1
|
Khan MZ, Zugaza JL, Torres Aleman I. The signaling landscape of insulin-like growth factor 1. J Biol Chem 2025; 301:108047. [PMID: 39638246 PMCID: PMC11748690 DOI: 10.1016/j.jbc.2024.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
The sheer amplitude of biological actions of insulin-like growth factor I (IGF-1) affecting all types of cells in all tissues suggests a vast signaling landscape for this ubiquitous humoral signal. While the canonical signaling pathways primarily involve the Ras/MAPK and PI3K/AKT cascades, the evolutionary conservation of insulin-like peptides (ILPs) and their pathways hints at the potential for novel functions to emerge over time. Indeed, the evolutionary trajectory of ILPs opens the possibility of either novel functions for these two pathways, novel downstream routes, or both. Evidence supporting this notion includes observations of neofunctionalization in bony fishes or crustaceans, and the involvement of ILPs pathways in invertebrate eusociality or in vertebrate bone physiology, respectively. Such evolutionary processes likely contribute to the rich diversity of ILPs signaling observed today. Moreover, the interplay between conserved signaling pathways, such as those implicated in aging (predominantly involving the PI3K-AKT route), and lesser known pathways, such as those mediated by biased G-protein coupled receptors and others even less known, may underpin the context-dependent actions characteristic of ILPs signaling. While canonical IGF-1 signaling is often assumed to account for the intracellular pathways utilized by this growth factor, a comprehensive analysis of all the pathways mediated by the IGF-1 receptor (IGF-1R) remains lacking. This review aims to explore both canonical and non-canonical routes of IGF-1R action across various cell types, offering a detailed examination of the mechanisms underlying IGF-1 signaling and highlighting the significant gaps in our current understanding.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain
| | - Jose Luis Zugaza
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque Science Foundation, Bilbao, Spain
| | - Ignacio Torres Aleman
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain; Ikerbasque Science Foundation, Bilbao, Spain.
| |
Collapse
|
2
|
Zhang C, Li H, Wang S. Single-cell and transcriptome analysis reveals TAL cells in diabetic nephropathy. Funct Integr Genomics 2023; 23:292. [PMID: 37679655 DOI: 10.1007/s10142-023-01212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023]
Abstract
Diabetic nephropathy is a global public health concern with multifaceted pathogenesis, primarily involving hypertension. Excessive activation of AT1R has been strongly associated with hypertension onset and progression in diabetic nephropathy. This study aimed to conduct thick ascending limb cell single-cell and transcriptomic analysis in diabetic nephropathy, including screening for biological markers, cellular communication, and immune infiltration, to identify potential biomarkers and effective means for prevention and treatment. By using high-dimensional weighted gene co-expression network analysis, least absolute shrinkage and selection operator, machine learning, neural deconvolution, quasi-chronological analysis, non-negative matrix factorization clustering, and monocyte chemotactic protein-induced counter, we identified 7 potential thick ascending limb cell biomarkers for diabetic nephropathy and elucidated the bone morphogenetic protein pathway's regulation of thick ascending limb cells through podocyte epithelial cells and podocyte cells. The study also highlighted the role of COBL, PPARGC1A, and THSD7A in non-negative matrix factorization clustering and their relationship with thick ascending limb cell immunity in diabetic nephropathy. Our findings provide new insights and avenues for managing diabetic nephropathy, ultimately alleviating the burden on patients and society.
Collapse
Affiliation(s)
- Chengyu Zhang
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Han Li
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Shixiang Wang
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| |
Collapse
|
3
|
Waters JA, Urbano I, Robinson M, House CD. Insulin-like growth factor binding protein 5: Diverse roles in cancer. Front Oncol 2022; 12:1052457. [PMID: 36465383 PMCID: PMC9714447 DOI: 10.3389/fonc.2022.1052457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Insulin-like growth factor binding proteins (IGFBPs) and the associated signaling components in the insulin-like growth factor (IGF) pathway regulate cell differentiation, proliferation, apoptosis, and adhesion. Of the IGFBPs, insulin-like growth factor binding protein 5 (IGFBP5) is the most evolutionarily conserved with a dynamic range of IGF-dependent and -independent functions, and studies on the actions of IGFBP5 in cancer have been somewhat paradoxical. In cancer, the IGFBPs respond to external stimuli to modulate disease progression and therapeutic responsiveness in a context specific manner. This review discusses the different roles of IGF signaling and IGFBP5 in disease with an emphasis on discoveries within the last twenty years, which underscore a need to clarify the IGF-independent actions of IGFBP5, the impact of its subcellular localization, the differential activities of each of the subdomains, and the response to elements of the tumor microenvironment (TME). Additionally, recent advances addressing the role of IGFBP5 in resistance to cancer therapeutics will be discussed. A better understanding of the contexts in which IGFBP5 functions will facilitate the discovery of new mechanisms of cancer progression that may lead to novel therapeutic opportunities.
Collapse
Affiliation(s)
- Jennifer A. Waters
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Ixchel Urbano
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Mikella Robinson
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Carrie D. House
- Biology Department, San Diego State University, San Diego, CA, United States,Moore’s Cancer Center, University of California, San Diego, San Diego, CA, United States,*Correspondence: Carrie D. House,
| |
Collapse
|
4
|
Abstract
The functional mass of kidney tissue in an adult is an important determinant of human health. Kidney formation during development is an essential determinant of the final nephron endowment of the adult organ, and no evidence has been reported that mice or humans are able to generate new nephrons after the developmental period. Mechanisms controlling organ growth after development are essential to establish the final adult organ size. The potential for organ growth is maintained in adult life and the size of one kidney may be significantly increased by loss of the contralateral kidney. The mouse has provided a model system for investigators to critically explore genetic, cell biological, and hormonal control of developmental and juvenile kidney growth. This article reviews three basic aspects of kidney size regulation: (1) Mechanisms that control nephron formation and how these are altered by the cessation of nephrogenesis at the end of the developmental period. (2) Applicability of the general model for growth hormone-insulin like growth factor control to kidney growth both pre- and postnatally. (3) Commonalities between mechanisms of juvenile kidney growth and the compensatory growth that is stimulated in adult life by reduction of kidney mass. Understanding the mechanisms that determine set-points for cell numbers and size in the kidney may inform ongoing efforts to generate kidney tissue from stem cells.
Collapse
Affiliation(s)
- Leif Oxburgh
- The Rogosin Institute, New York, NY, United States.
| |
Collapse
|
5
|
Gurevich E, Segev Y, Landau D. Growth Hormone and IGF1 Actions in Kidney Development and Function. Cells 2021; 10:cells10123371. [PMID: 34943879 PMCID: PMC8699155 DOI: 10.3390/cells10123371] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 01/17/2023] Open
Abstract
Growth hormone (GH) exerts multiple effects on different organs including the kidneys, either directly or via its main mediator, insulin-like-growth factor-1 (IGF-1). The GH/IGF1 system plays a key role in normal kidney development, glomerular hemodynamic regulation, as well as tubular water, sodium, phosphate, and calcium handling. Transgenic animal models demonstrated that GH excess (and not IGF1) may lead to hyperfiltration, albuminuria, and glomerulosclerosis. GH and IGF-1 play a significant role in the early development of diabetic nephropathy, as well as in compensatory kidney hypertrophy after unilateral nephrectomy. Chronic kidney disease (CKD) and its complications in children are associated with alterations in the GH/IGF1 axis, including growth retardation, related to a GH-resistant state, attributed to impaired kidney postreceptor GH-signaling and chronic inflammation. This may explain the safety of prolonged rhGH-treatment of short stature in CKD.
Collapse
Affiliation(s)
- Evgenia Gurevich
- Department of Nephrology, Schneider Children’s Medical Center of Israel, 14 Kaplan Street, Petach Tikva 4920235, Israel;
| | - Yael Segev
- Shraga Segal Department of Microbiology and Immunology, Ben Gurion University, Beer Sheva 8410501, Israel;
| | - Daniel Landau
- Department of Nephrology, Schneider Children’s Medical Center of Israel, 14 Kaplan Street, Petach Tikva 4920235, Israel;
- Sackler School of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-3925-3651
| |
Collapse
|
6
|
Haffner D, Grund A, Leifheit-Nestler M. Renal effects of growth hormone in health and in kidney disease. Pediatr Nephrol 2021; 36:2511-2530. [PMID: 34143299 PMCID: PMC8260426 DOI: 10.1007/s00467-021-05097-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/27/2021] [Indexed: 12/29/2022]
Abstract
Growth hormone (GH) and its mediator insulin-like growth factor-1 (IGF-1) have manifold effects on the kidneys. GH and IGF receptors are abundantly expressed in the kidney, including the glomerular and tubular cells. GH can act either directly on the kidneys or via circulating or paracrine-synthesized IGF-1. The GH/IGF-1 system regulates glomerular hemodynamics, renal gluconeogenesis, tubular sodium and water, phosphate, and calcium handling, as well as renal synthesis of 1,25 (OH)2 vitamin D3 and the antiaging hormone Klotho. The latter also acts as a coreceptor of the phosphaturic hormone fibroblast-growth factor 23 in the proximal tubule. Recombinant human GH (rhGH) is widely used in the treatment of short stature in children, including those with chronic kidney disease (CKD). Animal studies and observations in acromegalic patients demonstrate that GH-excess can have deleterious effects on kidney health, including glomerular hyperfiltration, renal hypertrophy, and glomerulosclerosis. In addition, elevated GH in patients with poorly controlled type 1 diabetes mellitus was thought to induce podocyte injury and thereby contribute to the development of diabetic nephropathy. This manuscript gives an overview of the physiological actions of GH/IGF-1 on the kidneys and the multiple alterations of the GH/IGF-1 system and its consequences in patients with acromegaly, CKD, nephrotic syndrome, and type 1 diabetes mellitus. Finally, the impact of short- and long-term treatment with rhGH/rhIGF-1 on kidney function in patients with kidney diseases will be discussed.
Collapse
Affiliation(s)
- Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Andrea Grund
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
7
|
Varma Shrivastav S, Bhardwaj A, Pathak KA, Shrivastav A. Insulin-Like Growth Factor Binding Protein-3 (IGFBP-3): Unraveling the Role in Mediating IGF-Independent Effects Within the Cell. Front Cell Dev Biol 2020; 8:286. [PMID: 32478064 PMCID: PMC7232603 DOI: 10.3389/fcell.2020.00286] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/02/2020] [Indexed: 12/22/2022] Open
Abstract
Insulin-like growth factor (IGF) binding protein-3 (IGFBP-3), one of the six members of the IGFBP family, is a key protein in the IGF pathway. IGFBP-3 can function in an IGF-dependent as well as in an IGF-independent manner. The IGF-dependent roles of IGFBP-3 include its endocrine role in the delivery of IGFs from the site of synthesis to the target cells that possess IGF receptors and the activation of associated downstream signaling. IGF-independent role of IGFBP-3 include its interactions with the proteins of the extracellular matrix and the proteins of the plasma membrane, its translocation through the plasma membrane into the cytoplasm and into the nucleus. The C-terminal domain of IGFBP-3 has the ability to undergo cell penetration therefore, generating a short 8-22-mer C-terminal domain peptides that can be conjugated to drugs or genes for effective intracellular delivery. This has opened doors for biotechnological applications of the molecule in molecular medicine. The aim of this this review is to summarize the complex roles of IGFBP-3 within the cell, including its mechanisms of cellular uptake and its translocation into the nucleus, various molecules with which it is capable of interacting, and its ability to regulate IGF-independent cell growth, survival and apoptosis. This would pave way into understanding the modus operandi of IGFBP-3 in regulating IGF-independent processes and its pleiotropic ability to bind with potential partners thus regulating several cellular functions implicated in metabolic diseases, including cancer.
Collapse
Affiliation(s)
- Shailly Varma Shrivastav
- VastCon Inc., Winnipeg, MB, Canada.,Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Apurva Bhardwaj
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Kumar Alok Pathak
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Surgery, University of Manitoba, Winnipeg, MB, Canada
| | - Anuraag Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
8
|
Mukhi D, Nishad R, Menon RK, Pasupulati AK. Novel Actions of Growth Hormone in Podocytes: Implications for Diabetic Nephropathy. Front Med (Lausanne) 2017; 4:102. [PMID: 28748185 PMCID: PMC5506074 DOI: 10.3389/fmed.2017.00102] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/26/2017] [Indexed: 02/05/2023] Open
Abstract
The kidney regulates water, electrolyte, and acid-base balance and thus maintains body homeostasis. The kidney’s potential to ensure ultrafiltered and almost protein-free urine is compromised in various metabolic and hormonal disorders such as diabetes mellitus (DM). Diabetic nephropathy (DN) accounts for ~20–40% of mortality in DM. Proteinuria, a hallmark of renal glomerular diseases, indicates injury to the glomerular filtration barrier (GFB). The GFB is composed of glomerular endothelium, basement membrane, and podocytes. Podocytes are terminally differentiated epithelial cells with limited ability to replicate. Podocyte shape and number are both critical for the integrity and function of the GFB. Podocytes are vulnerable to various noxious stimuli prevalent in a diabetic milieu that could provoke podocytes to undergo changes to their unique architecture and function. Effacement of podocyte foot process is a typical morphological alteration associated with proteinuria. The dedifferentiation of podocytes from epithelial-to-mesenchymal phenotype and consequential loss results in proteinuria. Poorly controlled type 1 DM is associated with elevated levels of circulating growth hormone (GH), which is implicated in the pathophysiology of various diabetic complications including DN. Recent studies demonstrate that functional GH receptors are expressed in podocytes and that GH may exert detrimental effects on the podocyte. In this review, we summarize recent advances that shed light on actions of GH on the podocyte that could play a role in the pathogenesis of DN.
Collapse
Affiliation(s)
- Dhanunjay Mukhi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Rajkishor Nishad
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Ram K Menon
- Department of Pediatric Endocrinology and Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Anil Kumar Pasupulati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
9
|
Tracz AF, Szczylik C, Porta C, Czarnecka AM. Insulin-like growth factor-1 signaling in renal cell carcinoma. BMC Cancer 2016; 16:453. [PMID: 27405474 PMCID: PMC4942928 DOI: 10.1186/s12885-016-2437-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 06/28/2016] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) incidence is highest in highly developed countries and it is the seventh most common neoplasm diagnosed. RCC management include nephrectomy and targeted therapies. Type 1 insulin-like growth factor (IGF-1) pathway plays an important role in cell proliferation and apoptosis resistance. IGF-1 and insulin share overlapping downstream signaling pathways in normal and cancer cells. IGF-1 receptor (IGF1R) stimulation may promote malignant transformation promoting cell proliferation, dedifferentiation and inhibiting apoptosis. Clear cell renal cell carcinoma (ccRCC) patients with IGF1R overexpression have 70 % increased risk of death compared to patients who had tumors without IGF1R expression. IGF1R signaling deregulation may results in p53, WT, BRCA1, VHL loss of function. RCC cells with high expression of IGF1R are more resistant to chemotherapy than cells with low expression. Silencing of IGF1R increase the chemosensitivity of ccRCC cells and the effect is greater in VHL mutated cells. Understanding the role of IGF-1 signaling pathway in RCC may result in development of new targeted therapeutic interventions. First preclinical attempts with anti-IGF-1R monoclonal antibodies or fragment antigen-binding (Fab) fragments alone or in combination with an mTOR inhibitor were shown to inhibit in vitro growth and reduced the number of colonies formed by of RCC cells.
Collapse
Affiliation(s)
- Adam F Tracz
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland.,First Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Cezary Szczylik
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland
| | - Camillo Porta
- Department of Medical Oncology, IRCCS San Matteo University Hospital Foundation, Pavia, Italy
| | - Anna M Czarnecka
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland.
| |
Collapse
|
10
|
Insulin-Like Growth Factor Binding Protein-4 as a Marker of Chronic Lupus Nephritis. PLoS One 2016; 11:e0151491. [PMID: 27019456 PMCID: PMC4809566 DOI: 10.1371/journal.pone.0151491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/29/2016] [Indexed: 11/19/2022] Open
Abstract
Kidney biopsy remains the mainstay of Lupus Nephritis (LN) diagnosis and prognostication. The objective of this study is to identify non-invasive biomarkers that closely parallel renal pathology in LN. Previous reports have demonstrated that serum Insulin-like growth factor binding protein 4 (IGFBP-4) was increased in diabetic nephropathy in both animal models and patients. We proceeded to assess if IGFBP4 could be associated with LN. We performed ELISA using the serum of 86 patients with LN. Normal healthy adults (N = 23) and patients with other glomerular diseases (N = 20) served as controls. Compared to the healthy controls or other glomerular disease controls, serum IGFBP-4 levels were significantly higher in the patients with LN. Serum IGFBP-4 did not correlate well with systemic lupus erythematosus disease activity index (SLEDAI), renal SLEDAI or proteinuria, but it did correlate with estimated glomerular filtration rate (R = 0.609, P < 0.0001). Interestingly, in 18 patients with proliferative LN whose blood samples were obtained at the time of renal biopsy, serum IGFBP-4 levels correlated strongly with the chronicity index of renal pathology (R = 0.713, P < 0.001). IGFBP-4 emerges a potential marker of lupus nephritis, reflective of renal pathology chronicity changes.
Collapse
|
11
|
Bach LA, Hale LJ. Insulin-like growth factors and kidney disease. Am J Kidney Dis 2014; 65:327-36. [PMID: 25151409 DOI: 10.1053/j.ajkd.2014.05.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/03/2014] [Indexed: 11/11/2022]
Abstract
Insulin-like growth factors (IGF-1 and IGF-2) are necessary for normal growth and development. They are related structurally to proinsulin and promote cell proliferation, differentiation, and survival, as well as insulin-like metabolic effects, in most cell types and tissues. In particular, IGFs are important for normal pre- and postnatal kidney development. IGF-1 mediates many growth hormone actions, and both growth hormone excess and deficiency are associated with perturbed kidney function. IGFs affect renal hemodynamics both directly and indirectly by interacting with the renin-angiotensin system. In addition to the IGF ligands, the IGF system includes receptors for IGF-1, IGF-2/mannose-6-phosphate, and insulin, and a family of 6 high-affinity IGF-binding proteins that modulate IGF action. Disordered regulation of the IGF system has been implicated in a number of kidney diseases. IGF activity is enhanced in early diabetic nephropathy and polycystic kidneys, whereas IGF resistance is found in chronic kidney failure. IGFs have a potential role in enhancing stem cell repair of kidney injury. Most IGF actions are mediated by the tyrosine kinase IGF-1 receptor, and inhibitors recently have been developed. Further studies are needed to determine the optimal role of IGF-based therapies in kidney disease.
Collapse
Affiliation(s)
- Leon A Bach
- Department of Endocrinology and Diabetes, Alfred Hospital, Melbourne, Victoria, Australia; Department of Medicine (Alfred), Monash University, Melbourne, Victoria, Australia.
| | - Lorna J Hale
- Baker-IDI Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Kamenický P, Mazziotti G, Lombès M, Giustina A, Chanson P. Growth hormone, insulin-like growth factor-1, and the kidney: pathophysiological and clinical implications. Endocr Rev 2014; 35:234-81. [PMID: 24423979 DOI: 10.1210/er.2013-1071] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Besides their growth-promoting properties, GH and IGF-1 regulate a broad spectrum of biological functions in several organs, including the kidney. This review focuses on the renal actions of GH and IGF-1, taking into account major advances in renal physiology and hormone biology made over the last 20 years, allowing us to move our understanding of GH/IGF-1 regulation of renal functions from a cellular to a molecular level. The main purpose of this review was to analyze how GH and IGF-1 regulate renal development, glomerular functions, and tubular handling of sodium, calcium, phosphate, and glucose. Whenever possible, the relative contributions, the nephronic topology, and the underlying molecular mechanisms of GH and IGF-1 actions were addressed. Beyond the physiological aspects of GH/IGF-1 action on the kidney, the review describes the impact of GH excess and deficiency on renal architecture and functions. It reports in particular new insights into the pathophysiological mechanism of body fluid retention and of changes in phospho-calcium metabolism in acromegaly as well as of the reciprocal changes in sodium, calcium, and phosphate homeostasis observed in GH deficiency. The second aim of this review was to analyze how the GH/IGF-1 axis contributes to major renal diseases such as diabetic nephropathy, renal failure, renal carcinoma, and polycystic renal disease. It summarizes the consequences of chronic renal failure and glucocorticoid therapy after renal transplantation on GH secretion and action and questions the interest of GH therapy in these conditions.
Collapse
Affiliation(s)
- Peter Kamenický
- Assistance Publique-Hôpitaux de Paris (P.K., M.L., P.C.), Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Endocriniennes Rares de la Croissance, Le Kremlin Bicêtre F-94275, France; Univ Paris-Sud (P.K., M.L., P.C.), Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre F-94276, France; Inserm Unité 693 (P.K., M.L., P.C.), Le Kremlin Bicêtre F-94276, France; and Department of Clinical and Experimental Sciences (A.G., G.M.), Chair of Endocrinology, University of Brescia, 25125 Brescia, Italy
| | | | | | | | | |
Collapse
|
13
|
Okano T, Kelley MW. Expression of insulin-like growth factor binding proteins during mouse cochlear development. Dev Dyn 2013; 242:1210-21. [DOI: 10.1002/dvdy.24005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/16/2013] [Accepted: 06/16/2013] [Indexed: 12/23/2022] Open
Affiliation(s)
- Takayuki Okano
- Laboratory of Cochlear Development; National Institute on Deafness and Other Communication Disorders; National Institutes of Health; Bethesda Maryland
| | - Matthew W. Kelley
- Laboratory of Cochlear Development; National Institute on Deafness and Other Communication Disorders; National Institutes of Health; Bethesda Maryland
| |
Collapse
|
14
|
Narayanan RP, Fu B, Heald AH, Siddals KW, Oliver RL, Hudson JE, Payton A, Anderson SG, White A, Ollier WER, Gibson JM. IGFBP2 is a biomarker for predicting longitudinal deterioration in renal function in type 2 diabetes. Endocr Connect 2012; 1:95-102. [PMID: 23781310 PMCID: PMC3681324 DOI: 10.1530/ec-12-0053] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/19/2012] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Insulin-like growth factors are implicated in the development of diabetic nephropathy. IGF-binding protein 2 (IGFBP2) and IGF2 are expressed in the kidney, but their associations with diabetic nephropathy are unclear. We therefore tested the hypothesis that circulating levels of IGF2 and IGFBP2 predict longitudinal renal function in individuals with type 2 diabetes. DESIGN AND METHODS IGFBP2 and IGF2 measurements were performed in 436 individuals (263 males) with type 2 diabetes. Linear mixed-effect regression analysis was used to model the relationship between plasma IGFBP2 concentration and longitudinal changes in estimated glomerular filtration rate (eGFR) over an 8-year period. Analyses were also performed for IGF1, IGF2, IGFBP1 and IGFBP3 concentrations as predictors of longitudinal renal outcomes. RESULTS High IGFBP2 concentration at baseline was associated with a decreased eGFR over an 8-year period (β=-0.02, (95% confidence interval -0.03 to -0.01), P<0.001). High IGFBP1, IGFBP2 and IGFBP3 were also associated with low baseline eGFR concentration. CONCLUSION This study demonstrates that IGFBP2 is a predictor of longitudinal deterioration of renal function in type 2 diabetes.
Collapse
Affiliation(s)
- Ram P Narayanan
- Vascular Research GroupThe University of ManchesterManchester, M13 9PTUK
- Correspondence should be addressed to R P Narayanan B-202, Clinical Sciences Building, Salford Royal NHS Foundation Trust, Stott Lane, Salford M6 8HD, UK Email
| | - Bo Fu
- School of Community Based Medicine, The University of ManchesterManchester, M13 9PTUK
| | - Adrian H Heald
- Vascular Research GroupThe University of ManchesterManchester, M13 9PTUK
| | - Kirk W Siddals
- Vascular Research GroupThe University of ManchesterManchester, M13 9PTUK
| | - Robert L Oliver
- Vascular Research GroupThe University of ManchesterManchester, M13 9PTUK
| | - Julie E Hudson
- Vascular Research GroupThe University of ManchesterManchester, M13 9PTUK
| | - Antony Payton
- Centre for Integrated Genomic Medical Research, The University of ManchesterManchester, M13 9PTUK
| | - Simon G Anderson
- Cardiovascular Research GroupThe University of ManchesterManchester, M13 9PTUK
| | - Anne White
- Endocrinology and Diabetes, Faculty of Medical, Human and Life SciencesThe University of ManchesterManchester, M13 9PTUK
| | - William E R Ollier
- Centre for Integrated Genomic Medical Research, The University of ManchesterManchester, M13 9PTUK
- Salford R&D, Salford Royal Hospital NHS Foundation TrustSalford, M6 8HDUK
| | - J Martin Gibson
- Vascular Research GroupThe University of ManchesterManchester, M13 9PTUK
- Department of Endocrinology and DiabetesSalford Royal Hospital NHS Foundation TrustSalford, M6 8HDUK
| |
Collapse
|
15
|
Kim B, Huang G, Ho WB, Greenspan DS. Bone morphogenetic protein-1 processes insulin-like growth factor-binding protein 3. J Biol Chem 2011; 286:29014-29025. [PMID: 21697095 DOI: 10.1074/jbc.m111.252585] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The bone morphogenetic protein-1 (BMP1)-like metalloproteinases play key roles in extracellular matrix formation, by converting precursors into mature functional proteins involved in forming the extracellular matrix. The BMP1-like proteinases also play roles in activating growth factors, such as BMP2/4, myostatin, growth differentiation factor 11, and transforming growth factor β1, by cleaving extracellular antagonists. The extracellular insulin-like growth factor-binding proteins (IGFBPs) are involved in regulating the effects of insulin-like growth factors (IGFs) on growth, development, and metabolism. Of the six IGFBPs, IGFBP3 has the greatest interaction with the large pool of circulating IGFs. It is also produced locally in tissues and is itself regulated by proteolytic processing. Here, we show that BMP1 cleaves human and mouse IGFBP3 at a single conserved site, resulting in markedly reduced ability of cleaved IGFBP3 to bind IGF-I or to block IGF-I-induced cell signaling. In contrast, such cleavage is shown to result in enhanced IGF-I-independent ability of cleaved IGFBP3 to block FGF-induced proliferation and to induce Smad phosphorylation. Consistent with in vivo roles for such cleavage, it is shown that, whereas wild type mouse embryo fibroblasts (MEFs) produce cleaved IGFBP3, MEFs doubly null for the Bmp1 gene and for the Tll1 gene, which encodes the related metalloproteinase mammalian Tolloid-like 1 (mTLL1), produce only unprocessed IGFBP3, thus demonstrating endogenous BMP1-related proteinases to be responsible for IGFBP3-processing activity in MEFs. Similarly, in zebrafish embryos, overexpression of Bmp1a is shown to reverse an Igfbp3-induced phenotype, consistent with the ability of BMP1-like proteinases to cleave IGFBP3 in vivo.
Collapse
Affiliation(s)
- Byoungjae Kim
- Department of Cell and Regenerative Biology, and the Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin 53706 and
| | - Guorui Huang
- Department of Cell and Regenerative Biology, and the Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin 53706 and
| | - Wen-Bin Ho
- FibroGen, Inc., San Francisco, California 94158
| | - Daniel S Greenspan
- Department of Cell and Regenerative Biology, and the Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin 53706 and.
| |
Collapse
|
16
|
|
17
|
Rothermund L, Nierhaus M, Fialkowski O, Freese F, Ibscher R, Mieschel S, Kossmehl P, Grimm D, Wehland M, Kreutz R. Genetic low nephron number hypertension is associated with dysregulation of the hepatic and renal insulin-like growth factor system during nephrogenesis. J Hypertens 2006; 24:1857-64. [PMID: 16915036 DOI: 10.1097/01.hjh.0000242411.50536.b9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Low nephron number may represent a major determinant of human primary hypertension in adult life. This hypothesis is supported by a genetic rat model, namely the Munich-Wistar-Frömter (MWF) rat, which demonstrates an inherited deficit in nephron number and the development of spontaneous hypertension. Insulin-like growth factor (IGF) I and II exert endocrine and paracrine effects that are required for normal growth and nephron development. We tested the hypothesis that low nephron number is already present during fetal development, and the expression pattern of important molecules of the IGF system is altered in MWF rat during the critical period of kidney development. METHODS We compared MWF and normal Wistar rats during nephrogenesis at day 19 of fetal development (E19) and adult rats at postnatal day 100 (D100). Histomorphometric analysis was performed by stereological methods. Quantitative messenger RNA and protein expression was determined by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS At E19, glomerular density (-32%) and hepatic mRNA (-48%) and protein (-18%) expression of IGF-I were decreased (P < 0.05, respectively), whereas renal mRNA expression of IGF-II receptor (+52%) and IGF binding protein 3 (+113%) were increased in MWF compared with Wistar rats (P < 0.05, respectively). Systolic blood pressure, urinary albumin excretion, and mean glomerular area were significantly elevated in MWF compared with Wistar rats at D100 (P < 0.05, respectively). CONCLUSIONS The fetal expression of IGF system molecules in the MWF rat model points towards a link between the decreased availability of active IGF-I and IGF-II and the fetal development of low nephron number, with manifestation of genetic hypertension in adult life.
Collapse
Affiliation(s)
- Lars Rothermund
- Medizinische Klinik IV, Endokrinologie und Nephrologie, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Amin R, Dunger DB. Growth hormone hypothesis and development of diabetic nephropathy in Type 1 diabetes. Expert Rev Endocrinol Metab 2006; 1:673-684. [PMID: 30754096 DOI: 10.1586/17446651.1.5.673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In Type 1 diabetes, poor glycemic control is the key predictor for the development of microalbuminuria, an established early marker of overt nephropathy. However, the role of other pathways in the development of diabetic nephropathy may also be important. The growth hormone (GH) hypothesis suggests that the GH-insulin-like growth factor (IGF)-1 axis may play an important role in this disease process. In Type 1 diabetes, the characteristic pattern of GH hypersecretion and low circulating IGF-1 levels results from hepatic GH resistance owing to the lack of portal insulin. Clinical data indicate that high GH and low IGF-1 levels reduce insulin sensitivity and worsen glycemic control. Furthermore, despite hepatic GH resistance, GH receptors at the kidney remain intact. Experimental data show that excess GH stimulates renal GH receptors and, through paracrine IGF-1 production, results in pathophysiological changes consistent with diabetic nephropathy, namely nephromegaly, glomerular hyperfiltration and eventual proteinuria. These abnormalities are reversed by intervention to block or normalize the local effects of GH and IGF-1. Although such data in humans are limited, preliminary trials show that interventions to increase IGF-1 levels and reduce GH hypersecretion improve glycemic control and insulin sensitivity in the short term. However, their effects on early nephropathy and end points, such as the prevalence of end stage renal disease, have yet to be determined.
Collapse
Affiliation(s)
- Rakesh Amin
- a University of Cambridge, Department of Paediatrics, Cambridge, UK
| | - David B Dunger
- b University of Cambridge, Department of Paediatrics, Box 116, Level 8, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK.
| |
Collapse
|
19
|
Van der Sluis M, De Koning BAE, De Bruijn ACJM, Velcich A, Meijerink JPP, Van Goudoever JB, Büller HA, Dekker J, Van Seuningen I, Renes IB, Einerhand AWC. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 2006; 131:117-29. [PMID: 16831596 DOI: 10.1053/j.gastro.2006.04.020] [Citation(s) in RCA: 1195] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 03/23/2006] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Expression of mucin MUC2, the structural component of the colonic mucus layer, is lowered in inflammatory bowel disease. Our aim was to obtain insight in the role of Muc2 in epithelial protection. METHODS Muc2 knockout (Muc2(-/-)) and Muc2 heterozygous (Muc2(+/-)) mice were characterized and challenged by a colitis-inducing agent, dextran sulfate sodium (DSS). We monitored clinical symptoms, intestinal morphology, and differences in intestine-specific protein and messenger RNA levels. RESULTS The Muc2(-/-) mice showed clinical signs of colitis (as of 5 weeks), aggravating as the mice aged. Microscopic analysis of the colon of Muc2(-/-) mice showed mucosal thickening, increased proliferation, and superficial erosions. Colonic goblet cells in the Muc2(-/-) mice were negative for Muc2, but trefoil factor 3 was still detectable. In Muc2(-/-) mice, transient de novo expression of Muc6 messenger RNA was observed in the distal colon. On day 2 of DSS treatment, the histologic damage was more severe in Muc2(+/-) versus wild-type (Muc2(+/+)) mice, but the disease activity index was not yet different. By day 7, the disease activity index and histologic score were significantly elevated in Muc2(+/-) versus Muc2(+/+) mice. The disease activity index of the Muc2(-/-) mice was higher (versus both Muc2(+/+) and Muc2(+/-) mice) throughout DSS treatment. The histologic damage in the DSS-treated Muc2(-/-) mice was different compared with Muc2(+/+) and Muc2(+/-) mice, with many crypt abscesses instead of mucosal ulcerations. CONCLUSIONS This study shows that Muc2 deficiency leads to inflammation of the colon and contributes to the onset and perpetuation of experimental colitis.
Collapse
Affiliation(s)
- Maria Van der Sluis
- Division of Neonatology, Department of Pediatrics, Erasmus MC and Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Boshuizen JA, Reimerink JHJ, Korteland-van Male AM, van Ham VJJ, Bouma J, Gerwig GJ, Koopmans MPG, Büller HA, Dekker J, Einerhand AWC. Homeostasis and function of goblet cells during rotavirus infection in mice. Virology 2005; 337:210-21. [PMID: 15882887 DOI: 10.1016/j.virol.2005.03.039] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 02/03/2005] [Accepted: 03/29/2005] [Indexed: 11/30/2022]
Abstract
Rotaviruses are the leading cause of severe viral gastroenteritis in young children. To gain insight in goblet cell homeostasis and intestinal mucin expression during rotavirus infection, 6-day-old mice were inoculated with murine rotavirus. To determine epithelial cell migration, mice were injected with BrdU just before inoculation. Small intestines were isolated at different days postinfection (dpi) and evaluated for rotavirus and goblet cell-specific gene expression. Small intestinal mucins of control and infected animals at 1, 2, and 4 dpi were isolated and tested for their capability to neutralize rotavirus infection in vitro. After inoculation, two peaks of viral replication were observed at 1 and 4 dpi. During infection, the number of goblet cells in infected mice was decreased in duodenum and jejunum, but was unaffected in the ileum. Goblet cells in infected animals accumulated at the tips of the villi. Muc2 mRNA levels were increased during the peak of viral replication at 1 dpi, whereas at other time points Muc2 and Tff3 mRNA levels were maintained at control levels. Muc2 protein levels in the tissue were also maintained, however Tff3 protein levels were strongly decreased. The number of goblet cells containing sulfated mucins was reduced during the two peaks of infection. Mucins isolated at 1 and 2 dpi from control and infected mice efficiently neutralized rotavirus infection in vitro. Moreover, mucins isolated from infected mice at 4 dpi were more potent in inhibiting rotavirus infection than mucins from control mice at 4 dpi. In conclusion, these data show that during rotavirus infection, goblet cells, in contrast to enterocytes, are relatively spared from apoptosis especially in the ileum. Goblet cell-specific Muc2 expression is increased and mucin structure is modified in the course of infection. This suggests that goblet cells and mucins play a role in the active defense against rotavirus infection and that age-dependent differences in mucin quantities, composition, and/or structure alter the anti-viral capabilities of small intestinal mucins.
Collapse
Affiliation(s)
- Jos A Boshuizen
- Laboratory of Pediatrics, Pediatric Gastroenterology and Nutrition, Erasmus MC/Sophia, Room Ee1571A, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Vasylyeva TL, Chen X, Ferry RJ. Insulin-like growth factor binding protein-3 mediates cytokine-induced mesangial cell apoptosis. Growth Horm IGF Res 2005; 15:207-214. [PMID: 15935983 PMCID: PMC3092586 DOI: 10.1016/j.ghir.2005.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 01/30/2005] [Accepted: 02/15/2005] [Indexed: 02/05/2023]
Abstract
Mesangial cells are critical for glomerular filtration. Mesangial cell dysfunction, the hallmark of diabetic nephropathy, results from disordered mesangial growth induced by cytokines, abnormal hemodynamic influence, and metabolic factors associated with chronic hyperglycemia. Insulin-like growth factors (IGFs) and their high affinity binding proteins (IGFBPs) exert major actions on mesangial cell survival, but their underlying mechanisms remain unclear. In light of emerging IGF-independent roles for IGFBP-3, we investigated IGFBP-3 actions during mesangial cell apoptosis induced by cytokine or high glucose concentration. Quantified by DNA fragmentation ELISA and Annexin V flow cytometry, apoptosis occurred in rat mesangial cells (RMC) exposed to 2 microg/mL IGFBP-3 for 24 h under high ambient or standard glucose. Anti-sense IGFBP-3 oligo at 10 microg/mL significantly inhibited apoptosis induced by 100 ng/mL TNF-alpha, serum-free conditions, or high (25 mM) glucose. Increased IGFBP-3 release associated with high ambient glucose or TNF-alpha was inhibited by pre-treatment with anti-sense oligo. Under serum-free conditions, recombinant human IGFBP-3 blocked Akt phosphorylation at threonine 308 (pThr308), whereas anti-sense oligo treatment was associated with enhanced pThr308 activity. In summary, these data support a novel mechanism for TNF-alpha-induced mesangial cell apoptosis mediated by IGFBP-3 and present regulation of pThr308 activity as a novel mechanism underlying IGFBP-3 action.
Collapse
Affiliation(s)
- Tetyana L. Vasylyeva
- Division of Pediatric Endocrinology and Diabetes, Pediatrics Department, The University of Texas Health Science Center at San Antonio, 540-F4 MSC 7806, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Xiaoyan Chen
- Division of Pediatric Endocrinology and Diabetes, Pediatrics Department, The University of Texas Health Science Center at San Antonio, 540-F4 MSC 7806, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Robert J. Ferry
- Division of Pediatric Endocrinology and Diabetes, Pediatrics Department, The University of Texas Health Science Center at San Antonio, 540-F4 MSC 7806, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
- Cellular and Structural Biology Department, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
- Engineering Battalion, 56th Brigade Combat Team, 36th Infantry Division, 111th Texas Army National Guard, Baghdad, Iraq
| |
Collapse
|
22
|
Mohammed JA, Mok AYP, Parbtani A, Matsell DG. Increased expression of insulin-like growth factors in progressive glomerulonephritis of the MRL/lpr mouse. Lupus 2005; 12:584-90. [PMID: 12945716 DOI: 10.1191/0961203303lu422oa] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Glomerulonephritis is an important complication of systemic lupus erythematosus (SLE). The tissue distribution and exact role of the insulin-like growth factors (IGFs) in the development of lupus nephritis in the MRL/lpr mouse model have not been established. The present study was undertaken to evaluate the changes over time in mRNA and peptide expression of IGF-I and IGFBP-2 in the MRL/lpr mouse. Using in situ hybridization and immunocytochemistry techniques, the expression of IGF-I and IGFBP-2 in MRL/lpr mouse was examined and compared to their congenic normal MRL-++ mouse counterparts from nine to 24 weeks of age. In the MRL-++ and MRL/lpr mouse kidneys, IGF-I and IGFBP-2 mRNA expression was limited to the cortical and medullary collecting ducts, while their immunoreactivity (IR) was localized to the cortical and medullary collecting ducts, loop of Henle, glomeruli and proximal tubules. Over time, and with progression of disease, the MRL/lpr mice displayed a significant increase in IGF-I IR and a modest increase in IGFBP-2 IR within the outer cortical glomeruli, which was associated with a significant increase in glomerulosclerosis and glomerular cell proliferation and with a significant decrease in renal function. In conclusion, this overexpression of IGF-I and IGFBP-2 within the glomeruli of the MRL/lpr mouse kidney supports their potential role in the alterations in renal function and morphology that accompany lupus nephritis.
Collapse
Affiliation(s)
- J A Mohammed
- Department of Pediatrics and Child Health Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
23
|
Li Y, Xiang J, Duan C. Insulin-like Growth Factor-binding Protein-3 Plays an Important Role in Regulating Pharyngeal Skeleton and Inner Ear Formation and Differentiation. J Biol Chem 2005; 280:3613-20. [PMID: 15550380 DOI: 10.1074/jbc.m411479200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Insulin-like growth factor-binding protein (IGFBP)-3 is the major insulin-like growth factor (IGF) carrier protein in the bloodstream. IGFBP-3 prolongs the half-life of circulating IGFs and prevents their potential hypoglycemic effect. IGFBP-3 is also expressed in many peripheral tissues in fetal and adult stages. In vitro, IGFBP-3 can inhibit or potentiate IGF actions and even possesses IGF-independent activities, suggesting that local IGFBP-3 may also have paracrine/autocrine function(s). The in vivo function of IGFBP-3, however, is unclear. In this study, we elucidate the developmental role of IGFBP-3 using the zebrafish model. IGFBP-3 mRNA expression is first detected in the migrating cranial neural crest cells and subsequently in pharyngeal arches in zebrafish embryos. IGFBP-3 mRNA is also persistently expressed in the developing inner ears. To determine the role of IGFBP-3 in these tissues, we ablated the IGFBP-3 gene product using morpholino-modified antisense oligonucleotides (MOs). The IGFBP-3 knocked down embryos had delayed pharyngeal skeleton morphogenesis and greatly reduced pharyngeal cartilage differentiation. Knockdown of IGFBP-3 also significantly decreased inner ear size and disrupted hair cell differentiation and semicircular canal formation. Furthermore, reintroduction of a MO-resistant form of IGFBP-3 "rescued" the MO-induced defects. These findings suggest that IGFBP-3 plays an important role in regulating pharyngeal cartilage and inner ear development and growth in zebrafish.
Collapse
Affiliation(s)
- Yun Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
24
|
Cingel-Ristić V, Flyvbjerg A, Drop SLS. The physiological and pathophysiological roles of the GH/IGF-axis in the kidney: lessons from experimental rodent models. Growth Horm IGF Res 2004; 14:418-430. [PMID: 15519249 DOI: 10.1016/j.ghir.2004.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The growth hormone (GH)/insulin-like growth factor (IGF) system plays an important role in renal development, growth, function and pathophysiology. IGF-I has been associated with renal/glomerular hypertrophy and compensatory renal growth. Potential effects on glomerular size are of interest, since an increase in glomerular size may be permissive for the development of glomerulosclerosis. In an effort to abolish the decline of renal function and possibly to restore the renal structure, different approaches have been tested in experimental models of nephropathy, focusing mainly on early renal changes. The involvement of the GH/IGF system in renal pathophysiology has been studied in much detail in the rat. In view of the growing interest in murine physiology, occurring in large part by genetically modified animals, this review examines those aspects of GH, IGFs, their receptors and binding proteins that relate both to mouse kidney physiology and to a number of conditions characterized by pathophysiological renal changes. A deeper understanding of the role of the GH/IGF system in renal dysfunction may stimulate the development of novel therapeutic approaches aiming at preventing or retarding various kidney diseases.
Collapse
Affiliation(s)
- Vesna Cingel-Ristić
- Laboratory of Pediatrics, Subdivision of Molecular Endocrinology, P.O. Box 1738, Erasmus Medical Center, 3000 DR Rotterdam, The Netherlands.
| | | | | |
Collapse
|
25
|
Mazerbourg S, Bouley DM, Sudo S, Klein CA, Zhang JV, Kawamura K, Goodrich LV, Rayburn H, Tessier-Lavigne M, Hsueh AJW. Leucine-rich repeat-containing, G protein-coupled receptor 4 null mice exhibit intrauterine growth retardation associated with embryonic and perinatal lethality. Mol Endocrinol 2004; 18:2241-54. [PMID: 15192078 DOI: 10.1210/me.2004-0133] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Leucine-rich repeat-containing, G protein-coupled receptors (LGRs) belong to the largest mammalian superfamily of proteins with seven-transmembrane domains. LGRs can be divided into three subgroups based on their unique domain arrangement. Although two subgroups have been found to be receptors for glycoprotein hormones and relaxin-related ligands, respectively, the third LGR subgroup, consisting of LGR4-6, are orphan receptors with unknown physiological roles. To elucidate the functions of this subgroup of LGRs, LGR4 null mice were generated using a secretory trap approach to delete the majority of the LGR4 gene after the insertion of a beta-galactosidase reporter gene immediately after exon 1. Tissues expressing LGR4 were analyzed based on histochemical staining of the transgene driven by the endogenous LGR4 promoter. LGR4 was widely expressed in kidney, adrenal gland, stomach, intestine, heart, bone/cartilage, and other tissues. The expression of LGR4 in these tissues was further confirmed by immunohistochemical studies in wild-type animals. Analysis of the viability of 250 newborn animals suggested a skewed inheritance pattern, indicating that only 40% of the expected LGR4 null mice were born. For the LGR4 null mice viable at birth, most of them died within 2 d. Furthermore, the LGR4 null mice showed intrauterine growth retardation as reflected by a 14% decrease in body weight at birth, together with 30% and 40% decreases in kidney and liver weights, respectively. The present findings demonstrate the widespread expression of LGR4, and an essential role of LGR4 for embryonic growth, as well as kidney and liver development. The observed pre- and postnatal lethality of LGR4 null mice illustrates the importance of the LGR4 signaling system for the survival and growth of animals during the perinatal stage.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Epithelial Cells/immunology
- Female
- Fetal Growth Retardation/etiology
- Gene Expression/genetics
- Genes, Lethal
- Genes, Reporter/genetics
- Humans
- Insulin-Like Growth Factor Binding Protein 1/genetics
- Insulin-Like Growth Factor Binding Protein 2/genetics
- Kidney/cytology
- Kidney/immunology
- Kidney/metabolism
- Leucine/analysis
- Leucine/genetics
- Liver/immunology
- Liver/metabolism
- Mice
- Mice, Knockout
- Molecular Sequence Data
- Mutagenesis, Insertional/genetics
- Pregnancy
- Promoter Regions, Genetic/genetics
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Rats
- Receptor, IGF Type 1/genetics
- Receptors, G-Protein-Coupled/analysis
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/physiology
- Repetitive Sequences, Amino Acid
- Tissue Distribution
- beta-Galactosidase/analysis
- beta-Galactosidase/genetics
Collapse
Affiliation(s)
- Sabine Mazerbourg
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 94305-5317, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Boshuizen JA, Reimerink JHJ, Korteland-van Male AM, van Ham VJJ, Koopmans MPG, Büller HA, Dekker J, Einerhand AWC. Changes in small intestinal homeostasis, morphology, and gene expression during rotavirus infection of infant mice. J Virol 2004; 77:13005-16. [PMID: 14645557 PMCID: PMC296055 DOI: 10.1128/jvi.77.24.13005-13016.2003] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Rotavirus is the most important cause of infantile gastroenteritis. Since in vivo mucosal responses to a rotavirus infection thus far have not been extensively studied, we related viral replication in the murine small intestine to alterations in mucosal structure, epithelial cell homeostasis, cellular kinetics, and differentiation. Seven-day-old suckling BALB/c mice were inoculated with 2 x 10(4) focus-forming units of murine rotavirus and were compared to mock-infected controls. Diarrheal illness and viral shedding were recorded, and small intestinal tissue was evaluated for rotavirus (NSP4 and structural proteins)- and enterocyte-specific (lactase, SGLT1, and L-FABP) mRNA and protein expression. Morphology, apoptosis, proliferation, and migration were evaluated (immuno)histochemically. Diarrhea was observed from days 1 to 5 postinfection, and viral shedding was observed from days 1 to 10. Two peaks of rotavirus replication were observed at 1 and 4 days postinfection. Histological changes were characterized by the accumulation of vacuolated enterocytes. Strikingly, the number of vacuolated cells exceeded the number of cells in which viral replication was detectable. Apoptosis and proliferation were increased from days 1 to 7, resulting in villous atrophy. Epithelial cell turnover was significantly higher (<4 days) than that observed in controls (7 days). Since epithelial renewal occurred within 4 days, the second peak of viral replication was most likely caused by infection of newly synthesized cells. Expression of enterocyte-specific genes was downregulated in infected cells at mRNA and protein levels starting as early as 6 h after infection. In conclusion, we show for the first time that rotavirus infection induces apoptosis in vivo, an increase in epithelial cell turnover, and a shutoff of gene expression in enterocytes showing viral replication. The shutoff of enterocyte-specific gene expression, together with the loss of mature enterocytes through apoptosis and the replacement of these cells by less differentiated dividing cells, likely leads to a defective absorptive function of the intestinal epithelium, which contributes to rotavirus pathogenesis.
Collapse
Affiliation(s)
- Jos A Boshuizen
- Laboratoryof Pediatrics, Pediatric Gastroenterology, and Nutrition, Erasmus MC/ Sophia, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Galvin CD, Hardiman O, Nolan CM. IGF-1 receptor mediates differentiation of primary cultures of mouse skeletal myoblasts. Mol Cell Endocrinol 2003; 200:19-29. [PMID: 12644296 DOI: 10.1016/s0303-7207(02)00420-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Studies involving immortalized myoblasts suggested that insulin-like growth factors (IGFs) promote differentiation of skeletal muscle, but gene targeting experiments in mice did not provide support for this hypothesis. To address this discrepancy, we examined differentiation of primary cultures of mouse myoblasts. Differentiation was normally unaffected by addition of IGFs to the differentiation medium. However, when we interrupted IGF-mediated signaling, by incubating myoblasts with suramin or with a monoclonal antibody to the IGF-I receptor, differentiation was inhibited. Inhibition was reversed by exogenous IGF-I or IGF-II, but not by insulin. Differentiation was enhanced in myoblasts that were incubated with an inhibitor of the mitogen-activated protein kinase signaling pathway (PD098059) and such cells were responsive to exogenous IGF-I. Our results demonstrate that IGF action contributes to the differentiation of non-immortalized mouse myoblasts and that these cells represent a model system that can be experimentally manipulated to study the molecular events involved in skeletal muscle differentiation.
Collapse
Affiliation(s)
- C D Galvin
- Zoology Department, University College Dublin, Belfield, Ireland
| | | | | |
Collapse
|
28
|
Renes IB, Verburg M, Bulsing NP, Ferdinandusse S, Büller HA, Dekker J, Einerhand AWC. Protection of the Peyer's patch-associated crypt and villus epithelium against methotrexate-induced damage is based on its distinct regulation of proliferation. J Pathol 2002; 198:60-8. [PMID: 12210064 DOI: 10.1002/path.1183] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The crypt and villus epithelium associated with Peyer's patches (PPs) is largely spared from methotrexate (MTX)-induced damage, compared with the non-patch (NP) epithelium. To assess the mechanism(s) preventing damage to the PP epithelium after MTX treatment, epithelial proliferation, apoptosis, and cell functions were studied in a rat-MTX model. Small intestinal segments containing PPs were excised after MTX treatment. Epithelial proliferation and apoptosis were assessed by detection of incorporated BrdU and cleaved caspase-3, respectively. Epithelial functions were determined by the expression of cell type-specific gene products at mRNA and protein level. Before and after MTX treatment, the number of BrdU-positive cells was higher in PP crypts than in NP crypts. BrdU incorporation was diminished in NP crypts, while in PP crypts incorporation was hardly affected. In PP and NP crypts, similar and increased levels of cleaved caspase-3-positive cells were observed after MTX. The enterocyte markers, sucrase-isomaltase, sodium-glucose co-transporter 1, glucose transporters 2 and 5, and intestinal and liver fatty acid binding protein, were down-regulated after MTX in NP epithelium but not in PP epithelium. In contrast, expression of the goblet cell markers, Muc2 and trefoil factor 3, and the Paneth cell marker, lysozyme, was maintained after MTX in both PP and NP epithelium. In conclusion, as MTX-induced apoptosis was similar in PP and NP crypts, the protection of the PP epithelium seems to be based on differences in the regulation of epithelial proliferation. Enterocyte function in the PP epithelium was unaffected by MTX treatment. Goblet and Paneth cell function was maintained in both NP and PP epithelium.
Collapse
Affiliation(s)
- Ingrid B Renes
- Laboratory of Paediatrics, Department of Gastroenterology and Nutrition, Erasmus University and Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
29
|
Renes IB, Verburg M, Van Nispen DJPM, Büller HA, Dekker J, Einerhand AWC. Distinct epithelial responses in experimental colitis: implications for ion uptake and mucosal protection. Am J Physiol Gastrointest Liver Physiol 2002; 283:G169-79. [PMID: 12065304 DOI: 10.1152/ajpgi.00506.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the present study, we aimed to investigate enterocyte- and goblet cell-specific functions during the different phases of acute colitis induced with dextran sulfate sodium (DSS). Rats were treated with DSS for 7 days, followed by a 7-day recovery period. Colonic tissue was excised on days 2 (onset of disease), 7 (active disease), and 14 (regenerative phase). Enterocyte functions were studied by the expression of carbonic anhydrases (CAs), sodium/hydrogen exchangers (NHEs) and intestinal fatty acid-binding protein (iFABP) and by alkaline phosphatase (AP) activity. The expression and secretion of the mucin Muc2 and trefoil factor family peptide-3 (TFF3) were used as parameters for goblet cell function. DSS induced a downregulation of the CAs, NHEs, and iFABP in some normal-appearing surface enterocytes and in most of the flattened-surface enterocytes during disease onset and active disease. During the regenerative phase most enterocytes expressed these genes again. Quantitative analysis revealed a significant decrease in CAs, NHEs, and iFABP expression levels during onset and active disease. During the regenerative phase, the expression levels of the CAs were restored, whereas the expression levels of the NHEs and iFABP remained decreased. In contrast, enterocyte-specific AP activity was maintained in normal and flattened enterocytes during DSS-induced colitis. Goblet cells continued to express MUC2 and TFF3 during and after DSS treatment. Moreover, Muc2 and TFF3 expression and secretion levels were maintained or even increased during each of the DSS-induced disease phases. In conclusion, DSS-induced colitis was associated with decreased expression of CAs, NHEs, and iFABP. The loss of these genes possibly accounts for some of the pathology seen in colitis. The maintenance or upregulation of Muc2 and TFF3 synthesis and secretion levels implies that goblet cells at least maintain their epithelial defense and repair capacity during acute inflammation induced by DSS.
Collapse
Affiliation(s)
- Ingrid B Renes
- Laboratory of Pediatrics, Pediatric Gastroenterology and Nutrition, Erasmus Medical Center, Rotterdam, and Sophia Children's Hospital, Rotterdam 3015GE, The Netherlands.
| | | | | | | | | | | |
Collapse
|
30
|
Wagner KJ, Patek CE, Miles C, Christie S, Brookes AJ, Hooper ML. Truncation of WT1 results in downregulation of cyclin G1 and IGFBP-4 expression. Biochem Biophys Res Commun 2001; 287:977-82. [PMID: 11573961 DOI: 10.1006/bbrc.2001.5693] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in the WT1 gene are found in a subset of Wilms' tumours and in certain other disorders such as Denys-Drash syndrome. The WT1 gene product is a zinc finger transcription factor for which many target genes have been suggested. Here we utilise gene targeting to generate cells containing only truncated forms of WT1, in which the DNA-binding region is disrupted. Examination of gene expression in these cells using cDNA macroarrays suggests two novel WT1 transcriptional targets, cyclin G1 (Ccng1), and insulin-like growth factor binding protein 4 (Igfbp4).
Collapse
Affiliation(s)
- K J Wagner
- Sir Alastair Currie CRC Laboratories, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom
| | | | | | | | | | | |
Collapse
|
31
|
Amri K, Freund N, Duong Van Huyen JP, Merlet-Bénichou C, Lelièvre-Pégorier M. Altered nephrogenesis due to maternal diabetes is associated with increased expression of IGF-II/mannose-6-phosphate receptor in the fetal kidney. Diabetes 2001; 50:1069-75. [PMID: 11334410 DOI: 10.2337/diabetes.50.5.1069] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have recently demonstrated that the exposure to hyperglycemia in utero impairs nephrogenesis in rat fetuses (Amri K et al., Diabetes 48:2240-2245, 1999). Diabetic pregnancy is commonly associated with alterations in the IGF system in fetal tissues. It has also been shown that both IGF-I and IGF-II are produced within developing metanephros and promote renal organogenesis. Therefore, we investigated the effect of maternal diabetes on IGFs and their receptors in developing fetal rat kidney. Diabetes was induced in pregnant rats by a single injection of streptozotocin on day 0 of gestation. We measured the amounts of IGF and their receptors, both proteins and mRNAs, in the metanephroi of fetuses issued from diabetic subjects and in age-matched fetuses from control subjects (14-20 days of gestation). IGF-II was produced throughout fetal nephrogenesis, whereas IGF-I protein was not detected, suggesting a critical role of IGF-II in kidney development. Fetal exposure to maternal diabetes caused no change in IGF production in the early stages of nephrogenesis. Similarly, the amounts of IGF-I receptor and insulin receptor were not altered. By contrast, there was an increase in production of IGF-II/mannose-6-phosphate receptor throughout nephrogenesis. Because this receptor plays an essential role in regulating the action of IGF-II, the altered nephrogenesis in fetuses exposed to maternal diabetes may be linked to a decrease in IGF-II bioavailability.
Collapse
Affiliation(s)
- K Amri
- INSERM U 319, Université Paris 7 Denis-Diderot, France
| | | | | | | | | |
Collapse
|
32
|
Doublier S, Amri K, Seurin D, Moreau E, Merlet-Benichou C, Striker GE, Gilbert T. Overexpression of human insulin-like growth factor binding protein-1 in the mouse leads to nephron deficit. Pediatr Res 2001; 49:660-6. [PMID: 11328949 DOI: 10.1203/00006450-200105000-00009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
IGFs and their binding proteins are important regulators of fetal development. We have previously reported that overexpression of the human IGF binding protein-1 in mice is associated with glomerulosclerosis. The aim of this study was to investigate whether, in that model, decreased bioavailability of IGFs also affected nephrogenesis. When the mothers expressed human IGF binding protein-1, pups were growth retarded and had a reduced number of nephrons. Even nontransgenic pups born to heterozygous mothers had a nephron reduction, indicating that renal hypoplasia was secondary to fetal growth retardation. When the transgene was expressed only in the fetus, pups had a normal birth weight and the kidney was normal at birth, as indicated by histologic studies. However, a significant reduction in the nephron number was observed at 3 mo of age. Because nephrogenesis continues for a few days after birth in the mouse, this indicated that human IGF binding protein-1 overexpression altered postnatal nephrogenesis. In addition, exogenously added IGF-II, but not IGF-I, was effective in stimulating in vitro nephrogenesis. Together these elements suggest that reduced amounts of circulating IGFs, presumably IGF-II, impair kidney development.
Collapse
Affiliation(s)
- S Doublier
- INSERM U489, Hôpital Tenon, 75020 Paris, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Georgas K, Bowles J, Yamada T, Koopman P, Little MH. Characterisation of Crim1 expression in the developing mouse urogenital tract reveals a sexually dimorphic gonadal expression pattern. Dev Dyn 2000; 219:582-7. [PMID: 11084657 DOI: 10.1002/1097-0177(2000)9999:9999<::aid-dvdy1072>3.0.co;2-i] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Crim1 gene encodes a putative transmembrane protein with an IGF-binding protein motif and multiple chordin-like cysteine-rich repeats. In chordin, such repeats are responsible for its dorsalising activity and for binding to bone morphogenic proteins (BMPs). Crim1 displays a dynamic expression pattern in a variety of developing organs, including the CNS and the lens. We have undertaken a detailed expression pattern analysis of Crim1 in the developing mouse urogenital system. During metanephric development, Crim1 showed expression both in the ureteric tree, the early condensing mesenchyme and distal comma-shaped bodies. As the nephron elongates, Crim1 becomes expressed in the proximal end of the S-shaped bodies. Crim1 also displays a striking male-specific expression pattern in the fetal gonads, its expression strongest in the Sertoli cells of the developing testis.
Collapse
Affiliation(s)
- K Georgas
- Institute for Molecular Bioscience, incorporating the Centre for Molecular and Cellular Biology and the Special Research Centre for Functional and Applied Genomics, The University of Queensland, Brisbane, Australia
| | | | | | | | | |
Collapse
|
34
|
Fichera E, Liang S, Xu Z, Guo N, Mineo R, Fujita-Yamaguchi Y. A quantitative reverse transcription and polymerase chain reaction assay for human IGF-II allows direct comparison of IGF-II mRNA levels in cancerous breast, bladder, and prostate tissues. Growth Horm IGF Res 2000; 10:61-70. [PMID: 10931743 DOI: 10.1054/ghir.2000.0141] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Previously, we showed by in situ hybridization that insulin-like growth factor (IGF)-II is upregulated in approximately 50% of prostate, breast, and bladder tumours. In this study, a quantitative competitive reverse transcription and polymerase chain reaction (QC RT-PCR) assay was established and used to quantify human IGF-II mRNA levels in cells and tissues. In this QC RT-PCR assay, a competitor IGF-II RNA, prepared from a newly constructed plasmid encoding the human IGF-II sequence with a 110-bp fragment inserted, was added to RNA samples prior to RT-PCR. The human IGF-II specific QC RT-PCR assay has allowed us to readily compare the levels of IGF-II mRNA in human tissues and cultured cells. Consistent with our previous observations by in situ hybridization, IGF-II mRNA was up-regulated in 50% of cancerous breast tissues examined as compared to the matching benign tissues, and IGF-II mRNA levels were higher in bladder tumours than breast and prostate tumours. In summary, we present here quantitative data confirming that a subclass of breast cancer samples has elevated levels of IGF-II transcripts by the new competitive RT-PCR assay.
Collapse
Affiliation(s)
- E Fichera
- Department of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, California, 91010, USA
| | | | | | | | | | | |
Collapse
|
35
|
Smink JJ, Koster JG, Hendriks-Stegeman BI, Van Buul-Offers SC. Insulin-like growth factor (IGF) II induced changes in expression of IGF binding proteins in lymphoid tissues of hIGF-II transgenic mice. Endocrinology 1999; 140:5876-82. [PMID: 10579353 DOI: 10.1210/endo.140.12.7174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Overexpression of human insulin-like growth factor II (IGF-II) in transgenic mice does not result in increased overall body growth. The IGF-II overexpression, however, specifically causes growth of the thymus and not of the spleen. We address the question whether the observed differences in growth induction in lymphoid tissues by IGF-II can be related to differences in local IGF binding protein (IGFBP) production, using nonradioactive in situ hybridization and Northern blot analysis. IGFBP-2, -4, and -5 are expressed in both lymphoid tissues of normal mice. The spleen additionally expresses IGFBP-3 and IGFBP-6. IGFBP-1 expression was not detected. Although the expression pattern of the IGFBPs did not change upon IGF-II overexpression, the level of expression changed in a specific manner for each IGFBP. In both the thymus and the spleen of transgenic mice, IGFBP-2 and -5 gene expression was slightly increased, whereas the level of IGFBP-4 expression was not altered. In the spleen, IGFBP-6 expression was not altered by IGF-II overexpression, whereas IGFBP-3 expression was strongly increased. The differences in IGFBP expression, and the difference in response of these IGFBPs to IGF-II overexpression in thymus and spleen suggests an important role of these proteins in growth regulation of both lymphoid tissues. We speculate that an increase of IGFBP-3 expression together with changes in expression of other IGFBPs, inhibits IGF-II stimulated growth in the spleen by an autocrine-/paracrine pathway.
Collapse
Affiliation(s)
- J J Smink
- Department of Pediatric Endocrinology, University Medical Center Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
36
|
den Bakker MA, Vissers KJ, Molijn AC, Kros JM, Zwarthoff EC, van der Kwast TH. Expression of the neurofibromatosis type 2 gene in human tissues. J Histochem Cytochem 1999; 47:1471-80. [PMID: 10544220 DOI: 10.1177/002215549904701113] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The neurofibromatosis Type 2 tumor suppressor gene is implicated in the hereditary tumor syndrome NF2, hallmarked by bilateral vestibular schwannomas, meningiomas, and ocular non-neoplastic features. The gene product has characteristics of a membrane cytoskeleton-linking protein but the mechanism of tumor suppression by the NF2 protein remains to be elucidated. The NF2 gene is widely expressed in mouse and rat tissues. In humans, most of the expression data have accumulated through Northern blot analysis, RT-PCR and, more recently, Western blot analysis, providing information on whole tissues and organs rather than on specific cell types. We report here an extensive survey of NF2 gene expression in human tissues using a combination of mRNA in situ hybridization (mRNA ISH) and immunohistochemistry (IH) with a panel of monoclonal antibodies (MAbs) supplemented by tissue immunoprecipitation experiments with affinity-purified polyclonal antibodies. Expression was observed in many different cell types, most of which appear functionally normal in individuals affected by NF2. Surprisingly, expression could not be consistently documented in Schwann cells and arachnoidal cells by IH or by mRNA ISH in formalin-fixed tissue. However, consistent immunostaining of Schwann cells was seen in frozen sections. (J Histochem Cytochem 47:1471-1479, 1999)
Collapse
Affiliation(s)
- M A den Bakker
- Department of Pathology, Josephine Nefkens Institute, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
37
|
Horster MF, Braun GS, Huber SM. Embryonic renal epithelia: induction, nephrogenesis, and cell differentiation. Physiol Rev 1999; 79:1157-91. [PMID: 10508232 DOI: 10.1152/physrev.1999.79.4.1157] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Embryonic metanephroi, differentiating into the adult kidney, have come to be a generally accepted model system for organogenesis. Nephrogenesis implies a highly controlled series of morphogenetic and differentiation events that starts with reciprocal inductive interactions between two different primordial tissues and leads, in one of two mainstream processes, to the formation of mesenchymal condensations and aggregates. These go through the intricate process of mesenchyme-to-epithelium transition by which epithelial cell polarization is initiated, and they continue to differentiate into the highly specialized epithelial cell populations of the nephron. Each step along the developmental metanephrogenic pathway is initiated and organized by signaling molecules that are locally secreted polypeptides encoded by different gene families and regulated by transcription factors. Nephrogenesis proceeds from the deep to the outer cortex, and it is directed by a second, entirely different developmental process, the ductal branching of the ureteric bud-derived collecting tubule. Both systems, the nephrogenic (mesenchymal) and the ductogenic (ureteric), undergo a repeat series of inductive signaling that serves to organize the architecture and differentiated cell functions in a cascade of developmental gene programs. The aim of this review is to present a coherent picture of principles and mechanisms in embryonic renal epithelia.
Collapse
Affiliation(s)
- M F Horster
- Physiologisches Institut, Universität München, München, Germany.
| | | | | |
Collapse
|
38
|
Dell G, Ward A, Shokrai A, Madej A, Engström W. Regulation of the IGF System by Glucocortidoids. Zoolog Sci 1999. [DOI: 10.2108/zsj.16.377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Kleffens M, Groffen C, Neck JW, Vermeij-Keers C, Drop SL. mRNA and protein localization of the IGF system during mouse embryonic development in areas with apoptosis. Growth Horm IGF Res 1999; 9:195-204. [PMID: 10502456 DOI: 10.1054/ghir.1999.0108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We analysed mRNA and protein localization of the IGF system components in regions with apoptosis during mouse development between 9.5 and 13.5 days post coitum. A spatio-temporal relationship between these expression patterns and the onset of apoptosis in specific areas was sought. The IGFBP mRNA and protein expression patterns were tissue-specific. In most tissues, mRNA expression patterns colocalized with protein localization. Discrepancies between mRNA and protein detection were found in, for example, lens, neural layer of the retina, whiskers and somites. Localization of the IGFs, the type I IGF receptor and IGFBP-2 correlated well with cell death regions. When these genes were expressed no apoptosis occurred and vice versa. Correlation of IGFBP-3, -4 and -5 with apoptosis regions was noticed only at 13.5 days post coitum. In eye muscles, whiskers and somites, the expression of IGF system components preceded the occurrence of apoptotic cells. When IGF-I expression ceased, apoptosis occurred in these areas. In conclusion, our results suggest that IGF-I, the type I IGF receptor and IGFBP-2 inhibit apoptosis. In contrast, IGFBP-3, -4 and -5 may stimulate apoptosis by trapping the IGFs. Tissue-specific modulation of IGF protective action against apoptosis by the different IGFBPs during mouse embryonal development may contribute to organ specific morphology.
Collapse
Affiliation(s)
- M Kleffens
- Laboratory of Pediatrics, Subdivision of Molecular Endocrinology, Erasmus University, Dr. Molewaterplein 50, Rotterdam, 3015 GD, Netherlands
| | | | | | | | | |
Collapse
|
40
|
van Kleffens M, Groffen C, Lindenbergh-Kortleve DJ, van Neck JW, González-Parra S, Dits N, Zwarthoff EC, Drop SL. The IGF system during fetal-placental development of the mouse. Mol Cell Endocrinol 1998; 140:129-35. [PMID: 9722180 DOI: 10.1016/s0303-7207(98)00041-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Insulin-like growth factors (IGF-I and -II) promote cellular mitosis and differentiation and have been implicated in fetal and placental growth. Together with the IGF receptors and IGF binding proteins (IGFBPs) they form a complex network, with tissue specific activity. This review will discuss the data generated to elucidate the functions of the IGF system during mouse development.
Collapse
Affiliation(s)
- M van Kleffens
- Department of Pediatrics, Erasmus University Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|