1
|
Chen S, Sun Y, Kuang S, Tang Y, Ding W, He H, Xue J, Gao Q, Gao H, Li Y, Qiu L. Transcription factor E93 regulates vitellogenesis via the vitelline membrane protein 26Ab gene in Chilo Suppressalis. Mol Biol Rep 2024; 52:41. [PMID: 39644360 DOI: 10.1007/s11033-024-10127-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Ecdysone-induced protein 93 F (E93, also known as Eip93F) plays a crucial role in the reproductive process of numerous insects. This study aims to delineate the function of E93 in Chilo suppressalis and elucidated the regulatory mechanism by which E93 influences the reproduction of C. suppressalis METHODS AND RESULTS: The results of the bioinformatics analysis indicate that C. suppressalis E93 shows the highest homology with E93 from Bombyx mori. We used qPCR to evaluate the expression profile of CsE93 from different developmental stages and tissues, revealed that CsE93 had the highest expression levels in the head, which peaked during the prepupal stage. Silencing CsE93 resulted in a significant reduction in yolk deposition and abnormal ovarian development. Moreover, the transcriptional levels of vitellogenin (Vg) and E74A, which are related to vitellogenesis and the 20E pathway, were significantly down-regulated in dsE93-treated female pupae. In addition, we identified Vitelline membrane protein 26Ab (VMP26Ab), a downstream gene associated with the integrity of the inner eggshell. The knockdown of VMP26Ab resulted in a significant reduction in the number of eggs and abnormal ovarian development, similar to RNAi E93. Finally, we identified an active promoter fragment (containing GAGA-containing motif) of CsVMP26Ab and demonstrated that CsE93 can bind to it. RESULTS Our results indicate that CsE93 plays an important role in C. suppressalis reproduction. CsE93 modulates the CsVMP26Ab expression by acting on its promoter involve in the reproduction of C. suppressalis finally.
Collapse
Affiliation(s)
- Siyang Chen
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Yingjuan Sun
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Suijie Kuang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Yan Tang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Wenbing Ding
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Engineering and Technology Research Center for Biopesticide and Formulation Processing, Changsha, 410128, China
| | - Hualiang He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Jin Xue
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Qiao Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Hongshuai Gao
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Engineering and Technology Research Center for Biopesticide and Formulation Processing, Changsha, 410128, China
| | - Youzhi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
| | - Lin Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
2
|
Wang H, Dong Y, Wang M, Li S, Zhou Y, Ji Y. The miR184-3p targets neuron-specific ecdysone inducible protein 78 to promote rice black streaked dwarf virus propagation in its planthopper vector. PEST MANAGEMENT SCIENCE 2024; 80:4417-4426. [PMID: 38676556 DOI: 10.1002/ps.8150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND MicroRNAs (miRNAs) are non-coding RNAs that play a pivotal role in antiviral infection. The miR184-3p has been identified to promote rice black streaked dwarf virus (RBSDV) infection in vector Laodelphax striatellus, whether it targets other genes of L. striatellus to modulate RBSDV propagation remains unknown. RESULTS We first analyzed the expression profiles of miR184-3p and its role in regulating RBSDV infection in L. striatellus. Then the candidate genes expression of miR184-3p were systemically analyzed with gain and loss function of miR184-3p, and the interaction of candidate gene, ecdysone inducible protein 78 (Eip78) with miR184-3p was verified by dual luciferase reporter assay. We found Eip78 is evolutionary conserved among agricultural pests and predominantly expressed in the central nervous system (CNS) of L. striatellus. Knockdown of Eip78 effectively increased RBSDV propagation and transmission. Blockade with Eip78 antibody or injection with Eip78 protein could significantly regulate RBSDV infection. Further analysis revealed that knockdown of Eip78 specifically suppresses RBSDV infection in the head part but not in the body part of L. striatellus. Besides, knockdown of ecdysone receptor (EcR) notably restricted Eip78 expression and increased RBSDV accumulation in L. striatellus. CONCLUSIONS Taken together, we identified a novel target gene of miR184-3p, Eip78, a member of the ecdysone signaling pathway, and revealed the anti-RBSDV role of Eip78 in the CNS of L. striatellus. These results shed light on the interaction mechanisms of miRNAs, virus and ecdysone signaling pathway in insect vector. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haitao Wang
- Institute of Plant Protection, Key Laboratory of Food Quality and Safety of Jiangsu Province, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Dong
- Institute of Plant Protection, Key Laboratory of Food Quality and Safety of Jiangsu Province, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Man Wang
- Institute of Plant Protection, Key Laboratory of Food Quality and Safety of Jiangsu Province, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Shuo Li
- Institute of Plant Protection, Key Laboratory of Food Quality and Safety of Jiangsu Province, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yijun Zhou
- Institute of Plant Protection, Key Laboratory of Food Quality and Safety of Jiangsu Province, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yinghua Ji
- Institute of Plant Protection, Key Laboratory of Food Quality and Safety of Jiangsu Province, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
3
|
Xu X, Li T, Zhang L, Liu X. Effect of silencing the E74B gene on the development and metamorphosis of Helicoverpa armigera. PEST MANAGEMENT SCIENCE 2024; 80:1435-1445. [PMID: 37939129 DOI: 10.1002/ps.7874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND The growth and development transition of insects are mainly mediated by ecdysone. As one of the ecdysone-induced transcription factors, E74 is involved in many physiological processes of insect growth and development. However, E74 and its function in Helicoverpa armigera remains unclear. RESULTS In this study, E74B, a subtype of the E74, was identified for the first time in H. armigera. Bioinformatics analysis showed that H. armigera E74B shared the highest homology with E74B in Bombyx mori, which belongs to the E26 transformation-specific (ETS) superfamily. The expression profile showed that the transcription level of HaE74B increased in the late stages of fourth to sixth instars compared with the early stages; it was also high in the pupa and midgut. Moreover, we investigated the function of HaE74B through RNA interference and 20E rescue experiments. The results showed silencing of E74B affected the molting and growth of larvae, resulting in the death of more than 60% of larvae. In addition, it also seriously affected the metamorphosis of H. armigera, which reduced the pupae rate, the eclosion rate of the pupae, and fecundity. Application of 20E partially restored the defects in the molting, development and pupae rate of H. armigera. CONCLUSION Taken together, these results demonstrated that HaE74B plays a critical role in the growth, development, and metamorphosis of H. armigera, which serves as a molecular target and sets out a theoretical foundation for RNAi-mediated control of this key pest. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinhui Xu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Tingting Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Lianjun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiaoning Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
4
|
Benrabaa S, Orchard I, Lange AB. A critical role for ecdysone response genes in regulating egg production in adult female Rhodnius prolixus. PLoS One 2023; 18:e0283286. [PMID: 36940230 PMCID: PMC10027210 DOI: 10.1371/journal.pone.0283286] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/03/2023] [Indexed: 03/21/2023] Open
Abstract
Ecdysteroids control ovary growth and egg production through a complex gene hierarchy. In the female Rhodnius prolixus, a blood-gorging triatomine and the vector of Chagas disease, we have identified the ecdysone response genes in the ovary using transcriptomic data. We then quantified the expression of the ecdysone response gene transcripts (E75, E74, BR-C, HR3, HR4, and FTZ-F1) in several tissues, including the ovary, following a blood meal. These results confirm the presence of these transcripts in several tissues in R. prolixus and show that the ecdysone response genes in the ovary are mostly upregulated during the first three days post blood meal (PBM). Knockdown of E75, E74, or FTZ-F1 transcripts using RNA interference (RNAi) was used to understand the role of the ecdysone response genes in vitellogenesis and egg production. Knockdown significantly decreases the expression of the transcripts for the ecdysone receptor and Halloween genes in the fat body and the ovaries and reduces the titer of ecdysteroid in the hemolymph. Knockdown of each of these transcription factors typically alters the expression of the other transcription factors. Knockdown also significantly decreases the expression of vitellogenin transcripts, Vg1 and Vg2, in the fat body and ovaries and reduces the number of eggs produced and laid. Some of the laid eggs have an irregular shape and smaller volume, and their hatching rate is decreased. Knockdown also influences the expression of the chorion gene transcripts Rp30 and Rp45. The overall effect of knockdown is a decrease in number of eggs produced and a severe reduction in number of eggs laid and their hatching rate. Clearly, ecdysteroids and ecdysone response genes play a significant role in reproduction in R. prolixus.
Collapse
Affiliation(s)
- Samiha Benrabaa
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
5
|
Zhang B, Yao B, Li X, Jing T, Zhang S, Zou H, Zhang G, Zou C. E74 knockdown represses larval development and chitin synthesis in Hyphantria cunea. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105216. [PMID: 36127058 DOI: 10.1016/j.pestbp.2022.105216] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/09/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
E74 is a key transcription factor induced by 20E, which plays a broad role in many physiological events during insect growth and development, including vitellogenesis, organ remodeling and new tissue formation, programmed cell death and metamorphosis. However, whether it is involved in regulating insect chitin biosynthesis remains largely unclear. Here, the E74 gene was identified for the first time from Hyphantria cunea, a notorious defoliator of forestry. Thereafter, the role of HcE74 in regulating growth, development and chitin synthesis in H. cunea larvae was evaluated. Bioinformatics analysis showed that HcE74 shared the highest identity (95.53%) with E74A of Spodoptera litura, which belonged to Ets superfamily. The results of RNAi bioassay showed that the larval mortality on 6 d after HcE74 knockdown was up to 51.11 ± 6.94%. Meanwhile, a distinct developmental deformity phenotype was found when HcE74 was silenced. These results indicated that HcE74 plays an important role in the development and molting of H. cunea larvae. Moreover, HcE74 knockdown also significantly decreased the expression of four key genes related to chitin synthesis, including glucose-6-phosphate isomerase (HcG6PI), UDP-N-acetylglucosamine pyrophosphorylase (HcUAP), chitin synthetase A (HcCHSA), and chitin synthetase B (HcCHSB). As a result, the content of chitin in midgut and epidermis decreased by 0.54- and 0.08-fold, respectively. Taken together, these results demonstrated that HcE74 not only plays a critical role in the growth and molting of H. cunea larvae, but also probably participates in the transcriptional regulation of genes involved in chitin biosynthesis.
Collapse
Affiliation(s)
- Bihan Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Bin Yao
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Xingpeng Li
- School of Forestry, Beihua University, Jilin 132013, PR China
| | - Tianzhong Jing
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Shengyu Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Hang Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Guocai Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Chuanshan Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
6
|
Zhang Y, Zheng S, Li Y, Jiang X, Gao H, Lin X. The Function of Nilaparvata lugens (Hemiptera: Delphacidae) E74 and Its Interaction With βFtz-F1. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:15. [PMID: 35738261 PMCID: PMC9225820 DOI: 10.1093/jisesa/ieac041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Drosophila E74 is an early gene located in the polytene chromosome 74EF puff position. E74 controls the production of late genes, indicating that it plays a crucial role in this cascade model. Nilaparvata lugens E74 is closely related to Diaphorina citri, Bemisia tabaci, and Laodelphax striatellus. After downregulating E74, molting, and nymphal mortality were increased, and ovarian development was delayed. Moreover, the expression of Vg was reduced at the transcriptional level, as measured by qRT-PCR, and the content of Vg protein was reduced, as detected by Western blotting. After downregulating E74, the expression of hormone-related genes, including Tai, βFtz-F1, Met, Kr-h1, UspA, UspB, E93, and Br, was changed. The expression of E74 was significantly decreased after downregulating hormone-related genes. When the expression of E74 and βFtz-F1 was downregulated together, nymph mortality and molting mortality were higher than those when E74 or βFtz-F1 was downregulated alone. Thus, E74 probably interacts with βFtz-F1 at the genetic level. In summary, this study showed that E74 plays a crucial role in the development, metamorphosis and reproduction of N. lugens, possibly via the interaction with βFtz-F1 at the genetic level. This study provides a basis for the development of new target-based pesticides and new methods for the effective control of N. lugens.
Collapse
Affiliation(s)
| | | | - Yan Li
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Xiaojuan Jiang
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Han Gao
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | | |
Collapse
|
7
|
Direct and indirect gene repression by the ecdysone cascade during mosquito reproductive cycle. Proc Natl Acad Sci U S A 2022; 119:e2116787119. [PMID: 35254892 PMCID: PMC8931382 DOI: 10.1073/pnas.2116787119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hematophagous Aedes aegypti mosquitoes spread devastating viral diseases. Upon blood feeding, a steroid hormone, 20-hydroxyecdysone (20E), initiates a reproductive program during which thousands of genes are differentially expressed. While 20E-mediated gene activation is well known, repressive action by this hormone remains poorly understood. Using bioinformatics and molecular biological approaches, we have identified the mechanisms of 20E-dependent direct and indirect transcriptional repression by the ecdysone receptor (EcR). While indirect repression involves E74, EcR binds to an ecdysone response element different from those utilized in 20E-mediated gene activation to exert direct repressive action. Moreover, liganded EcR recruits a corepressor Mi2, initiating chromatin compaction. This study advances our understanding of the 20E-EcR repression mechanism and could lead to improved vector control approaches. Hematophagous mosquitoes transmit devastating human diseases. Reproduction of these mosquitoes is cyclical, with each egg maturation period supported by a blood meal. Previously, we have shown that in the female mosquito Aedes aegypti, nearly half of all genes are differentially expressed during the postblood meal reproductive period in the fat body, an insect analog of mammalian liver and adipose tissue. This work aims to decipher how transcription networks govern these genes. Bioinformatics tools found 89 putative transcription factor binding sites (TFBSs) on the cis-regulatory regions of more than 1,400 differentially expressed genes. Putative transcription factors that may bind to these TFBSs were identified and used for the construction of temporally coordinated regulatory networks. Further molecular biology analyses have uncovered mechanisms of direct and indirect negative transcriptional regulation by the steroid hormone 20-hydroxyecdysone (20E) through the ecdysone receptor (EcR). Genes within the two groups, early genes and late mid-genes, have distinctly different expression profiles. However, both groups of genes show lower expression at the high titers of 20E and are down-regulated by the 20E/EcR cascade by different molecular mechanisms. Transcriptional repression of early genes is indirect and involves the classic 20E pathway with ecdysone-induced protein E74 functioning as a repressor. Late mid-genes are repressed directly by EcR that recognizes and binds a previously unreported DNA element, different from those utilized in the 20E-mediated gene activation, within the regulatory regions of its target genes and recruits Mi2 that acts as a corepressor, initiating chromatin condensation.
Collapse
|
8
|
Cross-talk of insulin-like peptides, juvenile hormone, and 20-hydroxyecdysone in regulation of metabolism in the mosquito Aedes aegypti. Proc Natl Acad Sci U S A 2021; 118:2023470118. [PMID: 33526700 DOI: 10.1073/pnas.2023470118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Female mosquitoes feed sequentially on carbohydrates (nectar) and proteins (blood) during each gonadotrophic cycle to become reproductively competent and effective disease vectors. Accordingly, metabolism is synchronized to support this reproductive cyclicity. However, regulatory pathways linking metabolism to reproductive cycles are not fully understood. Two key hormones, juvenile hormone (JH) and ecdysteroids (20-hydroxyecdysone, 20E, is the most active form) govern female mosquito reproduction. Aedes aegypti genome codes for eight insulin-like peptides (ILPs) that are critical for controlling metabolism. We examined the effects of the JH and 20E pathways on mosquito ILP expression to decipher regulation of metabolism in a reproducing female mosquito. Chromatin immunoprecipitation assays showed genomic interactions between ilp genes and the JH receptor, methoprene-tolerant, a transcription factor, Krüppel homolog 1 (Kr-h1), and two isoforms of the ecdysone response early gene, E74. The luciferase reporter assays showed that Kr-h1 activates ilps 2, 6, and 7, but represses ilps 4 and 5 The 20E pathway displayed the opposite effect in the regulation of ilps E74B repressed ilps 2 and 6, while E74A activated ilps 4 and 5 Combining RNA interference, CRISPR gene tagging and enzyme-linked immunosorbent assay, we have shown that the JH and 20E regulate protein levels of all eight Ae. aegypti ILPs. Thus, we have established a regulatory axis between ILPs, JH, and 20E in coordination of metabolism during gonadotrophic cycles of Ae. aegypti.
Collapse
|
9
|
Ekoka E, Maharaj S, Nardini L, Dahan-Moss Y, Koekemoer LL. 20-Hydroxyecdysone (20E) signaling as a promising target for the chemical control of malaria vectors. Parasit Vectors 2021; 14:86. [PMID: 33514413 PMCID: PMC7844807 DOI: 10.1186/s13071-020-04558-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/19/2020] [Indexed: 01/07/2023] Open
Abstract
With the rapid development and spread of resistance to insecticides among anopheline malaria vectors, the efficacy of current World Health Organization (WHO)-approved insecticides targeting these vectors is under threat. This has led to the development of novel interventions, including improved and enhanced insecticide formulations with new targets or synergists or with added sterilants and/or antimalarials, among others. To date, several studies in mosquitoes have revealed that the 20-hydroxyecdysone (20E) signaling pathway regulates both vector abundance and competence, two parameters that influence malaria transmission. Therefore, insecticides which target 20E signaling (e.g. methoxyfenozide and halofenozide) may be an asset for malaria vector control. While such insecticides are already commercially available for lepidopteran and coleopteran pests, they still need to be approved by the WHO for malaria vector control programs. Until recently, chemicals targeting 20E signaling were considered to be insect growth regulators, and their effect was mostly studied against immature mosquito stages. However, in the last few years, promising results have been obtained by applying methoxyfenozide or halofenozide (two compounds that boost 20E signaling) to Anopheles populations at different phases of their life-cycle. In addition, preliminary studies suggest that methoxyfenozide resistance is unstable, causing the insects substantial fitness costs, thereby potentially circumventing one of the biggest challenges faced by current vector control efforts. In this review, we first describe the 20E signaling pathway in mosquitoes and then summarize the mechanisms whereby 20E signaling regulates the physiological processes associated with vector competence and vector abundance. Finally, we discuss the potential of using chemicals targeting 20E signaling to control malaria vectors.![]()
Collapse
Affiliation(s)
- Elodie Ekoka
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa.
| | - Surina Maharaj
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Luisa Nardini
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Yael Dahan-Moss
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Lizette L Koekemoer
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| |
Collapse
|
10
|
Sun Z, Lin Y, Wang R, Li Q, Shi Q, Baerson SR, Chen L, Zeng R, Song Y. Olfactory perception of herbivore‐induced plant volatiles elicits counter‐defences in larvae of the tobacco cutworm. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhongxiang Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops College of Agriculture Fujian Agriculture and Forestry University Fuzhou China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops College of Life Sciences Fujian Agriculture and Forestry University Fuzhou China
| | - Yibin Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops College of Life Sciences Fujian Agriculture and Forestry University Fuzhou China
| | - Rumeng Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops College of Agriculture Fujian Agriculture and Forestry University Fuzhou China
| | - Qilin Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops College of Agriculture Fujian Agriculture and Forestry University Fuzhou China
| | - Qi Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops College of Life Sciences Fujian Agriculture and Forestry University Fuzhou China
| | - Scott R. Baerson
- United States Department of Agriculture‐Agricultural Research Service Natural Products Utilization Research Unit, University Oxford MS USA
| | - Li Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology Chinese Academy of Sciences Beijing P. R. China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops College of Agriculture Fujian Agriculture and Forestry University Fuzhou China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops College of Life Sciences Fujian Agriculture and Forestry University Fuzhou China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops College of Agriculture Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
11
|
Wang H, Liu Z, Wang Y, Ma L, Zhang W, Xu B. Genome-Wide Differential DNA Methylation in Reproductive, Morphological, and Visual System Differences Between Queen Bee and Worker Bee ( Apis mellifera). Front Genet 2020; 11:770. [PMID: 32903639 PMCID: PMC7438783 DOI: 10.3389/fgene.2020.00770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/29/2020] [Indexed: 11/26/2022] Open
Abstract
There are many differences in external morphology and internal physiology between the Apis mellifera queen bee and worker bee, some of which are relevant to beekeeping production. These include reproductive traits, body size, royal jelly secreting properties, and visual system development, among others. The identification of candidate genes that control the differentiation of these traits is critical for selective honeybee breeding programs. In this study, we compared the genomic methylation of queen bee and worker bee larvae at 3, 4, and 5 days of age by whole-genome bisulfite sequencing, and found that the basic characteristics of genomic methylation in queen and worker larvae were the same. There were approximately 49 million cytosines in the Apis larvae genome, of which about 90,000 were methylated. Methylated CpG sites accounted for 99% of the methylated cytosines, and methylation mainly occurred in exons. However, methylation levels of queen and worker larvae showed different trends with age: the methylation level of queen larvae varied with age in an inverted parabola, while the corresponding trend for worker larvae with resembled an exponential curve with a platform. The methylation level of queen larvae was higher than that of worker larvae at 3 days of age, lower than that of worker larvae at 4 days of age, and similar to that of worker larvae at 5 days old. The top 10 differentially methylated genes (DMGs) and 13 caste-specific methylated genes were listed, and correlations with caste determination were speculated. We additionally screened 38 DMGs between queen larvae and worker larvae involved in specific organ differentiation as well as reproduction, morphology, and vision differentiation during caste determination. These genes are potential molecular markers for selective breeding of A. mellifera to improve fecundity, royal jelly production, body size, and foraging, and represent candidate genes for investigating specialized functional segregation during the process of caste differentiation.
Collapse
Affiliation(s)
- Hongfang Wang
- Laboratory of Nutrition and Physiology of Honeybees, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Zhenguo Liu
- Laboratory of Nutrition and Physiology of Honeybees, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Ying Wang
- Laboratory of Nutrition and Physiology of Honeybees, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Lanting Ma
- Laboratory of Nutrition and Physiology of Honeybees, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Weixing Zhang
- Laboratory of Nutrition and Physiology of Honeybees, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Baohua Xu
- Laboratory of Nutrition and Physiology of Honeybees, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
12
|
Tang Y, He H, Qu X, Cai Y, Ding W, Qiu L, Li Y. RNA interference-mediated knockdown of the transcription factor Krüppel homologue 1 suppresses vitellogenesis in Chilo suppressalis. INSECT MOLECULAR BIOLOGY 2020; 29:183-192. [PMID: 31566829 DOI: 10.1111/imb.12617] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/02/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Vitellogenesis in holometabolous insects involves the production and secretion of vitellogenin (Vg) and other yolk protein precursors in developing oocyte by the fat body, all of which is predominantly orchestrated by juvenile hormone (JH). Krüppel homologue 1 (Kr-h1) is a zinc finger transcription factor that has been demonstrated to be a JH-early inducible gene and to contribute to reproduction. However, the exact molecular function of Kr-h1 in insect reproduction is poorly understood. In the current study, we used the notorious pest Chilo suppressalis as a model system to investigate the role of Kr-h1 in female reproduction. Cloning and sequencing C. suppressalis Kr-h1 revealed that it shares high identity with its homologues from other lepidopteran insects. Moreover, RNA interference-mediated knockdown of CsKr-h1 substantially reduced the transcription of Vg in the fat body, dramatically decreased yolk protein deposition and also impaired oocyte maturation and ovarian development, indicating that Kr-h1 is indispensable for normal vitellogenesis in C. suppressalis. Based on these results, we conclude that Kr-h1 is crucial to reproduction in insects and that targeting this gene could potentially be a new way to suppress rice pests.
Collapse
Affiliation(s)
- Y Tang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - H He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - X Qu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Y Cai
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - W Ding
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, China
| | - L Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Y Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| |
Collapse
|
13
|
Zhen C, Yang H, Luo S, Huang J, Wu J. Broad-complex Z3 contributes to the ecdysone-mediated transcriptional regulation of the vitellogenin gene in Bombus lantschouensis. PLoS One 2018; 13:e0207275. [PMID: 30440013 PMCID: PMC6237364 DOI: 10.1371/journal.pone.0207275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/29/2018] [Indexed: 01/03/2023] Open
Abstract
During reproduction, vitellogenin (Vg), as an egg yolk precursor, is critical in sexually mature females of oviparous species including some insects. The transcription of Vg is usually mediated by hormones such as juvenile hormone (JH), ecdysteroids and some neuropeptides. In this study, the structure of the Vg gene from the bumblebee Bombus lantschouensis, (BlVg) was determined by sequencing and assembly. BlVg was found to be expressed at higher levels in reproductive queens than in virgins by quantitative real-time PCR analysis. Tissue-specific expression analysis showed that BlVg was expressed at the highest levels in the fat bodies of both virgin and reproductive queens. Prediction of the BlVg promoter revealed the presence of ecdysteroid-responsive cis-regulatory elements (CREs) containing one Broad-Complex zinc-finger isoform 3 (BR-C Z3), and one ecdysone-induced protein 74A (E74A). In addition, luciferase reporter expression, driven by the 5' -regulatory region of the BlVg gene, from -1517 bp to +895 bp downstream of the start codon, was induced by treatment with 20-hydroxyecdysone (20-E). Moreover, the luciferase activity of the BlVg promoter was elevated by only BlBrC-Z3 when Sf9 cells were cotransfected with four BlBrC isoforms respectively. BlVg promoter-mediated luciferase activation was significantly reduced when the putative BrC-Z3 CRE in the promoter was mutated. In summary, this report describes the first study of vitellogenin gene regulation at the transcriptional level in bumblebees and demonstrates that the ecdysone-induced transcription of the BlVg gene is mediated by the binding of BlBrC-Z3 to the BrC-Z3 CRE in the BlVg promoter in bumblebees.
Collapse
Affiliation(s)
- Congai Zhen
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Huipeng Yang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Shudong Luo
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Jiaxing Huang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, PR China
- * E-mail: (JW); (JH)
| | - Jie Wu
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, PR China
- * E-mail: (JW); (JH)
| |
Collapse
|
14
|
Sun Z, Shi Q, Xu C, Wang R, Wang H, Song Y, Zeng R. Regulation of NlE74A on vitellogenin may be mediated by angiotensin converting enzyme through a fecundity-related SNP in the brown planthopper, Nilaparvata lugens. Comp Biochem Physiol A Mol Integr Physiol 2018; 225:26-32. [PMID: 29932974 DOI: 10.1016/j.cbpa.2018.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 01/28/2023]
Abstract
The major yolk protein precursors (YPP) gene, vitellogenin (Vg), usually considered as a reproductive indicator and molecular marker for evaluating insect fecundity, is controlled by insect hormone (mainly ecdysteroids and juvenile hormone), transcription factors and many other fecundity-related genes. To better understand the underlying molecular regulation mechanisms of the NlVg in the brown planthopper Nilaparvata lugens (N. lugens), the correlation between one early ecdysone response gene E74 and one important fecundity-related gene angiotensin converting enzyme (ACE) on the regulation of Vg gene expression, was investigated. We first showed that the mRNA expression level of NlACE were significantly higher in a high-fecundity population (HFP) than a low-fecundity population (LFP) at different development stages, and knockdown of NlACE expression by RNA interference (RNAi) results in a reduced level of NlVg expression and N. lugens fecundity. Subsequently, we analyzed the promoter of NlACE and found an E74A binding site, which was also differentially expressed in HFP and LFP. Then a gene putatively encoding E74A, namely NlE74A, predominant in the ovary and fat body was cloned and characterized. Furthermore, the developmental profile during female adult and the tissue-specific expression pattern of NlACE and NlE74A were similar to the expression pattern of NlVg gene, implying that both NlACE and NlE74A may be involved in regulating the expression of NlVg. Finally, after injecting the dsRNA of NlE74A, the NlACE expression levels were significantly reduced simultaneously at 24 h and 48 h post-injection, and the NlVg expression level was significant reduced at 24 h post-injection and the downswing was more significant at 48 h post-injection. These results imply that regulation of NlE74A on NlVg transcription might be mediated by NlACE through the E74 binding site at the NlACE promoter region in N. lugens.
Collapse
Affiliation(s)
- Zhongxiang Sun
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qi Shi
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuicui Xu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rumeng Wang
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanhuan Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Song
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Rensen Zeng
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
15
|
Roy S, Saha TT, Zou Z, Raikhel AS. Regulatory Pathways Controlling Female Insect Reproduction. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:489-511. [PMID: 29058980 DOI: 10.1146/annurev-ento-020117-043258] [Citation(s) in RCA: 359] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The synthesis of vitellogenin and its uptake by maturing oocytes during egg maturation are essential for successful female reproduction. These events are regulated by the juvenile hormones and ecdysteroids and by the nutritional signaling pathway regulated by neuropeptides. Juvenile hormones act as gonadotropins, regulating vitellogenesis in most insects, but ecdysteroids control this process in Diptera and some Hymenoptera and Lepidoptera. The complex crosstalk between the juvenile hormones, ecdysteroids, and nutritional signaling pathways differs distinctly depending on the reproductive strategies adopted by various insects. Molecular studies within the past decade have revealed much about the relationships among, and the role of, these pathways with respect to regulation of insect reproduction. Here, we review the role of juvenile hormones, ecdysteroids, and nutritional signaling, along with that of microRNAs, in regulating female insect reproduction at the molecular level.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Entomology, Institute for Integrative Genome Biology, and Center for Disease Vector Research, University of California, Riverside, California 92521, USA; , ,
| | - Tusar T Saha
- Department of Entomology, Institute for Integrative Genome Biology, and Center for Disease Vector Research, University of California, Riverside, California 92521, USA; , ,
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Alexander S Raikhel
- Department of Entomology, Institute for Integrative Genome Biology, and Center for Disease Vector Research, University of California, Riverside, California 92521, USA; , ,
| |
Collapse
|
16
|
Yuan S, Huang W, Geng L, Beerntsen BT, Song H, Ling E. Differentiation of lepidoptera scale cells from epidermal stem cells followed by ecdysone-regulated DNA duplication and scale secreting. Cell Cycle 2017; 16:2156-2167. [PMID: 28933984 DOI: 10.1080/15384101.2017.1376148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Integuments are the first line to protect insects from physical damage and pathogenic infection. In lepidopteran insects, they undergo distinct morphology changes such as scale formation during metamorphosis. However, we know little about integument development and scale formation during this stage. Here, we use the silkworm, Bombyx mori, as a model and show that stem cells in the integument of each segment, but not intersegmental membrane, divide into two scale precursor cells during the spinning stage. In young pupae, the scale precursor cell divides again. One of the daughter cells becomes a mature scale-secreting cell that undergoes several rounds of DNA duplication and the other daughter cell undergoes apoptosis later on. This scale precursor cell division is crucial to the development and differentiation of scale-secreting cells because scale production can be blocked after treatment with the cell division inhibitor paclitaxel. Subsequently, the growth of scale-secreting cells is under the control of 20-hydroxyecdysone but not juvenile hormone since injection of 20-hydroxyecdysone inhibited scale formation. Further work demonstrated that 20-hydroxyecdysone injection inhibits DNA duplication in scale-secreting cells while the expression of scale-forming gene ASH1 was down-regulated by BR-C Z2. Therefore, this research demonstrates that the scale cells of the silkworm develops through stem cell division prior to pupation and then another wave of cell division differentiates these cells into scale secreting cells soon after entrance into the pupal stage. Additionally, DNA duplication and scale production in the scale-secreting cells were found to be under the regulation of 20-hydroxyecdysone.
Collapse
Affiliation(s)
- Shenglei Yuan
- a Key Laboratory of Insect Developmental and Evolutionary Biology , Institute of Plant Physiology and Ecology, Chinese Academy of Sciences , Shanghai , China.,b Department of Neurosciences , College of Life Sciences, Shanghai University , Shanghai , China
| | - Wuren Huang
- a Key Laboratory of Insect Developmental and Evolutionary Biology , Institute of Plant Physiology and Ecology, Chinese Academy of Sciences , Shanghai , China
| | - Lei Geng
- a Key Laboratory of Insect Developmental and Evolutionary Biology , Institute of Plant Physiology and Ecology, Chinese Academy of Sciences , Shanghai , China
| | - Brenda T Beerntsen
- c Department of Veterinary Pathobiology , University of Missouri , Columbia , MO , USA
| | - Hongsheng Song
- b Department of Neurosciences , College of Life Sciences, Shanghai University , Shanghai , China
| | - Erjun Ling
- a Key Laboratory of Insect Developmental and Evolutionary Biology , Institute of Plant Physiology and Ecology, Chinese Academy of Sciences , Shanghai , China
| |
Collapse
|
17
|
Zhang Q, Sun W, Sun BY, Xiao Y, Zhang Z. The dynamic landscape of gene regulation during Bombyx mori oogenesis. BMC Genomics 2017; 18:714. [PMID: 28893182 PMCID: PMC5594438 DOI: 10.1186/s12864-017-4123-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/06/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Oogenesis in the domestic silkworm (Bombyx mori) is a complex process involving previtellogenesis, vitellogenesis and choriogenesis. During this process, follicles show drastic morphological and physiological changes. However, the genome-wide regulatory profiles of gene expression during oogenesis remain to be determined. RESULTS In this study, we obtained time-series transcriptome data and used these data to reveal the dynamic landscape of gene regulation during oogenesis. A total of 1932 genes were identified to be differentially expressed among different stages, most of which occurred during the transition from late vitellogenesis to early choriogenesis. Using weighted gene co-expression network analysis, we identified six stage-specific gene modules that correspond to multiple regulatory pathways. Strikingly, the biosynthesis pathway of the molting hormone 20-hydroxyecdysone (20E) was enriched in one of the modules. Further analysis showed that the ecdysteroid 20-hydroxylase gene (CYP314A1) of steroidgenesis genes was mainly expressed in previtellogenesis and early vitellogenesis. However, the 20E-inactivated genes, particularly the ecdysteroid 26-hydroxylase encoding gene (Cyp18a1), were highly expressed in late vitellogenesis. These distinct expression patterns between 20E synthesis and catabolism-related genes might ensure the rapid decline of the hormone titer at the transition point from vitellogenesis to choriogenesis. In addition, we compared landscapes of gene regulation between silkworm (Lepidoptera) and fruit fly (Diptera) oogeneses. Our results show that there is some consensus in the modules of gene co-expression during oogenesis in these insects. CONCLUSIONS The data presented in this study provide new insights into the regulatory mechanisms underlying oogenesis in insects with polytrophic meroistic ovaries. The results also provide clues for further investigating the roles of epigenetic reconfiguration and circadian rhythm in insect oogenesis.
Collapse
Affiliation(s)
- Qiang Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, 400044 China
| | - Wei Sun
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, 400044 China
| | - Bang-Yong Sun
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, 400044 China
| | - Yang Xiao
- Sericulture & Agri-food Research Institute, Guangdong Academy of Agriculture Science, Guangzhou, 510640 China
| | - Ze Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, 400044 China
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, 401331 China
| |
Collapse
|
18
|
Abstract
Mosquitoes host communities of microbes in their digestive tract that consist primarily of bacteria. We previously reported that several mosquito species, including Aedes aegypti, do not develop beyond the first instar when fed a nutritionally complete diet in the absence of a gut microbiota. In contrast, several species of bacteria, including Escherichia coli, rescue development of axenic larvae into adults. The molecular mechanisms underlying bacteria-dependent growth are unknown. Here, we designed a genetic screen around E. coli that identified high-affinity cytochrome bd oxidase as an essential bacterial gene product for mosquito growth. Bioassays showed that bacteria in nonsterile larvae and gnotobiotic larvae inoculated with wild-type E. coli reduced midgut oxygen levels below 5%, whereas larvae inoculated with E. coli mutants defective for cytochrome bd oxidase did not. Experiments further supported that hypoxia leads to growth and ecdysone-induced molting. Altogether, our results identify aerobic respiration by bacteria as a previously unknown but essential process for mosquito development.
Collapse
|
19
|
Sun W, Wang CF, Zhang Z. Transcription factor E74A affects the ecdysone titer by regulating the expression of the EO gene in the silkworm, Bomby mori. Biochim Biophys Acta Gen Subj 2017; 1861:551-558. [DOI: 10.1016/j.bbagen.2016.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 01/18/2023]
|
20
|
Simon CR, Siviero F, Monesi N. Beyond DNA puffs: What can we learn from studying sciarids? Genesis 2016; 54:361-78. [PMID: 27178805 DOI: 10.1002/dvg.22946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 11/07/2022]
Abstract
Members of the Sciaridae family attracted the interest of researchers because of the demonstration that the DNA puff regions, which are formed in the salivary gland polytene chromosomes at the end of the fourth larval instar, constitute sites of developmentally regulated gene amplification. Besides contributing to a deeper understanding of the process of gene amplification, the study of sciarids has also provided important insights on other biological processes such as sex determination, programmed cell death, insect immunity, telomere maintenance, and nucleolar organizing regions (NOR) formation. Open questions in sciarids include among others, early development, the role of noncoding RNAs in gene amplification and the relationship between gene amplification and transcription in DNA puff forming regions. These and other questions can now be pursued with next generation sequencing techniques and experiments using RNAi experiments, since this latter technique has been shown to be feasible in sciarids. These new perspectives in the field of sciarid biology open the opportunity to consolidate sciarid species as important emerging models. genesis 54:361-378, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Claudio Roberto Simon
- Departamento de Biologia Estrutural, Universidade Federal do Triângulo Mineiro-UFTM, Instituto de Ciências Biológicas e Naturais, Uberaba, MG, Brazil, CEP 38025-015
| | - Fábio Siviero
- Departamento de Biologia Celular e do Desenvolvimento, Universidade de São Paulo, Instituto de Ciências Biomédicas, São Paulo, SP, Brazil, CEP 05508-900
| | - Nadia Monesi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| |
Collapse
|
21
|
Zheng W, Luo D, Wu F, Wang J, Zhang H. RNA sequencing to characterize transcriptional changes of sexual maturation and mating in the female oriental fruit fly Bactrocera dorsalis. BMC Genomics 2016; 17:194. [PMID: 26946038 PMCID: PMC4779581 DOI: 10.1186/s12864-016-2532-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/25/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Female reproductive potential plays a significant role in the survival and stability of species, and sexual maturation and mating processes are crucial. However, our knowledge of the reproductive genes involved in sexual maturation and mating has been largely limited to model organisms. The oriental fruit fly Bactrocera dorsalis is a highly invasive agricultural pest, known to cause major economic losses; thus, it is of great value to understand the transcriptional changes involved in sexual maturation and mating processes as well as the related genes. Here, we used a high-throughput sequencing method to identify multiple genes potentially involved in sexual maturation and mating in female B. dorsalis. RESULTS We sequenced 39,999 unique genes with an average length of 883 bp. In total, 3264 differentially expressed genes (DEGs) were detected between mature virgin and immature Bactrocera dorsalis libraries, whereas only 83 DEGs were identified between flies that had mated or were mature virgins. These DEGs were functionally annotated using the GO and KEGG pathway annotation tools. Results showed that the main GO terms associated with the DEGs from the mature virgin vs. immature groups were primarily assigned to the metabolic and developmental processes, which we focused on, whereas those from the mated vs. mature virgin group largely belonged to the response to stimulus and immune system processes. Additionally, we identified multiple DEGs during sexual maturation that are involved in reproduction, and expression pattern analysis revealed that the majority DEGs detected were highly enriched in those linked to the ovaries or fat bodies. Several mating responsive genes differentially expressed after mating were also identified, and all antimicrobial peptides detected were highly enriched in fat body and significantly up-regulated approximately 2- to 10-fold at 24 h after mating. CONCLUSION This study supplied female reproductive genes involved in sexual maturation and the post-mating response in B. dorsalis, based on RNA-seq. Our data will facilitate molecular research related to reproduction and provide abundant target genes for effective control of this agricultural pest.
Collapse
Affiliation(s)
- Weiwei Zheng
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control and Institute of Urban and Horticultural Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| | - Deye Luo
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control and Institute of Urban and Horticultural Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| | - Fangyu Wu
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control and Institute of Urban and Horticultural Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| | - Jialu Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control and Institute of Urban and Horticultural Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control and Institute of Urban and Horticultural Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
22
|
Ueno T, Takeuchi H, Kawasaki K, Kubo T. Changes in the Gene Expression Profiles of the Hypopharyngeal Gland of Worker Honeybees in Association with Worker Behavior and Hormonal Factors. PLoS One 2015; 10:e0130206. [PMID: 26083737 PMCID: PMC4470657 DOI: 10.1371/journal.pone.0130206] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 05/18/2015] [Indexed: 01/24/2023] Open
Abstract
The hypopharyngeal glands (HPGs) of worker honeybees undergo physiological changes along with the age-dependent role change from nursing to foraging: nurse bee HPGs secrete mainly major royal jelly proteins, whereas forager HPGs secrete mainly α-glucosidase III, which converts the sucrose in the nectar into glucose and fructose. We previously identified two other genes, Apis mellifera buffy (Ambuffy) and Apis mellifera matrix metalloproteinase 1 (AmMMP1), with enriched expression in nurse bee and forager HPGs, respectively. In the present study, to clarify the molecular mechanisms that coordinate HPG physiology with worker behavior, we first analyzed whether Ambuffy, AmMMP1, mrjp2 (a gene encoding one of major royal jelly protein isoforms), and Hbg3 (a gene encoding α-glucosidase III) expression, is associated with worker behavior in 'single-cohort colonies' where workers of almost the same age perform different tasks. Expression of these genes correlated with the worker’s role, while controlling for age, indicating their regulation associated with the worker’s behavior. Associated gene expression suggested the possible involvement of some hormonal factors in its regulation. We therefore examined the relationship between ecdysone- and juvenile hormone (JH)-signaling, and the expression profiles of these ‘indicator’ genes (nurse bee HPG-selective genes: mrjp2 and Ambuffy, and forager HPG-selective genes: Hbg3 and AmMMP1). Expression of both ecdysone-regulated genes (ecdysone receptor, mushroom body large type Kenyon cell specific protein-1, and E74) and JH-regulated genes (Methoprene tolerant and Krüppel homolog 1) was higher in the forager HPGs than in the nurse bee HPGs, suggesting the possible roles of ecdysone- and JH-regulated genes in worker HPGs. Furthermore, 20-hydroxyecdysone-treatment repressed both nurse bee- and forager-selective gene expression, whereas methoprene-treatment enhanced the expression of forager-selective genes and repressed nurse bee-selective genes in the HPGs. Our findings suggest that both ecdysone- and JH-signaling cooperatively regulate the physiological state of the HPGs in association with the worker’s behavior.
Collapse
Affiliation(s)
- Takayuki Ueno
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113–0033, Japan
- Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyotanabe, Kyoto, 610–0395, Japan
| | - Hideaki Takeuchi
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113–0033, Japan
| | - Kiyoshi Kawasaki
- Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyotanabe, Kyoto, 610–0395, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113–0033, Japan
- * E-mail:
| |
Collapse
|
23
|
Yang C, Lin Y, Liu H, Shen G, Luo J, Zhang H, Peng Z, Chen E, Xing R, Han C, Xia Q. The Broad Complex isoform 2 (BrC-Z2) transcriptional factor plays a critical role in vitellogenin transcription in the silkworm Bombyx mori. Biochim Biophys Acta Gen Subj 2014; 1840:2674-84. [DOI: 10.1016/j.bbagen.2014.05.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/22/2014] [Accepted: 05/16/2014] [Indexed: 11/16/2022]
|
24
|
Chung S, Hanlon CD, Andrew DJ. Building and specializing epithelial tubular organs: the Drosophila salivary gland as a model system for revealing how epithelial organs are specified, form and specialize. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 3:281-300. [PMID: 25208491 DOI: 10.1002/wdev.140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/02/2014] [Accepted: 04/15/2014] [Indexed: 12/28/2022]
Abstract
The past two decades have witnessed incredible progress toward understanding the genetic and cellular mechanisms of organogenesis. Among the organs that have provided key insight into how patterning information is integrated to specify and build functional body parts is the Drosophila salivary gland, a relatively simple epithelial organ specialized for the synthesis and secretion of high levels of protein. Here, we discuss what the past couple of decades of research have revealed about organ specification, development, specialization, and death, and what general principles emerge from these studies.
Collapse
Affiliation(s)
- SeYeon Chung
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Caitlin D Hanlon
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
Wang HB, Iwanaga M, Kawasaki H. Stage-specific activation of the E74B promoter by low ecdysone concentrations in the wing disc of Bombyx mori. Gene 2014; 537:322-7. [PMID: 24393712 DOI: 10.1016/j.gene.2013.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 11/27/2022]
Abstract
To understand the transcriptional regulation of E74B by low concentrations of ecdysone, the promoter activity of Bombyx mori E74B was assessed in the B. mori wing disc using a transient reporter assay. We identified the transcription start sites of BmE74B and found that the core promoter region consists of initiator (Inr) and downstream promoter elements (DPE). The 3.6-kb upstream promoter region of BmE74B was responsive to 20-hydroxyecdysone (20E) in a dose-dependent manner, and the highest luciferase activity was observed in the presence of 0.2 μg/ml 20E. Moreover, the upstream BmE74B promoter activity was induced by 20E in a stage-specific and time-dependent manner, and the 3.6-kb promoter contained essential elements for the temporal regulation of BmE74B. Furthermore, we found a set of putative ecdysone response elements (EcREs). Five of these elements are highly conserved, capable of binding to the ecdysone receptor. Mutation of more than three putative EcREs, followed by introduction into the wing discs, abolished the activation of the BmE74B promoter by a low concentration of ecdysone. The results confirmed the role of ecdysone response elements in the transcription regulation of BmE74B and demonstrated that multiple putative EcREs were involved in the maximum response of BmE74B to low concentrations of ecdysone.
Collapse
Affiliation(s)
- Hua-Bing Wang
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan
| | - Masashi Iwanaga
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan
| | - Hideki Kawasaki
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan.
| |
Collapse
|
26
|
He C, Chen P, Gao X, Gao L, Li L. Expression and purification of ecdysteroid-regulated protein from Chinese mitten crab Eriocheir sinensis in E. coli. Mol Biol Rep 2013; 40:6987-95. [DOI: 10.1007/s11033-013-2818-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 10/17/2013] [Indexed: 12/01/2022]
|
27
|
Dominguez GA, Quattro JM, Denslow ND, Kroll KJ, Prucha MS, Porak WF, Grier HJ, Sabo-Attwood TL. Identification and transcriptional modulation of the largemouth bass, Micropterus salmoides, vitellogenin receptor during oocyte development by insulin and sex steroids. Biol Reprod 2012; 87:67. [PMID: 22786822 PMCID: PMC3464907 DOI: 10.1095/biolreprod.112.099812] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/06/2012] [Accepted: 07/02/2012] [Indexed: 02/02/2023] Open
Abstract
Fish vitellogenin synthesized and released from the liver of oviparous animals is taken up into oocytes by the vitellogenin receptor. This is an essential process in providing nutrient yolk to developing embryos to ensure successful reproduction. Here we disclose the full length vtgr cDNA sequence for largemouth bass (LMB) that reveals greater than 90% sequence homology with other fish vtgr sequences. We classify LMB Vtgr as a member of the low density lipoprotein receptor superfamily based on conserved domains and categorize as the short variant that is devoid of the O-glycan segment. Phylogenetic analysis places LMB Vtgr sequence into a well-supported monophyletic group of fish Vtgr. Real-time PCR showed that the greatest levels of LMB vtgr mRNA expression occurred in previtellogenic ovarian tissues. In addition, we reveal the effects of insulin, 17beta-estradiol (E(2)), and 11-ketotestosterone (11-KT) in modulation of vtgr, esr, and ar mRNAs in previtellogenic oocytes. Insulin increased vtgr expression levels in follicles ex vivo while exposure to E(2) or 11-KT did not result in modulation of expression. However, both steroids were able to repress insulin-induced vtgr transcript levels. Coexposure with insulin and E(2) or of insulin and 11-KT increased ovarian esr2b and ar mRNA levels, respectively, which suggest a role for these nuclear receptors in insulin-mediated signaling pathways. These data provide the first evidence for the ordered stage-specific expression of LMB vtgr during the normal reproductive process and the hormonal influence of insulin and sex steroids on controlling vtgr transcript levels in ovarian tissues.
Collapse
Affiliation(s)
- Gustavo A. Dominguez
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina
- Department of Environmental and Global Health, University of Florida, Gainesville, Florida
| | - Joseph M. Quattro
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| | - Nancy D. Denslow
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - Kevin J. Kroll
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - Melinda S. Prucha
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - Wesley F. Porak
- Florida Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Eustis, Florida
| | - Harry J. Grier
- Florida Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, Florida
| | - Tara L. Sabo-Attwood
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina
- Department of Environmental and Global Health, University of Florida, Gainesville, Florida
| |
Collapse
|
28
|
Aslam AFM, Kiya T, Mita K, Iwami M. Identification of novel bombyxin genes from the genome of the silkmoth Bombyx mori and analysis of their expression. Zoolog Sci 2011; 28:609-16. [PMID: 21801003 DOI: 10.2108/zsj.28.609] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Insulin family peptide members play key roles in regulating growth, metabolism, and reproduction. Bombyxin is an insulin-related peptide of the silkmoth Bombyx mori. We analyzed the full genome of B. mori and identified five novel bombyxin families, V to Z. We characterized the genomic organization and chromosomal location of the novel bombyxin family genes. In contrast to previously identified bombyxin genes, bombyxin-V and -Z genes had intervening introns at almost the same positions as vertebrate insulin genes. We performed reverse transcription-polymerase chain reaction and in situ hybridization in different tissues and developmental stages to observe their temporal and spatial expression patterns. The newly identified bombyxin genes were expressed in diverse tissues: bombyxin-V, -W, and -Y mRNAs were expressed in the brain and bombyxin-X mRNA in fat bodies. Bombyxin-Y gene was expressed in both brain and ovary of larval stages. High level of bombyxin-Z gene expression in the follicular cells may suggest its function in reproduction. The presence of a short C-peptide domain and an extended A chain domain, and high expression of bombyxin-X gene in the fat body cells during non-feeding stages suggest its insulin-like growth factor-like function. These results suggest that the bombyxin genes originated from a common ancestral gene, similar to the vertebrate insulin gene, and evolved into a diverse gene family with multiple functions.
Collapse
Affiliation(s)
- Abu F M Aslam
- Division of Life Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | |
Collapse
|
29
|
Araujo RV, Maciel C, Hartfelder K, Capurro ML. Effects of Plasmodium gallinaceum on hemolymph physiology of Aedes aegypti during parasite development. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:265-273. [PMID: 21112329 DOI: 10.1016/j.jinsphys.2010.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 11/10/2010] [Accepted: 11/19/2010] [Indexed: 05/30/2023]
Abstract
Insect disease vectors show diminished fecundity when infected with Plasmodium. This phenomenon has already been demonstrated in laboratory models such as Aedes aegypti, Anopheles gambiae and Anopheles stephensi. This study demonstrates several changes in physiological processes of A. aegypti occurring upon infection with Plasmodium gallinaceum, such as reduced ecdysteroid levels in hemolymph as well as altered expression patterns for genes involved in vitellogenesis, lipid transport and immune response. Furthermore, we could show that P. gallinaceum infected A. aegypti presented a reduction in reproductive fitness, accompanied by an activated innate immune response and increase in lipophorin expression, with the latter possibly representing a nutritional resource for Plasmodium sporozoites.
Collapse
Affiliation(s)
- Ricardo Vieira Araujo
- Departamento de Clínica Médica, Faculdade de Medicina de São Paulo, Universidade de São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
30
|
Roy SG, Raikhel AS. The small GTPase Rheb is a key component linking amino acid signaling and TOR in the nutritional pathway that controls mosquito egg development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:62-9. [PMID: 21035549 PMCID: PMC3022117 DOI: 10.1016/j.ibmb.2010.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 10/04/2010] [Accepted: 10/12/2010] [Indexed: 05/12/2023]
Abstract
Mosquitoes transmit numerous devastating human diseases because they require blood feeding for egg development. Previously, we have shown that the nutritional Target-of-Rapamycin (TOR) pathway mediates blood-meal activation of mosquito reproductive cycles. Blood-derived amino acid (AA) signaling through the nutrient-sensitive TOR kinase is critical for the transcriptional activation of the major yolk protein precursor (YPP) gene, vitellogenin (Vg), initiation of vitellogenesis and egg development. In this study, we provide in vitro and in vivo evidence that the Rheb GTPase (Ras Homologue Enriched in Brain), which is an upstream activator of TOR, is required for AA-mediated activation of the TOR pathway in the fat body of the mosquito Aedes aegypti. Using RNA interference (RNAi) methods, we showed that Rheb was indispensable in AA-induced phosphorylation of S6 kinase, a key downstream substrate of TOR activation. Rheb RNAi depletion resulted in significant downregulation of Vg transcription and translation in the mosquito fat body, which was monitored in vivo after blood meal or in vitro organ culture after AA stimulation. Egg development was severely hindered in mosquitoes with a Rheb RNAi depletion background. This study represents a notable step in deciphering molecular pathways controlling reproduction of this important vector of human diseases.
Collapse
Affiliation(s)
- Saurabh G. Roy
- Graduate Program in Cell, Molecular and Developmental Biology, Department of Entomology, and the Institute for Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Alexander S. Raikhel
- Graduate Program in Cell, Molecular and Developmental Biology, Department of Entomology, and the Institute for Integrative Genome Biology, University of California, Riverside, CA 92521
| |
Collapse
|
31
|
Marmaras VJ, Lampropoulou M. Regulators and signalling in insect haemocyte immunity. Cell Signal 2009; 21:186-95. [DOI: 10.1016/j.cellsig.2008.08.014] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 08/24/2008] [Indexed: 02/06/2023]
|
32
|
Takeuchi H, Paul RK, Matsuzaka E, Kubo T. EcR-A expression in the brain and ovary of the honeybee (Apis mellifera L.). Zoolog Sci 2007; 24:596-603. [PMID: 17867861 DOI: 10.2108/zsj.24.596] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 01/19/2007] [Indexed: 11/17/2022]
Abstract
We previously demonstrated that six genes involved in ecdysteroid signaling are expressed preferentially in Kenyon-cell subtypes in the mushroom bodies of the honeybee (Apis mellifera L.). To further examine the possible involvement of ecdysteroid signaling in honeybee brain function, we isolated a cDNA for the A isoform of the ecdysone receptor gene homolog AmEcR-A and analyzed its expression in the brain. In situ hybridization revealed that AmEcR-A is expressed selectively in the small-type Kenyon cells of the mushroom bodies in the worker and queen brain, like AmE74 and AmHR38, suggesting a possible association of these gene products. Analysis of AmEcR-A expression in queen and worker abdomens demonstrated that AmEcR-A is strongly expressed in nurse cells of the queen ovary, suggesting that ecdysteroid and ecdysteroid signaling have roles in oogenesis. Our present results further support the possible involvement of ecdysteroid signaling in brain function, as well as in regulating queen reproductive physiology in the adult honeybee.
Collapse
Affiliation(s)
- Hideaki Takeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | | | | | | |
Collapse
|
33
|
Sekimoto T, Iwami M, Sakurai S. 20-Hydroxyecdysone regulation of two isoforms of the Ets transcription factor E74 gene in programmed cell death in the silkworm anterior silk gland. INSECT MOLECULAR BIOLOGY 2007; 16:581-90. [PMID: 17894557 DOI: 10.1111/j.1365-2583.2007.00751.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Programmed cell death of larval-specific tissues in insects is under the control of 20-hydroxyecdysone (20E). The ecdysteroid-regulated early genes are conserved in the programmed cell death of anterior silk glands (ASGs) in Bombyx mori and salivary glands in Drosophila melanogaster. We identified and characterized two isoforms of the Ets transcription factor E74 gene in B. mori (BmE74). In ASGs of B. mori last instar larvae, the Bm74A mRNA level increased concomitantly with an increase in haemolymph ecdysteroid titre after gut purge. The optimal 20E concentration for stimulation of Bm74A in ASGs was 4 microM, a similar value to the peak haemolymph ecdysteroid concentration after gut purge. In contrast, BmE74B expression peaked on day 5 of the feeding period, after which it did not increase again. These findings suggest that the BmE74 isoforms play different roles in the regulation of programmed cell death in B. mori ASGs.
Collapse
Affiliation(s)
- T Sekimoto
- Division of Life Sciences, Graduate School of Science and Technology, Kanazawa University, Kakumamachi, Kanazawa, Japan
| | | | | |
Collapse
|
34
|
Zhu J, Chen L, Raikhel AS. Distinct roles of Broad isoforms in regulation of the 20-hydroxyecdysone effector gene, Vitellogenin, in the mosquito Aedes aegypti. Mol Cell Endocrinol 2007; 267:97-105. [PMID: 17303321 PMCID: PMC1929017 DOI: 10.1016/j.mce.2007.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 01/05/2007] [Indexed: 10/23/2022]
Abstract
We investigated the role of the mosquito broad (br) gene in regulating the 20-hydroxyecdysone (20E) effector Vitellogenin (Vg) gene. Injection of double-stranded RNA corresponding to the BR isoform Z2 led to a significant decrease in expression of the Vg gene at 8 and 24h post-blood meal. Knockdown of Z1 or Z4 resulted in enhanced Vg expression beyond its normal expression time. In vitro studies suggested that the effects of BR require its direct binding to the Vg promoter, as well as protein-protein interaction between BR and the ecdysone receptor complex. The BR isoforms are therefore essential for a proper stage-specific biological response to 20E in the adult female mosquito. In particular, the isoform Z2 is required for 20E-mediated activation of Vg, while isoforms Z1 and Z4 serve as repressors to ensure appropriate termination of Vg expression.
Collapse
Affiliation(s)
- Jinsong Zhu
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
35
|
Zhu J, Chen L, Sun G, Raikhel AS. The competence factor beta Ftz-F1 potentiates ecdysone receptor activity via recruiting a p160/SRC coactivator. Mol Cell Biol 2006; 26:9402-12. [PMID: 17015464 PMCID: PMC1698532 DOI: 10.1128/mcb.01318-06] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 08/22/2006] [Accepted: 09/21/2006] [Indexed: 11/20/2022] Open
Abstract
Hormones provide generalized signals that are interpreted in a specific spatial and temporal manner by a developing or reproducing multicellular organism. The ability to respond to hormones is determined by the competence of a cell or a tissue. The betaFtz-F1 orphan nuclear receptor acts as a competence factor for the steroid hormone 20-hydroxyecdysone (20E) in Drosophila melanogaster metamorphosis and mosquito reproduction. The molecular nature of the betaFtz-F1 action remains unclear. We report that the protein-protein interaction between betaFtz-F1 and a p160/SRC coactivator of the ecdysone receptor, FISC, is crucial for the stage-specific expression of the 20E effector genes during mosquito reproduction. This interaction dramatically increases recruitment of FISC to the functional ecdysone receptor in a 20E-dependent manner. The presence of betaFtz-F1 facilitates loading of FISC and the ecdysone receptor on the target promoters, leading to enhanced local histone H4 acetylation and robust activation of the target genes. Thus, our results reveal the molecular basis of competence for the stage-specific 20E response.
Collapse
Affiliation(s)
- Jinsong Zhu
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
36
|
Paul RK, Takeuchi H, Kubo T. Expression of Two Ecdysteroid-Regulated Genes,Broad-ComplexandE75, in the Brain and Ovary of the Honeybee (Apis mellifera L.). Zoolog Sci 2006; 23:1085-92. [PMID: 17261922 DOI: 10.2108/zsj.23.1085] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We previously demonstrated that two ecdysteroid-regulated genes, Mblk-1/E93 and E74, are expressed selectively in Kenyon cell subtypes in the mushroom bodies of the honeybee (Apis mellifera L.) brain. To further examine the possible involvement of ecdysteroid-regulated genes in brain function as well as in oogenesis in the honeybee, we isolated cDNAs for two other ecdysteroid-regulated genes, Broad-Complex (BR-C) and E75, and analyzed their expression in the worker brain as well as in the queen abdomen. In situ hybridization revealed that BR-C, like Mblk-1/ E93, is expressed selectively in the large-type Kenyon cells of the mushroom bodies in the worker brain, whereas E75 is expressed in all mushroom body neuron subtypes, suggesting a difference in the mode of response to ecdysteroid among Kenyon cell subtypes. In the queen ovary, both BR-C and E75 are expressed preferentially in the follicle cells that surround egg cells at the late stage, suggesting their role in oogenesis. These results suggest that BR-C and E75 are involved in the regulation of brain function as well as in reproductive physiology in the adult honeybee.
Collapse
Affiliation(s)
- Rajib Kumar Paul
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
37
|
Margam VM, Gelman DB, Palli SR. Ecdysteroid titers and developmental expression of ecdysteroid-regulated genes during metamorphosis of the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae). JOURNAL OF INSECT PHYSIOLOGY 2006; 52:558-68. [PMID: 16580015 DOI: 10.1016/j.jinsphys.2006.02.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 01/31/2006] [Accepted: 02/06/2006] [Indexed: 05/08/2023]
Abstract
Ecdysteroid titers and expression profiles of ecdysone-regulated genes were determined during the last instar larval and during the pupal stages of Aedes aegypti (Diptera: Culicidae). Three peaks of ecdysteroids occurring at approximately 24, 30-33 and 45-48h after ecdysis to the fourth instar larval stage were detected. In the pupa, a large peak of ecdysteroids occurred between 6 and 12h after ecdysis to the pupal stage. A small rise in ecdysteroids was also detected at the end of the pupal stage. Quantitative reverse transcriptase polymerase chain reaction analyses of the expression of ecdysone receptors and ecdysone-regulated genes showed that the peaks of expression of most of these genes coincided with the rise in ecdysteroid levels during the last larval and pupal stages. In the last larval stage, ecdysteroid titers and mRNA expression profiles of ecdysone-regulated genes are similar to those observed for Drosophila melanogaster. However, in the early pupal stage, both ecdysteroid titers and the expression of ecdysone-regulated genes are somewhat different from those observed in D. melanogaster, probably because the duration of the pupal stage in D. melanogaster is 84h while in Ae. aeqypti the duration is only 48h. These data which describe the relationship between ecdysteroid titers and mRNA levels of Ae. aegypti ecdysteroid-regulated genes lay a solid foundation for future studies on the hormonal regulation of development in mosquitoes.
Collapse
Affiliation(s)
- Venu M Margam
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | | | | |
Collapse
|
38
|
Wu Y, Parthasarathy R, Bai H, Palli SR. Mechanisms of midgut remodeling: juvenile hormone analog methoprene blocks midgut metamorphosis by modulating ecdysone action. Mech Dev 2006; 123:530-47. [PMID: 16829058 DOI: 10.1016/j.mod.2006.05.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 05/17/2006] [Accepted: 05/20/2006] [Indexed: 11/21/2022]
Abstract
In holometabolous insects such as mosquito, Aedes aegypti, midgut undergoes remodeling during metamorphosis. Insect metamorphosis is regulated by several hormones including juvenile hormone (JH) and 20-hydroxyecdysone (20E). The cellular and molecular events that occur during midgut remodeling were investigated by studying nuclear stained whole mounts and cross-sections of midguts and by monitoring the mRNA levels of genes involved in 20E action in methoprene-treated and untreated Ae. aegypti. We used JH analog, methoprene, to mimic JH action. In Ae. aegypti larvae, the programmed cell death (PCD) of larval midgut cells and the proliferation and differentiation of imaginal cells were initiated at about 36h after ecdysis to the 4th instar larval stage (AEFL) and were completed by 12h after ecdysis to the pupal stage (AEPS). In methoprene-treated larvae, the proliferation and differentiation of imaginal cells was initiated at 36h AEFL, but the PCD was initiated only after ecdysis to the pupal stage. However, the terminal events that occur for completion of PCD during pupal stage were blocked. As a result, the pupae developed from methoprene-treated larvae contained two midgut epithelial layers until they died during the pupal stage. Quantitative PCR analyses showed that methoprene affected midgut remodeling by modulating the expression of ecdysone receptor B, ultraspiracle A, broad complex, E93, ftz-f1, dronc and drice, the genes that are shown to play key roles in 20E action and PCD. Thus, JH analog, methoprene acts on Ae. aegypti by interfering with the expression of genes involved in 20E action resulting in a block in midgut remodeling and death during pupal stage.
Collapse
Affiliation(s)
- Yu Wu
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | |
Collapse
|
39
|
Sun G, Zhu J, Chen L, Raikhel AS. Synergistic action of E74B and ecdysteroid receptor in activating a 20-hydroxyecdysone effector gene. Proc Natl Acad Sci U S A 2005; 102:15506-11. [PMID: 16230625 PMCID: PMC1266084 DOI: 10.1073/pnas.0503501102] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A number of insect effector genes activated by the steroid hormone 20-hydroxyecdysone (20E) are dually controlled by the ecdysteroid receptor (EcR/USP) and products of ecdysteroid early responsive genes (E74, E75, and Broad). However, the molecular mechanism of this dual action is poorly understood. Here we examined transcriptional activation of the vitellogenin (Vg) gene in the yellow fever mosquito, Aedes aegypti, by EcR/USP and E74 in response to an elevation of 20E titers. There are two isoforms of the Aedes E74 gene, AaE74A and AaE74B, which have a common C-terminal Ets DNA-binding domain and isoform-specific N termini in the female mosquito. Inhibiting expression of AaE74B but not AaE74A by RNA interference led to substantial reduction in the Vg gene expression. AaE74B and the ecdysteroid receptor synergistically enhanced 20E-induced transcription of the Vg promoter. This action required the E74-binding sites and the ecdysone response elements in the Vg 5' regulatory region. Two-hybrid assays and coimmunoprecipitation analyses demonstrated direct interaction between AaE74B and AaEcR/AaUSP. Moreover, disruption of this interaction by a dominant negative E74 mutant abolished the enhanced activation of Vg. Therefore, the cooperative interaction between AaE74B and the ecdysteroid receptor is required for high-level expression of the Vg gene in vivo. The synergistic activation is accomplished through their 20E-dependent protein-protein interaction on the gene promoter. This study reveals how the 20E direct-indirect regulation of an effector gene is achieved at the molecular level.
Collapse
Affiliation(s)
- GuoQiang Sun
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
40
|
Attardo GM, Hansen IA, Raikhel AS. Nutritional regulation of vitellogenesis in mosquitoes: implications for anautogeny. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:661-75. [PMID: 15894184 DOI: 10.1016/j.ibmb.2005.02.013] [Citation(s) in RCA: 229] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/11/2005] [Indexed: 05/02/2023]
Abstract
Anautogeny is a successful reproductive strategy utilized by many mosquito species and other disease-transmitting arthropod vectors. Developing an understanding of the mechanisms underlying anautogeny in mosquitoes is very important because this reproductive strategy is the driving force behind the transmission of disease to millions of people. Information gained from mosquito studies may also be applicable to other blood feeding insect vectors. The conversion of protein from blood into yolk protein precursors for the developing oocytes is an essential part of the reproductive cycle, and understanding how this process is regulated could lead to safe, specific, and effective ways to block reproduction in blood feeding insects. Great gains have been made in elucidating the mechanisms that regulate vitellogenesis in mosquitoes, especially Ae. aegypti. However, a number of questions remain to be answered to make the picture more complete. In this review, we summarize what is currently known about the nutritional regulation of vitellogenesis in mosquitoes and the questions that remain to be answered about this important biological phenomenon.
Collapse
Affiliation(s)
- Geoffrey M Attardo
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
41
|
Nishiura JT, Ray K, Murray J. Expression of nuclear receptor-transcription factor genes during Aedes aegypti midgut metamorphosis and the effect of methoprene on expression. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:561-573. [PMID: 15857762 DOI: 10.1016/j.ibmb.2005.01.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 01/28/2005] [Accepted: 01/28/2005] [Indexed: 05/24/2023]
Abstract
Exposure of mosquito 4th instars to the juvenile hormone analogue methoprene prevents the emergence of adults by interfering with metamorphosis. One metamorphic processes that is disrupted is midgut remodeling. To investigate the molecular mechanisms by which this occurs, the pattern of transcription factor gene expression during the Aedes aegypti (L.) 4th instar was investigated by the method of real time PCR. The results indicate that in untreated larvae, expression of transcription factors genes AHR3 and AaE75B increases within 24h after the last larval-larval molt, transcription of AaEcR-B, AaUSP-a and AassFTZ-F1 increases approximately 24h later, and transcription of AaE75A increases just before the larval-pupal molt. There is uniform expression of AaUSP-b throughout the 4th instar. The effect of methoprene exposure on transcription factor gene expression during midgut remodeling was investigated. The results indicate that, in a dose and stage dependent manner, methoprene affects increases in expression that normally occur during midgut remodeling. The coincident effects of methoprene on metamorphic midgut remodeling and on transcription factor gene expression suggests that the two processes are related.
Collapse
Affiliation(s)
- James T Nishiura
- Biology Department, Brooklyn College, City University of New York, 2900 Bedford Ave., Brooklyn, NY 11210, USA.
| | | | | |
Collapse
|
42
|
Abstract
In many organisms, programmed cell death of germ cells is required for normal development. This often occurs through highly conserved events including the transfer of vital cellular material to the growing gametes following death of neighboring cells. Germline cell death also plays a role in such diverse processes as removal of abnormal or superfluous cells at certain checkpoints, establishment of caste differentiation, and individualization of gametes. This review focuses on the cell death events that occur during gametogenesis in both vertebrates and invertebrates. It also examines the signals and machinery that initiate and carry out these germ cell deaths.
Collapse
Affiliation(s)
- J S Baum
- Department of Biology, Boston University, 5 Cummington St., Boston, MA 02215, USA
| | | | | |
Collapse
|
43
|
Paul RK, Takeuchi H, Matsuo Y, Kubo T. Gene expression of ecdysteroid-regulated gene E74 of the honeybee in ovary and brain. INSECT MOLECULAR BIOLOGY 2005; 14:9-15. [PMID: 15663771 DOI: 10.1111/j.1365-2583.2004.00524.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To facilitate studies of hormonal control in the honeybee (Apis mellifera L.), a cDNA for a honeybee homologue of the ecdysteroid-regulated gene E74 (AmE74) was isolated and its expression was analysed. Northern blot analysis indicated strong expression in the adult queen abdomen, and no significant expression in the adult drone and worker abdomens. In situ hybridization demonstrated that this gene was expressed selectively in the ovary and gut in the queen abdomen. Furthermore, this gene was also expressed selectively in subsets of mushroom body interneurones in the brain of the adult worker bees. These findings suggest that AmE74 is involved in neural function as well as in reproduction in adult honeybees.
Collapse
Affiliation(s)
- R K Paul
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
44
|
McCall K. Eggs over easy: cell death in the Drosophila ovary. Dev Biol 2004; 274:3-14. [PMID: 15355784 DOI: 10.1016/j.ydbio.2004.07.017] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 07/07/2004] [Accepted: 07/21/2004] [Indexed: 11/22/2022]
Abstract
Programmed cell death is the most common fate of female germ cells in Drosophila and many animals. In Drosophila, oocytes form in individual egg chambers that are supported by germline nurse cells and surrounded by somatic follicle cells. As oogenesis proceeds, 15 nurse cells die for every oocyte that is produced. In addition to this developmentally regulated cell death, groups of germ cells or entire egg chambers may be induced to undergo apoptosis in response to starvation or other insults. Recent findings suggest that these different types of cell death involve distinct genetic pathways. This review focuses on progress towards elucidating the molecular mechanisms acting during programmed cell death in Drosophila oogenesis.
Collapse
Affiliation(s)
- Kimberly McCall
- Department of Biology, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
45
|
Grenier AM, Da Rocha M, Jalabert A, Royer C, Mauchamp B, Chavancy G. Artificial parthenogenesis and control of voltinism to manage transgenic populations in Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2004; 50:751-760. [PMID: 15288208 DOI: 10.1016/j.jinsphys.2004.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 06/01/2004] [Accepted: 06/02/2004] [Indexed: 05/24/2023]
Abstract
In order to improve the management of transformed populations in a routine application of transgenesis technology in Bombyx mori, we modified its mode of reproduction and its voltinism. On one hand, after a stable integration of the gene of interest by transgenesis, it is preferable to maintain this gene in an identical genomic context through successive generations. This can be obtained by artificial parthenogenetic reproduction (ameiotic parthenogenesis) giving isogenic females identical to their transformed mother. On the other hand, it is essential to obtain continuous generations (polyvoltinism) after microinjection, in order to screen positive transgenic insects and study genetics and insertion of the transgene. Thereafter, it is more convenient to store these populations, as diapause eggs before their use in biotechnology application. We obtained such polyvoltine parthenoclones, first by selection for a parthenogenetic character in polyvoltine races, and second, by selection for a polyvoltine character in a parthenogenetic, but diapausing clone of B. mori. As diapause was directly under the control of diapause hormone (DH), we also tested direct injection of DH in female pupae of polyvoltine strains, as well as anti-DH antibody treatment to eliminate diapause in univoltine strains. We discussed the advantages and limitations of these methods and proved the feasibility in obtaining polyvoltine parthenoclones and determining the voltinism in B. mori. These methods would permit us to improve the management of populations used in transgenesis technology.
Collapse
Affiliation(s)
- Anne-Marie Grenier
- Unité Nationale Séricicole, INRA, 25 Quai Jean-Jacques Rousseau, 69350 La Mulatière, France.
| | | | | | | | | | | |
Collapse
|
46
|
Hansen IA, Attardo GM, Park JH, Peng Q, Raikhel AS. Target of rapamycin-mediated amino acid signaling in mosquito anautogeny. Proc Natl Acad Sci U S A 2004; 101:10626-31. [PMID: 15229322 PMCID: PMC489984 DOI: 10.1073/pnas.0403460101] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mosquitoes generate an enormous burden on human health worldwide. Disease-transmitting species use a reproductive strategy, termed anautogeny, that requires a blood meal to initiate egg maturation. Whereas this strategy is important for driving disease transmission, the molecular mechanisms underlying this phenomenon are still poorly understood. The production of yolk protein precursors (YPPs), a central event in egg maturation, is called vitellogenesis. YPPs are synthesized in the fat body, the insect analogue of the vertebrate liver. Mosquito vitellogenesis is regulated by the steroid hormone 20 hydroxyecdysone (20E). However, 20E alone is not capable of activating vitellogenesis in vivo. Here, we report that amino acid signaling through the nutrient-sensitive target of rapamycin (TOR) pathway is essential for the activation of YPP gene expression. An increase in extracellular amino acid levels, similar to the increase observed after a blood meal, is critical for 20E stimulation of YPP gene expression. Treatment with the TOR kinase inhibitor rapamycin significantly inhibits YPP expression. We used RNA interference to knockdown the expression of two key proteins of the TOR signaling pathway, TOR, and tuberous sclerosis complex 2. Knockdown of TOR inhibited amino acid stimulation while knockdown of tuberous sclerosis complex 2, a negative regulator of TOR signaling, resulted in enhanced YPP expression. Thus, amino acid-based TOR signaling regulates the activation of egg development after a blood meal, an adaptation to the unique life style of mosquitoes.
Collapse
Affiliation(s)
- Immo A Hansen
- Department of Entomology and Program in Biochemistry and Molecular Biology, University of California, Riverside, CA 92506, USA
| | | | | | | | | |
Collapse
|
47
|
Sun G, Zhu J, Raikhel AS. The early gene E74B isoform is a transcriptional activator of the ecdysteroid regulatory hierarchy in mosquito vitellogenesis. Mol Cell Endocrinol 2004; 218:95-105. [PMID: 15130514 DOI: 10.1016/j.mce.2003.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Accepted: 12/17/2003] [Indexed: 10/26/2022]
Abstract
In the mosquito Aedes aegypti, blood feeding activates vitellogenesis that involves yolk protein precursor (YPP) genes in an insect metabolic tissue, the fat body. Vitellogenesis is regulated by the 20-hydroxyecdysone (20E) regulatory hierarchy, in which the Ets-domain protein E74 is a key transcriptional regulator. The mosquito AaE74 gene encodes two isoforms-AaE74A and AaE74B. Both AaE74 isoforms are 20E-inducible early gene products. AaE74B reaches its maximal expression at 10(-7)M of 20E, while AaE74A requires 10(-6)M of 20E, a concentration at which the YPP genes reach their maximal induction level. In transfection assay, AaE74B is capable of activating a reporter construct containing E74-response elements, while expression of AaE74A has no effect on the basal levels of the reporter. The AaE74B binding activity is present in the fat body nuclei only during active vitellogenesis. Taken together, our findings demonstrate that AaE74B isoform plays the role of a transcriptional activator during vitellogenesis.
Collapse
Affiliation(s)
- GuoQiang Sun
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
48
|
Tschan MP, Fischer KM, Fung VS, Pirnia F, Borner MM, Fey MF, Tobler A, Torbett BE. Alternative splicing of the human cyclin D-binding Myb-like protein (hDMP1) yields a truncated protein isoform that alters macrophage differentiation patterns. J Biol Chem 2003; 278:42750-60. [PMID: 12917399 DOI: 10.1074/jbc.m307067200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have cloned two novel, alternatively spliced messages of human cyclin D-binding Myb-like protein (hDMP1). The known, full-length protein has been named hDMP1alpha and the new isoforms, hDMP1beta and hDMP1gamma. The hDMP1alpha, -beta, and -gamma splice variants have unique expression patterns in normal hematopoietic cells; hDMP1beta mRNA transcripts are strongly expressed in quiescent CD34+ cells and freshly isolated peripheral blood leukocytes, as compared with hDMP1alpha. In contrast, activated T-cells and developing myeloid cells, macrophages, and granulocytes express low levels of hDMP1beta transcripts, and hDMP1gamma is ubiquitously and weakly expressed. Mouse Dmp1 has been shown to activate CD13/aminopeptidase N (APN) and p19ARF gene expression via binding to canonical DNA recognition sites in the respective promoters. Assessment of CD13/APN promoter responsiveness demonstrated that hDMP1alpha but not hDMP1beta and -gamma, is a transcriptional activator. Furthermore, hDMP1beta was found to inhibit the CD13/APN promoter transactivation ability of hDMP1alpha. Stable, ectopic expression of hDMP1beta and, to a lesser extent hDMP1gamma, reduced endogenous cell surface levels of CD13/APN in U937 cells. Moreover, stable, ectopic expression of hDMP1beta altered phorbol 12-myristate 13-acetate-induced terminal differentiation of U937 cells to macrophages and resulted in maintenance of proliferation. These results demonstrate that hDMP1beta antagonizes hDMP1alpha activity and suggest that cellular functions of hDMP1 may be regulated by cellular hDMP1 isoform levels.
Collapse
Affiliation(s)
- Mario P Tschan
- Scripps Research Institute, Department of Molecular and Experimental Medicine, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhu J, Chen L, Raikhel AS. Posttranscriptional control of the competence factor betaFTZ-F1 by juvenile hormone in the mosquito Aedes aegypti. Proc Natl Acad Sci U S A 2003; 100:13338-43. [PMID: 14593204 PMCID: PMC263810 DOI: 10.1073/pnas.2234416100] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In anautogenous mosquitoes, vitellogenesis, which includes production of yolk protein precursors, requires blood feeding. Consequently, mosquitoes transmit many diseases. Understanding the molecular mechanisms of vitellogenesis regulation will contribute significantly to vector control strategies. Newly emerged Aedes aegypti females require 3 days before becoming competent to activate vitellogenesis in response to a blood-meal-initiated, elevated titer of 20-hydroxyecdysone (20E). An orphan nuclear receptor gene betaFTZ-F1 is transcribed in the fat body of newly emerged mosquito females; however, the betaFTZ-F1 protein is only found 3 days later. Dramatically increased titer of the juvenile hormone III (JH III) is essential for the acquisition of 20E competence. In vitro fat body culture experiments have shown that betaFTZ-F1 protein appears after exposure to JH III. Injection of double-stranded RNA complementary to betaFTZ-F1 into newly emerged females attenuated expression of the early genes EcR-B, E74B, and E75A and the target YPP gene Vg, in response to a blood meal. Thus, betaFTZ-F1 is indeed the factor defining the acquisition of competence to 20E in the mosquito fat body. Moreover, this is achieved through JH III-mediated posttranscriptional control of betaFTZ-F1.
Collapse
Affiliation(s)
- Jinsong Zhu
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
50
|
Stilwell GE, Nelson CA, Weller J, Cui H, Hiruma K, Truman JW, Riddiford LM. E74 exhibits stage-specific hormonal regulation in the epidermis of the tobacco hornworm, manduca sexta. Dev Biol 2003; 258:76-90. [PMID: 12781684 DOI: 10.1016/s0012-1606(03)00105-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transcription factor E74 is one of the early genes induced by ecdysteroids during metamorphosis of Drosophila melanogaster. Here, we report the cloning and hormonal regulation of E74 from the tobacco hornworm, Manduca sexta (MsE74). MsE74 is 98% identical to that of D. melanogaster within the DNA-binding ETS domain of the protein. The 5'-isoform-specific regions of MsE74A and MsE74B share significantly lower sequence similarity (30-40%). Developmental expression by Northern blot analysis reveals that, during the 5th larval instar, MsE74B expression correlates with pupal commitment on day 3 and is induced to maximal levels within 12h by low levels of 20-hydroxyecdysone (20E) and repressed by physiologically relevant levels of juvenile hormone I (JH I). Immunocytochemical analysis shows that MsE74B appears in the epidermis before the 20E-induced Broad transcription factor that is correlated with pupal commitment (Zhou and Riddiford, 2001). In contrast, MsE74A is expressed late in the larval and the pupal molts when the ecdysteroid titer has declined to low levels and in the adult molt just as the ecdysteroid titer begins to decline. This change in timing during the adult molt appears not to be due to the absence of JH as there was no change during the pupal molt of allatectomized animals. When either 4th or 5th instar larval epidermis was explanted and subjected to hormonal manipulations, MsE74A induction occurred only after exposure to 20E followed by its removal. Thus, MsE74B appears to have a similar role at the onset of metamorphosis in Manduca as it does in Drosophila, whereas MsE74A is regulated differently at pupation in Manduca than at pupariation in Drosophila.
Collapse
Affiliation(s)
- Geoffrey E Stilwell
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195-1800, USA
| | | | | | | | | | | | | |
Collapse
|