1
|
Karpisheh V, Nikkhoo A, Hojjat-Farsangi M, Namdar A, Azizi G, Ghalamfarsa G, Sabz G, Yousefi M, Yousefi B, Jadidi-Niaragh F. Prostaglandin E2 as a potent therapeutic target for treatment of colon cancer. Prostaglandins Other Lipid Mediat 2019; 144:106338. [PMID: 31100474 DOI: 10.1016/j.prostaglandins.2019.106338] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/30/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
Although colon cancer is one of the most important triggers of cancer related mortality, a few therapeutic options exist for this disease, including combination chemotherapy, anti-EGFR and anti-angiogenic agents. However, none of these therapeutics are fully effective for complete remission, and this issue needs further investigations, particularly in the patients with advanced disease. It has been shown that colon carcinogenesis process is associated with upregulation of prostaglandin (PG) levels. Moreover, conversion of pre-malignant cells to malignant was also related with increased generation of PGs in susceptible subjects. Among the prostanoids, PGE2 is the most important produced member which generated in high levels by colon tumor cells. Generation of PGE2 by action of cyclooxygenase (COX)-2 can promote growth and development, resistance to apoptosis, proliferation, invasion and metastasis, angiogenesis and drug resistance in colon cancer. Increased levels of PGE2 and COX-2 in colon cancer is reported by various investigators which was associated with disease progression. It is suggested that there is a positive feedback loop between COX-2 and PGE2, in which function of COX-2 induces generation of PGE2, and upregulation of PGE2 increases the expression of COX-2 in colon cancer. Although an existence of this feedback loop is well-documented, its precise mechanism, signaling pathways, and the particular E-type prostanoid (EP) receptor mediating this feedback are elusive. Therefore, it seems that targeting COX-2/PGE2/EP receptors may be supposed as a potent therapeutic strategy for treatment of colon cancer. In this review, we try to clarify the role of PGE2 in cancer progression and its targeting for treatment of colon cancer.
Collapse
Affiliation(s)
- Vahid Karpisheh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Nikkhoo
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden; The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Afshin Namdar
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2E1 Canada
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Gholamabas Sabz
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Mahmood B, Damm MMB, Jensen TSR, Backe MB, Dahllöf MS, Poulsen SS, Bindslev N, Hansen MB. Phosphodiesterases in non-neoplastic appearing colonic mucosa from patients with colorectal neoplasia. BMC Cancer 2016; 16:938. [PMID: 27927168 PMCID: PMC5141637 DOI: 10.1186/s12885-016-2980-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022] Open
Abstract
Background Intracellular signaling through cyclic nucleotides, both cyclic AMP and cyclic GMP, is altered in colorectal cancer. Accordingly, it is hypothesized that an underlying mechanism for colorectal neoplasia involves altered function of phosphodiesterases (PDEs), which affects cyclic nucleotide degradation. Here we present an approach to evaluate the function of selected cyclic nucleotide-PDEs in colonic endoscopic biopsies from non-neoplastic appearing mucosa. Methods Biopsies were obtained from patients with and without colorectal neoplasia. Activities of PDEs were characterized functionally by measurements of transepithelial ion transport and their expression and localization by employing real-time qPCR and immunohistochemistry. Results In functional studies PDE subtype-4 displayed lower activity in colorectal neoplasia patients (p = 0.006). Furthermore, real-time qPCR analysis showed overexpression of subtype PDE4B (p = 0.002) and subtype PDE5A (p = 0.02) in colorectal neoplasia patients. Finally, immunohistochemistry for 7 PDE isozymes demonstrated the presence of all 7 isozymes, albeit with weak reactions, and with no differences in localization between colorectal neoplasia and control patients. Of note, quantification of PDE subtype immunostaining revealed a lower amount of PDE3A (p = 0.04) and a higher amount of PDE4B (p = 0.02) in samples from colorectal neoplasia patients. Conclusion In conclusion, functional data indicated lower activity of PDE4 subtypes while expressional and abundance data indicated a higher expression of PDE4B in patients with colorectal neoplasia. We suggest that cyclic nucleotide-PDE4B is overexpressed as a malfunctioning protein in non-neoplastic appearing colonic mucosa from patients with colorectal neoplasia. If a predisposition of reduced PDE4B activity in colonic mucosa from colorectal neoplasia patients is substantiated further, this subtype could be a potential novel early diagnostic risk marker and may even be a target for future medical preventive treatment of colorectal cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2980-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Badar Mahmood
- Digestive Disease Center K, Bispebjerg Hospital, Copenhagen, DK-2400, Denmark. .,Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark.
| | - Morten Matthiesen Bach Damm
- Digestive Disease Center K, Bispebjerg Hospital, Copenhagen, DK-2400, Denmark.,Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | | | - Marie Balslev Backe
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Mattias Salling Dahllöf
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Steen Seier Poulsen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Niels Bindslev
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Mark Berner Hansen
- Digestive Disease Center K, Bispebjerg Hospital, Copenhagen, DK-2400, Denmark.,Zealand Pharma, Glostrup, DK-2600, Denmark
| |
Collapse
|
3
|
Otake S, Yoshida K, Seira N, Sanchez CM, Regan JW, Fujino H, Murayama T. Cellular density-dependent down-regulation of EP4 prostanoid receptors via the up-regulation of hypoxia-inducible factor-1α in HCA-7 human colon cancer cells. Pharmacol Res Perspect 2014; 3:e00083. [PMID: 25692008 PMCID: PMC4317221 DOI: 10.1002/prp2.83] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 07/28/2014] [Accepted: 08/07/2014] [Indexed: 12/27/2022] Open
Abstract
Increases in prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) levels are features of colon cancer. Among the different E-type prostanoid receptor subtypes, EP4 receptors are considered to play a crucial role in carcinogenesis by, for example, inducing COX-2 when stimulated with PGE2. However, EP4 receptor levels and PGE2-induced cellular responses are inconsistent among the cellular conditions. Therefore, the connections responsible for the expression of EP4 receptors were investigated in the present study by focusing on cell density-induced hypoxia-inducible factor-1α (HIF-1α). The expression of EP4 receptors was examined using immunoblot analysis, quantitative polymerase chain reaction, and reporter gene assays in HCA-7 human colon cancer cells with different cellular densities. The involvement of HIF-1α and its signaling pathways were also examined by immunoblot analysis, reporter gene assays, and with siRNA. We here demonstrated that EP4 receptors as well as EP4 receptor-mediated COX-2 expression levels decreased with an increase in cellular density. In contrast, HIF-1α levels increased in a cellular density-dependent manner. The knockdown of HIF-1α by siRNA restored the expression of EP4 receptors and EP4 receptor-mediated COX-2 in cells at a high density. Thus, the cellular density-dependent increase observed in HIF-1α expression levels reduced the expression of COX-2 by decreasing EP4 receptor levels. This novel regulation mechanism for the expression of EP4 receptors by HIF-1α may provide an explanation for the inconsistent actions of PGE2. The expression levels of EP4 receptors may vary depending on cellular density, which may lead to the differential activation of their signaling pathways by PGE2. Thus, cellular density-dependent PGE2-mediated signaling may determine the fate/stage of cancer cells, i.e., the surrounding environments could define the fate/stage of malignancies associated with colon cancer.
Collapse
Affiliation(s)
- Sho Otake
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University Chuo-ku, Chiba, 260-8675, Japan
| | - Kenji Yoshida
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University Chuo-ku, Chiba, 260-8675, Japan
| | - Naofumi Seira
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University Chuo-ku, Chiba, 260-8675, Japan
| | - Christopher M Sanchez
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona Tucson, Arizona, 85721-0207
| | - John W Regan
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona Tucson, Arizona, 85721-0207
| | - Hiromichi Fujino
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University Chuo-ku, Chiba, 260-8675, Japan
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University Chuo-ku, Chiba, 260-8675, Japan
| |
Collapse
|
4
|
Bellamkonda K, Sime W, Sjölander A. The impact of inflammatory lipid mediators on colon cancer-initiating cells. Mol Carcinog 2014; 54:1315-27. [PMID: 25154976 DOI: 10.1002/mc.22207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 01/16/2023]
Abstract
The role of inflammatory lipid-mediators in tumor progression is well recognized in colorectal cancer; however, if this includes promotion of cancer-initiating cells remains unclear. We show that the inflammatory lipid-mediators leukotriene D4 and prostaglandin E2 increased the Aldehyde dehydrogenase (ALDH(+) ) population, the colony formation capacity, and tumor growth in a xenograft model of colon cancer. The ALDH(+) cells showed significant resistance to irradiation and 5-fluorouracil treatment that could be further augmented by these lipid-mediators, occurring in parallel with increased target gene expression. Our data emphasize a role for tumor microenvironment derived inflammatory lipid-mediators to favor cancer stem cells-like characteristics and thus promote tumor progression.
Collapse
Affiliation(s)
- Kishan Bellamkonda
- Division of Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Center, Skåne University Hospital, Malmö, Sweden
| | - Wondossen Sime
- Division of Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Center, Skåne University Hospital, Malmö, Sweden
| | - Anita Sjölander
- Division of Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Center, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
5
|
Fairbrother SE, Smith JE, Borman RA, Cox HM. EP4 receptors mediate prostaglandin E2, tumour necrosis factor alpha and interleukin 1beta-induced ion secretion in human and mouse colon mucosa. Eur J Pharmacol 2012; 694:89-97. [DOI: 10.1016/j.ejphar.2012.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 05/29/2012] [Accepted: 06/09/2012] [Indexed: 01/12/2023]
|
6
|
Takahashi T, Ogawa H, Izumi K, Uehara H. The soluble EP2 receptor FuEP2/Ex2 suppresses endometrial cancer cell growth in an orthotopic xenograft model in nude mice. Cancer Lett 2011; 306:67-75. [PMID: 21419570 DOI: 10.1016/j.canlet.2011.02.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/18/2011] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
Abstract
Endometrial cancer is one of the most common gynecologic malignancies and many factors influence in its growth and development. As in many other types of cancer, prostaglandin E(2) (PGE(2)) is thought to be an accelerator of cell proliferation and endometrial cancer progression. In this study, we examined the effect of FuEP2/Ex2, a soluble decoy receptor for PGE(2) on growth of endometrial cancer cells. A stable transfectant expressing FuEP2/Ex2 was established from human endometrial cancer Ishikawa cells (Ish-FuEP2/Ex2). Ish-FuEP2/Ex2 cells expressed FuEP2/Ex2 mRNA and protein. Expression levels of E-prostanoid receptor 1 (EP1), EP2, EP3, EP4, and F-prostanoid receptor (FP) were almost the same in Ish-FuEP2/Ex2 and vector control cells. Growth rates of Ish-FuEP2/Ex2 under normal culture conditions were also similar to vector control cells, although PGE(2)-induced growth stimulation was completely inhibited in Ish-FuEP2/Ex2 or by Ish-FuEP2/Ex2 culture medium. Moreover, phosphorylation of extracellular signal-regulated kinase (ERK) and induction of cyclooxygenase-2 (COX-2), vascular endothelial growth factor (VEGF), cyclin D1, and c-fos mRNA by PGE(2) were not observed in Ish-FuEP2/Ex2 and Ish-FuEP2/Ex2 culture medium-treated vector control cells, although they were found when treated with prostaglandin F(2α). An orthotopic xenograft model in athymic nude mice revealed that Ish-FuEP2/Ex2-injected mice had significantly decreased mean tumor area. The proportion of Ki-67-positive cells in the tumor lesion was also significantly lower in Ish-FuEP2/Ex2-injected mice. These findings suggest that an EP-targeting strategy using FuEP2/Ex2 may be of use in the treatment of endometrial cancer.
Collapse
Affiliation(s)
- Tetsuyuki Takahashi
- Department of Molecular and Environmental Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Japan.
| | | | | | | |
Collapse
|
7
|
Löffler I, Grün M, Böhmer FD, Rubio I. Role of cAMP in the promotion of colorectal cancer cell growth by prostaglandin E2. BMC Cancer 2008; 8:380. [PMID: 19099561 PMCID: PMC2615781 DOI: 10.1186/1471-2407-8-380] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 12/19/2008] [Indexed: 12/21/2022] Open
Abstract
Background Prostaglandin E2 (PGE2), a product of the cyclooxygenase (COX) reaction, stimulates the growth of colonic epithelial cells. It is inferred that the abrogation of prostaglandins' growth-promoting effects as a result of COX inhibition underlies the advantageous effects of non-steroidal anti-inflammatory drugs in colorectal carcinoma (CRC). Despite this appreciation, the underlying molecular mechanisms remain obscure since cell culture studies have yielded discrepant results regarding PGE2's mitogenicity. Methods We have employed several alternative approaches to score cell proliferation and apoptosis of 4 CRC cell lines exposed to PGE2 under various conditions. To investigate the role of cAMP in PGE2's functions, activation of the cAMP pathway was assessed at different levels (changes in cAMP levels and PKA activity) in cells subjected to specific manipulations including the use of specific inhibitors or prostanoid receptor-selective agonists/antagonists. Results Our data document that the dose-response curve to PGE2 is 'bell-shaped', with nano molar concentrations of PGE2 being more mitogenic than micro molar doses. Remarkably, mitogenicity inversely correlates with the ability of PGE2 doses to raise cAMP levels. Consistent with a major role for cAMP, cAMP raising agents and pertussis toxin revert the mitogenic response to PGE2. Accordingly, use of prostanoid receptor-selective agonists argues for the involvement of the EP3 receptor and serum deprivation of HT29 CRC cells specifically raises the levels of Gi-coupled EP3 splice variants. Conclusion The present data indicate that the mitogenic action of low PGE2 doses in CRC cells is mediated via Gi-proteins, most likely through the EP3 receptor subtype, and is superimposed by a second, cAMP-dependent anti-proliferative effect at higher PGE2 doses. We discuss how these findings contribute to rationalize conflictive literature data on the proliferative action of PGE2.
Collapse
Affiliation(s)
- Ivonne Löffler
- Institute of Molecular Cell Biology, Centre for Molecular Biomedicine, Friedrich-Schiller-University Jena, Drackendorfer Str,1, 07747 Jena, Germany.
| | | | | | | |
Collapse
|
8
|
Richard CL, Lowthers EL, Blay J. 15-Deoxy-delta(12,14)-prostaglandin J(2) down-regulates CXCR4 on carcinoma cells through PPARgamma- and NFkappaB-mediated pathways. Exp Cell Res 2007; 313:3446-58. [PMID: 17707368 DOI: 10.1016/j.yexcr.2007.06.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Revised: 06/28/2007] [Accepted: 06/28/2007] [Indexed: 12/17/2022]
Abstract
The chemokine receptor CXCR4 plays a key role in the metastasis of colorectal cancer and its growth at metastatic sites. Here, we have investigated the mechanisms by which CXCR4 on cancer cells might be regulated by eicosanoids present within the colorectal tumor microenvironment. We show that prostaglandins PGE(2), PGA(2), PGD(2), PGJ(2) and 15dPGJ(2) each down-regulates CXCR4 receptor expression on human colorectal carcinoma cells to differing degrees. The most potent of these were PGD(2) and its metabolites PGJ(2) and 15dPGJ(2). Down-regulation was most rapid with the end-product 15dPGJ(2) and was accompanied by a marked reduction in CXCR4 mRNA. 15dPGJ(2) is known to be a ligand for the nuclear receptor PPARgamma. Down-regulation of CXCR4 was also observed with the PPARgamma agonist rosiglitazone, while 15dPGJ(2)-induced CXCR4 down-regulation was substantially diminished by the PPARgamma antagonists GW9662 and T0070907. These data support the involvement of PPARgamma. However, the 15dPGJ(2) analogue CAY10410, which can act on PPARgamma but which lacks the intrinsic cyclopentenone structure found in 15dPGJ(2), down-regulated CXCR4 substantially less potently than 15dPGJ(2). The cyclopentenone grouping is known to inhibit the activity of NFkappaB. Consistent with an additional role for NFkappaB, we found that the cyclopentenone prostaglandin PGA(2) and cyclopentenone itself could also down-regulate CXCR4. Immunolocalization studies showed that the cellular context was sufficient to trigger a focal nuclear pattern of NFkappaB p50 and that 15dPGJ(2) interfered with this p50 nuclear localization. These data suggest that 15dPGJ(2) can down-regulate CXCR4 on cancer cells through both PPARgamma and NFkappaB. 15dPGJ(2), present within the tumor microenvironment, may act to down-regulate CXCR4 and impact upon the overall process of tumor expansion.
Collapse
Affiliation(s)
- Cynthia Lee Richard
- Department of Pharmacology, Faculty of Medicine, Sir Charles Tupper Building, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
9
|
Hawcroft G, Ko CWS, Hull MA. Prostaglandin E2-EP4 receptor signalling promotes tumorigenic behaviour of HT-29 human colorectal cancer cells. Oncogene 2007; 26:3006-19. [PMID: 17130837 DOI: 10.1038/sj.onc.1210113] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 10/02/2006] [Accepted: 10/06/2006] [Indexed: 11/09/2022]
Abstract
The predominant product of cyclooxygenase (COX) activity in the colon, prostaglandin (PG) E2 promotes intestinal tumorigenesis. Expression of the PGE2 receptor EP4 is upregulated during colorectal carcinogenesis. Therefore, we investigated the role of elevated PGE2-EP4 receptor signalling in the protumorigenic activity of PGE2 by increasing EP4 receptor expression in HT-29 human colorectal cancer (CRC) cells (HT-29-EP4) by stable transfection. Elevated PGE2-induced EP4 receptor activity in HT-29 cells increased resistance to spontaneous apoptosis and promoted anchorage-independent growth, but had no effect on proliferation of HT-29-EP4 cells. EP4 receptor activation by PGE2 in HT-29-EP4 cells also led to development of fluid-filled cysts, which was associated with increased tight junction protein (occludin and zonula occludens-1) expression. Overexpression of the EP4 receptor in HT-29 cells led to basal EP4 receptor signalling in the absence of exogenous PGE2, which was explained by autocrine activity of endogenous, COX-2-derived PGE2 and constitutive, ligand-independent EP4 receptor activity. The predominant signalling pathway mediating antiapoptotic activity downstream of PGE2-EP4 receptor activation in HT-29-EP4 cells was elevation of cyclic adenosine monophosphate (cAMP) levels, which was associated with phosphorylation of cAMP-response element binding protein. EP4 receptor activation led to a small increase in phosphorylated extracellular signal-regulated kinase (ERK) 2 protein levels but inhibition of ERK phosphorylation did not abrogate the antiapoptotic activity of PGE2. However, PGE2-EP4 receptor signalling did not lead to trans-activation of the epidermal growth factor receptor in HT-29 cells. Inhibition of protumorigenic PGE2-EP4 receptor signalling represents a potential strategy for anti-CRC therapy that may avoid the toxicity associated with systemic COX inhibition.
Collapse
Affiliation(s)
- G Hawcroft
- Section of Molecular Gastroenterology, Leeds Institute of Molecular Medicine, University of Leeds, St James's University Hospital, Leeds LS9 7TF, UK.
| | | | | |
Collapse
|
10
|
Schröder O, Yudina Y, Sabirsh A, Zahn N, Haeggström JZ, Stein J. 15-deoxy-Delta12,14-prostaglandin J2 inhibits the expression of microsomal prostaglandin E synthase type 2 in colon cancer cells. J Lipid Res 2006; 47:1071-1080. [PMID: 16495511 DOI: 10.1194/jlr.m600008-jlr200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Prostaglandin (PG) E(2) (PGE(2)) plays a predominant role in promoting colorectal carcinogenesis. The biosynthesis of PGE(2) is accomplished by conversion of the cyclooxygenase (COX) product PGH(2) by several terminal prostaglandin E synthases (PGES). Among the known PGES isoforms, microsomal PGES type 1 (mPGES-1) and type 2 (mPGES-2) were found to be overexpressed in colorectal cancer (CRC); however, the role and regulation of these enzymes in this malignancy are not yet fully understood. Here, we report that the cyclopentenone prostaglandins (CyPGs) 15-deoxy-Delta(12,14)-PGJ(2) and PGA(2) downregulate mPGES-2 expression in the colorectal carcinoma cell lines Caco-2 and HCT 116 without affecting the expression of any other PGES or COX. Inhibition of mPGES-2 was subsequently followed by decreased microsomal PGES activity. These effects were mediated via modulation of the cellular thiol-disulfide redox status but did not involve activation of the peroxisome proliferator-activated receptor gamma or PGD(2) receptors. CyPGs had antiproliferative properties in vitro; however, this biological activity could not be directly attributed to decreased PGES activity because it could not be reversed by adding PGE(2). Our data suggest that there is a feedback mechanism between PGE(2) and CyPGs that implicates mPGES-2 as a new potential target for pharmacological intervention in CRC.
Collapse
Affiliation(s)
- Oliver Schröder
- First Department of Medicine, Division of Gastroenterology, Center for Drug Research, Development and Saftey (ZAFES), Johann Wolfgang Goethe University, Frankfurt/Main, Germany.
| | | | | | | | | | | |
Collapse
|
11
|
Nylund G, Nordgren S, Delbro DS. Demonstration of functional receptors for noradrenaline and adenosine-5'-triphosphate, but not for prostaglandin E2, in HT-29 human colon cancer cell line. ACTA ACUST UNITED AC 2004; 23:193-9. [PMID: 14690494 DOI: 10.1046/j.1474-8673.2003.00295.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
1. The aim of the current study was to investigate in HT-29 human colon cancer cell line, the existence of functional receptors for the signalling molecules, noradrenaline (NA), prostaglandin E2 (PGE2), and adenosine-5'-triphosphate (ATP). 2. We utilized microphysiometry, which monitors on-line extracellular acidification rate (ECAR) as a measure of cellular metabolic activity, and how this variable is altered by signalling molecules. 3. Challenge with NA (5.9 microM) resulted in an increase in ECAR by approximately 24% of basal. 4. PGE2 (0.0284, 0.284 and 2.84 microM) hardly affected ECAR. 5. ATP (100 microM) elicited a biphasic effect on ECAR (increase and decrease in ECAR by about 58 and 10% of basal, respectively). 6. HT-29 cells were shown to express COX-2 by immunocytochemistry. 7. These data suggest the presence of functional receptors for NA and ATP, but not for PGE2 in HT-29 human colon cancer cell line.
Collapse
Affiliation(s)
- G Nylund
- Department of Surgery, Institute of Surgical Sciences, Sahlgrenska University Hospital, SE-413 45 Göteborg, Sweden
| | | | | |
Collapse
|
12
|
Hull MA, Ko SC, Hawcroft G. Prostaglandin EP receptors: Targets for treatment and prevention of colorectal cancer? Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.1031.3.8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
The importance of the prostaglandin (PG) synthesis pathway, particularly the rate-limiting enzymatic step catalyzed by cyclooxygenase, to colorectal carcinogenesis and development of novel anticolorectal cancer therapy is well established. The predominant PG species in benign and malignant colorectal tumors is PGE2. PGE2 acts via four EP receptors termed EP1 to EP4. Recently, EP receptors have been identified as potential targets for treatment and/or prevention of colorectal cancer. This review summarizes existing knowledge of the expression and function of the EP receptor subtypes in human and rodent intestine during tumorigenic progression and describes the current literature on targeting EP receptor signaling during intestinal tumorigenesis.
Collapse
Affiliation(s)
- Mark A. Hull
- Molecular Medicine Unit, University of Leeds, St. James's University Hospital, Leeds, United Kingdom
| | - Stanley C.W. Ko
- Molecular Medicine Unit, University of Leeds, St. James's University Hospital, Leeds, United Kingdom
| | - Gillian Hawcroft
- Molecular Medicine Unit, University of Leeds, St. James's University Hospital, Leeds, United Kingdom
| |
Collapse
|
13
|
Pinto JA, Folador A, Bonato SJ, Aikawa J, Yamazaki RK, Pizato N, Facin M, Grohs H, de Oliveira HHP, Naliwaiko K, Ferraz AC, Nishiyama A, Fernandez R, Curi R, Fernandes LC. Fish oil supplementation in F1 generation associated with naproxen, clenbuterol, and insulin administration reduce tumor growth and cachexia in Walker 256 tumor-bearing rats. J Nutr Biochem 2004; 15:358-65. [PMID: 15157942 DOI: 10.1016/j.jnutbio.2004.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Weanling female Wistar rats were supplemented with fish oil (1 g/kg body weight) for one generation. The male offspring received the same supplementation until to adult age. Rats supplemented with coconut fat were used as reference. Some rats were inoculated subcutaneously with a suspension (2 x 10(7) cells/mL) of Walker 256 tumor. At day 3, when the tumor was palpable, rats were treated with naproxen (N) (0.1 mg/mL), clenbuterol (Cb) (0.15 mg/kg body weight), and insulin (I) (10 U/kg body weight). At day 14 after tumor inoculation, the animals were killed. Tumor was removed and weighed. Blood, liver, and skeletal muscles were also collected for measurements of metabolites and insulin. In both tumor-bearing untreated rats and tumor-bearing rats supplemented with coconut fat, tumor growth, triacylglycerol, and blood lactate levels were higher, and glycogen content of the liver, blood glucose, cholesterol and HDL-cholesterol levels were lower as compared with the non-tumor-bearing and fish oil supplemented groups. Fish oil supplementation of tumor-bearing rats led to a partial recovery of the glycogen content in the liver and a full reversion of blood glucose, lactate, cholesterol, and HDL-cholesterol levels. The treatment with N plus Cb plus I attenuated cancer cachexia and decreased tumor growth in both coconut fat and fish oil supplemented rats. In conclusion, chronic fish oil supplementation decreased tumor growth and partially recovered cachexia. This beneficial effect of fish oil supplementation was potentiated by treatment with naproxen plus clenbuterol plus insulin.
Collapse
Affiliation(s)
- João A Pinto
- Department of Physiology, Biological Sciences Building, Federal University of Paraná, 81530-990, Curitiba PR, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hull MA, Gardner SH, Hawcroft G. Activity of the non-steroidal anti-inflammatory drug indomethacin against colorectal cancer. Cancer Treat Rev 2003; 29:309-20. [PMID: 12927571 DOI: 10.1016/s0305-7372(03)00014-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A substantial body of evidence from rodent colon carcinogenesis models, in vitro experiments with human colorectal cancer cells and limited clinical observations in humans suggest that the non-steroidal anti-inflammatory drug indomethacin has anti-colorectal cancer activity. However, although many mechanisms of the anti-neoplastic activity of indomethacin have been suggested, e.g., cyclooxygenase inhibition and peroxisome proliferator-activated receptor gamma activation, the precise relevance of the majority of in vitro pharmacological observations to the in vivo anti-neoplastic activity of indomethacin remains unclear. Herein, we review the existing literature describing the chemopreventative and chemotherapeutic efficacy of indomethacin against colorectal cancer, and draw together the disparate literature describing potential mechanisms of action of indomethacin in human colorectal cancer cells in vitro. Although indomethacin itself has significant adverse effects, including serious upper gastrointestinal toxicity, the development of novel derivatives that may have an improved safety profile means that further investigation of the anti-colorectal cancer activity of indomethacin is warranted.
Collapse
Affiliation(s)
- M A Hull
- Molecular Medicine Unit, University of Leeds, Clinical Sciences Building, St. James's University Hospital, Leeds, LS9 7TF, UK.
| | | | | |
Collapse
|