1
|
Donahue CC, Resch JE. Concussion and the Sleeping Brain. SPORTS MEDICINE - OPEN 2024; 10:68. [PMID: 38853235 PMCID: PMC11162982 DOI: 10.1186/s40798-024-00736-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Emerging research has suggested sleep to be a modifier of the trajectory of concussion recovery in adolescent and adult populations. Despite the growing recognition of the relationship between sleep and concussion, the mechanisms and physiological processes governing this association have yet to be established. MAIN BODY Following a concussion, a pathophysiologic cascade of events occurs, characterized by numerous factors including microglia activation, ionic imbalance, and release of excitatory neurotransmitters. Importantly, each of these factors plays a role in the regulation of the sleep-wake cycle. Therefore, dysregulation of sleep following injury may be a function of the diffuse disruption of cerebral functioning in the wake of both axonal damage and secondary physiological events. As the onset of sleep-related symptoms is highly variable following a concussion, clinicians should be aware of when and how these symptoms present. Post-injury changes in sleep have been reported in the acute, sub-acute, and chronic phases of recovery and can prolong symptom resolution, affect neurocognitive performance, and influence mood state. Though these changes support sleep as a modifier of recovery, limited guidance exists for clinicians or their patients in the management of sleep after concussion. This may be attributed to the fact that research has correlated sleep with concussion recovery but has failed to explain why the correlation exists. Sleep is a complex, multifactorial process and the changes seen in sleep that are seen following concussion are the result of interactions amongst numerous processes that regulate the sleep-wake cycle. SHORT CONCLUSION The assessment and management of sleep by identifying and considering the biological, sociological, and psychological interactions of this multifactorial process will allow for clinicians to address the dynamic nature of changes in sleep following concussion.
Collapse
Affiliation(s)
- Catherine C Donahue
- Department of Orthopedics, University of Colorado School of Medicine, Children's Hospital Colorado, 13123 E. 16th Ave, Box 060, 80045, Aurora, CO, USA.
| | - Jacob E Resch
- Department of Kinesiology, University of Virginia, 550 Brandon Ave, Charlottesville, VA, 22908, USA
| |
Collapse
|
2
|
Fakir S, Barabutis N. Protective Activities of Growth Hormone-Releasing Hormone Antagonists against Toxin-Induced Endothelial Injury. ENDOCRINES 2024; 5:116-123. [PMID: 38895505 PMCID: PMC11185841 DOI: 10.3390/endocrines5010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
GHRH regulates the secretion of GH from the anterior pituitary gland, previously associated with cancer progression and inflammation. An emerging body of evidence suggests that GHRHAnt support endothelial barrier function, but the mechanisms mediating these events are not completely understood. In the present study, it is demonstrated that the GHRHAnt JV-1-36 counteracts barrier dysfunction due to LPS or LTA treatment in HUVECs, utilizing the Dextran-FITC assay. Moreover, it is shown in BPAECs that these bacterial toxins increase ROS generation, and that this effect is counteracted by JV-1-36, which reinstates the redox balance. The possible involvement of NEK2 in the beneficial activities of GHRHAnt in IFN-γ- and LPS-triggered hyperpermeability was also assessed, since that kinase is involved in inflammatory responses. NEK2 was increased in the inflamed cells, and JV-1-36 counteracted those endothelial events. Our data support the beneficial effects of GHRHAnt in toxin-induced endothelial injury.
Collapse
Affiliation(s)
- Saikat Fakir
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| |
Collapse
|
3
|
Drastichova Z, Trubacova R, Novotny J. Regulation of phosphosignaling pathways involved in transcription of cell cycle target genes by TRH receptor activation in GH1 cells. Biomed Pharmacother 2023; 168:115830. [PMID: 37931515 DOI: 10.1016/j.biopha.2023.115830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Thyrotropin-releasing hormone (TRH) is known to activate several cellular signaling pathway, but the activation of the TRH receptor (TRH-R) has not been reported to regulate gene transcription. The aim of this study was to identify phosphosignaling pathways and phosphoprotein complexes associated with gene transcription in GH1 pituitary cells treated with TRH or its analog, taltirelin (TAL), using label-free bottom-up mass spectrometry-based proteomics. Our detailed analysis provided insight into the mechanism through which TRH-R activation may regulate the transcription of genes related to the cell cycle and proliferation. It involves control of the signaling pathways for β-catenin/Tcf, Notch/RBPJ, p53/p21/Rbl2/E2F, Myc, and YY1/Rb1/E2F through phosphorylation and dephosphorylation of their key components. In many instances, the phosphorylation patterns of differentially phosphorylated phosphoproteins in TRH- or TAL-treated cells were identical or displayed a similar trend in phosphorylation. However, some phosphoproteins, especially components of the Wnt/β-catenin/Tcf and YY1/Rb1/E2F pathways, exhibited different phosphorylation patterns in TRH- and TAL-treated cells. This supports the notion that TRH and TAL may act, at least in part, as biased agonists. Additionally, the deficiency of β-arrestin2 resulted in a reduced number of alterations in phosphorylation, highlighting the critical role of β-arrestin2 in the signal transduction from TRH-R in the plasma membrane to transcription factors in the nucleus.
Collapse
Affiliation(s)
- Zdenka Drastichova
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia
| | - Radka Trubacova
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia; Institute of Physiology, Czech Academy of Sciences, 142 20 Prague, Czechia
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia.
| |
Collapse
|
4
|
Mo G, Hu B, Wei P, Luo Q, Zhang X. The Role of Chicken Prolactin, Growth Hormone and Their Receptors in the Immune System. Front Microbiol 2022; 13:900041. [PMID: 35910654 PMCID: PMC9331192 DOI: 10.3389/fmicb.2022.900041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Prolactin (PRL) and growth hormone (GH) exhibit important roles in the immune system maintenance. In poultry, PRL mainly plays its roles in nesting, hatching, and reproduction, while GH is primarily responding to body weight, fat formation and feed conversion. In this review, we attempt to provide a critical overview of the relationship between PRL and GH, PRLR and GHR, and the immune response of poultry. We also propose a hypothesis that PRL, GH and their receptors might be used by viruses as viral receptors. This may provide new insights into the pathogenesis of viral infection and host immune response.
Collapse
Affiliation(s)
- Guodong Mo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Bowen Hu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Qingbin Luo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Sato T, Goto-Inoue N, Kimishima M, Toyoharu J, Minei R, Ogura A, Nagoya H, Mori T. A novel ND1 mitochondrial DNA mutation is maternally inherited in growth hormone transgenesis in amago salmon (Oncorhynchus masou ishikawae). Sci Rep 2022; 12:6720. [PMID: 35469048 PMCID: PMC9038734 DOI: 10.1038/s41598-022-10521-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/22/2022] [Indexed: 11/12/2022] Open
Abstract
Growth hormone (GH) transgenesis can be used to manipulate the growth performance of fish and mammals. In this study, homozygous and hemizygous GH-transgenic amago salmon (Oncorhynchus masou ishikawae) derived from a single female exhibited hypoglycemia. Proteomic and signal network analyses using iTRAQ indicated a decreased NAD+/NADH ratio in transgenic fish, indicative of reduced mitochondrial ND1 function and ROS levels. Mitochondrial DNA sequencing revealed that approximately 28% of the deletion mutations in the GH homozygous- and hemizygous-female-derived mitochondrial DNA occurred in ND1. These fish also displayed decreased ROS levels. Our results indicate that GH transgenesis in amago salmon may induce specific deletion mutations that are maternally inherited over generations and alter energy production.
Collapse
Affiliation(s)
- Tomohiko Sato
- Department of Marine Science and Resources, Nihon University College of Bioresource Sciences, Kameino 1866, Fujisawa, 252-0880, Japan
| | - Naoko Goto-Inoue
- Department of Marine Science and Resources, Nihon University College of Bioresource Sciences, Kameino 1866, Fujisawa, 252-0880, Japan
| | - Masaya Kimishima
- Department of Marine Science and Resources, Nihon University College of Bioresource Sciences, Kameino 1866, Fujisawa, 252-0880, Japan
| | - Jike Toyoharu
- Research Institute of Medical Research Support Center Electron Microscope Laboratory, School of Medicine, Nihon University, Tokyo, 173-8610, Japan
| | - Ryuhei Minei
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, 526-0829, Japan
| | - Atsushi Ogura
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, 526-0829, Japan
| | - Hiroyuki Nagoya
- National Research Institute of Aquaculture, Fisheries Research and Education Agency, Minamiise, 516-0193, Japan
| | - Tsukasa Mori
- Department of Marine Science and Resources, Nihon University College of Bioresource Sciences, Kameino 1866, Fujisawa, 252-0880, Japan.
| |
Collapse
|
6
|
Sudo R, Kawakami Y, Nomura K, Tanaka H, Kazeto Y. Production of recombinant Japanese eel (Anguilla japonica) growth hormones and their effects on early-stage larvae. Gen Comp Endocrinol 2022; 317:113977. [PMID: 35065055 DOI: 10.1016/j.ygcen.2022.113977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/21/2021] [Accepted: 01/16/2022] [Indexed: 11/04/2022]
Abstract
Growth hormone (Gh) regulates somatic growth in fishes, particularly through the Gh - insulin-like growth factor-I (Igf-I) axis. In this study, recombinant Japanese eel Ghs with or without C-terminal peptides of human chorionic gonadotropin (CTP), which are known to prolong the half-life, were produced using the HEK 293 and CHO expression system. The effect of recombinant Gh administration to eel larvae on their somatic growth was investigated in short-term feeding experiments, and it was found that three types of recombinant Ghs with CTP (CTP-reGh, reGh-CTP and reGh-CTP × 2) were more effective in promoting somatic growth in eel larvae than recombinant Ghs without CTP. Among the three recombinant Ghs with CTP, reGh-CTP × 2 had the highest growth-promoting effects, however only when provided in the short term. After long-term administration of reGh-CTP × 2, there was no difference in growth between the Gh administrated group and the control group. The survival rate of eel larvae were not affected by recombinant Ghs. In addition, the mRNA expression of gh, Gh receptors, Igf-I and IGF-II were measured by quantitative real-time PCR, and significant reductions in the expression of gh, Gh receptors and Igf-I were observed. These findings provide useful tools to study the mechanisms of somatic growth and increase understanding of Gh regulation in anguillid eel larvae.
Collapse
Affiliation(s)
- Ryusuke Sudo
- Fisheries Technology Institute, Minamiizu Field Station, Japan Fisheries Research and Education Agency, Minamiizu, Kamo, Shizuoka 415-0156, Japan
| | - Yutaka Kawakami
- Shin Nippon Biomedical Laboratories Ltd, Kagoshima-shi, Kagoshima 891-1394, Japan; Fisheries Technology Institute, Nansei Field Station, Japan Fisheries Research and Education Agency, Minamiise, Mie 516-0193, Japan
| | - Kazuharu Nomura
- Fisheries Technology Institute, Nansei Field Station, Japan Fisheries Research and Education Agency, Minamiise, Mie 516-0193, Japan
| | - Hideki Tanaka
- Fisheries Technology Institute, Nansei Field Station, Japan Fisheries Research and Education Agency, Minamiise, Mie 516-0193, Japan; Aquaculture Research Institute, Kindai University, Uragami, Wakayama 649-5145, Japan
| | - Yukinori Kazeto
- Fisheries Technology Institute, Minamiizu Field Station, Japan Fisheries Research and Education Agency, Minamiizu, Kamo, Shizuoka 415-0156, Japan.
| |
Collapse
|
7
|
Delgadin TH, Castañeda-Cortés DC, Sacks C, Breccia A, Fernandino JI, Vissio PG. Morphological colour adaptation during development in fish: involvement of growth hormone receptor 1. ACTA ACUST UNITED AC 2020; 223:223/24/jeb230375. [PMID: 33376094 DOI: 10.1242/jeb.230375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/22/2020] [Indexed: 11/20/2022]
Abstract
Morphological background adaptation is both an endocrine and a nervous response, involving changes in the amount of chromatophores and pigment concentration. However, whether this adaptation takes place at early developmental stages is largely unknown. Somatolactin (Sl) is a pituitary hormone present in fish, which has been associated to skin pigmentation. Moreover, growth hormone receptor type 1 (Ghr1) has been suggested to be the Sl receptor and was associated with background adaptation in adults. In this context, the aim of this work was to evaluate the ontogeny of morphological adaptation to background and the participation of ghr1 in this process. We found in larval stages of the cichlid Cichlasoma dimerus that the number of head melanophores and pituitary cells immunoreactive to Sl was increased in individuals reared with black backgrounds compared with that in fish grown in white tanks. In larval stages of the medaka Oryzias latipes, a similar response was observed, which was altered by ghr1 biallelic mutations using CRISPR/Cas9. Interestingly, melanophore and leucophore numbers were highly associated. Furthermore, we found that somatic growth was reduced in ghr1 biallelic mutant O. latipes, establishing the dual function of this growth hormone receptor. Taken together, these results show that morphological background adaptation is present at early stages during development and that is dependent upon ghr1 during this period.
Collapse
Affiliation(s)
- Tomás Horacio Delgadin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires C1428EGA, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Buenos Aires C1428EGA, Argentina
| | | | - Clara Sacks
- CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Buenos Aires C1428EGA, Argentina
| | - Andrés Breccia
- CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Buenos Aires C1428EGA, Argentina
| | - Juan Ignacio Fernandino
- Laboratorio de Biología del Desarrollo, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús B7130IWA, Argentina
| | - Paula Gabriela Vissio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires C1428EGA, Argentina .,CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Buenos Aires C1428EGA, Argentina
| |
Collapse
|
8
|
Strous GJ, Almeida ADS, Putters J, Schantl J, Sedek M, Slotman JA, Nespital T, Hassink GC, Mol JA. Growth Hormone Receptor Regulation in Cancer and Chronic Diseases. Front Endocrinol (Lausanne) 2020; 11:597573. [PMID: 33312162 PMCID: PMC7708378 DOI: 10.3389/fendo.2020.597573] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
The GHR signaling pathway plays important roles in growth, metabolism, cell cycle control, immunity, homeostatic processes, and chemoresistance via both the JAK/STAT and the SRC pathways. Dysregulation of GHR signaling is associated with various diseases and chronic conditions such as acromegaly, cancer, aging, metabolic disease, fibroses, inflammation and autoimmunity. Numerous studies entailing the GHR signaling pathway have been conducted for various cancers. Diverse factors mediate the up- or down-regulation of GHR signaling through post-translational modifications. Of the numerous modifications, ubiquitination and deubiquitination are prominent events. Ubiquitination by E3 ligase attaches ubiquitins to target proteins and induces proteasomal degradation or starts the sequence of events that leads to endocytosis and lysosomal degradation. In this review, we discuss the role of first line effectors that act directly on the GHR at the cell surface including ADAM17, JAK2, SRC family member Lyn, Ubc13/CHIP, proteasome, βTrCP, CK2, STAT5b, and SOCS2. Activity of all, except JAK2, Lyn and STAT5b, counteract GHR signaling. Loss of their function increases the GH-induced signaling in favor of aging and certain chronic diseases, exemplified by increased lung cancer risk in case of a mutation in the SOCS2-GHR interaction site. Insight in their roles in GHR signaling can be applied for cancer and other therapeutic strategies.
Collapse
Affiliation(s)
- Ger J. Strous
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
- BIMINI Biotech B.V., Leiden, Netherlands
| | - Ana Da Silva Almeida
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Joyce Putters
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Julia Schantl
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Magdalena Sedek
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Johan A. Slotman
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Tobias Nespital
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Gerco C. Hassink
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Jan A. Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
9
|
Claudiano GS, Andrade SCS, Souza EC, Yunis-Aguinaga J, Coutinho LL, Moreira DKT, Gonçalves FC, Mundim AV, Marzocchi-Machado CM, de Moraes FR, Moraes JRE. Role of neuroendocrine modulation and biochemistry in the sepsis in Piaractus mesopotamicus. Gen Comp Endocrinol 2020; 288:113338. [PMID: 31812532 DOI: 10.1016/j.ygcen.2019.113338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/17/2019] [Indexed: 12/26/2022]
Abstract
Sepsis is a systemic process with multifactorial pathophysiology that affects most animal species. It is responsible for high rates of morbidity and mortality. This work aimed to study the biochemical and neuroendocrine changes of the sepsis process in Piaractus mesopotamicus after Aeromonas hydrophila inoculation analyzing changes in blood leukocyte and differences in neuroendocrine-biochemical modulation using RNA-seq. Fish showed hypercortisolemia, inhibition of glucose absorption, followed by hypocortisolemia and then hyperglycemia. Thyroid hormones (T3 and T4) showed immediate decrease in serum and T4 increased 6 h post-inoculation (HPI). Sepsis-induced hormonal alterations triggered changes in the metabolic pathways increasing protein and lipid catabolism, use of transient anaerobic glycolysis and liver injury. A reference transcriptome was constructed based on blood leukocytes from P. mesopotamicus. The assembly resulted in total 266,272 contigs with a N50 of 2786 bp. There was a reorganization of plasma membrane of leukocytes at the beginning of the septic process with increased expression of neuroendocrine receptors and with continuous flow of neurotransmitters, hormones and solutes with compensatory regulation at 6 HPI. Three and nine HPI seemed to be critical, the expression of a number of transcription factors was increased, including the modulatory DEGs related to glucocorticoid and thyroid hormones induced and suppressed (FDR < 0.05). Neuroendocrine modulation can regulate leukocytes and biochemical parameters of peripheral blood, being important sources for the study of the pathophysiology of sepsis. These finding highlights the importance of further studies focusing on biochemical-neuroendocrine changes in blood leukocytes and systemic sepsis.
Collapse
Affiliation(s)
- Gustavo S Claudiano
- Department of Veterinarian Pathology, Faculty of Agrarian and Veterinarian Sciences, São Paulo State University, Unesp, Jaboticabal, Brazil; Institute of Biodiversity and Forests, Federal University of Western Pará, UFOPA, Santarém, PA, Brazil.
| | - Sónia C S Andrade
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, São Paulo University, USP, Brazil
| | - Elaine C Souza
- Educational Foundation of Penápolis, FUNEPE, Penápolis, São Paulo, Brazil
| | - Jefferson Yunis-Aguinaga
- Aquaculture Center of UNESP, Jaboticabal, São Paulo, Brazil; Instituto del Mar del Perú, IMARPE, Lima, Perú
| | - Luiz L Coutinho
- Department of Animal Science, São Paulo University, USP, ESALQ, Brazil
| | - Débora K T Moreira
- Institute of Biodiversity and Forests, Federal University of Western Pará, UFOPA, Santarém, PA, Brazil
| | - Felipe C Gonçalves
- Clinical Analysis Laboratory, Veterinary Hospital, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Antonio V Mundim
- Clinical Analysis Laboratory, Veterinary Hospital, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Cleni M Marzocchi-Machado
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, USP, Brazil
| | - Flávio R de Moraes
- Department of Veterinarian Pathology, Faculty of Agrarian and Veterinarian Sciences, São Paulo State University, Unesp, Jaboticabal, Brazil; Aquaculture Center of UNESP, Jaboticabal, São Paulo, Brazil
| | - Julieta R E Moraes
- Department of Veterinarian Pathology, Faculty of Agrarian and Veterinarian Sciences, São Paulo State University, Unesp, Jaboticabal, Brazil; Aquaculture Center of UNESP, Jaboticabal, São Paulo, Brazil.
| |
Collapse
|
10
|
Hou ZS, Wen HS, Li JF, He F, Li Y, Qi X. Environmental hypoxia causes growth retardation, osteoclast differentiation and calcium dyshomeostasis in juvenile rainbow trout (Oncorhynchus mykiss). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135272. [PMID: 31841926 DOI: 10.1016/j.scitotenv.2019.135272] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/08/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
Hypoxia generally refers to a dissolved oxygen (DO) level that is less than 2-3 mg/L. With ongoing global warming and environment pollution, environmental or geological studies showed hypoxia frequently occurs in global aquatic systems including ocean, river, estuaries and coasts. A preliminary study was performed to evaluate hypoxia tolerant of rainbow trout (Oncorhynchus mykiss) with parameters of mortality, behavior, endocrine and metabolite, identifying three DO levels including normoxia (Ctrl, 7.0 mg/L), non-lethal hypoxia (NH, 4.5 mg/L) and lethal hypoxia (LH, 3.0 mg/L). Furthermore, trout was treated by Ctrl, NH and LH for six hours to mimic the acute hypoxia in wild and/or farming conditions. A significantly higher mortality was observed in LH group. Trout of NH and LH showed stressful responses with unnormal swimming, increased serum cortisol and up-regulated gill hif1α transcription. Despite trout of NH and LH increased the oxygen delivery abilities by increasing the serum hemoglobin levels, the anerobic metabolism were inevitably observed with increased lactate. This study also showed a prolonged influence of NH and LH on growth after 30-days' recovery. Based on RNA-Seq data, different expression genes (DEGs) associated with stress, apoptosis, antioxidant, chaperone, growth, calcium and vitamin D metabolism were identified. Enrichment analysis showed DEGs were clustered in osteoclast differentiation, apoptosis and intracellular signaling transduction pathways. Results further showed NH and LH significantly decreased bone calcium content and disrupted the growth hormone-insulin-like growth factor (GH-IGF) axis. Our study might contribute to a better understanding of the effects of hypoxia on rainbow trout.
Collapse
Affiliation(s)
- Zhi-Shuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China.
| | - Ji-Fang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| | - Feng He
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| |
Collapse
|
11
|
Pech-Pool S, Berumen LC, Martínez-Moreno CG, García-Alcocer G, Carranza M, Luna M, Arámburo C. Thyrotropin-Releasing Hormone (TRH) and Somatostatin (SST), but not Growth Hormone-Releasing Hormone (GHRH) nor Ghrelin (GHRL), Regulate Expression and Release of Immune Growth Hormone (GH) from Chicken Bursal B-Lymphocyte Cultures. Int J Mol Sci 2020; 21:ijms21041436. [PMID: 32093298 PMCID: PMC7073104 DOI: 10.3390/ijms21041436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/31/2022] Open
Abstract
It is known that growth hormone (GH) is expressed in immune cells, where it exerts immunomodulatory effects. However, the mechanisms of expression and release of GH in the immune system remain unclear. We analyzed the effect of growth hormone-releasing hormone (GHRH), thyrotropin-releasing hormone (TRH), ghrelin (GHRL), and somatostatin (SST) upon GH mRNA expression, intracellular and released GH, Ser133-phosphorylation of CREB (pCREBS133), intracellular Ca2+ levels, as well as B-cell activating factor (BAFF) mRNA expression in bursal B-lymphocytes (BBLs) cell cultures since several GH secretagogues, as well as their corresponding receptors (-R), are expressed in B-lymphocytes of several species. The expression of TRH/TRH-R, ghrelin/GHS-R1a, and SST/SST-Rs (Subtypes 1 to 5) was observed in BBLs by RT-PCR and immunocytochemistry (ICC), whereas GHRH/GHRH-R were absent in these cells. We found that TRH treatment significantly increased local GH mRNA expression and CREB phosphorylation. Conversely, SST decreased GH mRNA expression. Additionally, when added together, SST prevented TRH-induced GH mRNA expression, but no changes were observed in pCREBS133 levels. Furthermore, TRH stimulated GH release to the culture media, while SST increased the intracellular content of this hormone. Interestingly, SST inhibited TRH-induced GH release in a dose-dependent manner. The coaddition of TRH and SST decreased the intracellular content of GH. After 10 min. of incubation with either TRH or SST, the intracellular calcium levels significantly decreased, but they were increased at 60 min. However, the combined treatment with both peptides maintained the Ca2+ levels reduced up to 60-min. of incubation. On the other hand, BAFF cytokine mRNA expression was significantly increased by TRH administration. Altogether, our results suggest that TRH and SST are implicated in the regulation of GH expression and release in BBL cultures, which also involve changes in pCREBS133 and intracellular Ca2+ concentration. It is likely that TRH, SST, and GH exert autocrine/paracrine immunomodulatory actions and participate in the maturation of chicken BBLs.
Collapse
Affiliation(s)
- Santiago Pech-Pool
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (S.P.-P.); (M.C.)
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico; (L.C.B.); (G.G.-A.)
| | - Laura C. Berumen
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico; (L.C.B.); (G.G.-A.)
| | - Carlos G. Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (S.P.-P.); (M.C.)
| | - Guadalupe García-Alcocer
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico; (L.C.B.); (G.G.-A.)
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (S.P.-P.); (M.C.)
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (S.P.-P.); (M.C.)
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico
- Correspondence: (M.L.); (C.A.); Tel.: +52-(55)-5623-4066 (M.L.); +52-(55)-5623-4065 (C.A.); Fax: +52-(55)-5623-4005 (M.L. & C.A.)
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (S.P.-P.); (M.C.)
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico
- Correspondence: (M.L.); (C.A.); Tel.: +52-(55)-5623-4066 (M.L.); +52-(55)-5623-4065 (C.A.); Fax: +52-(55)-5623-4005 (M.L. & C.A.)
| |
Collapse
|
12
|
Choi JY, Na JI. Intractable Chronic Granulomatous Perioral Dermatitis in Patients Receiving Growth Hormone Therapy: A New Association between CGPD and GH. Indian J Dermatol 2020; 65:139-140. [PMID: 32180602 PMCID: PMC7059473 DOI: 10.4103/ijd.ijd_191_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Childhood granulomatous periorificial dermatitis (CGPD) is a self-limiting skin condition characterized by papular eruptions around the mouth, nose and eyes of preadolescent children. We report two cases of intractable CGPD in which patients receiving growth hormone (GH) therapy showed persistent symptoms despite multiple treatment modalities. This association may suggest the role of GH in the pathogenesis of CGPD.
Collapse
Affiliation(s)
- Ji Young Choi
- Department of Dermatology, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| | - Jung Im Na
- Department of Dermatology, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| |
Collapse
|
13
|
Fantini C, Sgrò P, Pittaluga M, de Perini A, Dimauro I, Sartorio A, Caporossi D, Di Luigi L. Short-term, supra-physiological rhGH administration induces transient DNA damage in peripheral lymphocytes of healthy women. J Endocrinol Invest 2017; 40:645-652. [PMID: 28211028 DOI: 10.1007/s40618-016-0603-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE While a good safety for recombinant human growth hormone (rhGH) therapy at replacement doses is recognized, a possible link between high concentration of the GH-IGF-I axis hormones and side negative effect has been reported. The aim of this pilot study was to assess whether a short-term exposure to supra-physiological doses of rhGH may affect DNA integrity in human lymphocytes (PBL). METHODS Eighteen healthy Caucasian female (24.2 ± 3.5 years) were randomly included in a Control (n = 9) and rhGH administration group (n = 9, 3-week treatment). DNA damage (comet assay), chromosomal breaks, and mitotic index in phytohemagglutinin-stimulated PBL were evaluated before (PRE), immediately (POST), and 30 days (POST30) after the last rhGH administration (0.029 mg kg- 1 BW; 6 days/week), together with serum IGF-1 and IGFBP-3 concentrations. RESULTS rhGH administration increased IGF-I, without evidence of persisting IGF-I and IGFBP-3 changes 30 days after withdrawal. Total DNA breakage (% DNA in tails) was not significantly different in subjects treated with rhGH in comparison with controls, although the rhGH-treated subjects showed an higher percentage of heavily damaged nuclei immediately after the treatment (POST30 vs. PRE: p = 0.003), with a lower mitogenic potential of lymphocytes, detectable up to the POST30 (PRE vs. POST: p = 0.02; PRE vs. POST30: p = 0.007). CONCLUSIONS This pilot study showed that 3 weeks of short-term supra-physiological rhGH administration in healthy women induce a transient DNA damage and mitogenic impairment in PBL. The analysis of DNA damage should be explored as useful tool in monitoring the mid to long-term effects of high rhGH treatment or abuse.
Collapse
Affiliation(s)
- C Fantini
- Unit of Biology, Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", Piazza Lauro de Bosis, 15, 00135, Rome, Italy
| | - P Sgrò
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", 00135, Rome, Italy
| | - M Pittaluga
- Unit of Biology, Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", Piazza Lauro de Bosis, 15, 00135, Rome, Italy
| | - A de Perini
- Unit of Biology, Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", Piazza Lauro de Bosis, 15, 00135, Rome, Italy
| | - I Dimauro
- Unit of Biology, Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", Piazza Lauro de Bosis, 15, 00135, Rome, Italy
| | - A Sartorio
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, 20145, Milan, Italy
| | - D Caporossi
- Unit of Biology, Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", Piazza Lauro de Bosis, 15, 00135, Rome, Italy.
| | - L Di Luigi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", 00135, Rome, Italy
| |
Collapse
|
14
|
Kawa MP, Stecewicz I, Piecyk K, Paczkowska E, Rogińska D, Sobuś A, Łuczkowska K, Pius-Sadowska E, Gawrych E, Petriczko E, Walczak M, Machaliński B. The Impact of Growth Hormone Therapy on the Apoptosis Assessment in CD34+ Hematopoietic Cells from Children with Growth Hormone Deficiency. Int J Mol Sci 2017; 18:ijms18010111. [PMID: 28067847 PMCID: PMC5297745 DOI: 10.3390/ijms18010111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/10/2016] [Accepted: 12/21/2016] [Indexed: 01/07/2023] Open
Abstract
Growth hormone (GH) modulates hematopoietic cell homeostasis and is associated with apoptosis control, but with limited mechanistic insights. Aim of the study was to determine whether GH therapeutic supplementation (GH-TS) could affect apoptosis of CD34+ cells enriched in hematopoietic progenitor cells of GH deficient (GHD) children. CD34+ cells from peripheral blood of 40 GHD children were collected before and in 3rd and 6th month of GH-TS and compared to 60 controls adjusted for bone age, sex, and pubertal development. Next, apoptosis assessment via different molecular techniques was performed. Finally, to comprehensively characterize apoptosis process, global gene expression profile was determined using genome-wide RNA microarray technology. Results showed that GH-TS significantly reduced spontaneous apoptosis in CD34+ cells (p < 0.01) and results obtained using different methods to detect early and late apoptosis in analyzed cells population were consistent. GH-TS was also associated with significant downregulation of several members of TNF-alpha superfamily and other genes associated with apoptosis and stress response. Moreover, the significant overexpression of cyto-protective and cell cycle-associated genes was detected. These findings suggest that recombinant human GH has a direct anti-apoptotic activity in hematopoietic CD34+ cells derived from GHD subjects in course of GH-TS.
Collapse
Affiliation(s)
- Miłosz Piotr Kawa
- Department of General Pathology, Pomeranian Medical University in Szczecin, 72 Powstancow Wlkp. Street, 70-111 Szczecin, Poland.
| | - Iwona Stecewicz
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej Street, 71-252 Szczecin, Poland.
| | - Katarzyna Piecyk
- Department of General Pathology, Pomeranian Medical University in Szczecin, 72 Powstancow Wlkp. Street, 70-111 Szczecin, Poland.
| | - Edyta Paczkowska
- Department of General Pathology, Pomeranian Medical University in Szczecin, 72 Powstancow Wlkp. Street, 70-111 Szczecin, Poland.
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University in Szczecin, 72 Powstancow Wlkp. Street, 70-111 Szczecin, Poland.
| | - Anna Sobuś
- Department of General Pathology, Pomeranian Medical University in Szczecin, 72 Powstancow Wlkp. Street, 70-111 Szczecin, Poland.
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University in Szczecin, 72 Powstancow Wlkp. Street, 70-111 Szczecin, Poland.
| | - Ewa Pius-Sadowska
- Department of General Pathology, Pomeranian Medical University in Szczecin, 72 Powstancow Wlkp. Street, 70-111 Szczecin, Poland.
| | - Elżbieta Gawrych
- Department of Pediatric and Oncological Surgery, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej Street, 71-252 Szczecin, Poland.
| | - Elżbieta Petriczko
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej Street, 71-252 Szczecin, Poland.
| | - Mieczysław Walczak
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej Street, 71-252 Szczecin, Poland.
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University in Szczecin, 72 Powstancow Wlkp. Street, 70-111 Szczecin, Poland.
| |
Collapse
|
15
|
Chien CH, Lee MJ, Liou HC, Liou HH, Fu WM. Growth hormone is increased in the lungs and enhances experimental lung metastasis of melanoma in DJ-1 KO mice. BMC Cancer 2016; 16:871. [PMID: 27825319 PMCID: PMC5101681 DOI: 10.1186/s12885-016-2898-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/30/2016] [Indexed: 12/21/2022] Open
Abstract
Background Growth hormone (GH) mainly serves an endocrine function to regulate somatic growth, but also serves an autocrine function in lung growth and pulmonary function. Several recent studies have demonstrated the role of autocrine GH in tumor progression in some organs. However, it is not clear whether excessive secretion of GH in the lungs is related to pulmonary nodule formation. Methods Firstly, the lung tissues dissected from mice were used for Western blotting and PCR measurement. Secondly, the cultured cells were used for examining effects of GH on B16F10 murine melanoma cells. Thirdly, male C57BL/6 mice were intravenously injected with B16F10 cells and then subcutaneously injected with recombinant GH twice per week for three weeks. Finally, stably transfected pool of B16F10 cells with knockdown of growth hormone receptor (GHR) was used to be injected into mice. Results We found that expression of GH was elevated in the lungs of DJ-1 knockout (KO) mice. We also examined the effects of GH on the growth of cultured melanoma cells. The results showed that GH increased proliferation, colony formation, and invasive capacity of B16F10 cells. In addition, GH also increased the expression of matrix metalloproteinases (MMPs) in B16F10 cells. Administration of GH in vivo enhanced lung nodule formation in C57/B6 mice. Increased lung nodule formation in DJ-1 KO mice following intravenous injection of melanoma cells was inhibited by GHR knockdown in B16F10 cells. Conclusions These results indicate that up-regulation of GH in the lungs of DJ-1 KO mice may enhance the malignancy of B16F10 cells and nodule formation in pulmonary metastasis of melanoma. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2898-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chia-Hung Chien
- Institute of Clinical Medicine, National Cheng Kung University, No. 138, Shengli Road, Tainan, 704, Taiwan.,Pharmacological Institute, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei, 10051, Taiwan.,National Institute of Cancer Research, National Health Research Institutes, No. 367, Shengli Road, Tainan, 704, Taiwan
| | - Ming-Jen Lee
- Department of Neurology, National Taiwan University Hospital, No. 7, Chung-shan South Road, Taipei, 10016, Taiwan
| | - Houng-Chi Liou
- Pharmacological Institute, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Horng-Huei Liou
- Department of Neurology, National Taiwan University Hospital, No. 7, Chung-shan South Road, Taipei, 10016, Taiwan.,Pharmacological Institute, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Wen-Mei Fu
- Institute of Clinical Medicine, National Cheng Kung University, No. 138, Shengli Road, Tainan, 704, Taiwan. .,Pharmacological Institute, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei, 10051, Taiwan. .,Department of Pharmacology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei, 10051, Taiwan.
| |
Collapse
|
16
|
Growth Hormone Protects the Intestine Preserving Radiotherapy Efficacy on Tumors: A Short-Term Study. PLoS One 2015; 10:e0144537. [PMID: 26670463 PMCID: PMC4682900 DOI: 10.1371/journal.pone.0144537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
The efficacy of radiotherapy on tumors is hampered by its devastating adverse effects on healthy tissue, particularly that of the gastrointestinal tract. These effects cause acute symptoms that are so disruptive to patients that they can lead to interruption of the radiotherapy program. These adverse effects could limit the intensity of radiation received by the patient, resulting in a sublethal dose to the tumor, thus increasing the risk of tumor resistance. The lack of an effective treatment to protect the bowel during radiation therapy to allow higher radiation doses that are lethal to the tumor has become a barrier to implementing effective therapy. In this study, we present a comparative analysis of both intestinal and tumor tissue in regard to the efficacy and the preventive impact of a short-term growth hormone (GH) treatment in tumor-bearing rats as a protective agent during radiotherapy. Our data show that the exogenous administration of GH improved intestinal recovery after radiation treatment while preserving the therapeutic effect against the tumor. GH significantly increased proliferation in the irradiated intestine but not in the irradiated tumors, as assessed by Positron Emission Tomography and the proliferative markers Ki67, cyclin D3, and Proliferating Cell Nuclear Antigen. This proliferative effect was consistent with a significant increase in irradiated intestinal villi and crypt length. Furthermore, GH significantly decreased caspase-3 activity in the intestine, whereas GH did not produce this effect in the irradiated tumors. In conclusion, short-term GH treatment protects the bowel, inducing proliferation while reducing apoptosis in healthy intestinal tissue and preserving radiotherapy efficacy on tumors.
Collapse
|
17
|
Luna-Acosta JL, Alba-Betancourt C, Martínez-Moreno CG, Ramírez C, Carranza M, Luna M, Arámburo C. Direct antiapoptotic effects of growth hormone are mediated by PI3K/Akt pathway in the chicken bursa of Fabricius. Gen Comp Endocrinol 2015; 224:148-59. [PMID: 26231908 DOI: 10.1016/j.ygcen.2015.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 07/26/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
Growth hormone (GH) is expressed in several extra-pituitary tissues, including the primary and secondary lymphoid organs of the immune system. In birds, GH mRNA and protein expression show a specific developmental distribution pattern in the bursa of Fabricius (BF), particularly in epithelial and B cells. Changes in the bursal concentration and distribution of locally produced GH during ontogeny suggest it is involved in B cell differentiation and maturation, as well as in a functional survival role in this organ, which may be mediated by paracrine/autocrine mechanisms. Here, we analyzed the anti-apoptotic effect of GH in BF and the intracellular signaling pathways involved in this activity. Also, we studied if this effect was exerted directly by GH or mediated indirectly by IGF-I. Bursal cell cultures showed an important loss of their viability after 4h of incubation and a significant increase in apoptosis. However, treatment with 10nM GH or 40 nM IGF-I significantly increased B cell viability (16.7 ± 0.67% and 13.4 ± 1.12%, respectively) when compared with the untreated controls. In addition, the presence of apoptotic bodies (TUNEL) dramatically decreased (5.5-fold) after GH and IGF-I treatments, whereas co-incubation with anti-GH or anti-IGF-I, respectively, blocked their anti-apoptotic effect. Likewise, both GH and IGF-I significantly inhibited caspase-3 activity (by 40 ± 2.0%) in these cultures. However, the use of anti-IGF-I could not reverse the GH anti-apoptotic effects, thus indicating that these were exerted directly. The addition of 100 nM wortmannin (a PI3K/Akt inhibitor) blocked the GH protective effects. Also, GH stimulated (3-fold) the phosphorylation of Akt in bursal cells, and adding wortmannin or an anti-GH antibody inhibited this effect. Furthermore, GH was capable to stimulate (7-fold) the expression of Bcl-2. Taken together, these results indicate that the direct anti-apoptotic activity of GH observed in the chicken bursal B cell cultures might be mediated through the PI3K/Akt pathway.
Collapse
Affiliation(s)
- José Luis Luna-Acosta
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, Mexico
| | - Clara Alba-Betancourt
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, Mexico; Departamento de Farmacia, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, Mexico
| | - Candy Ramírez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, Mexico
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, Mexico
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, Mexico
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, Mexico.
| |
Collapse
|
18
|
Harvey S, Martínez-Moreno CG, Luna M, Arámburo C. Autocrine/paracrine roles of extrapituitary growth hormone and prolactin in health and disease: An overview. Gen Comp Endocrinol 2015; 220:103-11. [PMID: 25448258 DOI: 10.1016/j.ygcen.2014.11.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/03/2014] [Indexed: 02/07/2023]
Abstract
Growth hormone (GH) and prolactin (PRL) are both endocrines that are synthesized and released from the pituitary gland into systemic circulation. Both are therefore hormones and both have numerous physiological roles mediated through a myriad of target sites and both have pathophysiological consequences when present in excess or deficiency. GH or PRL gene expression is not, however, confined to the anterior pituitary gland and it occurs widely in many of their central and peripheral sites of action. This may reflect "leaky gene" phenomena and the fact that all cells have the potential to express every gene that is present in their genome. However, the presence of GH or PRL receptors in these extrapituitary sites of GH and PRL production suggests that they are autocrine or paracrine sites of GH and PRL action. These local actions often occur prior to the ontogeny of pituitary somatotrophs and lactotrophs and they may complement or differ from the roles of their pituitary counterparts. Many of these local actions are also of physiological significance, since they are impaired by a blockade of local GH or PRL production or by an antagonism of local GH or PRL action. These local actions may also be of pathophysiological significance, since autocrine or paracrine actions of GH and PRL are thought to be causally involved in a number of disease states, particularly in cancer. Autocrine GH for instance, is thought to be more oncogenic than pituitary GH and selective targeting of the autocrine moiety may provide a therapeutic approach to prevent tumor progression. In summary, GH and PRL are not just endocrine hormones, as they have autocrine and/or paracrine roles in health and disease.
Collapse
Affiliation(s)
- Steve Harvey
- Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada.
| | | | - Maricela Luna
- Departamento de Neurobiología, Celular y Molecular Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Carlos Arámburo
- Departamento de Neurobiología, Celular y Molecular Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| |
Collapse
|
19
|
Borjigin L, Shimazu T, Katayama Y, Li M, Satoh T, Watanabe K, Kitazawa H, Roh SG, Aso H, Katoh K, Uchida T, Suda Y, Sakuma A, Nakajo M, Suzuki K. Immunogenic properties of Landrace pigs selected for resistance to mycoplasma pneumonia of swine. Anim Sci J 2015; 87:321-9. [PMID: 26260893 PMCID: PMC7159536 DOI: 10.1111/asj.12440] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/17/2015] [Accepted: 03/09/2015] [Indexed: 12/16/2022]
Abstract
Mycoplasma pneumonia of swine (MPS) lung lesions and immunogenic properties were compared between a Landrace line that was genetically selected for reduced incidence of pulmonary MPS lesions, and a non‐selected Landrace line. The MPS‐selected Landrace line showed significantly lower degrees of pulmonary MPS lesions compared with the non‐selected Landrace line. When changes in immunity before and after vaccination were compared, the percentage of B cells in the peripheral blood of the MPS‐selected Landrace line was significantly lower than that of the non‐selected line. Furthermore, the concentration of growth hormone and the mitogen activity of peripheral blood mononuclear cells in the MPS‐selected Landrace line showed significantly (P < 0.05) lower increases after vaccination than the non‐selected line. Conversely, the concentration of peripheral blood interferon (IFN)‐γ and salivary immunoglobulin A (IgA) after Mycoplasma hyopneumoniae vaccination was significantly higher in the MPS‐selected Landrace line than in the non‐selected line. Gene expression of toll‐like receptor (TLR)2 and TLR4 was significantly higher in the MPS‐selected Landrace line in immune tissues, with the exception of the hilar lymph nodes. The present results suggest that peripheral blood IFN‐γ, salivary IgA TLR2, and TLR4 are important immunological factors influencing the development of MPS lesions.
Collapse
Affiliation(s)
- Liushiqi Borjigin
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tomoyuki Shimazu
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yuki Katayama
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Meihua Li
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Takumi Satoh
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kouichi Watanabe
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Haruki Kitazawa
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Sang-gun Roh
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hisashi Aso
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kazuo Katoh
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Takafumi Uchida
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai, Japan
| | - Akiko Sakuma
- Miyagi Prefecture Animal Industry Experiment Station, Miyagi, Japan
| | - Mituru Nakajo
- Miyagi Prefecture Animal Industry Experiment Station, Miyagi, Japan
| | - Keiichi Suzuki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
20
|
Butler MG, Hossain W, Sulsona C, Driscoll DJ, Manzardo AM. Increased plasma chemokine levels in children with Prader-Willi syndrome. Am J Med Genet A 2015; 167A:563-71. [PMID: 25691409 PMCID: PMC6686673 DOI: 10.1002/ajmg.a.36908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/14/2014] [Indexed: 12/12/2022]
Abstract
Prader-Willi syndrome (PWS) is caused by loss of paternally expressed genes from the 15q11-q13 region and reportedly rearranged as a cause of autism. Additionally, increased inflammatory markers and features of autism are reported in PWS. Cytokines encoded by genes involved with inflammation, cell proliferation, migration, and adhesion play a role in neurodevelopment and could be disturbed in PWS as abnormal plasma cytokine levels are reported in autism. We analyzed 41 plasma cytokines in a cohort of well-characterized children with PWS between 5 and 11 years of age and unaffected unrelated siblings using multiplex sandwich immunoassays with the Luminex magnetic-bead based platform. Data were analyzed using ANOVA testing for effects of diagnosis, gender, body mass index (BMI) and age on the 24 cytokines meeting laboratory criteria for inclusion. No significant effects were observed for age, gender or BMI. The log-transformed levels of the 24 analyzable cytokines were examined simultaneously using MANOVA adjusting for age and gender and a main effect of diagnosis was found (P-value <0.03). Four of 24 plasma cytokine levels (MCP1, MDC, Eotaxin, RANTES) were significantly higher in children with PWS compared with controls and classified as bioinflammatory chemokines supporting a disturbed immune response unrelated to obesity status. BMI was not statistically different in the two subject groups (PWS or unaffected unrelated siblings) and chemokine levels were not correlated with percentage of total body fat. Additional studies are required to identify whether possible early immunological disturbances and chemokine inflammatory processes found in PWS may contribute to neurodevelopment and behavioral features.
Collapse
Affiliation(s)
- Merlin G. Butler
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, Kansas
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| | - Waheeda Hossain
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, Kansas
| | - Carlos Sulsona
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida
| | - Daniel J. Driscoll
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida
| | - Ann M. Manzardo
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
21
|
The protective effect of growth hormone on Cu/Zn superoxide dismutase-mutant motor neurons. BMC Neurosci 2015; 16:1. [PMID: 25655275 PMCID: PMC4326297 DOI: 10.1186/s12868-015-0140-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/21/2015] [Indexed: 12/12/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is characterized by selective degeneration of motor neurons. The gene encoding Cu/Zn superoxide dismutase (SOD1) is responsible for 20% of familial ALS cases. Growth hormone (GH) concentrations are low in the cerebrospinal fluid of patients with ALS; however, its association with motoneuronal death is not known. We tested the neuroprotective effects of GH on human SOD-1-expressing cultured motor neurons and SOD1G93A transgenic mice. Results In cultured motor neurons, cytotoxicity was induced by A23187, GNSO, or homocysteine, and the effects of GH were determined by MTT, bax, PARP cleavage pattern, Hoechst nuclear staining, MAPK, and PI3K assay. In SOD-1 transgenic mice, rotarod motor performance was evaluated. Survival analysis of motoneuronal loss was done using cresyl violet, GFAP, and Bcl-2 staining. GH prevents motorneuronal death caused by GSNO and homocysteine, but not that by A23187. It activates MAPK and PI3K. GH-treated mice showed prolonged survival with improved motor performance and weight loss. GH decreased cresyl violet positive motoneuronal loss with strong Bcl-2 and less GFAP immunoreactivity. Conclusions Our results demonstrate that GH has a protective effect on mutant SOD-1-expressing motor neurons.
Collapse
|
22
|
Antagonist of GH-releasing hormone receptors alleviates experimental ocular inflammation. Proc Natl Acad Sci U S A 2014; 111:18303-8. [PMID: 25489106 DOI: 10.1073/pnas.1421815112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Disruptions in immunity and occurrence of inflammation cause many eye diseases. The growth hormone-releasing hormone-growth hormone-insulin-like growth factor-1 (GHRH-GH-IGF1) axis exerts regulatory effects on the immune system. Its involvement in ocular inflammation remains to be investigated. Here we studied this signaling in endotoxin-induced uveitis (EIU) generated by LPS. The increase in GHRH receptor (GHRH-R) protein levels was parallel to the increase in mRNA levels of pituitary-specific transcription factor-1, GHRH-R splice variant 1, GHRH, and GH following LPS insult. Elevation of GHRH-R and GH receptor was localized on the epithelium of the iris and ciliary body, and GHRH-R was confined to the infiltrating macrophages and leukocytes in aqueous humor but not to those in stroma. Treatment with GHRH-R antagonist decreased LPS-stimulated surges of GH and IGF1 in aqueous humor and alleviated inflammation by reducing the infiltration of macrophages and leukocytes and the production of TNF-α, IL-1β, and monocyte chemotactic protein-1. Our results indicate that inflammation in the iris and ciliary body involves the activation of GHRH signaling, which affects the recruitment of immune cells and the production of proinflammatory mediators that contribute to EIU pathogenesis. Moreover, the results suggest that GHRH-R antagonists are potential therapeutic agents for the treatment of acute ocular inflammation.
Collapse
|
23
|
Alatzoglou KS, Webb EA, Le Tissier P, Dattani MT. Isolated growth hormone deficiency (GHD) in childhood and adolescence: recent advances. Endocr Rev 2014; 35:376-432. [PMID: 24450934 DOI: 10.1210/er.2013-1067] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The diagnosis of GH deficiency (GHD) in childhood is a multistep process involving clinical history, examination with detailed auxology, biochemical testing, and pituitary imaging, with an increasing contribution from genetics in patients with congenital GHD. Our increasing understanding of the factors involved in the development of somatotropes and the dynamic function of the somatotrope network may explain, at least in part, the development and progression of childhood GHD in different age groups. With respect to the genetic etiology of isolated GHD (IGHD), mutations in known genes such as those encoding GH (GH1), GHRH receptor (GHRHR), or transcription factors involved in pituitary development, are identified in a relatively small percentage of patients suggesting the involvement of other, yet unidentified, factors. Genome-wide association studies point toward an increasing number of genes involved in the control of growth, but their role in the etiology of IGHD remains unknown. Despite the many years of research in the area of GHD, there are still controversies on the etiology, diagnosis, and management of IGHD in children. Recent data suggest that childhood IGHD may have a wider impact on the health and neurodevelopment of children, but it is yet unknown to what extent treatment with recombinant human GH can reverse this effect. Finally, the safety of recombinant human GH is currently the subject of much debate and research, and it is clear that long-term controlled studies are needed to clarify the consequences of childhood IGHD and the long-term safety of its treatment.
Collapse
Affiliation(s)
- Kyriaki S Alatzoglou
- Developmental Endocrinology Research Group (K.S.A., E.A.W., M.T.D.), Clinical and Molecular Genetics Unit, and Birth Defects Research Centre (P.L.T.), UCL Institute of Child Health, London WC1N 1EH, United Kingdom; and Faculty of Life Sciences (P.L.T.), University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
24
|
Hrabia A, Leśniak-Walentyn A, Sechman A, Gertler A. Chicken oviduct-the target tissue for growth hormone action: effect on cell proliferation and apoptosis and on the gene expression of some oviduct-specific proteins. Cell Tissue Res 2014; 357:363-72. [PMID: 24744268 PMCID: PMC4077250 DOI: 10.1007/s00441-014-1860-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/21/2014] [Indexed: 11/28/2022]
Abstract
The aim of this study was to examine the in vivo effect of growth hormone (GH) on cell proliferation and apoptosis and on the gene expression of selected proteins in the chicken oviduct before sexual maturity (first oviposition). Ten-week-old Hy-Line Brown chickens were injected three times a week with 200 μg · kg-1 body weight of recombinant chicken GH (cGH) until 16 weeks of age. Control hens received 0.9 % NaCl with 0.05 % bovine serum albumin as a vehicle. Treatment with cGH increased (P < 0.05) oviduct weight at 16 weeks of age, i.e. 1–2 weeks before onset of egg laying. The highest number of proliferating (determined by proliferating cell nuclear antigen [PCNA] immunocytochemistry) and apoptotic (determined by TUNEL assay) cells in the oviduct was found in the mucosal epithelium, and the lowest in the stroma. Administration of cGH did not increase (P > 0.05) the number of PCNA-positive cells but it decreased (P < 0.01) the number of TUNEL-positive cells, thus increasing the proliferating-to-apoptotic cell ratio in the oviduct. Gene expression (determined by real-time polymerase chain reaction) of apoptosis-related caspase-2 in the magnum and caspase-3 in the magnum and isthmus and their activity (determined by fluorometric assay) in the magnum were attenuated (P < 0.05) in cGH-treated hens. The gene expression of the magnum-specific ovalbumin and the shell-gland-specific ovocalyxins 32 and 36 was increased (P < 0.05) in cGH-treated chickens. In contrast, the expression of Bcl-2 and of caspases 8 and 9 was not affected by cGH in any of the oviductal segments. The results suggest that GH, via the orchestration of apoptosis and expression of some oviduct-specific proteins, participates in the development and activity of the chicken oviduct prior to the onset of egg laying.
Collapse
Affiliation(s)
- Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059, Krakow, Poland,
| | | | | | | |
Collapse
|
25
|
Prokaryotic soluble overexpression and purification of bioactive human growth hormone by fusion to thioredoxin, maltose binding protein, and protein disulfide isomerase. PLoS One 2014; 9:e89038. [PMID: 24614134 PMCID: PMC3948679 DOI: 10.1371/journal.pone.0089038] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/14/2014] [Indexed: 11/25/2022] Open
Abstract
Human growth hormone (hGH) is synthesized by somatotroph cells of the anterior pituitary gland and induces cell proliferation and growth. This protein has been approved for the treatment of various conditions, including hGH deficiency, chronic renal failure, and Turner syndrome. Efficient production of hGH in Escherichia coli (E. coli) has proven difficult because the E. coli-expressed hormone tends to aggregate and form inclusion bodies, resulting in poor solubility. In this study, seven N-terminal fusion partners, hexahistidine (His6), thioredoxin (Trx), glutathione S-transferase (GST), maltose-binding protein (MBP), N-utilization substance protein A (NusA), protein disulfide bond isomerase (PDI), and the b′a′ domain of PDI (PDIb′a′), were tested for soluble overexpression of codon-optimized hGH in E. coli. We found that MBP and hPDI tags significantly increased the solubility of the hormone. In addition, lowering the expression temperature to 18°C also dramatically increased the solubility of all the fusion proteins. We purified hGH from MBP-, PDIb′a′-, or Trx-tagged hGH expressed at 18°C in E. coli using simple chromatographic techniques and compared the final purity, yield, and activity of hGH to assess the impact of each partner protein. Purified hGH was highly pure on silver-stained gel and contained very low levels of endotoxin. On average, ∼37 mg, ∼12 mg, and ∼7 mg of hGH were obtained from 500 mL-cell cultures of Trx-hGH, MBP-hGH, and PDIb′a′-hGH, respectively. Subsequently, hGH was analyzed using mass spectroscopy to confirm the presence of two intra-molecular disulfide bonds. The bioactivity of purified hGHs was demonstrated using Nb2-11 cell.
Collapse
|
26
|
Shimazu T, Borjigin L, Katayama Y, Li M, Satoh T, Watanabe K, Kitazawa H, Roh SG, Aso H, Kazuo K, Suda Y, Sakuma A, Nakajo M, Suzuki K. Genetic selection for resistance to mycoplasmal pneumonia of swine (MPS) in the Landrace line influences the expression of soluble factors in blood after MPS vaccine sensitization. Anim Sci J 2013; 85:365-73. [PMID: 24329865 DOI: 10.1111/asj.12158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 09/04/2013] [Indexed: 11/29/2022]
Abstract
We recently developed a Landrace line that is resistant to mycoplasmal pneumonia of swine (MPS) infection by genetic selection for five generations, and we reported that the immunophenotype of this line is different from that of the non-selected line in terms of changes in peripheral blood leukocyte population after MPS vaccination. This study followed up previous findings demonstrating changes in soluble factors in blood, namely, hormones, Mycoplasma hyopneumoniae-specific immunoglobulin G (IgG), and cytokines. These two lines were injected with MPS vaccine on days -7 and 0 after blood sampling on those days, and blood samples were collected on days -14, -7, 0, 2, 7 and 14. We found changes in the levels of many hormones and cytokines in both lines. However, we found that only growth hormone (GH) and interferon (IFN)-γ levels were statistically different between these two lines. GH concentration was reduced (day 0) and IFN-γ concentration was increased (day 14) in the MPS-selected line compared with the non-selected line, despite unchanged IFN-γ messenger RNA expression in blood cells. Although detailed mechanisms underlying these phenotypes remain unsolved, these traits would be useful to improve MPS resistance in pig production and provide an insight into MPS infection.
Collapse
Affiliation(s)
- Tomoyuki Shimazu
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhou D, Yang J, Huang WD, Wang J, Zhang Q. siRNA-targeted inhibition of growth hormone receptor in human colon cancer SW480 cells. World J Gastroenterol 2013; 19:8108-8113. [PMID: 24307807 PMCID: PMC3848161 DOI: 10.3748/wjg.v19.i44.8108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 10/22/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the effects of RNAi-mediated inhibition of the growth hormone receptor (GHR) gene on tumors and colon cancer cells in vivo.
METHODS: Construction of a eukaryotic vector for human GHR expression, the pcDNA™6.2-GW/EmGFP-small interfering RNAs (siRNAs)-GHR plasmid, was used to inhibit GHR expression. Thirty-six BALB/c nude mice were randomly divided into groups and treated with normal saline (NS), recombinant plasmid (G2), growth hormone (GH), 5-fluorouracil (FU), G2+FU or G2+FU+GH. Each nude mouse was subcutaneously inoculated with 1×107 human colon cancer SW480 cells; the nude mice were weighed before inoculation and on the 2nd, 5th, 8th, 11th, 14th and 17th day after inoculation. All nude mice were sacrificed after 17 d. Each subcutaneous tumor was removed and studied. Tumor volume was measured on the 5th, 8th, 11th, 14th and 17th day after inoculation. The expression of GHR protein in the tumor tissue was detected by Western blotting analysis, and the differences in GHR mRNA expression in the tumor tissue were detected by real-time quantitative reverse transcription-polymerase chain reaction.
RESULTS: Compared to the control group, the weights of the inoculated nude mice on the 17th day after inoculation were: G2: 21.60 ± 0.71 g, GH: 21.64 ± 0.45 g, FU: 18.94 ± 0.47 g, FU+G2: 19.40 ± 0.60 g, G2+FU+GH: 21.04 ± 0.78 g vs NS: 20.68 ± 0.66 g, P < 0.05; the tumor volumes after the subcutaneous inoculation were: G2: 9.71 ± 3.82 mm3, FU: 11.54 ± 2.42 mm3, FU+G2: 11.42 ± 1.11 mm3, G2+FU+GH: 10.47 ± 1.02 mm3vs NS: 116.81 ± 10.61 mm3, P < 0.05. Compared to the GH group, the tumor volumes were significantly decreased in the experimental groups. The GHR protein expression (G2: 0.39 ± 0.02, FU: 0.40 ± 0.02, FU+G2: 0.38 ± 0.01, G2+FU+GH: 0.39 ± 0.01 vs NS: 0.94 ± 0.02, P < 0.05) and the GHR mRNA expression (G2: 14.12 ± 0.10, FU: 15.15 ± 0.44, FU+G2: 16.46 ± 0.27, G2+FU+GH: 15.37 ± 0.57 vs NS: 12.63 ± 0.14, P < 0.05) were significantly decreased and increased, respectively, in the experimental groups.
CONCLUSION: Inhibition of GHR in human colon cancer SW480 cells resulted in anti-tumor effects in nude mice.
Collapse
|
28
|
Luna M, Rodríguez-Méndez AJ, Luna-Acosta JL, Carranza M, Arámburo C. Expression and function of chicken bursal growth hormone (GH). Gen Comp Endocrinol 2013; 190:182-7. [PMID: 23684966 DOI: 10.1016/j.ygcen.2013.04.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/27/2013] [Accepted: 04/30/2013] [Indexed: 11/22/2022]
Abstract
Growth hormone (GH) has several effects on the immune system. Our group has shown that GH is produced in the chicken bursa of Fabricius (BF) where it may act as an autocrine/paracrine modulator that participates in B-cell differentiation and maturation. The time course of GH mRNA and protein expression in the BF suggests that GH may be involved in development and involution of the BF, since GH is known to be present mainly in B lymphocytes and epithelial cells. In addition, as GH is anti-apoptotic in other tissues, we assessed the possibility that GH promotes cell survival in the BF. This work focused on determining the mechanism by which GH can inhibit apoptosis of B cells and if the PI3K/Akt pathway is activated. Bursal cell cultures were treated with a range of GH concentrations (0.1-100nM). The addition of 10nM GH significantly increased viability (16.7±0.6%) compared with the control and decreased caspase-3 activity to 40.6±6.5% of the control. Together, these data indicate that GH is produced locally in the BF and that the presence of exogenous GH in B cell cultures has antiapoptotic effects and increases B cell survival, probably through the PI3k/Akt pathway.
Collapse
Affiliation(s)
- Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico.
| | | | | | | | | |
Collapse
|
29
|
Kireev RA, Vara E, Tresguerres JAF. Growth hormone and melatonin prevent age-related alteration in apoptosis processes in the dentate gyrus of male rats. Biogerontology 2013; 14:431-42. [PMID: 23852044 PMCID: PMC3739870 DOI: 10.1007/s10522-013-9443-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 07/07/2013] [Indexed: 12/13/2022]
Abstract
It has been suggested that the age-related decrease in the number of neurons in the hippocampus that leads to alterations in brain function, may be associated with an increase in apoptosis due to the reduced secretion of growth hormone (GH) and/or melatonin in old animals. In order to investigate this possibility, male Wistar rats of 22 months of age were divided into three groups. One group remained untreated and acted as the control group. The second was treated with growth hormone (hGH) for 10 weeks (2 mg/kg/d sc) and the third was subjected to melatonin treatment (1 mg/kg/d) in the drinking water for the same time. A group of 2-months-old male rats was used as young controls. All rats were killed by decapitation at more than 24 month of age and dentate gyri of the hippocampi were collected. Aging in the dentate gyrus was associated with an increase in apoptosis promoting markers (Bax, Bad and AIF) and with the reduction of some anti-apoptotic ones (XIAP, NIAP, Mcl-1). Expressions of sirtuin 1 and 2 (SIRT1 and 2) as well as levels of HSP 70 were decreased in the dentate gyrus of old rats. GH treatment was able to reduce the pro/anti-apoptotic ratio to levels observed in young animals and also to increase SIRT2. Melatonin reduced also expression of pro-apoptotic genes and proteins (Bax, Bad and AIF), and increased levels of myeloid cell leukemia-1 proteins and SIRT1. Both treatments were able to reduce apoptosis and to enhance survival markers in this part of the hippocampus.
Collapse
Affiliation(s)
- R A Kireev
- Department Physiology, Medical School, University Complutense of Madrid, Spain.
| | | | | |
Collapse
|
30
|
Kim JH, Balfry S, Devlin RH. Disease resistance and health parameters of growth-hormone transgenic and wild-type coho salmon, Oncorhynchus kisutch. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1553-1559. [PMID: 23545266 DOI: 10.1016/j.fsi.2013.03.365] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/26/2013] [Accepted: 03/20/2013] [Indexed: 06/02/2023]
Abstract
To extend previous findings regarding fish health and disease susceptibility of growth-enhanced fish, hematological and immunological parameters have been compared between growth hormone (GH) transgenic and wild-type non-transgenic coho salmon (Oncorhynchus kisutch). Compared to non-transgenic coho salmon, transgenic fish had significantly higher hematocrit (Hct), hemoglobin (Hb), mean cellular hemoglobin (MCH), mean cellular volume (MCV), and erythrocyte numbers, and lower white cell numbers. In addition, resistance to the bacterial pathogen Aeromonas salmonicida (causal agent of furunculosis) has been assessed between the strains. Higher susceptibility of transgenic fish to this disease challenge was observed in two separate year classes of fish. The present findings provide fundamental knowledge of the disease resistance on GH enhanced transgenic coho salmon, which is of importance for assessing the fitness of transgenic strains for environmental risk assessments, and for improving our understanding effects of growth modification on basic immune functions.
Collapse
Affiliation(s)
- Jin-Hyoung Kim
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, West Vancouver, BC, Canada
| | | | | |
Collapse
|
31
|
Miquet JG, Freund T, Martinez CS, González L, Díaz ME, Micucci GP, Zotta E, Boparai RK, Bartke A, Turyn D, Sotelo AI. Hepatocellular alterations and dysregulation of oncogenic pathways in the liver of transgenic mice overexpressing growth hormone. Cell Cycle 2013; 12:1042-57. [PMID: 23428905 DOI: 10.4161/cc.24026] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Growth hormone (GH) overexpression throughout life in transgenic mice is associated with the development of liver tumors at old ages. The preneoplastic pathology observed in the liver of young adult GH-overexpressing mice is similar to that present in humans at high risk of hepatic cancer. To elucidate the molecular pathogenesis underlying the pro-oncogenic liver pathology induced by prolonged exposure to elevated GH levels, the activation and expression of several components of signal transduction pathways that have been implicated in hepatocellular carcinogenesis were evaluated in the liver of young adult GH-transgenic mice. In addition, males and females were analyzed in parallel in order to evaluate sexual dimorphism. Transgenic mice from both sexes exhibited hepatocyte hypertrophy with enlarged nuclear size and exacerbated hepatocellular proliferation, which were higher in males. Dysregulation of several oncogenic pathways was observed in the liver of GH-overexpressing transgenic mice. Many signaling mediators and effectors were upregulated in transgenic mice compared with normal controls, including Akt2, NFκB, GSK3β, β-catenin, cyclin D1, cyclin E, c-myc, c-jun and c-fos. The molecular alterations described did not exhibit sexual dimorphism in transgenic mice except for higher gene expression and nuclear localization of cyclin D1 in males. We conclude that prolonged exposure to GH induces in the liver alterations in signaling pathways involved in cell growth, proliferation and survival that resemble those found in many human tumors.
Collapse
Affiliation(s)
- Johanna G Miquet
- Department of Biological Chemistry-IQUIFIB (CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mueller KM, Themanns M, Friedbichler K, Kornfeld JW, Esterbauer H, Tuckermann JP, Moriggl R. Hepatic growth hormone and glucocorticoid receptor signaling in body growth, steatosis and metabolic liver cancer development. Mol Cell Endocrinol 2012; 361:1-11. [PMID: 22564914 PMCID: PMC3419266 DOI: 10.1016/j.mce.2012.03.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 03/30/2012] [Indexed: 01/07/2023]
Abstract
Growth hormone (GH) and glucocorticoids (GCs) are involved in the control of processes that are essential for the maintenance of vital body functions including energy supply and growth control. GH and GCs have been well characterized to regulate systemic energy homeostasis, particular during certain conditions of physical stress. However, dysfunctional signaling in both pathways is linked to various metabolic disorders associated with aberrant carbohydrate and lipid metabolism. In liver, GH-dependent activation of the transcription factor signal transducer and activator of transcription (STAT) 5 controls a variety of physiologic functions within hepatocytes. Similarly, GCs, through activation of the glucocorticoid receptor (GR), influence many important liver functions such as gluconeogenesis. Studies in hepatic Stat5 or GR knockout mice have revealed that they similarly control liver function on their target gene level and indeed, the GR functions often as a cofactor of STAT5 for GH-induced genes. Gene sets, which require physical STAT5-GR interaction, include those controlling body growth and maturation. More recently, it has become evident that impairment of GH-STAT5 signaling in different experimental models correlates with metabolic liver disease, ranging from hepatic steatosis to hepatocellular carcinoma (HCC). While GH-activated STAT5 has a protective role in chronic liver disease, experimental disruption of GC-GR signaling rather seems to ameliorate metabolic disorders under metabolic challenge. In this review, we focus on the current knowledge about hepatic GH-STAT5 and GC-GR signaling in body growth, metabolism, and protection from fatty liver disease and HCC development.
Collapse
Affiliation(s)
| | | | | | - Jan-Wilhelm Kornfeld
- Institute for Genetics, Department of Mouse Genetics and Metabolism, University of Cologne, Cologne, Germany
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University Vienna, Vienna, Austria
| | - Jan P. Tuckermann
- Tissue-Specific Hormone Action, Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
- Institute for General Zoology and Endocrinology, University of Ulm, Ulm, Germany
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Corresponding author. Address: Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13a, 1090 Vienna, Austria. Tel.: +43 14277 64111; fax: +43 14277 9641.
| |
Collapse
|
33
|
Sugiyama M, Takenaga F, Kitani Y, Yamamoto G, Okamoto H, Masaoka T, Araki K, Nagoya H, Mori T. Homozygous and heterozygous GH transgenesis alters fatty acid composition and content in the liver of Amago salmon (Oncorhynchus masou ishikawae). Biol Open 2012; 1:1035-42. [PMID: 23213381 PMCID: PMC3507178 DOI: 10.1242/bio.20121263] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/02/2012] [Indexed: 12/20/2022] Open
Abstract
Growth hormone (GH) transgenic Amago (Oncorhynchus masou ishikawae), containing the sockeye GH1 gene fused with metallothionein-B promoter from the same species, were generated and the physiological condition through lipid metabolism compared among homozygous (Tg/Tg) and heterozygous GH transgenic (Tg/+) Amago and the wild type control (+/+). Previously, we have reported that the adipose tissue was generally smaller in GH transgenic fish compared to the control, and that the Δ-6 fatty acyl desaturase gene was down-regulated in the Tg/+ fish. However, fatty acid (FA) compositions have not been measured previously in these fish. In this study we compared the FAs composition and content in the liver using gas chromatography. Eleven kinds of FA were detected. The composition of saturated and monounsaturated fatty acids (SFA and MUFA) such as myristic acid (14:0), palmitoleic acid (16:1n-7), and cis-vaccenic acid (cis-18:1n-7) was significantly (P<0.05) decreased in GH transgenic Amago. On the other hand, the composition of polyunsaturated fatty acids (PUFAs) such as linoleic acid (18:2n-6), arachidonic acid (20:4n-6), and docosapentaenoic acid (22:5n-3) was significantly (P<0.05) increased. Levels of serum glucose and triacylglycerol were significantly (P<0.05) decreased in the GH transgenics compared with +/+ fish. Furthermore, 3′-tag digital gene expression profiling was performed using liver tissues from Tg/Tg and +/+ fish, and showed that Mid1 interacting protein 1 (Mid1ip1), which is an important factor to activate Acetyl-CoA carboxylase (ACC), was down-regulated in Tg/Tg fish, while genes involved in FA catabolism were up-regulated, including long-chain-fatty-acid–CoA ligase 1 (ACSL1) and acyl-coenzyme A oxidase 3 (ACOX3). These data suggest that liver tissue from GH transgenic Amago showed starvation by alteration in glucose and lipid metabolism due to GH overexpression. The decrease of serum glucose suppressed Mid1ip1, and caused a decrease of de novo FA synthesis, resulting in a decrease of SFA and MUFA. This induced expression of ACSL1 and ACOX3 to produce energy through β-oxidation in the GH transgenic Amago.
Collapse
Affiliation(s)
- Manabu Sugiyama
- Nihon University College of Bioresource Sciences , Kameino 1866, Fujisawa 252-0880 , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wu Y, Pan AL, Pi JS, Pu YJ, Du JP, Liang ZH, Shen J. One novel SNP of growth hormone gene and its associations with growth and carcass traits in ducks. Mol Biol Rep 2012; 39:8027-33. [PMID: 22547272 DOI: 10.1007/s11033-012-1649-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
Abstract
In this study, the growth hormone (GH) gene was studied as a candidate gene for growth and carcass traits of three duck populations (Cherry Valley duck, Muscovy duck and Jingjiang duck). Three pairs of primers were designed to detect single nucleotide polymorphisms of introns 2, 3 and 4 of the GH gene by polymerase chain reaction-restriction fragment length polymorphism and sequencing methods. Only the products amplified from intron 2 displayed polymorphism. The results showed one novel polymorphism: a variation in intron 2 of GH gene (C172T, JN408701 and JN408702). It was associated with some growth and carcass traits in three duck populations including birth weight, 8-week weight, carcass weight, breast muscle weight, leg muscle weight, eviscerated weight, lean meat rate, dressing percentage, etc. And the TT and CT genotypes were associated with superior growth and carcass traits in carcass weight, dressing percentage and percentage of eviscerated weight. Therefore, the variation in intron 2 of GH may be a molecular marker for superior growth and carcass traits in above duck populations.
Collapse
Affiliation(s)
- Y Wu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Castigliego L, Li XN, Armani A, Razzano M, Mazzi M, Rosati R, Gianfaldoni D, Guidi A. Somatotropic gene response to recombinant growth hormone treatment in buffalo leucocytes. Biol Chem 2011. [PMID: 22050229 DOI: 10.1515/bc-2011-187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The use of recombinant bovine growth hormone (rbGH) to increase milk yield in cows is banned in some countries. In others, where it is authorised, it has triggered harsh debates on labelling of dairy products. If many studies have been performed on bovines, there is a lack of information on buffaloes, which are sometimes treated with rbGH and re-present an important economical resource for dairy products in some countries. Analytical methods with legal value for surveillance of rbGH treatments do not yet exist. Research on gene expression biomarkers is one of the most promising approaches to this purpose. For this reason, we treated five buffaloes for 10 weeks with a sustained-release formulation of rbGH and analysed the response of 20 somatotropic axis genes in leucocytes by real-time polymerase chain reaction. Overall changes in gene expression levels were of low magnitude and sometimes affected by the 'time' factor. Only the IGFBP-1 gene showed a significant under-expression (about two-fold; p <0.001) in treated animals. Taken together, these results give evidence that expression analysis of the somatotropic axis genes in leucocytes is little helpful for discrimination of rbGH-treated buffaloes, but do not exclude that another array of genes could provide useful patterns of variation.
Collapse
Affiliation(s)
- Lorenzo Castigliego
- Department of Animal Pathology, Prophylaxis and Food Hygiene, University of Pisa, Via delle Piagge 2, I-56124 Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Castigliego L, Li XN, Armani A, Razzano M, Mazzi M, Rosati R, Gianfaldoni D, Guidi A. Somatotropic gene response to recombinant growth hormone treatment in buffalo leucocytes. Biol Chem 2011; 392:1145-54. [PMID: 22050229 DOI: 10.1515/bc.2011.187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The use of recombinant bovine growth hormone (rbGH) to increase milk yield in cows is banned in some countries. In others, where it is authorised, it has triggered harsh debates on labelling of dairy products. If many studies have been performed on bovines, there is a lack of information on buffaloes, which are sometimes treated with rbGH and re-present an important economical resource for dairy products in some countries. Analytical methods with legal value for surveillance of rbGH treatments do not yet exist. Research on gene expression biomarkers is one of the most promising approaches to this purpose. For this reason, we treated five buffaloes for 10 weeks with a sustained-release formulation of rbGH and analysed the response of 20 somatotropic axis genes in leucocytes by real-time polymerase chain reaction. Overall changes in gene expression levels were of low magnitude and sometimes affected by the 'time' factor. Only the IGFBP-1 gene showed a significant under-expression (about two-fold; p <0.001) in treated animals. Taken together, these results give evidence that expression analysis of the somatotropic axis genes in leucocytes is little helpful for discrimination of rbGH-treated buffaloes, but do not exclude that another array of genes could provide useful patterns of variation.
Collapse
Affiliation(s)
- Lorenzo Castigliego
- Department of Animal Pathology, Prophylaxis and Food Hygiene, University of Pisa, Via delle Piagge 2, I-56124 Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kireev RA, Cuesta S, Vara E, Tresguerres JAF. Effect of growth hormone and melatonin on the brain: from molecular mechanisms to structural changes. Horm Mol Biol Clin Investig 2011; 7:337-50. [PMID: 25961272 DOI: 10.1515/hmbci.2011.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 07/19/2011] [Indexed: 01/01/2023]
Abstract
Aging of the brain causes important reductions in quality of life and has wide socio-economic consequences. An increase in oxidative stress, and the associated inflammation and apoptosis, could be responsible for the pathogenesis of aging associated brain lesions. Melatonin has neuroprotective effects, by limiting the negative effects of oxygen and nitrogen free radicals. Growth hormone (GH) might exert additional neuro-protective and or neurogenic effects on the brain. The molecular mechanisms of the protective effects of GH and melatonin on the aging brain have been investigated in young and old Wistar rats. A reduction in the total number of neurons in the hilus of the dentate gyrus was evident at 24 months of age and was associated with a significant increase in inflammation markers as well as in pro-apoptotic parameters, confirming the role of apoptosis in its reduction. Melatonin treatment was able to enhance neurogenesis in old rats without modification of the total number of neurons, whereas GH treatment increased the total number of neurons without enhancing neurogenesis. Both GH and melatonin were able to reduce inflammation and apoptosis in the hippocampus. In conclusion, neuroprotective effects demonstrated by GH and melatonin in the hippocampus were exerted by decreasing inflammation and apoptosis.
Collapse
|
38
|
Effect of growth hormone on steroid content, proliferation and apoptosis in the chicken ovary during sexual maturation. Cell Tissue Res 2011; 345:191-202. [DOI: 10.1007/s00441-011-1187-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 05/06/2011] [Indexed: 11/30/2022]
|
39
|
Plasma proteomic profiles of bovine growth hormone transgenic mice as they age. Transgenic Res 2011; 20:1305-20. [PMID: 21365322 DOI: 10.1007/s11248-011-9499-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 02/20/2011] [Indexed: 12/17/2022]
Abstract
Attenuation of the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis results in extended lifespan in many organisms including mice. Conversely, GH transgenic mice have excess GH action and die prematurely. We have studied bovine (b) GH transgenic mice (n = 9) and their wild type (WT) littermates (n = 8) longitudinally and have determined several age-related changes. Compared to WT mice, bGH mice lost fat mass, became hypoglycemic and had lower insulin levels at older ages despite being hyperinsulinemic when young. To examine plasma protein differences in bGH mice relative to controls, samples at 2, 4, 8, 12 and 16 months of age were analyzed by two-dimensional gel electrophoresis followed by identification using mass spectrometry. We found several differences in plasma proteins of bGH mice compared to controls, including increased apolipoprotein E (five isoforms), haptoglobin (four isoforms) and mannose-binding protein-C (one out of three isoforms), and decreased transthyretin (six isoforms). In addition, clusterin (two out of six isoforms) and haptoglobin (four isoforms) were up-regulated in bGH mice as a function of age. Finally, alpha-2 macroglobulin (seven isoforms) was altered in an isoform-specific manner with two isoforms increased and two decreased in bGH mouse plasma compared to controls. In conclusion, identification of these proteins suggests that bGH mice exhibit an increased inflammatory state with an adverse lipid profile, possibly contributing to their diminished life expectancy. Also, these newly discovered plasma proteins may be indicative or 'biomarkers' of a shortened lifespan.
Collapse
|
40
|
Maningat PD, Sen P, Rijnkels M, Hadsell DL, Bray MS, Haymond MW. Short-term administration of rhGH increases markers of cellular proliferation but not milk protein gene expression in normal lactating women. Physiol Genomics 2011; 43:381-91. [PMID: 21205870 DOI: 10.1152/physiolgenomics.00079.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Growth hormone is one of few pharmacologic agents known to augment milk production in humans. We hypothesized that recombinant human GH (rhGH) increases the expression of cell proliferation and milk protein synthesis genes. Sequential milk and blood samples collected over four days were obtained from five normal lactating women. Following 24 h of baseline milk and blood sampling, rhGH (0.1 mg/kg/day) was administered subcutaneously once daily for 3 days. Gene expression changes were determined by microarray studies utilizing milk fat globule RNA isolated from each milk sample. Following rhGH administration, DNA synthesis and cell cycle genes were induced, while no significant changes were observed in the expression of milk synthesis genes. Expression of glycolysis and citric acid cycle genes were increased by day 4 compared with day 1, while lipid synthesis genes displayed a circadian-like pattern. Cell cycle gene upregulation occurred after a lag of ∼2 days, likely explaining the failure to increase milk production after only 3 days of rhGH treatment. We conclude that rhGH induces expression of cellular proliferation and metabolism genes but does not induce milk protein gene expression, as potential mechanisms for increasing milk production and could account for the known effect of rhGH to increase milk production following 7-10 days.
Collapse
Affiliation(s)
- Patricia D Maningat
- Department of Pediatrics - Nutrition, Baylor College of Medicine, Children's Nutrition Research Center, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
41
|
Vigliano I, Fusco A, Palamaro L, Aloj G, Cirillo E, Salerno MC, Pignata C. γ Chain transducing element: A shared pathway between endocrine and immune system. Cell Immunol 2011; 269:10-5. [DOI: 10.1016/j.cellimm.2011.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 03/08/2011] [Indexed: 12/20/2022]
|
42
|
Esteban S, Garau C, Aparicio S, Moranta D, Barceló P, Ramis M, Tresguerres JA, Rial R. Improving Effects of Long-Term Growth Hormone Treatment on Monoaminergic Neurotransmission and Related Behavioral Tests in Aged Rats. Rejuvenation Res 2010; 13:707-16. [DOI: 10.1089/rej.2010.1053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Susana Esteban
- Laboratorio de Neurofisiología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares, Mallorca, Spain
| | - Celia Garau
- Laboratorio de Neurofisiología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares, Mallorca, Spain
- Department of Pharmaceutical Sciences, University of California, Irvine, California
| | - Sara Aparicio
- Laboratorio de Neurofisiología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares, Mallorca, Spain
| | - David Moranta
- Laboratorio de Neurofisiología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares, Mallorca, Spain
- Fundación Caubet-Cimera, Hospital Joan March, Mallorca, Spain
| | - Pere Barceló
- Laboratorio de Neurofisiología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares, Mallorca, Spain
| | - Margarita Ramis
- Laboratorio de Neurofisiología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares, Mallorca, Spain
| | | | - Rubén Rial
- Laboratorio de Neurofisiología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares, Mallorca, Spain
| |
Collapse
|
43
|
Zhao WM, Qiao N, Wang XB, Chen Q, Cheng JH, Xu Q, Chen GH. Comparative genomic analysis of growth hormone gene in geese. Anim Sci J 2010; 82:62-6. [PMID: 21269361 DOI: 10.1111/j.1740-0929.2010.00812.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To explore the mutation characteristic of growth hormone (GH) gene in geese, all the exons and introns of the gene were amplified by 20 pairs of primers, and then single nucleotide polymorphisms (SNPs) were detected by single strand conformation polymorphism (SSCP) and subsequently confirmed by sequencing. There were six SNPs per 1000 nucleotides in exons compared to two SNPs per 1000 nucleotides in intron regions. The variant in exons contained only one non-synonymous mutation and three synonymous mutations. The results show that its sequence identity with chicken and duck were 77.54% and 92.38%, respectively, which may be concluded that the GH gene was highly conservative in phylogenesis, although there were differences between waterfowls and chicken in their evolution process.
Collapse
Affiliation(s)
- Wen-ming Zhao
- Animal Science and Technology College, Yangzhou University, Yangzhou, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Bogazzi F, Lombardi M, Scattina I, Urbani C, Marciano E, Costa A, Pepe P, Rossi G, Martino E. Comparison of colonoscopy and fecal occult blood testing as a first-line screening of colonic lesions in patients with newly diagnosed acromegaly. J Endocrinol Invest 2010; 33:530-3. [PMID: 20186003 DOI: 10.1007/bf03346642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CONTENT Patients with acromegaly have frequently colonic neoplasms; however, how acromegalic patients should be screened for colonic lesions is still unsettled. AIMS To compare fecal occult blood testing (FOBT) and colonoscopy in the screening program of patients with acromegaly. DESIGN Colonoscopy and FOBT were performed at the first diagnosis of acromegaly. SETTING Tertiary University center. PATIENTS Eighty-five consecutive patients with untreated active acromegaly submitted to colonoscopy and FOBT. RESULTS FOBT, which was positive in 16 (18.8%) out of 85 patients, identified 2 patients with colonic adenocarcinoma and 2 with adenoma; the remaining 12 patients had no detectable colonic lesions. Colonoscopy revealed colonic lesions in 29 patients: 3 (3.5%) cancers, 11 (12.9%) adenomas, and 15 (17.6%) hyperplastic polyps. The remaining 56 acromegalic patients had no detectable lesions. A patient with cancer and 9 patients with adenoma were missed if screened only by FOBT. CONCLUSIONS Colonoscopy is superior to FOBT in detecting colonic lesions at the first diagnosis of acromegaly.
Collapse
Affiliation(s)
- F Bogazzi
- Department of Endocrinology and Metabolism, University of Pisa, Ospedale Cisanello, Via Paradisa 2, 56124, Pisa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Acosta J, Carpio Y, Morales R, Águila JC, Acanda Y, Herrera F, Estrada MP. New insights into the biological activity and secretion properties of a polypeptide derived from tilapia somatotropin. Comp Biochem Physiol B Biochem Mol Biol 2010; 156:264-72. [DOI: 10.1016/j.cbpb.2010.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 04/05/2010] [Accepted: 04/06/2010] [Indexed: 11/30/2022]
|
46
|
Meazza C, Cerutti P, Pagani S, Boncimino A, Marconi M, Avanzini A, Bozzola M. Clinical management of short children with low serum immunoglobulin but no immunodeficiency features. Pediatr Int 2010; 52:626-30. [PMID: 20202155 DOI: 10.1111/j.1442-200x.2010.03103.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND In children of different ages investigated for failure to thrive, low (below the cut-off for age) immunoglobulin (Ig) values can be detected, without any clinical evidence of humoral immunodeficiencies. To better characterize infants presenting with diminished immunoglobulin levels, we studied IgG subclasses, in vitro Ig production and B cell subpopulation. METHODS We monitored 17 children (12 boys and five girls, age range 1-18 years) with low serum levels of one or more Ig isotypes but without any clinical or laboratory features of immunodeficiency. RESULTS Low IgM levels were frequent (52.9%). During the follow up, six of 17 cases (35.3%) normalized their immunoglobulin levels. Frequently, in the observed patients, low levels of immunoglobulins were not limited to the period of infancy. In all patients, in vitro Ig production and B lymphocyte subpopulations were within normal ranges. CONCLUSIONS We suggest a quantification of serum Ig levels in children who fail to thrive in order to identify patients with low Ig levels. These children should be monitored until Ig levels normalize to exclude any immunodeficiency status. Early recognition of children with persistent hypogammaglobulinemia would allow prompt and appropriate clinical interventions.
Collapse
Affiliation(s)
- Cristina Meazza
- Pediatric Department, University of Pavia, Research Laboratory, Pediatric Oncohematology, IRCCS San Matteo Foundation, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Bogazzi F, Ultimieri F, Raggi F, Russo D, Lombardi M, Cosci C, Brogioni S, Gasperi M, Bartalena L, Martino E. Reduced colonic apoptosis in mice overexpressing bovine growth hormone occurs through changes in several kinase pathways. Growth Horm IGF Res 2009; 19:432-441. [PMID: 19230732 DOI: 10.1016/j.ghir.2009.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 12/03/2008] [Accepted: 01/16/2009] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Growth hormone (GH) has antiapoptotic effects in several cell lines, including human colonic adenocarcinoma cells. In addition, it has been reported that patients with acromegaly have reduced apoptosis in colonic mucosa. The aim of the study was to investigate colonic apoptosis and underlying molecular mechanisms in transgenic mice overexpressing bovine GH (Acro) aged 3 months (young) or 9 months (elder). DESIGN AND METHODS Apoptosis in colonic epithelial cells was evaluated by TUNEL and Annexin V; expression of pro- and anti-apoptotic proteins was assessed by Western blot. GH action was blocked treating Acro with a selective GH receptor antagonist. RESULTS Young and elder Acro had lower colonic apoptosis [driven by GH through p38, p44/42 and PI3 kinase pathways], than littermate controls; changes were abolished by treating Acro with a selective GH receptor antagonist. The effects of GH were consistent with an anti-apoptotic phenotype (reduced cytosolic cytochrome-c, Bad and Bax and increased Bcl-2, and Bcl-XL level) leading to lower activation of caspase-9 and caspase-3. Changes in apoptotic proteins reversed after treatment with a GH receptor antagonist, suggesting a direct effect of GH. In addition, antiapoptotic phenotype of Acro had a protective role against doxorubicin-induced apoptosis. CONCLUSIONS Our results suggest that GH leads to increased and reduced levels of anti- and pro-apoptotic proteins, respectively, lowering apoptosis in either young or elder transgenic animals through activation of several kinase pathways.
Collapse
Affiliation(s)
- Fausto Bogazzi
- Department of Endocrinology and Metabolism, University of Pisa, Ospedale Cisanello, Pisa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chung L, Baxter RC. Detection of growth hormone responsive proteins using SELDI-TOF mass spectrometry. Growth Horm IGF Res 2009; 19:383-387. [PMID: 19467616 DOI: 10.1016/j.ghir.2009.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/03/2009] [Indexed: 11/26/2022]
Abstract
The detection of growth hormone (GH) doping is a significant problem in elite sports. GH is secreted in a pulsatile pattern from the anterior pituitary, influenced by a variety of normal and pathophysiological conditions. Exogenous recombinant hGH is virtually indistinguishable from the predominant naturally occurring isoform and is cleared from the body within 24h. Although GH is on the World Anti-doping Agency list of banned substances, the detection of GH abuse remains challenging. This article gives an overview of the potential application of surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry to examine proteomic changes following GH administration, using both serum and white blood cell extracts as samples for analysis. Results to date indicate that proteomic changes observed following GH administration have the potential to yield novel biomarker sets for the detection of GH abuse.
Collapse
Affiliation(s)
- L Chung
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | | |
Collapse
|
49
|
Chung L, Nelson AE, Ho KKY, Baxter RC. Proteomic profiling of growth hormone-responsive proteins in human peripheral blood leukocytes. J Clin Endocrinol Metab 2009; 94:3038-43. [PMID: 19491220 DOI: 10.1210/jc.2009-0778] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CONTEXT GH is a known modulator of the immune system, but the effect of exogenous GH administration on white blood cell proteins has not been investigated. Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) is a powerful platform for the study of GH effects on immune system proteins. OBJECTIVE Our objective was to explore a novel approach for the detection of GH-responsive proteins in human leukocytes by proteomic analysis using SELDI-TOF MS. DESIGN We conducted a randomized double-blind, placebo-controlled GH administration study of 8 wk treatment followed by 6 wk washout. Pre- and posttreatment samples from 30 subjects were used for biomarker discovery. SETTING The study was performed at a clinical research facility. PARTICIPANTS We studied 30 recreationally trained healthy athletes. INTERVENTION Subjects received either recombinant human GH (2 mg/d sc; n = 22) or placebo (n = 8) for 8 wk. MAIN OUTCOME MEASURES Proteomic profiles were determined using CM10 weak cation-exchange protein chips, and some GH-regulated proteins were purified and identified by mass spectrometry and/or immunoblotting. RESULTS SELDI-TOF analysis revealed a number of GH-regulated peptides/proteins in the 3- to 22-kDa range that are either up- or down-regulated by GH. Several of these may be useful as biomarkers of GH action. The calcium-binding, proinflammatory calgranulins S100A8, S100A9, and S100A12 were all significantly down-regulated in response to GH treatment. CONCLUSION This study illustrates the novel use of human leukocyte proteomic profiling by SELDI-TOF MS and reveals the negative regulation of proinflammatory S100 proteins by GH in human white blood cells.
Collapse
Affiliation(s)
- Liping Chung
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards 2065, Australia
| | | | | | | |
Collapse
|
50
|
Studzinski ALM, Almeida DV, Lanes CFC, Figueiredo MDA, Marins LF. SOCS1 and SOCS3 are the main negative modulators of the somatotrophic axis in liver of homozygous GH-transgenic zebrafish (Danio rerio). Gen Comp Endocrinol 2009; 161:67-72. [PMID: 18955058 DOI: 10.1016/j.ygcen.2008.10.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 10/07/2008] [Accepted: 10/08/2008] [Indexed: 12/26/2022]
Abstract
Homozygote individuals (HO) of the GH-transgenic zebrafish lineage (F0104), despite expressing double the amount of growth hormone (GH) in relation to the hemizygote (HE) individuals, presented smaller growth in relation to the last, and similar to the non-transgenic (NT) group. Through the analysis of the expression of genes of the somatotrophic axis in the livers of HO and NT individuals, it was verified that GHR, JAK2 and STAT5.1 did not present significant differences among the analyzed genotypes (NT and HO). However, in the IGF-I gene expression, an accentuated decrease was observed in group HO (p<0.01), suggesting a resistance effect to excess GH. This resistance could be related to the insufficient amount of energy for supporting the accelerated metabolic demand caused by excess circulating GH. Analysis of the genes involved in the regulation of GH signalization by dephosphorylation (PTP-H1 and PTP-1B) did not show any significant alteration when comparing groups HO and NT. However, the analysis of the SOCS1 and SOCS3 genes showed an induction in homozygotes of 2.5 times (p<0.01) and 4.3 times (p<0.05), respectively, in relation to non-transgenics. The results of the present work demonstrate that, in homozygotes, GH signaling is reduced by the action of the SOCS1 and SOCS3 proteins.
Collapse
Affiliation(s)
- Ana Lupe Motta Studzinski
- Programa de Pós-Graduação em Ciências Fisiológicas: Fisiologia Animal Comparada, Universidade Federal do Rio Grande-FURG, Rio Grande, RS, Brazil
| | | | | | | | | |
Collapse
|