1
|
Cabrita E, Pacchiarini T, Fatsini E, Sarasquete C, Herráez MP. Post-thaw quality assessment of testicular fragments as a source of spermatogonial cells for surrogate production in the flatfish Solea senegalensis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1971-1985. [PMID: 37644252 DOI: 10.1007/s10695-023-01232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Cryopreservation of germ cells would facilitate the availability of cells at any time allowing the selection of donors and maintaining quality control for further applications such as transplantation and germline recovery. In the present study, we analyzed the efficiency of four cryopreservation protocols applied either to isolated cell suspensions or to testes fragments from Senegalese sole. In testes fragments, the quality of cryopreserved germ cells was analyzed in vitro in terms of cell recovery, integrity and viability, DNA integrity (fragmentation and apoptosis), and lipid peroxidation (malondialdehyde levels). Transplantation of cryopreserved germ cells was performed to check the capacity of cells to in vivo incorporate into the gonadal primordium of Senegalese sole early larval stages (6 days after hatching (dah), pelagic live), during metamorphosis (10 dah) and at post-metamorphic stages (16 dah and 20 dah, benthonic life). Protocols incorporating dimethyl sulfoxide (DMSO) as a cryoprotectant showed higher number of recovered spermatogonia, especially in samples cryopreserved with L-15 + DMSO (0.39 ± 0.18 × 106 cells). Lipid peroxidation and DNA fragmentation were also significantly lower in this treatment compared with other treatments. An important increase in oxidation (MDA levels) was detected in samples containing glycerol as a cryoprotectant, reflected also in terms of DNA damage. Transplantation of L-15 + DMSO cryopreserved germ cells into larvae during early metamorphosis (10 dah, 5.2 mm) showed higher incorporation of cells (27.30 ± 5.27%) than other larval stages (lower than 11%). Cryopreservation of germ cells using testes fragments frozen with L-15 + DMSO was demonstrated to be a useful technique to store Senegalese sole germline.
Collapse
Affiliation(s)
- Elsa Cabrita
- Centre of Marine Sciences-CCMAR, University of Algarve, Campus Gambelas, 8005-139, Faro, Portugal.
| | - Tiziana Pacchiarini
- Sea4tech, Incubadora de Alta Tecnología INCUBAZUL, Edificio Europa, Zona Franca de Cádiz, Cádiz, Spain
| | - Elvira Fatsini
- Centre of Marine Sciences-CCMAR, University of Algarve, Campus Gambelas, 8005-139, Faro, Portugal
| | - Carmen Sarasquete
- Institute of Marine Science of Andalusia- ICMAN.CSIC, Av Republica Saharaui 2, 11510 Puerto Real, Cádiz, Spain
| | - María Paz Herráez
- Dept. Biologia Molecular, Facultad de Biologia, Universidad de León, 24071, León, Spain
| |
Collapse
|
2
|
Horvath-Pereira BDO, Almeida GHDR, da Silva Júnior LN, do Nascimento PG, Horvath Pereira BDO, Fireman JVBT, Pereira MLDRF, Carreira ACO, Miglino MA. Biomaterials for Testicular Bioengineering: How far have we come and where do we have to go? Front Endocrinol (Lausanne) 2023; 14:1085872. [PMID: 37008920 PMCID: PMC10060902 DOI: 10.3389/fendo.2023.1085872] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
Traditional therapeutic interventions aim to restore male fertile potential or preserve sperm viability in severe cases, such as semen cryopreservation, testicular tissue, germ cell transplantation and testicular graft. However, these techniques demonstrate several methodological, clinical, and biological limitations, that impact in their results. In this scenario, reproductive medicine has sought biotechnological alternatives applied for infertility treatment, or to improve gamete preservation and thus increase reproductive rates in vitro and in vivo. One of the main approaches employed is the biomimetic testicular tissue reconstruction, which uses tissue-engineering principles and methodologies. This strategy pursues to mimic the testicular microenvironment, simulating physiological conditions. Such approach allows male gametes maintenance in culture or produce viable grafts that can be transplanted and restore reproductive functions. In this context, the application of several biomaterials have been proposed to be used in artificial biological systems. From synthetic polymers to decellularized matrixes, each biomaterial has advantages and disadvantages regarding its application in cell culture and tissue reconstruction. Therefore, the present review aims to list the progress that has been made and the continued challenges facing testicular regenerative medicine and the preservation of male reproductive capacity, based on the development of tissue bioengineering approaches for testicular tissue microenvironment reconstruction.
Collapse
Affiliation(s)
| | | | | | - Pedro Gabriel do Nascimento
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- Centre for Natural and Human Sciences, Federal University of ABC, São Paulo, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Bashiri Z, Zahiri M, Allahyari H, Esmaeilzade B. Proliferation of human spermatogonial stem cells on optimized PCL/Gelatin nanofibrous scaffolds. Andrologia 2022; 54:e14380. [PMID: 35083770 DOI: 10.1111/and.14380] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 12/26/2022] Open
Abstract
Improvement of culture system and increasing the proliferation of spermatogonia stem cells under in vitro condition are the essential treatment options for infertility before autologous transplantation. Therefore, the present study aimed to evaluate the proliferation of human spermatogonia stem cells on the electrospun polycaprolactone/gelatin nanocomposite. Therefore, for this purpose, nanofiber porous scaffolds were prepared using the electrospinning method and their structures were then confirmed by SEM. After performing swelling, biodegradability and cell adhesion tests, human spermatogonia stem cells were cultured on scaffolds. In addition, both cell viability and proliferation were assessed using immunocytochemistry, flow cytometry and real-time PCR techniques in culturing during a 3-week period. SEM images indicated the presence of fibres with suitable diameters and arrangement as well as a sufficient porosity in nanocomposite scaffolds, showing good biocompatibility and biodegradability. The results show a significant increase in the number of spermatogonia stem cells in the cultured group on scaffold compared with the control group (p ≤ 0.05). As well, the results show that the expressions of integrin ɑ6 and β1 and Plzf genes estimated using real-time PCR in nanofiber scaffolds were significantly higher than those of the control group (p ≤ 0.05). However, the expression of c-Kit gene in the 3D group showed a significant decrease compared with the 2D group. Flow cytometry analysis also showed that the number of Plzf-positive cells was significantly higher in nanofiber porous scaffolds compared with the control group (p ≤ 0.05). Additionally, immunocytochemistry findings confirmed the presence of human spermatogonia stem cell colonies. In general, it seems that the designed nanocomposite scaffold could provide a suitable capacity for self-renewal of human spermatogonia stem cells, which can have a good application potential in research and reconstructive medicine related to the field of male infertility.
Collapse
Affiliation(s)
- Zahra Bashiri
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomical Sciences, School of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Maria Zahiri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.,Department of Anatomical Sciences, School of Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hamed Allahyari
- Department of Anatomical Sciences, School of Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Banafshe Esmaeilzade
- Department of Anatomical Sciences, School of Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
4
|
Arato I, Ceccarelli V, Mancuso F, Bellucci C, Lilli C, Ferolla P, Perruccio K, D'Arpino A, Aglietti MC, Calafiore R, Cameron DF, Calvitti M, Baroni T, Vecchini A, Luca G. Effect of EPA on Neonatal Pig Sertoli Cells " In Vitro": A Possible Treatment to Help Maintain Fertility in Pre-Pubertal Boys Undergoing Treatment With Gonado-Toxic Therapies. Front Endocrinol (Lausanne) 2021; 12:694796. [PMID: 34093450 PMCID: PMC8174840 DOI: 10.3389/fendo.2021.694796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/05/2021] [Indexed: 01/15/2023] Open
Abstract
The incidence of cancer in pre-pubertal boys has significantly increased and, it has been recognized that the gonado-toxic effect of the cancer treatments may lead to infertility. Here, we have evaluated the effects on porcine neonatal Sertoli cells (SCs) of three commonly used chemotherapy drugs; cisplatin, 4-Hydroperoxycyclophosphamide and doxorubicin. All three drugs induced a statistical reduction of 5-hydroxymethylcytosine in comparison with the control group, performed by Immunofluorescence Analysis. The gene and protein expression levels of GDNF, were significantly down-regulated after treatment to all three chemotherapy drugs comparison with the control group. Specifically, differences in the mRNA levels of GDNF were: 0,8200 ± 0,0440, 0,6400 ± 0,0140, 0,4400 ± 0,0130 fold change at 0.33, 1.66, and 3.33μM cisplatin concentrations, respectively (**p < 0.01 at 0.33 and 1.66 μM vs SCs and ***p < 0.001 at 3.33μM vs SCs); 0,6000 ± 0,0340, 0,4200 ± 0,0130 fold change at 50 and 100 μM of 4-Hydroperoxycyclophosphamide concentrations, respectively (**p < 0.01 at both these concentrations vs SCs); 0,7000 ± 0,0340, 0,6200 ± 0,0240, 0,4000 ± 0,0230 fold change at 0.1, 0.2 and 1 µM doxorubicin concentrations, respectively (**p < 0.01 at 0.1 and 0.2 μM vs SCs and ***p < 0.001 at 1 μM vs SCs). Differences in the protein expression levels of GDNF were: 0,7400 ± 0,0340, 0,2000 ± 0,0240, 0,0400 ± 0,0230 A.U. at 0.33, 1.66, and 3.33μM cisplatin concentrations, respectively (**p < 0.01 at both these concentrations vs SCs); 0,7300 ± 0,0340, 0,4000 ± 0,0130 A.U. at 50 and 100 μM of 4- Hydroperoxycyclophosphamide concentrations, respectively (**p < 0.01 at both these concentrations vs SCs); 0,6200 ± 0,0340, 0,4000 ± 0,0240, 0,3800 ± 0,0230 A.U. at 0.l, 0.2 and 1 µM doxorubicin concentrations, respectively (**p < 0.01 at 0.1 and 0.2 μM vs SCs and ***p < 0.001 at 1 μM vs SCs). Furthermore, we have demonstrated the protective effect of eicosapentaenoic acid on SCs only at the highest concentration of cisplatin, resulting in an increase in both gene and protein expression levels of GDNF (1,3400 ± 0,0280 fold change; **p < 0.01 vs SCs); and of AMH and inhibin B that were significantly recovered with values comparable to the control group. Results from this study, offers the opportunity to develop future therapeutic strategies for male fertility management, especially in pre-pubertal boys.
Collapse
Affiliation(s)
- Iva Arato
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Francesca Mancuso
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Catia Bellucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Cinzia Lilli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Piero Ferolla
- Department of Medical Oncology, Multidisciplinary Neuroendocrine Tumours (NET) Group, Umbria Regional Cancer Network and University of Perugia, Perugia, Italy
| | - Katia Perruccio
- Pediatric Oncology Hematology, Department of Mother and Child Health, Perugia, Italy
| | | | | | - Riccardo Calafiore
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- International Biotechnological Center for Endocrine, Metabolic and Embryo-Reproductive Translational Research (CIRTEMER), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Don F Cameron
- Morisani College of Medicine FL, University of South Florida, Tampa, FL, United States
| | - Mario Calvitti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Tiziano Baroni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alba Vecchini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giovanni Luca
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- International Biotechnological Center for Endocrine, Metabolic and Embryo-Reproductive Translational Research (CIRTEMER), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Division of Medical Andrology and Endocrinology of Reproduction, Saint Mary Hospital, Terni, Italy
| |
Collapse
|
5
|
Isolation, identification and differentiation of human spermatogonial cells on three-dimensional decellularized sheep testis. Acta Histochem 2020; 122:151623. [PMID: 32992121 DOI: 10.1016/j.acthis.2020.151623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022]
Abstract
Improvement of in vitro culture methods of Spermatogonial Stem Cells (SSCs) is known to be an effective procedure for further study of the process of spermatogenesis and can offer effective therapeutic modality for male infertility. Tissue decellularization by providing natural 3D and extracellular matrix (ECM) conditions for cell growth can be an alternative procedure to enhance in vitro culture conditions. In the present study, the testicular tissues were taken from brain death donors. After enzymatic digestion, the tissue cells were isolated and cultured for four weeks. Then the identity of the SSCs was confirmed using anti-GFRα1 and anti-PLZF antibodies via immunocytochemistry (ICC). The differentiation capacity of SSCs were evaluated by culture of them on a layer of decellularized testicular matrix (DTM) prepared from sheep testis, as well as under two-dimensional (2D) culture with differentiation medium. After four and six weeks of the initiation of differentiation culture, the pre-meiotic, meiotic and post- meiotic genes at the mRNA and protein levels was examined via qPCR and ICC methods, respectively. The results showed that pre-meiotic, meiotic and post-meiotic genes expressions were significantly higher in the cells cultured in DTM substrate (P ≤ 0.01).The present study indicated that, the natural structure of ECM prepare the suitable conditions for further study of the spermatogenesis process in the in vitro and contributes to the maintenance and treatment of male infertility.
Collapse
|
6
|
Sun YZ, Liu ST, Li XM, Zou K. Progress in in vitro culture and gene editing of porcine spermatogonial stem cells. Zool Res 2019; 40:343-348. [PMID: 31393095 PMCID: PMC6755112 DOI: 10.24272/j.issn.2095-8137.2019.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022] Open
Abstract
Research on in vitro culture and gene editing of domestic spermatogonial stem cells (SSCs) is of considerable interest but remains a challenging issue in animal science. In recent years, some progress on the isolation, purification, and genetic manipulation of porcine SSCs has been reported. Here, we summarize the characteristics of porcine SSCs as well current advances in their in vitro culture, potential usage, and genetic manipulation. Furthermore, we discuss the current application of gene editing in pig cloning technology. Collectively, this commentary aims to summarize the progress made and obstacles encountered in porcine SSC research to better serve animal husbandry, improve livestock fecundity, and enhance potential clinical use.
Collapse
Affiliation(s)
- Yi-Zhuo Sun
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing Jiangsu 210095, China
| | - Si-Tong Liu
- College of Life Sciences, Jilin University, Changchun Jilin 130012, China
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun Jilin 130024, China
| | - Xiao-Meng Li
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun Jilin 130024, China; E-mail:
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing Jiangsu 210095, China; E-mail:
| |
Collapse
|
7
|
Ibtisham F, Wu J, Xiao M, An L, Banker Z, Nawab A, Zhao Y, Li G. Progress and future prospect of in vitro spermatogenesis. Oncotarget 2017; 8:66709-66727. [PMID: 29029549 PMCID: PMC5630449 DOI: 10.18632/oncotarget.19640] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/12/2017] [Indexed: 12/25/2022] Open
Abstract
Infertility has become a major health issue in the world. It affects the social life of couples and of all infertility cases; approximately 40–50% is due to “male factor” infertility. Male infertility could be due to genetic factors, environment or due to gonadotoxic treatment. Developments in reproductive biotechnology have made it possible to rescue fertility and uphold biological fatherhood. In vitro production of haploid male germ cell is a powerful tool, not only for the treatment of infertility including oligozoospermic or azoospermic patient, but also for the fertility preservation in pre-pubertal boys whose gonadal function is threatened by gonadotoxic therapies. Genomic editing of in-vitro cultured germ cells could also potentially cure flaws in spermatogenesis due to genomic mutation. Furthermore, this ex-vivo maturation technique with genomic editing may be used to prevent paternal transmission of genomic diseases. Here, we summarize the historical progress of in vitro spermatogenesis research by using organ and cell culture techniques and the future clinical application of in vitro spermatogenesis.
Collapse
Affiliation(s)
- Fahar Ibtisham
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Jiang Wu
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Mei Xiao
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Lilong An
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Zachary Banker
- Foreign Language College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Aamir Nawab
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yi Zhao
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Guanghui Li
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| |
Collapse
|
8
|
Mulder CL, Zheng Y, Jan SZ, Struijk RB, Repping S, Hamer G, van Pelt AMM. Spermatogonial stem cell autotransplantation and germline genomic editing: a future cure for spermatogenic failure and prevention of transmission of genomic diseases. Hum Reprod Update 2016; 22:561-73. [PMID: 27240817 PMCID: PMC5001497 DOI: 10.1093/humupd/dmw017] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/28/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Subfertility affects approximately 15% of all couples, and a severe male factor is identified in 17% of these couples. While the etiology of a severe male factor remains largely unknown, prior gonadotoxic treatment and genomic aberrations have been associated with this type of subfertility. Couples with a severe male factor can resort to ICSI, with either ejaculated spermatozoa (in case of oligozoospermia) or surgically retrieved testicular spermatozoa (in case of azoospermia) to generate their own biological children. Currently there is no direct treatment for azoospermia or oligozoospermia. Spermatogonial stem cell (SSC) autotransplantation (SSCT) is a promising novel clinical application currently under development to restore fertility in sterile childhood cancer survivors. Meanwhile, recent advances in genomic editing, especially the clustered regulatory interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) system, are likely to enable genomic rectification of human SSCs in the near future. OBJECTIVE AND RATIONALE The objective of this review is to provide insights into the prospects of the potential clinical application of SSCT with or without genomic editing to cure spermatogenic failure and to prevent transmission of genetic diseases. SEARCH METHODS We performed a narrative review using the literature available on PubMed not restricted to any publishing year on topics of subfertility, fertility treatments, (molecular regulation of) spermatogenesis and SSCT, inherited (genetic) disorders, prenatal screening methods, genomic editing and germline editing. For germline editing, we focussed on the novel CRISPR-Cas9 system. We included papers written in English only. OUTCOMES Current techniques allow propagation of human SSCs in vitro, which is indispensable to successful transplantation. This technique is currently being developed in a preclinical setting for childhood cancer survivors who have stored a testis biopsy prior to cancer treatment. Similarly, SSCT could be used to restore fertility in sterile adult cancer survivors. In vitro propagation of SSCs might also be employed to enhance spermatogenesis in oligozoospermic men and in azoospermic men who still have functional SSCs albeit in insufficient numbers. The combination of SSCT with genomic editing techniques could potentially rectify defects in spermatogenesis caused by genomic mutations or, more broadly, prevent transmission of genomic diseases to the offspring. In spite of the promising prospects, SSCT and germline genomic editing are not yet clinically applicable and both techniques require optimization at various levels. WIDER IMPLICATIONS SSCT with or without genomic editing could potentially be used to restore fertility in cancer survivors to treat couples with a severe male factor and to prevent the paternal transmission of diseases. This will potentially allow these couples to have their own biological children. Technical development is progressing rapidly, and ethical reflection and societal debate on the use of SSCT with or without genomic editing is pressing.
Collapse
Affiliation(s)
- Callista L Mulder
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Yi Zheng
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Sabrina Z Jan
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Robert B Struijk
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Sjoerd Repping
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Geert Hamer
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
9
|
Gadella BM, Ferraz MA. A Review of New Technologies that may Become Useful for in vitro Production of Boar Sperm. Reprod Domest Anim 2016; 50 Suppl 2:61-70. [PMID: 26174921 DOI: 10.1111/rda.12571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 01/07/2023]
Abstract
Making sperm cells outside the original testicular environment in a culture dish has been considered for a long time as impossible due to the very complicated process of spermatogenesis and sperm maturation, which altogether, encompasses a 2-month period. However, new approaches in complex three-dimensional co-cell cultures, micro-perfusion and micro-fluidics technologies, new knowledge in the functioning, culturing and differentiation of spermatogonial stem cells (SSC) and their precursor cells have revolutionized this field. Furthermore, the use of better molecular markers as well as stimulatory factors has led to successful in vitro culture of stem cells either derived from germ line stem cells, from induced pluripotent stem cells (iPSC) or from embryonic stem cells (ESC). These stem cells when placed into small seminiferous tubule fragments are able to become SSC. The SSC beyond self-renewal can also be induced into haploid sperm-like cells under in vitro conditions. In mouse, this in vitro produced sperm can be injected into a mature oocyte and allow post-fertilization development into an early embryo in vitro. After transferring such obtained embryos into the uterus of a recipient mouse, they can further develop into healthy offspring. Recently, a similar approach has been performed with combining selected cells from testicular cell suspensions followed by a complete in vitro culture of seminiferous cords producing sperm-like cells. However, most of the techniques developed are laborious, time-consuming and have low efficiency, placing questionable that it will become useful used for setting up an efficient in vitro sperm production system for the boar. The benefits and drawbacks as well as the likeliness of in vitro pig sperm production to become applied in assisted technologies for swine reproduction are critically discussed. In this contribution, also the process of sperm production in the testis and sperm maturation is reviewed.
Collapse
Affiliation(s)
- B M Gadella
- Department of Farm Animal Health, Faculty of Veterinary Sciences, Utrecht University, Utrecht, The Netherlands.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Sciences, Utrecht University, Utrecht, The Netherlands
| | - M A Ferraz
- Department of Farm Animal Health, Faculty of Veterinary Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
10
|
Short-term storage of sterlet Acipenser ruthenus testicular cells at -80 °C. Cryobiology 2016; 72:154-6. [PMID: 26964775 DOI: 10.1016/j.cryobiol.2016.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/24/2016] [Accepted: 03/05/2016] [Indexed: 11/23/2022]
Abstract
The conservation of sturgeons is of critical importance, and optimization of long-term storage is crucial to cell survival. This study aimed to examine the viability rates of several variations of sturgeon testicular cells storage at -80 °C for purpose of a short-term storage in a deep freezer or shipment on dried ice. Testes extracted from three immature fish were cut into small pieces, immersed in a cryomedium composed of phosphate buffered saline with 0.5% bovine serum albumin, 50 mM glucose, and 1.5 M ethylene glycol as a cryoprotectant, chilled from 10 to -80 °C at a cooling rate of 1 °C per min, and stored under varying conditions. Our results revealed a significant effect of storage conditions on the number of living and dead cells (p > 0.05). Samples that were stored for 7 days at -80 °C showed a considerable decline in terms of cell viability compared to samples stored for 2 days storage at -80 °C or in LN. This result indicated that testicular cells can be stored at -80 °C and/or on dry ice, for 2 days with minimum loss of viability.
Collapse
|
11
|
Mirzapour T, Movahedin M, Koruji M, Nowroozi MR. Xenotransplantation assessment: morphometric study of human spermatogonial stem cells in recipient mouse testes. Andrologia 2014; 47:626-33. [PMID: 25209022 DOI: 10.1111/and.12310] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2014] [Indexed: 01/15/2023] Open
Abstract
The purpose of this study was (i) To establish in vitro propagation of human spermatogonial stem cells (hSSCs) from small testicular biopsies to obtain a high number of cells; (ii) to evaluate the presence of functional hSSCs in culture system by RT-PCR using DAZL, α6-Integrin, β1-Integrin genes; and (iii) to evaluate the effects of cell concentration on successful xenotransplantation of hSSCs in mice testis. Donor hSSCs were obtained from men with maturation arrest of spermatogenesis duration 1 year ago. These cells were propagated in DMEM containing 1 ng ml(-1) bFGF (basic fibroblast grow factor) and 1500 U ml LIF (leucaemia inhibitory factor) for 5 weeks. Different concentrations of hSSCs transplanted into seminiferous tubules of busulfan-treated immunodeficient mice and analysed up to 8 weeks after transplantation. The results showed that expression of DAZL and α6-Integrin mRNA was increased as well as the colony formation of SSCs in vtro culture during 5 weeks. Proliferation occurred about 4 weeks after transplantation, but meiotic differentiation was not observed in recipient testis after 8 weeks. The difference in donor cells concentration had effect on homing spermatogenesis in recipient testis. Homologous transplantation of proliferated SSCs to seminiferous tubules of that patient individually may allow successful differentiation of transplanted cells.
Collapse
Affiliation(s)
- T Mirzapour
- Department of Biology, University of Mohaghegh Ardabili, Ardabil, Iran
| | - M Movahedin
- Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - M Koruji
- Cellular and Molecular Research Center, Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - M R Nowroozi
- Uro-Oncology Research Center, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
12
|
Wang P, Li Y, Hu XC, Cai XL, Hou LP, Wang YF, Hu JH, Li QW, Suo LJ, Fan ZG, Zhang B. Cryoprotective effects of low-density lipoproteins, trehalose and soybean lecithin on murine spermatogonial stem cells. ZYGOTE 2014; 22:158-63. [PMID: 22974447 DOI: 10.1017/s0967199412000378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Spermatogonial stem cells (SSCs) have the ability to self-renew and offer a pathway for genetic engineering of the male germ line. Cryopreservation of SSCs has potential value for the treatment of male infertility, spermatogonial transplantation, and so on. In order to investigate the cryopreservation effects of different cryoprotectants on murine SSCs, 0.2 M of low-density lipoproteins (LDL), trehalose and soybean lecithin were added to the cryoprotective medium, respectively, and the murine SSCs were frozen at -80°C or -196°C. The results indicated that the optimal recovery rates of murine SSCs in the cryoprotective medium supplemented with LDL, trehalose and soybean lecithin were 92.53, 76.35 and 75.48% at -80°C, respectively. Compared with freezing at -196°C, the optimum temperature for improvement of recovery rates of frozen murine SSCs, cryopreservation in three different cryoprotectants at -80°C, were 17.11, 6.68 and 10.44% respectively. The recovery rates of murine SSCs in the cryoprotective medium supplemented with 0.2 M LDL were significantly higher than that of other cryoprotectants (P < 0.05). Moreover, the recovery rates were demonstrated to be greater at -80°C compared with at -196°C (P < 0.05). In conclusion, 0.2 M of LDL could significantly protect murine SSCs at -80°C. In the freezing-thawing process, LDL is responsible for the cryopreservation of murine SSCs because it can form a protective film at the surface of membranes. However, more research is needed to evaluate and understand the precise role of LDL during the freezing-thawing of SSCs.
Collapse
Affiliation(s)
- Peng Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Ying Li
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Xiao-Chen Hu
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Xiao-Li Cai
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Li-Peng Hou
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Yan-Feng Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Jian-Hong Hu
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Qing-Wang Li
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Li-Juan Suo
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Zhi-Guo Fan
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Bo Zhang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
13
|
Chen X, Zhang Z, Chang X, Niu Y, Cui H. Production of transgenic mice expressing tumor virus A under ovarian‑specific promoter 1 control using testis‑mediated gene transfer. Mol Med Rep 2013; 9:955-60. [PMID: 24366307 DOI: 10.3892/mmr.2013.1876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 11/21/2013] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to produce transgenic mice expressing tumor virus A (TVA) in the ovary under ovarian specific promoter 1 (OSP1) control. A transgenic mouse model was established in which TVA, an avian retroviral receptor gene driven by OSP1, was selectively expressed in the ovary. A recombinant plasmid containing TVA cDNA and an OSP1 promoter was constructed. The DNA fragment was repeatedly injected into male mouse testes at multiple sites. At 4‑7, 7‑10 and 10‑13 weeks following the final injection, two DNA‑injected male mice were mated with four wild‑type female mice to produce transgenic mice. The transgenic positive rate in mouse F1 offspring was 39.69%. When the positive F1 individuals were mated with wild‑type Imprinting Control Region mice (PxW) or with positive F1 individuals (PxP), the F2 individuals had a transgenic rate of 12.44%. The transgenic rates in the F1 offspring, produced following mating at the three time intervals, were 55.71 (39/70), 30.77 (4/13) and 18.75% (9/48), respectively. The transgenic rates of the F2 offspring decreased with the age of the F1 offspring, from 26.67% when PxP were mated at 6‑8 weeks of age to 6.52% when PxW were mated at 5‑6 months of age. The results indicate a high efficiency of gene transfer to F1 offspring using testis‑mediated gene transfer (TMGT). The transgenic rate in the F2 offspring was lower than that in the F1 offspring. The results reveal that TMGT is suitable for creating transgenic animals among F1 offspring. Semi‑quantitative reverse transcription-polymerase chain reaction results showed that TVA was expressed in the mice ovaries. The results demonstrate the importance of using the replication‑competent avian sarcoma‑leukosis virus long terminal repeat with a splice acceptor‑TVA system in ovarian tumorigenesis research.
Collapse
Affiliation(s)
- Xinhua Chen
- Gynecologic Oncology Center, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Zujuan Zhang
- Gynecologic Oncology Center, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Xiaohong Chang
- Gynecologic Oncology Center, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Yidong Niu
- Laboratory Animal Center, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Heng Cui
- Gynecologic Oncology Center, Peking University People's Hospital, Beijing 100044, P.R. China
| |
Collapse
|
14
|
|
15
|
Li B, Wang XY, Tian Z, Xiao XJ, Xu Q, Wei CX, Y F, Sun HC, Chen GH. Directional differentiation of chicken spermatogonial stem cells in vitro. Cytotherapy 2010; 12:326-31. [PMID: 20078389 DOI: 10.3109/14653240903518155] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Mammalian spermatogonial stem cells (SSC) are able to differentiate into different cell types in vitro, which are valuable sources for regenerative medicine and gene transfer studies. We investigated the differentiation potential of chicken SSC into osteoblasts, neuron-like cells and adipocytes in vitro. METHODS Chicken SSC from the testes of 18- and 20-day-old chicken embryos were cultured in different induction media for three passages in vitro. For differentiation into osteoblasts, SSC were cultured in Dulbecco's modified Eagle medium (DMEM) supplemented with 1 x 10(-4) micromol/mL desamethasone, 10 micromol/mL (beta-sodium glycerophosphate and 0.05 mg/mL vitamin C, and examined by microscopy after Von Kossa's, cytochemical and immunohistochemical staining. For differentiation into neuron-like cells, SSC were cultured in DMEM supplemented with 1 x 10(-3) micromol/mL retinoic acid (RA), 5.0 micromol/mL 3-isobutyl-1-methylxanthine (IBMX) and examined by microscopy after toluidine blue or immunohistochemical staining. For differentiation into adipocytes, SSC were cultured in DMEM supplemented with 1 x 10(-3) micromol/mL dexamethasone, 0.01 mg/mL insulin, 0.5 micromol/mL IBMX and examined by microscopy after Oil red O staining and reverse transcriptase-polymerase chain reaction (RT-PCR) for gene expression of peroxisome proliferation activation receptor-gamma (PPAR-gamma). RESULTS After 15 and 21 days of culture in the induction medium for osteoblast differentiation, 75% and 80% chicken SSC differentiated into osteoblasts, as confirmed by Von Kossa's, calcium-cobalt and collagen I antibody staining. After 3 and 7 days of culture in the induction medium for neuron-like cell differentiation, 78% and 85% SSC became neuron-like cells, as confirmed by staining with toluidine blue and the monoclonal antibody against neuron-specific enolase, nestin and glial fibrillary acidic protein. After 7 days of culture in the induction for adipocyte differentiation, 85% SSC differentiated into adipocytes, as confirmed by Oil red O staining and RT-PCT for PPAR-gamma gene expression. DISCUSSION Our results show that chicken SSC can differentiate into osteoblasts, neuron-like cells and adipocytes under similar conditions as for directional differentiation of mammalian SSC in vitro. The findings show the feasibility of using SSC-derived cells for developmental biology and gene transfer studies in chickens.
Collapse
Affiliation(s)
- Bichun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
ZHANG X, MIAO XY, YIN XH, MA YF, QU ZJ, ZHANG QT. Study of The Transgenic Efficiency in Different Spermiogenesis Stages in Mice*. PROG BIOCHEM BIOPHYS 2009. [DOI: 10.3724/sp.j.1206.2008.00839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Okutsu T, Yano A, Nagasawa K, Shikina S, Kobayashi T, Takeuchi Y, Yoshizaki G. Manipulation of Fish Germ Cell: Visualization, Cryopreservation and Transplantation. J Reprod Dev 2006; 52:685-93. [PMID: 17220596 DOI: 10.1262/jrd.18096] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Germ-cell transplantation has many applications in biology and animal husbandry, including investigating the complex processes of germ-cell development and differentiation, producing transgenic animals by genetically modifying germline cells, and creating broodstock systems in which a target species can be produced from a surrogate parent. The germ-cell transplantation technique was initially established in chickens using primordial germ cells (PGCs), and was subsequently extended to mice using spermatogonial stem cells. Recently, we developed the first germ-cell transplantation system in lower vertebrates using fish PGCs and spermatogonia. During mammalian germ-cell transplantation, donor spermatogonial stem cells are introduced into the seminiferous tubules of the recipient testes. By contrast, in the fish germ-cell transplantation system, donor cells are microinjected into the peritoneal cavities of newly hatched embryos; this allows the donor germ cells to migrate towards, and subsequently colonize, the recipient genital ridges. The recipient embryos have immature immune systems, so the donor germ cells can survive and even differentiate into mature gametes in their allogeneic gonads, ultimately leading to the production of normal offspring. In addition, implanted spermatogonia can successfully differentiate into sperm and eggs, respectively, in male and female recipients. The results of transplantation studies in fish are improving our understanding of the development of germ-cell systems during vertebrate evolution.
Collapse
Affiliation(s)
- Tomoyuki Okutsu
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Rives N, Milazzo JP, Vaudreuil L, Macé B. [Cryopreservation of immature testicular tissue]. ACTA ACUST UNITED AC 2005; 33:615-9. [PMID: 16129643 DOI: 10.1016/j.gyobfe.2005.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 06/27/2005] [Indexed: 01/15/2023]
Abstract
An increased incidence of cancer is observed in the population of adolescents and young adults since thirty years. Major progress in cancer diagnosis and therapy is unfortunately associated to high degree of toxicity on gonad function. Cryopreservation of ovarian tissue is performed in girls and women before cancer treatment with high risk of infertility. Procedures for ejaculated or testicular extracted spermatozoa are well defined. However, for prepubertal boys or after ejaculated sperm collection failure, mature or immature testicular tissue banking should be proposed. Still, an optimal cryopreservation protocol is a prerequisite for clinical application and does not exist for the moment. Furthermore, the future applications of immature testicular tissue banking should be developed, not solely germ cell in vitro maturation but also autologous testicular tissue grafting.
Collapse
Affiliation(s)
- N Rives
- Laboratoire de biologie de la reproduction-CECOS, CHU Charles-Nicolle, 76031 Rouen cedex, France.
| | | | | | | |
Collapse
|
19
|
Ohta H, Wakayama T. Generation of Normal Progeny by Intracytoplasmic Sperm Injection Following Grafting of Testicular Tissue from Cloned Mice That Died Postnatally1. Biol Reprod 2005; 73:390-5. [PMID: 15878886 DOI: 10.1095/biolreprod.105.041673] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Animal cloning by nuclear transfer has been successful in several species and was expected to become an alternative reproductive technique. Among the problems associated with this cloning technique, however, are its low success rate and high mortality of cloned animals even if they develop to term. Nuclear transfer has thus come to be considered too difficult to apply as a reproductive technique. The transplantation of male germ cells or pieces of testicular tissue has enabled the induction of spermatogenesis from fetal or postnatal male mice. In the present study, we examined whether functional male gametes could be obtained by the transplantation of pieces of testicular tissue from cloned mice that died immediately after birth with typical aberrant phenotypes, such as large offspring syndrome. Donor testicular tissues were retrieved from cloned mice that died postnatally and were transplanted into the testes of recipient nude mice. Two to three months after transplantation, the grafted donor testicular tissue had grown in the host testis, and histological analysis showed that spermatogenesis occurred within the graft. Intracytoplasmic sperm injection demonstrated that the testicular sperm generated in the grafted donor tissue were able to support full-term development of progeny. These results clearly showed that functional spermatogenesis could be induced by transplanting testicular tissue from cloned mice that died postnatally into recipient mice. The strategy presented here will be applicable to cloned animals of other species, because the xenografting of testicular tissue into mice has been demonstrated previously to be possible.
Collapse
Affiliation(s)
- Hiroshi Ohta
- Laboratory for Genomic Reprogramming, Center for Developmental Biology, RIKEN Kobe Institute, Kobe, Hyogo 650-0047, Japan.
| | | |
Collapse
|
20
|
Rives N, Macé B. Cryoconservation du tissue testiculaire chez l’enfant: comment préserver la fertilité chez le jeune garçon? ACTA ACUST UNITED AC 2004. [DOI: 10.1007/bf03035172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Modarressi MH, Cheng M, Tarnasky HA, Lamarche-Vane N, de Rooij DG, Ruan Y, van der Hoorn FA. A novel testicular RhoGAP-domain protein induces apoptosis. Biol Reprod 2004; 71:1980-90. [PMID: 15306557 PMCID: PMC3158803 DOI: 10.1095/biolreprod.104.032805] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The GTPase-activating proteins (GAPs) accelerate the hydrolysis of GTP to GDP by small GTPases. The GTPases play diverse roles in many cellular processes, including proliferation, cell motility, endocytosis, nuclear import/export, and nuclear membrane formation. Little is known about GAP-domain proteins in spermatogenesis. We isolated a novel RhoGAP domain-containing tGAP1 protein from male germ cells that exhibits unusual properties. The tGAP1 is expressed at low levels in early spermatogonia. Robust transcription initiates in midpachytene spermatocytes and continues after meiosis. The 175-kDa tGAP1 protein localizes to the cytoplasm of spermatocytes and to the cytoplasm and nucleus in spermatids. The protein contains four GAP domain-related sequences, in contrast to all other GAP proteins that harbor one such domain. No activity toward RhoA, Rac1, or Cdc42 could be detected. Results of transfection studies in various somatic cells indicated that low-level tGAP1 expression significantly slows down the cell cycle. Expression of higher levels of tGAP1 by infection of somatic cells with recombinant adenoviruses demonstrated that tGAP1 efficiently induces apoptosis, which to our knowledge is the first such demonstration for a RhoGAP protein. Based on its subcellular location in spermatids and its activity, tGAP1 may play a role in nuclear import/export.
Collapse
Affiliation(s)
- M. Hossein Modarressi
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Min Cheng
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Heide A. Tarnasky
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Nathalie Lamarche-Vane
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 2T5
| | - Dirk G. de Rooij
- Departments Endocrinology, Faculty of Biology and of Cell Biology, UMCU, Utrecht University, Utrecht, The Netherlands
| | - Yibing Ruan
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Frans A. van der Hoorn
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- Correspondence: Frans A. van der Hoorn, Department of Biochemistry & Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1. FAX: 403 210 8109;
| |
Collapse
|
22
|
Abstract
Species are becoming extinct at a rate 100 times the natural background rates. Considering all mammalian orders, 24% of all Carnivora species are threatened. The goal of carnivore conservation is to reverse the decline in populations and to secure remaining populations in ways that will assure enduring public support. In this context, biotechnology is a tool with tremendous potential for assisting the conservation of endangered canid and felid species. As the first step for biotechnology development is the gamete obtainment, this review will discuss the potential of gamete recovery from non-domestic canids and felids, based on learning how to apply these procedures in the domestic carnivores. Thus, electroejaculation and obtaining both epidydimal spermatozoon and spermatogonial germ cells are indicated as techniques for male gametes recovery. In the female gametes retrieval, different methods for oocyte recovery from both antral and preantral follicles, and the possibility for ovarian tissue transplantation are discussed. Furthermore, the study discusses the responsibilities involved in the use of assisted reproduction in endangered species conservation.
Collapse
Affiliation(s)
- Alexandre R Silva
- Laboratory of Carnivore Reproduction, PPGCV-UECE, Paranjana Ave. 1700, Itaperi, Fortaleza, Ceará 60740-000, Brazil.
| | | | | |
Collapse
|
23
|
Ohta H, Wakayama T. Full-Term Development of Offspring Using Round Spermatids Produced Ectopically from Fetal Male Germ Cells. J Reprod Dev 2004; 50:429-37. [PMID: 15329474 DOI: 10.1262/jrd.50.429] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The continuous production of mammalian sperm is maintained by the proliferation and differentiation of spermatogonial stem cells, which originate from primordial germ cells in the early embryo. Previously, we reported that the transplantation of fetal male gonadal tissue into the recipient testis was effective obtaining functional sperm. This transplantation technique is a promising new approach for the preservation of testicular function in a mutant animal with embryonic lethality. In the present study, we examined whether spermatogenesis from fetal male germ cells is induced under ectopic conditions in male and female recipients. Nine to 10 weeks after the transplantation of male gonads prepared from embryos at 12.5 or 16.5 days post gestation, male germ cell differentiation occurred under the skin of male and female recipient nude mice. Histological analyses revealed that grafted gonads contained haploid germ cells such as round or elongated spermatids. Furthermore, we succeeded in obtaining normal progeny by injecting the ectopically produced round spermatids into the cytoplasm of oocytes, even when the male germ cells had been generated in female recipients. These results indicate that the transplantation of fetal male gonads under the skin of recipient mice is a useful technique for obtaining functional male gametes.
Collapse
Affiliation(s)
- Hiroshi Ohta
- Laboratory for Genomic Reprogramming, Center for Developmental Biology, RIKEN, Kobe, Hyogo, Japan.
| | | |
Collapse
|
24
|
Ohta H, Wakayama T, Nishimune Y. Commitment of fetal male germ cells to spermatogonial stem cells during mouse embryonic development. Biol Reprod 2003; 70:1286-91. [PMID: 14695910 DOI: 10.1095/biolreprod.103.024612] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The continuous production of mammalian sperm is maintained by the proliferation and differentiation of spermatogonial stem cells that originate from primordial germ cells (PGCs) in the early embryo. Although spermatogonial stem cells arise from PGCs, it is not clear whether fetal male germ cells function as spermatogonial stem cells able to produce functional sperm. In the present study, we examined the timing and mechanisms of the commitment of fetal germ cells to differentiate into spermatogonial stem cells by transplantation techniques. Transplantation of fetal germ cells into the seminiferous tubules of adult testis showed that donor germ cells, at 14.5 days postcoitum (dpc), were able to initiate spermatogenesis in the adult recipient seminiferous tubules, whereas no germ cell differentiation was observed in the transplantation of 12.5-dpc germ cells. These results indicate that the commitment of fetal germ cells to differentiate into spermatogonial stem cells initiates between embryonic days 12.5 and 14.5. Furthermore, the results suggest the importance of the interaction between germ cells and somatic cells in the determination of fetal germ cell differentiation into spermatogonial stem cells, as normal spermatogenesis was observed when a 12.5-dpc whole gonad was transplanted into adult recipient testis. In addition, sperm obtained from the 12.5- dpc male gonadal explant had the ability to develop normally if injected into the cytoplasm of oocytes, indicating that normal development of fetal germ cells in fetal gonadal explant occurred in the adult testicular environment.
Collapse
Affiliation(s)
- Hiroshi Ohta
- Department of Science for Laboratory Animal Experimentation, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | | | | |
Collapse
|