1
|
Stewart N, Wisnovsky S. Bridging Glycomics and Genomics: New Uses of Functional Genetics in the Study of Cellular Glycosylation. Front Mol Biosci 2022; 9:934584. [PMID: 35782863 PMCID: PMC9243437 DOI: 10.3389/fmolb.2022.934584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
All living cells are coated with a diverse collection of carbohydrate molecules called glycans. Glycans are key regulators of cell behavior and important therapeutic targets for human disease. Unlike proteins, glycans are not directly templated by discrete genes. Instead, they are produced through multi-gene pathways that generate a heterogenous array of glycoprotein and glycolipid antigens on the cell surface. This genetic complexity has sometimes made it challenging to understand how glycosylation is regulated and how it becomes altered in disease. Recent years, however, have seen the emergence of powerful new functional genomics technologies that allow high-throughput characterization of genetically complex cellular phenotypes. In this review, we discuss how these techniques are now being applied to achieve a deeper understanding of glyco-genomic regulation. We highlight specifically how methods like ChIP-seq, RNA-seq, CRISPR genomic screening and scRNA-seq are being used to map the genomic basis for various cell-surface glycosylation states in normal and diseased cell types. We also offer a perspective on how emerging functional genomics technologies are likely to create further opportunities for studying cellular glycobiology in the future. Taken together, we hope this review serves as a primer to recent developments at the glycomics-genomics interface.
Collapse
Affiliation(s)
- Natalie Stewart
- Biochemistry and Microbiology Dept, University of Victoria, Victoria, BC, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Simon Wisnovsky
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Simon Wisnovsky,
| |
Collapse
|
2
|
Su W, Qiu T, Zhang M, Hao C, Zeng P, Huang Z, Du W, Yun T, Xuan Y, Zhang L, Guo Y, Jiao W. Systems biomarker characteristics of circulating alkaline phosphatase activities for 48 types of human diseases. Curr Med Res Opin 2022; 38:201-209. [PMID: 34719310 DOI: 10.1080/03007995.2021.2000715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Most human diseases are accompanied by systems changes. Systems biomarkers should reflect such changes. The phosphorylation and dephosphorylation of biomolecules maintain human homeostasis. However, the systems biomarker characteristics of circulating alkaline phosphatase, a routine blood test conducted for many human diseases, have never been investigated. METHOD This study retrieved the circulating alkaline phosphatase (ALP) activities from patients with 48 clinically confirmed diseases and healthy individuals from the database of our hospital during the past five years. A detailed analysis of the statistical characteristics of ALP was conducted, including quantiles, receiving operator curve (ROC), and principal component analysis. RESULTS Among the 48 diseases, 45 had increased, and three had decreased median levels of ALP activities compared to the healthy control. Preeclampsia, hepatic encephalopathy, pancreatic cancer, and liver cancer had the highest median values, whereas nephrotic syndrome, lupus erythematosus, and nephritis had decreased median values compared to the healthy control. Further, area under curve (AUC) values were ranged between 0.61 and 0.87 for 19 diseases, and the ALP activities were the best systems biomarker for preeclampsia (AUC 0.87), hepatic encephalopathy (AUC 0.87), liver cancer (AUC 0.81), and pancreatic cancer (AUC 0.81). CONCLUSIONS Alkaline phosphatase was a decent systems biomarker for 19 different types of human diseases. Understanding the molecular mechanisms of over-up-and-down-regulation of ALP activities might be the key to understanding the whole-body systems' reactions during specific disease progression.
Collapse
Affiliation(s)
- Wenhao Su
- Systems Biology & Medicine Center for Complex Diseases, Center for Clinical Research, Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tong Qiu
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meng Zhang
- Systems Biology & Medicine Center for Complex Diseases, Center for Clinical Research, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cui Hao
- Systems Biology & Medicine Center for Complex Diseases, Center for Clinical Research, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Pengjiao Zeng
- Systems Biology & Medicine Center for Complex Diseases, Center for Clinical Research, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhangfeng Huang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenxing Du
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tianxiang Yun
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yunpeng Xuan
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijuan Zhang
- Systems Biology & Medicine Center for Complex Diseases, Center for Clinical Research, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yachong Guo
- Kuang Yaming Honors School, Nanjing University, Nanjing, China
- Institute Theory of Polymers, Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany
| | - Wenjie Jiao
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Jasminka Rešić Karara, Kowalski M, Markotić A, Zemunik T, Čulić VČ. Distinct Cerebellar Glycosphingolipid Phenotypes in Wistar and Lewis Rats. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Heme Oxygenase-1 May Affect Cell Signalling via Modulation of Ganglioside Composition. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3845027. [PMID: 30327713 PMCID: PMC6169227 DOI: 10.1155/2018/3845027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/28/2018] [Accepted: 08/05/2018] [Indexed: 11/17/2022]
Abstract
Heme oxygenase 1 (Hmox1), a ubiquitous enzyme degrading heme to carbon monoxide, iron, and biliverdin, is one of the cytoprotective enzymes induced in response to a variety of stimuli, including cellular oxidative stress. Gangliosides, sialic acid-containing glycosphingolipids expressed in all cells, are involved in cell recognition, signalling, and membrane stabilization. Their expression is often altered under many pathological and physiological conditions including cell death, proliferation, and differentiation. The aim of this study was to assess the possible role of Hmox1 in ganglioside metabolism in relation to oxidative stress. The content of liver and brain gangliosides, their cellular distribution, and mRNA as well as protein expression of key glycosyltransferases were determined in Hmox1 knockout mice as well as their wild-type littermates. To elucidate the possible underlying mechanisms between Hmox1 and ganglioside metabolism, hepatoblastoma HepG2 and neuroblastoma SH-SY5Y cell lines were used for in vitro experiments. Mice lacking Hmox1 exhibited a significant increase in concentrations of liver and brain gangliosides and in mRNA expression of the key enzymes of ganglioside metabolism. A marked shift of GM1 ganglioside from the subsinusoidal part of the intracellular compartment into sinusoidal membranes of hepatocytes was shown in Hmox1 knockout mice. Induction of oxidative stress by chenodeoxycholic acid in vitro resulted in a significant increase in GM3, GM2, and GD1a gangliosides in SH-SY5Y cells and GM3 and GM2 in the HepG2 cell line. These changes were abolished with administration of bilirubin, a potent antioxidant agent. These observations were closely related to oxidative stress-mediated changes in sialyltransferase expression regulated at least partially through the protein kinase C pathway. We conclude that oxidative stress is an important factor modulating synthesis and distribution of gangliosides in vivo and in vitro which might affect ganglioside signalling in higher organisms.
Collapse
|
5
|
Ganglioside glycosyltransferases are S-acylated at conserved cysteine residues involved in homodimerisation. Biochem J 2017; 474:2803-2816. [DOI: 10.1042/bcj20170124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/30/2017] [Accepted: 07/11/2017] [Indexed: 01/06/2023]
Abstract
Ganglioside glycosyltransferases (GGTs) are type II membrane proteins bearing a short N-terminal cytoplasmic tail, a transmembrane domain (TMD), and a lumenal catalytic domain. The expression and activity of these enzymes largely determine the quality of the glycolipids that decorate mammalian cell membranes. Many glycosyltransferases (GTs) are themselves glycosylated, and this is important for their proper localisation, but few if any other post-translational modifications of these proteins have been reported. Here, we show that the GGTs, ST3Gal-V, ST8Sia-I, and β4GalNAcT-I are S-acylated at conserved cysteine residues located close to the cytoplasmic border of their TMDs. ST3Gal-II, a GT that sialylates glycolipids and glycoproteins, is also S-acylated at a conserved cysteine located in the N-terminal cytoplasmic tail. Many other GTs also possess cysteine residues in their cytoplasmic regions, suggesting that this modification occurs also on these GTs. S-acylation, commonly known as palmitoylation, is catalysed by a family of palmitoyltransferases (PATs) that are mostly localised at the Golgi complex but also at the endoplasmic reticulum (ER) and the plasma membrane. Using GT ER retention mutants, we found that S-acylation of β4GalNAcT-I and ST3Gal-II takes place at different compartments, suggesting that these enzymes are not substrates of the same PAT. Finally, we found that cysteines that are the target of S-acylation on β4GalNAcT-I and ST3Gal-II are involved in the formation of homodimers through disulphide bonds. We observed an increase in ST3Gal-II dimers in the presence of the PAT inhibitor 2-bromopalmitate, suggesting that GT homodimerisation may be regulating S-acylation
Collapse
|
6
|
Villanueva-Cabello TM, Mollicone R, Cruz-Muñoz ME, López-Guerrero DV, Martínez-Duncker I. Activation of human naïve Th cells increases surface expression of GD3 and induces neoexpression of GD2 that colocalize with TCR clusters. Glycobiology 2015; 25:1454-64. [PMID: 26263924 DOI: 10.1093/glycob/cwv062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 08/07/2015] [Indexed: 01/08/2023] Open
Abstract
CD4+ T helper lymphocytes (Th) orchestrate the immune response after their activation by antigen-presenting cells. Activation of naïve Th cells is reported to generate the reduction in surface epitopes of sialic acid (Sia) in α2,3 and α2,6 linkages. In this work, we report that in spite of this glycophenotype, anti-CD3/anti-CD28-activated purified human naïve Th cells show a significant increase in surface Sia, as assessed by metabolic labeling, compared with resting naïve Th cells, suggesting an increased flux of Sia toward Siaα2,8 glycoconjugates. To understand this increase as a result of ganglioside up-regulation, we observed that very early after activation, human naïve Th cells show an increased expression in surface GD3 and neoexpression of surface GD2 gangliosides, the latter clustering with the T cell receptor (TCR). Also, we report that in contrast to GM2/GD2 synthase null mice, lentiviral vector-mediated silencing of the GM2/GD2 synthase in activated human naïve Th cells reduced efficient TCR clustering and downstream signaling, as assessed by proliferation assays and IL-2 and IL-2R expression, pointing to an important role of this enzyme in activation of human naive Th cells.
Collapse
Affiliation(s)
- Tania M Villanueva-Cabello
- Laboratorio de Glicobiología Humana, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, México Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Rosella Mollicone
- INSERM U1197, Paris Sud Université XI, Paul Brousse Hôpital, Villejuif 94807, France
| | | | - Delia V López-Guerrero
- Laboratorio de Inmunología Viral, Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca 62350, México
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, México
| |
Collapse
|
7
|
How Do Gangliosides Regulate RTKs Signaling? Cells 2013; 2:751-67. [PMID: 24709879 PMCID: PMC3972652 DOI: 10.3390/cells2040751] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/19/2013] [Accepted: 11/27/2013] [Indexed: 01/14/2023] Open
Abstract
Gangliosides, the glycosphingolipids carrying one or several sialic acid residues, are located on the outer leaflet of the plasma membrane in glycolipid-enriched microdomains, where they interact with molecules of signal transduction pathways including receptors tyrosine kinases (RTKs). The role of gangliosides in the regulation of signal transduction has been reported in many cases and in a large number of cell types. In this review, we summarize the current knowledge on the biosynthesis of gangliosides and the mechanism by which they regulate RTKs signaling.
Collapse
|
8
|
Baas S, Sharrow M, Kotu V, Middleton M, Nguyen K, Flanagan-Steet H, Aoki K, Tiemeyer M. Sugar-free frosting, a homolog of SAD kinase, drives neural-specific glycan expression in the Drosophila embryo. Development 2011; 138:553-63. [PMID: 21205799 PMCID: PMC3014640 DOI: 10.1242/dev.055376] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2010] [Indexed: 01/10/2023]
Abstract
Precise glycan structures on specific glycoproteins impart functionalities essential for neural development. However, mechanisms controlling embryonic neural-specific glycosylation are unknown. A genetic screen for relevant mutations in Drosophila generated the sugar-free frosting (sff) mutant that reveals a new function for protein kinases in regulating substrate flux through specific Golgi processing pathways. Sff is the Drosophila homolog of SAD kinase, which regulates synaptic vesicle tethering and neuronal polarity in nematodes and vertebrates. Our Drosophila sff mutant phenotype has features in common with SAD kinase mutant phenotypes in these other organisms, but we detect altered neural glycosylation well before the initiation of embryonic synaptogenesis. Characterization of Golgi compartmentation markers indicates altered colocalization that is consistent with the detected shift in glycan complexity in sff mutant embryos. Therefore, in analogy to synaptic vesicle tethering, we propose that Sff regulates vesicle tethering at Golgi membranes in the developing Drosophila embryo. Furthermore, neuronal sff expression is dependent on transcellular signaling through a non-neural toll-like receptor, linking neural-specific glycan expression to a kinase activity that is induced in response to environmental cues.
Collapse
Affiliation(s)
- Sarah Baas
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602-4712, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, B122 Life Sciences Building, Green Street, Athens, GA, 30602-4712, USA
| | - Mary Sharrow
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602-4712, USA
| | - Varshika Kotu
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602-4712, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, B122 Life Sciences Building, Green Street, Athens, GA, 30602-4712, USA
| | - Meg Middleton
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602-4712, USA
| | - Khoi Nguyen
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602-4712, USA
| | - Heather Flanagan-Steet
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602-4712, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602-4712, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602-4712, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, B122 Life Sciences Building, Green Street, Athens, GA, 30602-4712, USA
| |
Collapse
|
9
|
Thiele A, Weiwad M, Zerweck J, Fischer G, Schutkowski M. High density peptide microarrays for proteome-wide fingerprinting of kinase activities in cell lysates. Methods Mol Biol 2011; 669:173-81. [PMID: 20857366 DOI: 10.1007/978-1-60761-845-4_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Protein function is highly regulated in pathways that are responsible for complex biochemical mechanisms such as growth, metabolism, and signal transduction. One of the most important mechanisms is posttranslational modification (PTM) changing protein surfaces by phosphorylation, sulfation, acetylation, methylation, glycosylation, and sumoylation resulting in a more than 100-fold higher complexity (Geiss-Friedlander and Melchior, Nat Rev Mol Cell Biol 8, 947-956, 2007; Hunter, Mol Cell 28, 730-738, 2007). This chapter presents a very efficient way to detect potential phosphorylation sites in protein families using overlapping peptides covering the complete primary structures (peptide scans) immobilized on glass slides. Results of kinase activity fingerprinting of cell lysates using peptide microarrays displaying peptide scans through all human peptidyl-prolyl-cis/trans-isomerases are shown.
Collapse
Affiliation(s)
- Alexandra Thiele
- Max Planck Research Unit for Enzymology of Protein Folding, Halle, Germany
| | | | | | | | | |
Collapse
|
10
|
High-density peptide microarrays for reliable identification of phosphorylation sites and upstream kinases. Methods Mol Biol 2009; 570:203-19. [PMID: 19649595 DOI: 10.1007/978-1-60327-394-7_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The human genome encodes about 25,000 genes. This number seems to be very small compared to the multitude of different protein functions in highly regulated pathways that are responsible for complex biochemical mechanisms like growth, metabolism, signal transduction and reproduction. Obviously, there are mechanisms creating additional protein diversity. The most important mechanism is post-translational modification (PTM) changing protein surfaces by phosphorylation, sulfation, acetylation, methylation and sumoylation resulting in an about 100-fold higher complexity (1, 2). This chapter presents a very efficient way to detect potential phosphorylation sites in proteins using overlapping peptide scans immobilized on glass slides. Results from 35 different human kinases using peptide microarrays displaying overlapping peptide scans through either all human cyclophilins or all human FK506-binding proteins are shown. Additionally, detection of phosphorylation sites in a proteome-wide manner is demonstrated using peptide microarrays displaying cytomegalovirus proteome in the form of more than 17,000 overlapping peptides.
Collapse
|
11
|
Abstract
Ganglioside biosynthesis is strictly regulated by the activities of glycosyltransferases and is necessarily controlled at the levels of gene transcription and posttranslational modification. Cells can switch between expressing simple and complex gangliosides or between different series within these two groups during brain development. The sequential biosynthesis of gangliosides in parallel enzymatic pathways, however, requires fine-tuned subcellular sequestration and orchestration of glycosyltransferases. A popular model predicts that this regulation is achieved by the vectorial organization of ganglioside biosynthesis: sequential biosynthetic steps occur with the traffic of ganglioside intermediates through subsequent subcellular compartments. Here, we review current models for the subcellular distribution of glycosyltransferases and discuss results that suggest a critical role of N-glycosylation for the processing, transport, and complex formation of these enzymes. In this context, we attempt to illustrate the regulation of ganglioside biosynthesis as well as the biological significance of N-glycosylation as a posttranslational regulatory mechanism. We also review the results of analyses of the 5' regulatory sequences of several glycosyltransferases in ganglioside biosynthesis and provide insights into how their synthesis can be regulated at the level of transcription.
Collapse
Affiliation(s)
- Robert K Yu
- Institute of Molecular Medicine and Genetics, School of Medicine, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | | | |
Collapse
|
12
|
Yue CJ, Zhong JJ. Impact of external calcium and calcium sensors on ginsenoside Rb1 biosynthesis byPanax notoginseng cells. Biotechnol Bioeng 2005; 89:444-52. [PMID: 15627250 DOI: 10.1002/bit.20386] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effects of external calcium concentrations on biosynthesis of ginsenoside Rb1 and several calcium signal sensors were quantitatively investigated in suspension cultures of Panax notoginseng cells. It was observed that the synthesis of intracellular ginsenoside Rb1 in 3-day incubation was dependent on the medium Ca2+ concentration (0-13 mM). At an optimal Ca2+ concentration of 8 mM, a maximal ginsenoside Rb1 content of 1.88 +/- 0.03 mg g(-1) dry weight was reached, which was about 60% and 25% higher than that at Ca2+ concentrations of 0 and 3 mM, respectively. Ca2+ feeding experiments confirmed the Ca2+ concentration-dependent Rb1 biosynthesis. In order to understand the mechanism of the signal transduction from external Ca2+ to ginsenoside biosynthesis, the intracellular content of calcium and calmodulin (CaM), activities of calcium/calmodulin-dependent NAD kinase (CCDNK) and calcium-dependent protein kinase (CDPK), and activity of a new biosynthetic enzyme of ginsenoside Rb1, i.e., UDPG:ginsenoside Rd glucosyltransferase (UGRdGT), in the cultured cells were all analyzed. The intracellular calcium content and CCDNK activity were increased with an increase of external Ca2+ concentration within 0-13 mM. In contrast, the CaM content and activities of CDPK and UGRdGT reached their highest levels at 8 mM of initial Ca2+ concentration, which was also optimal to the ginsenoside Rb1 synthesis. A similar Ca2+ concentration-dependency of the intracellular contents of calcium and CaM and activities of CCDNK, CDPK, and UGRdGT was confirmed in Ca2+ feeding experiments. Finally, a possible model on the effect of external calcium on ginsenoside Rb1 biosynthesis via the signal transduction pathway of CaM, CDPK, and UGRdGT is proposed. Regulation of external Ca2+ concentration is considered a useful strategy for manipulating ginsenoside Rb1 biosynthesis by P. notoginseng cells.
Collapse
Affiliation(s)
- Cai-Jun Yue
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | | |
Collapse
|
13
|
Odintsova E, Voortman J, Gilbert E, Berditchevski F. Tetraspanin CD82 regulates compartmentalisation and ligand-induced dimerization of EGFR. J Cell Sci 2003; 116:4557-66. [PMID: 14576349 DOI: 10.1242/jcs.00793] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that CD82, a transmembrane protein of the tetraspanin superfamily is associated with EGFR and has a negative effect on EGF-induced signalling (Odintsova, E., Sugiura, T. and Berditchevski, F. (2000) Curr. Biol. 10, 1009-1012). Here we demonstrate that CD82 specifically attenuates ligand-induced dimerization of EGFR. The recombinant soluble large extracellular loop of CD82 has no effect on the dimerization thereby suggesting that other parts of the protein are required. Although CD82 is also associated with ErbB2 and ErbB3, ligand-induced assembly of the ErbB2-ErbB3 complexes is not affected in CD82-expressing cells. Furthermore, in contrast to the CD82-EGFR association, CD82-ErbB2 and CD82-ErbB3 complexes are stable in the presence of ErbB3 ligand. The effect of CD82 on the formation of EGFR dimers correlates with changes in compartmentalisation of the ErbB receptors on the plasma membrane. Expression of CD82 causes a significant increase in the amount of EGFR and ErbB2 in the light fractions of the sucrose gradient. This correlates with the increased surface expression of gangliosides GD1a and GM1 and redistribution of GD1a and EGFR on the plasma membrane. Furthermore, in CD82-expressing cells GD1a is co-localised with EGFR and the tetraspanin. Taken together our results offer a molecular mechanism of the attenuating activity of CD82 towards EGFR, whereby GD1a functions as a mediator of CD82-dependent compartmentalisation of the receptor.
Collapse
Affiliation(s)
- Elena Odintsova
- Cancer Research UK Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
14
|
Walkley SU. Neurobiology and cellular pathogenesis of glycolipid storage diseases. Philos Trans R Soc Lond B Biol Sci 2003; 358:893-904. [PMID: 12803923 PMCID: PMC1693176 DOI: 10.1098/rstb.2003.1276] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Disorders of lysosomal metabolism often involve the accumulation of specific types of glycolipid, particularly gangliosides, because of either degradative failure or other currently unknown mechanisms. Although the precise role of gangliosides in cells remains enigmatic, the presence of specific abnormalities secondary to ganglioside accumulation in lysosomal diseases has suggested important biological functions. Chief among these is the growth of new dendrites on particular classes of mature neurons secondary to an increase in GM2 ganglioside. That GM2 has also been shown to be elevated in normal immature neurons coincident with dendritic sprouting provides a compelling argument that this ganglioside plays a role in dendritic initiation. This discovery has led to the search for other regulators of dendritic differentiation that may in some way be linked to the expression and/or function of GM2 ganglioside. Principal candidates that have emerged include tyrosine kinase receptors, small GTPases and calcium/calmodulin-dependent protein kinase II. Understanding the mechanism underlying ectopic dendritogenesis in lysosomal diseases can be expected to generate significant insight into the control of dendritic plasticity in normal brain. The detrimental aspects of ganglioside accumulation in storage diseases as well as the potential link between gangliosides and dendritogenesis also provide a strong rationale for developing pharmacological means to manipulate ganglioside expression in neurons.
Collapse
Affiliation(s)
- Steven U Walkley
- Sidney Weisner Laboratory of Genetic Neurological Disease, Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Human Development, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
15
|
Abstract
Lipid and glycolipid mediators are important messengers of the adaptive responses to stress, including apoptosis. In mammalian cells, the intracellular accumulation of ganglioside GD3, an acidic glycosphingolipid, contributes to mitochondrial damage, a crucial event during the apoptopic program. GD3 is a minor ganglioside in most normal tissues. Its expression increases during development and in pathological conditions such as cancer and neurodegenerative disorders. Intriguingly, GD3 can mediate additional biological events such as cell proliferation and differentiation. These diverse and opposing effects indicate that tightly regulated mechanisms, including 9-O-acetylation, control GD3 function, by affecting intracellular levels, localization and structure of GD3, and eventually dictate biological outcomes and cell fate decisions.
Collapse
Affiliation(s)
- Florence Malisan
- Department of Experimental Medicine and Biochemical Sciences, University Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | | |
Collapse
|
16
|
Abstract
Glycolipid expression is highly regulated during development and differeniation. The control relies mainly on transcriptional modulation of key glycosyltransferases acting at the branching points of the pathway of biosynthesis. Transferases are Golgi residents that depend on N-glycosylation and oligosaccharide processing for proper folding in the endoplasmic reticulum. The N-terminal domain bears information for their transport to the Golgi, retention in the organelle and differential concentration in sub-Golgi compartments. In the Golgi, some transferases associate forming functional multienzyme complexes. It is envisaged that the machinery for synthesis in the Golgi complex, and its dynamics, constitute a potential target for fine tuning of the control of glycolipid expression according to cell demands.
Collapse
Affiliation(s)
- Hugo J F Maccioni
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC (UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina.
| | | | | |
Collapse
|
17
|
Affiliation(s)
- Thomas Kolter
- Kekulé-Institut für Organische Chemie und Biochemie, D-53121 Bonn, Germany
| | | | | |
Collapse
|