterone despite normal (nonsuppressed) ACTH, suggesting an increase in adrenal sensitivity as well as a concomitant defect in glucocorticoid-mediated feedback inhibition of the HPA axis. An examination of potential compensatory mechanism(s) revealed an increase in adrenal weight, selective elevation of melanocortin 2 receptor mRNA, and a coincident increase in SRC-2 and SRC-3 expression in SRC-1-/- adrenals. A reduction in blood glucose was observed in SRC-1-/- mice after chronic stress, consistent with a generalized state of glucocorticoid resistance. Dexamethasone suppression tests confirmed a weakened ability of glucocorticoids to 1) elevate serum glucose levels and induce hepatic phosphoenolpyruvate carboxykinase transcription and 2) suppress pituitary proopiomelanocortin transcript levels in SRC-1-/- animals. Collectively, these data are consistent with an indispensable role for SRC-1 in mediating actions of glucocorticoids in pituitary and liver.
Collapse
Affiliation(s)
- Jonathon N Winnay
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0678, USA
| | | | | | | |
Collapse
|
24
|
Chen WY, Juan LJ, Chung BC. SF-1 (nuclear receptor 5A1) activity is activated by cyclic AMP via p300-mediated recruitment to active foci, acetylation, and increased DNA binding. Mol Cell Biol 2005; 25:10442-53. [PMID: 16287857 PMCID: PMC1291237 DOI: 10.1128/mcb.25.23.10442-10453.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Steroidogenic factor 1 (SF-1) is a nuclear receptor essential for steroidogenic gene expression, but how its activity is regulated is unclear. Here we demonstrate that p300 plays an important role in regulating SF-1 function. SF-1 was acetylated in vitro and in vivo by p300 at the KQQKK motif in the Ftz-F1 (Fushi-tarazu factor 1) box adjacent to its DNA-binding domain. Mutation of the KQQKK motif reduced the DNA-binding activity and p300-dependent activation of SF-1. When stimulated with cyclic AMP (cAMP), adrenocortical Y1 cells expressed more p300, leading to additional SF-1 association with p300 and increased SF-1 acetylation and DNA binding. It also increased SF-1 colocalization with p300 in nuclear foci. Collectively, these results indicate that SF-1 transcriptional activity is regulated by p300 in response to the cAMP signaling pathway by way of increased acetylation, DNA binding, and recruitment to nuclear foci.
Collapse
Affiliation(s)
- Wei-Yi Chen
- Institute of Molecular Biology, 48, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | |
Collapse
|
25
|
Liu MY, Yang YS, Sugahara T, Yasuda S, Liu MC. Identification of a novel zebrafish SULT1 cytosolic sulfotransferase: Cloning, expression, characterization, and developmental expression study. Arch Biochem Biophys 2005; 437:10-9. [PMID: 15820212 DOI: 10.1016/j.abb.2005.02.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 02/23/2005] [Indexed: 11/21/2022]
Abstract
By searching the zebrafish expressed sequence tag database, we had identified two partial cDNA clones encoding the 5'- and 3'-regions of a putative cytosolic sulfotransferase (SULT). Using the reverse transcription-polymerase chain reaction (RT-PCR) technique, a full-length cDNA encoding this zebrafish SULT was amplified, cloned, and sequenced. Analysis of the sequence data revealed that this novel zebrafish SULT displays 49, 46, and 45% amino acid sequence identity to human SULT1A1, mouse SULT1D1, and rat SULT1C1. This zebrafish SULT therefore appears to belong to the SULT1 cytosolic SULT gene family. Recombinant zebrafish SULT (designated SULT1 isoform 4), expressed using the pGEX-2TK prokaryotic expression vector and purified from transformed Escherichia coli cells, migrated as a 35kDa protein upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Among the endogenous compounds tested as substrates, the purified SULT1 isoform 4 displayed significant sulfating activities toward thyroid hormones, estrone, and dehydroepiandrosterone. The enzyme also showed activities toward a number of xenobiotics including some flavonoids, isoflavonoids, and other phenolic compounds, with a pH optimum at 7.0. A thermostability experiment revealed the enzyme to be relatively stable over a temperature range between 28 and 37 degrees C. Among 10 divalent metal cations tested, Fe2+, Hg2+, Co2+, Zn2+, Cu2+, and Cd2+ exhibited dramatic inhibitory effects on the activity of the enzyme. Developmental expression study using RT-PCR revealed that the zebrafish SULT1 isoform 4 showed a low level of expression in the segmentation period during the embryonic development, which gradually increased to a high level of expression throughout the larval stage onto maturity.
Collapse
Affiliation(s)
- Ming-Yih Liu
- Biomedical Research Center, The University of Texas Health Center, Tyler, TX 75708, USA
| | | | | | | | | |
Collapse
|
26
|
Reichenstein M, Reich R, LeHoux JG, Hanukoglu I. ACTH induces TIMP-1 expression and inhibits collagenase in adrenal cortex cells. Mol Cell Endocrinol 2004; 215:109-14. [PMID: 15026182 DOI: 10.1016/j.mce.2003.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
To identify genes that are induced by corticotropin (ACTH) in adrenal cortex cells, we carried out a differential hybridization screening of adrenal cortex cDNA libraries. Some of the clones we identified represented tissue inhibitor of metalloproteinase 1 (TIMP-1) mRNA. We examined ACTH dependence of the expression of TIMP-1 in vitro in cultured bovine adrenocortical cells, and in ACTH-treated rats. Northern blot analysis of total RNA from cells showed that the level of TIMP-1 mRNA increases sharply within 3h after ACTH stimulation. Since TIMP-1 inhibits some cell matrix metalloproteinases (MMPs) of the collagenase type, we examined the effect of ACTH on collagenase activity in bovine adrenocortical cells. Exposure of confluent cultures to ACTH for 24h showed dose-dependent inhibition of collagenase activity. Northern blot analysis of total RNA from rat adrenal zona fasciculata-reticularis and zona glomerulosa showed that in both of these zones TIMP-1 expression was induced within 12h after ACTH injection. Long-term (9 days) treatment with ACTH increased TIMP-1 mRNA levels nearly sixfold in zona fasciculata-reticularis. Overall, our results show that ACTH causes induction of TIMP-1 and suppression of collagenase activity, and suggest that ACTH may modulate the activities of MMPs and hence cell matrix remodeling.
Collapse
Affiliation(s)
- Moshe Reichenstein
- Department of Molecular Biology, The College of Judea and Samaria, Ariel 44837, Israel
| | | | | | | |
Collapse
|
27
|
Geslin M, Auperin B. Relationship between changes in mRNAs of the genes encoding steroidogenic acute regulatory protein and P450 cholesterol side chain cleavage in head kidney and plasma levels of cortisol in response to different kinds of acute stress in the rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2004; 135:70-80. [PMID: 14644646 DOI: 10.1016/s0016-6480(03)00283-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this study, the expression of several genes involved in cortisol synthesis in head kidneys, the site of cortisol production, and in the rainbow trout (Oncorhynchus mykiss) was examined in response to two different acute stressors and an acute ACTH treatment. mRNAs levels of the "steroidogenic acute regulatory" (StAR) sterol transport protein, which transports cholesterol to the inner mitochondrial membrane as well as cytochrome P450 cholesterol side chain cleavage (P450(SCC)) were determined in head kidney (containing the interrenal tissue). In one experiment, we also quantified 3-beta-hydroxysteroid dehydrogenase (3B-HSD) and cytochrome P450(11beta) (11B-H) mRNAs. The presence of these four transcripts in the head kidney was confirmed by Northern blot analysis. For each stress condition, mRNA levels were quantified by quantitative or real-time RT-PCR. The results of these two methods were highly correlated. An acute stress induced by capture, short confinement (2min), and anesthesia (3min) resulted in significant elevation of plasma cortisol (30-fold higher than controls) and an increase in levels of StAR and P450(SCC) mRNAs 3h post-stress. When fish were submitted to an acute stress caused by 5min of chase with a net in a tank, plasma cortisol reached a peak within 1h, but after 3h, levels were only 5-fold higher in stressed trout than in controls and no variations in the expression of StAR, P450(SCC), 3B-HSD, and 11B-H were observed whatever the time post-stress. One hour after acute ACTH stimulation (5IU/kg), plasma cortisol level was 4-fold higher than in control trout and no changes in StAR and P450(SCC) mRNAs levels were detected. The data suggest that the high levels of cortisol after stress need an activation of genes involved in cortisol synthesis, but lower levels do not. Futhermore, under these three test conditions, we always found a strong positive correlation between mRNA levels of StAR and P450(SCC), in contrast to what has been described in mammals. Consequently, the absence of transcription activation with low increase in cortisol levels suggests that other levels of regulation, particularly activation of pre-existing proteins, govern cortisol production.
Collapse
Affiliation(s)
- Malika Geslin
- Station INRA-SCRIBE, Campus de Beaulieu, Rennes Cedex 35042, France
| | | |
Collapse
|
28
|
Spitsbergen JM, Kent ML. The state of the art of the zebrafish model for toxicology and toxicologic pathology research--advantages and current limitations. Toxicol Pathol 2003; 31 Suppl:62-87. [PMID: 12597434 PMCID: PMC1909756 DOI: 10.1080/01926230390174959] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The zebrafish (Danio rerio) is now the pre-eminent vertebrate model system for clarification of the roles of specific genes and signaling pathways in development. The zebrafish genome will be completely sequenced within the next 1-2 years. Together with the substantial historical database regarding basic developmental biology, toxicology, and gene transfer, the rich foundation of molecular genetic and genomic data makes zebrafish a powerful model system for clarifying mechanisms in toxicity. In contrast to the highly advanced knowledge base on molecular developmental genetics in zebrafish, our database regarding infectious and noninfectious diseases and pathologic lesions in zebrafish lags far behind the information available on most other domestic mammalian and avian species, particularly rodents. Currently, minimal data are available regarding spontaneous neoplasm rates or spontaneous aging lesions in any of the commonly used wild-type or mutant lines of zebrafish. Therefore, to fully utilize the potential of zebrafish as an animal model for understanding human development, disease, and toxicology we must greatly advance our knowledge on zebrafish diseases and pathology.
Collapse
Affiliation(s)
- Jan M Spitsbergen
- Department of Environmental and Molecular Toxicology and Marine/Freshwater Biomedical Sciences Center, Oregon State University, Corvallis, Oregon 97333, USA.
| | | |
Collapse
|
29
|
Malerød L, Juvet LK, Hanssen-Bauer A, Eskild W, Berg T. Oxysterol-activated LXRalpha/RXR induces hSR-BI-promoter activity in hepatoma cells and preadipocytes. Biochem Biophys Res Commun 2002; 299:916-923. [PMID: 12470667 DOI: 10.1016/s0006-291x(02)02760-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
SR-BI mediates exchange of cholesterol between HDL and cells, and is a crucial factor in the transport of excessive cellular cholesterol from extrahepatic tissues to the liver ("reverse cholesterol transport") and, therefore, also for cholesterol homeostasis. Hepatic SR-BI mediates transfer of HDL-cholesterol to the hepatocytes where cholesterol may be metabolised to bile acids. LXR and SREBP are key factors in the regulation of cholesterol metabolism. The purpose of the present study was to determine whether these transcription factors are involved in the regulation of SR-BI. Here we show that LXRalpha/RXR and LXRbeta/RXR induce SR-BI transcription in human and murine hepatoma cell lines, and in 3T3-L1 preadipocytes independently of SREBP-1. The LXR/RXR response was mapped within -1,200 to -937 of the promoter region. Gel mobility shift analysis confirmed that the putative LXR response element bound LXRalpha/RXR and LXRbeta/RXR heterodimers.
Collapse
MESH Headings
- Adipocytes/metabolism
- Animals
- CCAAT-Enhancer-Binding Proteins/physiology
- CD36 Antigens/biosynthesis
- CD36 Antigens/genetics
- COS Cells
- Carcinoma, Hepatocellular
- Cell Line
- DNA-Binding Proteins/physiology
- Genetic Vectors
- Hydroxycholesterols/pharmacology
- Liver X Receptors
- Membrane Proteins
- Mice
- Orphan Nuclear Receptors
- Promoter Regions, Genetic
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Immunologic
- Receptors, Lipoprotein
- Receptors, Retinoic Acid/metabolism
- Receptors, Scavenger
- Response Elements
- Retinoid X Receptors
- Retroviridae/genetics
- Scavenger Receptors, Class B
- Sequence Deletion
- Stem Cells/drug effects
- Stem Cells/metabolism
- Sterol Regulatory Element Binding Protein 1
- Transcription Factors/metabolism
- Transcriptional Activation
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Lene Malerød
- Divison of Molecular Cell Biology, Institute of Biology, University of Oslo, P.O. Box 1050, Blindern, N-0316 Oslo, Norway
| | | | | | | | | |
Collapse
|
30
|
Hsu HJ, Hsiao P, Kuo MW, Chung BC. Expression of zebrafish cyp11a1 as a maternal transcript and in yolk syncytial layer. Gene Expr Patterns 2002; 2:219-22. [PMID: 12617804 DOI: 10.1016/s1567-133x(02)00059-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cyp11a1 (P450scc, cholesterol side-chain cleavage enzyme) is the first enzyme for the synthesis of all steroid hormones. The regulation of steroid synthesis has been extensively investigated, except during embryogenesis. To study steroidogenesis in embryos, we have isolated the zebrafish cyp11a1 gene, which consists of 11 exons. Reverse transcription-polymerase chain reaction analysis indicates that zebrafish cyp11a1 is expressed temporally in two waves during embryonic stages and when sexual differentiation begins. It is expressed in adult brain, testicular Leydig cells, and the granulosa/theca layer of the ovary. In addition, zebrafish cyp11a1 is expressed in oocytes, and is inherited as a maternal transcript in early embryos. Throughout zebrafish epiboly and segmentation stages, cyp11a1 is expressed in the yolk syncytial layer. At 36 h post fertilization, cyp11a1 transcript is located ventral to the third somite, where the primordial interrenal gland is located. In summary, zebrafish cyp11a1 is expressed in the cytoplasm of oocytes, as a maternal transcript, and in yolk syncytial layer during early embryogenesis.
Collapse
Affiliation(s)
- Hwei-Jan Hsu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | | | |
Collapse
|
31
|
von Hofsten J, Karlsson J, Jones I, Olsson PE. Expression and Regulation of Fushi Tarazu Factor-1 and Steroidogenic Genes During Reproduction in Arctic Char (Salvelinus alpinus)1. Biol Reprod 2002; 67:1297-304. [PMID: 12297548 DOI: 10.1095/biolreprod67.4.1297] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Teleost fushi tarazu factor-1 (FTZ-F1) is a potential regulator of steroidogenesis. The present study shows sex-specific regulation of Arctic char fushi tarazu factor-1 (acFF1) and steroidogenic genes during reproductive maturation and in response to hormone treatment. A link between gonadal expression of acFF1, steroidogenic acute regulatory protein (StAR), and cytochrome P450-11A (CYP11A), was observed in the reproductive maturation process, as elevated acFF1 mRNA and protein levels preceded increased StAR and CYP11A transcription. Sex-specific differences were observed as estrogen treatment resulted in down-regulated levels of acFF1 mRNA in testis and male head kidney, whereas no significant effect was observed in females. 11-Ketotestosterone (11-KT) down-regulated CYP11A and 3beta-hydroxysteroid dehydrogenase (3betaHSD) in head kidney and up-regulated CYP11A in testis. StAR remained unaffected by hormone treatment. This suggests that acFF1 is controlled by 17beta-estradiol, whereas the effects on CYP11A and 3betaHSD are mediated by 11-KT. Coexpression of acFF1, StAR, and CYP11A was observed in head kidney, in addition to gonads, indicating correlation between these steroidogenic genes. StAR and acFF1 were also coexpressed in liver, suggesting a potential role in cholesterol metabolism. Although these results indicate conserved steroidogenic functions for FTZ-F1 among vertebrates, they also raise the question of additional roles for FTZ-F1 in teleosts.
Collapse
|