1
|
Falini B, Sorcini D, Perriello VM, Sportoletti P. Functions of the native NPM1 protein and its leukemic mutant. Leukemia 2025; 39:276-290. [PMID: 39690184 DOI: 10.1038/s41375-024-02476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/19/2024]
Abstract
The nucleophosmin (NPM1) gene encodes for the most abundant nucleolar protein. Thanks to its property to act as histone chaperone and to shuttle between the nucleus and cytoplasm, the NPM1 protein is involved in multiple cellular function that are here extensively reviewed and include the formation of the nucleolus through liquid-liquid phase separation, regulation of ribosome biogenesis and transport, control of DNA repair and centrosome duplication as well as response to nucleolar stress. NPM1 is mutated in about 30-35% of adult acute myeloid leukemia (AML). Due to its unique biological and clinical features, NPM1-mutated AML is regarded as a distinct leukemia entity in the WHO 5th edition and ICC classifications of myeloid malignancies. The NPM1 mutant undergoes changes at the C-terminus of the protein that leads to its delocalization in the cytoplasm of the leukemic cells. Here, we focus also on its biological functions discussing the murine models of NPM1 mutations and the various mechanisms that occur at cytoplasmic and nuclear levels to promote and maintain NPM1-mutated AML.
Collapse
Affiliation(s)
- Brunangelo Falini
- Institute of Hematology and Center for Hemato-Oncological research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy.
| | - Daniele Sorcini
- Institute of Hematology and Center for Hemato-Oncological research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Vincenzo Maria Perriello
- Institute of Hematology and Center for Hemato-Oncological research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Paolo Sportoletti
- Institute of Hematology and Center for Hemato-Oncological research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
2
|
Wolfová K, Otevřelová P, Holoubek A, Brodská B. Nucleolar phosphoprotein modifications as a marker of apoptosis induced by RITA treatment. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119501. [PMID: 37276927 DOI: 10.1016/j.bbamcr.2023.119501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/07/2023]
Abstract
Reactivating p53 and Inducing Tumor Apoptosis (RITA) has been reported to increase the p53 activity and to trigger p53-dependent apoptosis in cancer cells with wild-type p53. Tumor suppressor p53 interacts with nucleolar phosphoproteins nucleophosmin (NPM) and nucleolin (NCL), which have crucial role in many cellular processes. Specific NPM mutations associated with acute myeloid leukemia (AML) cause aberrant localization of NPM and p53 in the cytoplasm with possible impact on the p53 function. We tested an effect of RITA on primary cells, and we found significant RITA-induced changes in NPM and NCL phosphorylation associated with apoptosis in cells of AML patients, but not that of healthy donors. Subsequent screening of several AML cell lines revealed heterogeneous response to RITA, and confirmed an association of the specific phosphorylation with apoptosis. While decreased NCL phosphorylation at Threonines T76 and T84 could be attributed to RITA-induced cell cycle arrest, enhanced NPM phosphorylation at Threonine T199 was not accompanied by the cell cycle changes and it correlated with sensitivity to RITA. Simultaneously, inverse changes occurred at Serine S4 of the NPM. These new findings of RITA mechanism of action could establish the NPM pT199/pS4 ratio as a marker for suitability of RITA treatment of AML cells.
Collapse
Affiliation(s)
- Kateřina Wolfová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague 2, Czech Republic
| | - Petra Otevřelová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague 2, Czech Republic
| | - Aleš Holoubek
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague 2, Czech Republic
| | - Barbora Brodská
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague 2, Czech Republic.
| |
Collapse
|
3
|
Trembley JH, Kren BT, Afzal M, Scaria GA, Klein MA, Ahmed K. Protein kinase CK2 – diverse roles in cancer cell biology and therapeutic promise. Mol Cell Biochem 2022; 478:899-926. [PMID: 36114992 PMCID: PMC9483426 DOI: 10.1007/s11010-022-04558-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
The association of protein kinase CK2 (formerly casein kinase II or 2) with cell growth and proliferation in cells was apparent at early stages of its investigation. A cancer-specific role for CK2 remained unclear until it was determined that CK2 was also a potent suppressor of cell death (apoptosis); the latter characteristic differentiated its function in normal versus malignant cells because dysregulation of both cell growth and cell death is a universal feature of cancer cells. Over time, it became evident that CK2 exerts its influence on a diverse range of cell functions in normal as well as in transformed cells. As such, CK2 and its substrates are localized in various compartments of the cell. The dysregulation of CK2 is documented in a wide range of malignancies; notably, by increased CK2 protein and activity levels with relatively moderate change in its RNA abundance. High levels of CK2 are associated with poor prognosis in multiple cancer types, and CK2 is a target for active research and testing for cancer therapy. Aspects of CK2 cellular roles and targeting in cancer are discussed in the present review, with focus on nuclear and mitochondrial functions and prostate, breast and head and neck malignancies.
Collapse
Affiliation(s)
- Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Betsy T Kren
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Muhammad Afzal
- Department of Biochemistry, Riphah International University, Islamabad, Pakistan
| | - George A Scaria
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Mark A Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Khalil Ahmed
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Urology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
4
|
Sharma M, Bhavani C, Suresh SB, Paul J, Yadav L, Ross C, Srivastava S. Gene expression profiling of CD34(+) cells from patients with myeloproliferative neoplasms. Oncol Lett 2021; 21:204. [PMID: 33574943 PMCID: PMC7816297 DOI: 10.3892/ol.2021.12465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 10/08/2020] [Indexed: 01/01/2023] Open
Abstract
Myeloproliferative neoplasms (MPN) are clonal disorders characterized by the increased proliferation of hematopoietic stem cell precursors and mature blood cells. Mutations of Janus kinase 2 (JAK2), Calreticulin (CALR) and MPL (myeloproliferative leukemia virus) are key driver mutations in MPN. However, the molecular profile of triple negative MPN has been a subject of ambiguity over the past few years. Mutations of, methylcytosine dioxygenase TET2, polycomb group protein ASXL1 and histone-lysine N-methyltransferase EZH2 genes have accounted for certain subsets of triple negative MPNs but the driving cause for majority of cases is still unexplored. The present study performed a microarray-based transcriptomic profile analysis of bone marrow-derived CD34(+) cells from seven MPN samples. A total of 21,448 gene signatures were obtained, which were further filtered into 472 upregulated and 202 downregulated genes. Gene ontology and protein-protein interaction (PPI) network analysis highlighted an upregulation of genes involved in cell cycle and chromatin modification in JAK2V617F negative vs. positive MPN samples. Out of the upregulated genes, seven were associated with the hematopoietic stem cell signature, while forty-seven were associated with the embryonic stem cell signature. The majority of the genes identified were under the control of NANOG and E2F4 transcription factors. The PPI network indicated a strong interaction between chromatin modifiers and cell cycle genes, such as histone-lysine N-methyltransferase SUV39H1, SWI/SNF complex subunit SMARCC2, SMARCE2, chromatin remodeling complex subunit SS18, tubulin β (TUBB) and cyclin dependent kinase CDK1. Among the upregulated epigenetic markers, there was a ~10-fold increase in MYB expression in JAK2V617F negative samples. A significant increase in total CD34 counts in JAK2V617F negative vs. positive samples (P<0.05) was also observed. Overall, the present data showed a distinct pattern of expression in JAK2V617F negative vs. positive samples with upregulated genes involved in epigenetic modification.
Collapse
Affiliation(s)
- Mugdha Sharma
- Department of Medicine, St. John's Medical College and Hospital, Bengaluru, Karnataka 560034, India
| | - Chandra Bhavani
- St. John's Research Institute, St. John's National Academy of Health Sciences, Bengaluru, Karnataka 560034, India
| | - Srinag Bangalore Suresh
- Department of Medicine, St. John's Medical College and Hospital, Bengaluru, Karnataka 560034, India
| | - John Paul
- Department of Medicine, St. John's Medical College and Hospital, Bengaluru, Karnataka 560034, India
| | - Lokendra Yadav
- Department of Transfusion Medicine and Immunohematology, St. John's Medical College and Hospital, Bengaluru, Karnataka 560034, India
| | - Cecil Ross
- Department of Medicine, St. John's Medical College and Hospital, Bengaluru, Karnataka 560034, India
| | - Sweta Srivastava
- Department of Transfusion Medicine and Immunohematology, St. John's Medical College and Hospital, Bengaluru, Karnataka 560034, India
| |
Collapse
|
5
|
Booth DG, Earnshaw WC. Ki-67 and the Chromosome Periphery Compartment in Mitosis. Trends Cell Biol 2017; 27:906-916. [PMID: 28838621 DOI: 10.1016/j.tcb.2017.08.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/12/2022]
Abstract
The chromosome periphery is a complex network of proteins and RNA molecules (many derived from nucleoli) that covers the outer surface of chromosomes and whose function remains mysterious. Although it was first described over 130 years ago, technological advances and the recent discovery that Ki-67 acts as an organiser of this region have allowed the chromosome periphery to be dissected in previously unattainable detail, leading to a revival of interest in this obscure chromosomal compartment. Here, we review the most recent advances into the composition, structure and function of the chromosome periphery, discuss possible roles of Ki-67 during mitosis and consider why this structure is likely to remain the focus of ongoing attention in the future.
Collapse
Affiliation(s)
- Daniel G Booth
- Centre For Neuroregeneration, Chancellor's Building, University of Edinburgh, Edinburgh, EH16 4SB, UK.
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, King's Buildings, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
6
|
Perera Y, Pedroso S, Borras-Hidalgo O, Vázquez DM, Miranda J, Villareal A, Falcón V, Cruz LD, Farinas HG, Perea SE. Pharmacologic inhibition of the CK2-mediated phosphorylation of B23/NPM in cancer cells selectively modulates genes related to protein synthesis, energetic metabolism, and ribosomal biogenesis. Mol Cell Biochem 2015; 404:103-12. [DOI: 10.1007/s11010-015-2370-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/23/2015] [Indexed: 11/29/2022]
|
7
|
Booth DG, Takagi M, Sanchez-Pulido L, Petfalski E, Vargiu G, Samejima K, Imamoto N, Ponting CP, Tollervey D, Earnshaw WC, Vagnarelli P. Ki-67 is a PP1-interacting protein that organises the mitotic chromosome periphery. eLife 2014; 3:e01641. [PMID: 24867636 PMCID: PMC4032110 DOI: 10.7554/elife.01641] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 04/27/2014] [Indexed: 12/23/2022] Open
Abstract
When the nucleolus disassembles during open mitosis, many nucleolar proteins and RNAs associate with chromosomes, establishing a perichromosomal compartment coating the chromosome periphery. At present nothing is known about the function of this poorly characterised compartment. In this study, we report that the nucleolar protein Ki-67 is required for the assembly of the perichromosomal compartment in human cells. Ki-67 is a cell-cycle regulated protein phosphatase 1-binding protein that is involved in phospho-regulation of the nucleolar protein B23/nucleophosmin. Following siRNA depletion of Ki-67, NIFK, B23, nucleolin, and four novel chromosome periphery proteins all fail to associate with the periphery of human chromosomes. Correlative light and electron microscopy (CLEM) images suggest a near-complete loss of the entire perichromosomal compartment. Mitotic chromosome condensation and intrinsic structure appear normal in the absence of the perichromosomal compartment but significant differences in nucleolar reassembly and nuclear organisation are observed in post-mitotic cells.DOI: http://dx.doi.org/10.7554/eLife.01641.001.
Collapse
Affiliation(s)
- Daniel G Booth
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Masatoshi Takagi
- Cellular Dynamics Laboratory, Riken Advanced Science Institute, Wako Saitama, Japan
| | - Luis Sanchez-Pulido
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Elizabeth Petfalski
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Giulia Vargiu
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Kumiko Samejima
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, Riken Advanced Science Institute, Wako Saitama, Japan
| | - Chris P Ponting
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
8
|
The Multifunctional Nucleolar Protein Nucleophosmin/NPM/B23 and the Nucleoplasmin Family of Proteins. THE NUCLEOLUS 2011. [PMCID: PMC7121557 DOI: 10.1007/978-1-4614-0514-6_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nucleophosmin (NPM)/nucleoplasmin family of nuclear chaperones has three members: NPM1, NPM2, and NPM3. Nuclear chaperones serve to ensure proper assembly of nucleosomes and proper formation of higher order structures of chromatin. In fact, this family of proteins has such diverse functions in cellular processes such as chromatin remodeling, ribosome biogenesis, genome stability, centrosome replication, cell cycle, transcriptional regulation, apoptosis, and tumor suppression. Of the members of this family, NPM1 is the most studied and is the main focus of this review. NPM2 and NPM3 are less well characterized, and are also discussed wherever appropriate. The structure–function relationship of NPM proteins has largely been worked out. Other than the many processes in which NPM1 takes part, the major interest comes from its involvement in human cancers, particularly acute myeloid leukemia (AML). Its significance stems from the fact that AML with mutated NPM1 accounts for ∼30% of all AML cases and usually has good prognosis. Its clinical importance also comes from its involvement in virus replication, particularly in the era of outbreaks of infectious diseases.
Collapse
|
9
|
Lin CY, Tan BCM, Liu H, Shih CJ, Chien KY, Lin CL, Yung BYM. Dephosphorylation of nucleophosmin by PP1β facilitates pRB binding and consequent E2F1-dependent DNA repair. Mol Biol Cell 2010; 21:4409-17. [PMID: 20962268 PMCID: PMC3002393 DOI: 10.1091/mbc.e10-03-0239] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We report a new pathway through which PP1β signals to nucleophosmin (NPM) in response to DNA damage. UV induces dephosphorylation of NPM at multiple sites, leading to enhancement of complex formation between NPM and retinoblastoma tumor suppressor protein and the subsequent upregulation of E2F1. Consequently, such signaling pathway potentiates the cellular DNA repair capacity. Nucleophosmin (NPM) is an important phosphoprotein with pleiotropic functions in various cellular processes. Although phosphorylation has been postulated as an important functional determinant, possible regulatory roles of this modification on NPM are not fully characterized. Here, we find that NPM is dephosphorylated on various threonine residues (Thr199 and Thr234/237) in response to UV-induced DNA damage. Further experiments indicate that the serine/threonine protein phosphatase PP1β is a physiological NPM phosphatase under both the genotoxic stress and growth conditions. As a consequence, NPM in its hypophosphorylated state facilitates DNA repair. Finally, our results suggest that one possible mechanism of this protective response lies in enhanced NPM-retinoblastoma tumor suppressor protein (pRB) interaction, leading to the relief of the repressive pRB–E2F1 circuitry and the consequent transcriptional activation of E2F1 and several downstream DNA repair genes. Thus, this study unveils a key phosphatase of NPM and highlights a novel mechanism by which the PP1β–NPM pathway contributes to cellular DNA damage response.
Collapse
Affiliation(s)
- Chiao Yun Lin
- Department of Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan
| | | | | | | | | | | | | |
Collapse
|
10
|
Rousselet A. Inhibiting Crm1 causes the formation of excess acentriolar spindle poles containing NuMA and B23, but does not affect centrosome numbers. Biol Cell 2009; 101:679-93. [PMID: 19522705 DOI: 10.1042/bc20080218] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND B23/nucleophosmin is present on spindle poles at metaphase. Migration of B23 to the poles is under the control of exportin Crm1. B23 at the centrosome plays a role in the control centrosome duplication. RESULTS h-Tert-RPE1 cells blocked in prometaphase with low doses of Nocodazol showed a progression to mitosis if Crm1 exportin was inhibited. Under these conditions, the formation of accessory poles containing gamma-tubulin, NuMA (nuclear-mitotic-apparatus) and B23 was induced at metaphase. No effect on centrosome number was observed. In quiescent h-Tert-RPE1 cells, when Crm1 was active, B23 was not detected at the centrosome as well as B23-mutants reported to block centrosome duplication. In addition, the modification of B23 nucleo-cytoplasmic shuttling showed no effect on centrosome duplication. CONCLUSION Inhibition of Crm1 in early metaphase favours the formation of supplementary acentriolar spindle poles. B23 and NuMA are present at these poles that ultimately focus around the centrosome. Inhibition of Crm1 at metaphase has no effect on the control of centrosome numbers.
Collapse
|
11
|
Zharskaya OO, Barsukova AS, Zatsepina OV. Effect of roscovitine, a selective cyclin B-dependent kinase 1 inhibitor, on assembly of the nucleolus in mitosis. BIOCHEMISTRY. BIOKHIMIIA 2008; 73:411-9. [PMID: 18457570 DOI: 10.1134/s0006297908040056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It is well known that at the beginning of mitosis the nucleolus disassembles but then reassembles at the end of mitosis. However, the mechanisms of these processes are still unclear. In the present work, we show for the first time that selective inhibition of cyclin B-dependent kinase 1 (CDK1) by roscovitine induces premature assembly of the nucleolus in mammalian cells in metaphase. Treatment of metaphase cells with roscovitine induces formation of structures in their cytoplasm that contain major proteins of the mature nucleolus participating in rRNA processing, such as B23/nucleophosmin, C23/nucleolin, fibrillarin, Nop52, as well as partially processed (immature) 46-45S pre-rRNA. This effect is reproducible in cells of various types; this indicates that general mechanisms regulate early stages of the nucleolus reassembly with CDK1 participation in mammalian cells. Based on our and literature data, we suggest that inactivation of the CDK1-cyclin B complex at the end of mitosis results in dephosphorylation of B23/nucleophosmin and C23/nucleolin; this facilitates their interaction with pre-rRNA and leads to formation of insoluble supramolecular complexes--nucleolus-derived foci.
Collapse
Affiliation(s)
- O O Zharskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | | | | |
Collapse
|
12
|
Choi JW, Lee SB, Kim CK, Lee KH, Cho SW, Ahn JY. Lysine 263 residue of NPM/B23 is essential for regulating ATP binding and B23 stability. FEBS Lett 2008; 582:1073-80. [PMID: 18319061 DOI: 10.1016/j.febslet.2008.02.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 02/22/2008] [Accepted: 02/25/2008] [Indexed: 11/16/2022]
Abstract
Here, we show that Nucleophsomin/B23 provides lysine 263 as a critical binding site for ATP. Mutagenesis of lysine 263 to asparagine (K263N) disrupts B23 from ATP binding. While B23 WT exclusively localizes to the nucleolus, the B23-K263N is redistributed from the nucleolus to the nucleoplam. Notably, the K263N mutant is unstable, and displayed rapid degradation. Alteration of K263 induced B23 instability through increased ubiquitination and proteaosomal degradation. Moreover, mutation of K263 impedes the mitogenic effect of B23 in PC12 cells. Thus, K263 is a critical site for ATP binding and required for B23 stability, confining B23 in the nucleolus.
Collapse
Affiliation(s)
- Joung Woo Choi
- Departments of Molecular Cell Biology, Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | | | | | | | | | | |
Collapse
|
13
|
Okada M, Jang SW, Ye K. Ebp1 association with nucleophosmin/B23 is essential for regulating cell proliferation and suppressing apoptosis. J Biol Chem 2007; 282:36744-54. [PMID: 17951246 DOI: 10.1074/jbc.m706169200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ebp1 and NPM/B23 are essential for cell proliferation and survival. Ebp1 possesses p42 and p48 isoforms. Whereas p42 exclusively resides in the cytoplasm, p48 localizes in both the cytoplasm and the nucleolus. Here, we show that Ebp1 forms a complex with B23, and this complex plays a critical role in cell proliferation and survival. p42 specifically associates with B23 upon epidermal growth factor stimulation, while p48 constantly binds B23. Moreover, Ser360 phosphorylation in p42, but not p48, is critical for the interaction. p48 constitutively binds B23 in the nucleolus, for which B23 Lys263 sumoylation is indispensable. By contrast, p42 selectively binds unsumoylated B23 mutants. Interestingly, B23 K263R, an unsumoylated mutant, triggers p42 nuclear translocation and interacts with it in the nucleus even in the absence of epidermal growth factor. In contrast, the nucleolar residency of p48 is abolished in B23 K263R cells. During the cell cycle, p42 selectively colocalizes with B23 in the mitotic cells, correlating with its phosphorylation status in mitosis. Knocking down of B23 or Ebp1 substantially decreases ribosome biogenesis and cell survival. Thus, B23 distinctively binds Ebp1 isoforms and regulates cell proliferation and survival through p42 and p48, respectively.
Collapse
Affiliation(s)
- Masashi Okada
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
14
|
Abstract
Nucleophosmin (NPM) is a nucleolar phosphoprotein that shuttles between the nucleus and cytoplasm during the cell cycle. NPM has several interacting partners and diverse cellular functions, including the processing of ribosomal RNA, centrosome duplication and the control of cellular processes to ensure genomic stability. Subcellular localization of NPM appears to be strongly correlated with NPM functions and cell proliferation. NPM is phosphorylated mainly at its central acidic domain by several upstream kinases, and its phosphorylation appears to be involved in regulating its functions in ribosome biogenesis and centrosome duplication. Recent studies suggest that NPM may act as a licensing factor to maintain proper centrosome duplication and that the Ran/CRM1 nucleocytoplasmic complex regulates local trafficking of NPM to centrosomes by interacting through its nuclear export sequence motif. Here, we provide a brief overview of NPM functions and its roles in human carcinogenesis, and discuss our recent findings related to the potential mechanisms underlying its regulation of centrosome duplication.
Collapse
Affiliation(s)
- Mi Jung Lim
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
15
|
Bergstralh DT, Conti BJ, Moore CB, Brickey WJ, Taxman DJ, Ting JPY. Global functional analysis of nucleophosmin in Taxol response, cancer, chromatin regulation, and ribosomal DNA transcription. Exp Cell Res 2006; 313:65-76. [PMID: 17069796 PMCID: PMC1805482 DOI: 10.1016/j.yexcr.2006.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 09/14/2006] [Accepted: 09/18/2006] [Indexed: 11/28/2022]
Abstract
Analysis of lung cancer response to chemotherapeutic agents showed the accumulation of a Taxol-induced protein that reacted with an anti-phospho-MEK1/2 antibody. Mass spectroscopy identified the protein as nucleophosmin/B23 (NPM), a multifunctional protein with diverse roles: ribosome biosynthesis, p53 regulation, nuclear-cytoplasmic shuttling, and centrosome duplication. Our work demonstrates that following cellular exposure to mitosis-arresting agents, NPM is phosphorylated and its chromatographic property is altered, suggesting changes in function during mitosis. To determine the functional relevance of NPM, its expression in tumor cells was reduced by siRNA. Cells with reduced NPM were treated with Taxol followed by microarray profiling accompanied by gene/protein pathway analyses. These studies demonstrate several expected and unexpected consequences of NPM depletion. The predominant downstream effectors of NPM are genes involved in cell proliferation, cancer, and the cell cycle. In congruence with its role in cancer, NPM is over-expressed in primary malignant lung cancer tissues. We also demonstrate a role for NPM in the expression of genes encoding SET (TAF1beta) and the histone methylase SET8. Additionally, we show that NPM is required for a previously unobserved G2/M upregulation of TAF1A, which encodes the rDNA transcription factor TAF(I)48. These results demonstrate multi-faceted functions of NPM that can affect cancer cells.
Collapse
Affiliation(s)
- Daniel T Bergstralh
- Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
NPM1 is a crucial gene to consider in the context of the genetics and biology of cancer. NPM1 is frequently overexpressed, mutated, rearranged and deleted in human cancer. Traditionally regarded as a tumour marker and a putative proto-oncogene, it has now also been attributed with tumour-suppressor functions. Therefore, NPM can contribute to oncogenesis through many mechanisms. The aim of this review is to analyse the role of NPM in cancer, and examine how deregulated NPM activity (either gain or loss of function) can contribute to tumorigenesis.
Collapse
Affiliation(s)
- Silvia Grisendi
- Cancer Biology & Genetics Program, Department of Pathology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | |
Collapse
|
17
|
Duan-Porter WD, Casciola-Rosen L, Rosen A. Autoantigens: the critical partner in initiating and propagating systemic autoimmunity. Ann N Y Acad Sci 2006; 1062:127-36. [PMID: 16461795 DOI: 10.1196/annals.1358.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The increasing recognition that cancer is frequently associated with an autoantibody response, and observations that systemic autoimmunity is sometimes associated with the diagnosis of a variety of malignancies (many detected near the onset of autoimmune disease), strongly underscore a potential mechanistic connection between cancer immunity and systemic autoimmunity. Accumulating data suggest that autoantigens are critical partners in driving the autoimmune response. Furthermore, unique changes in antigen expression and conformation in the immunizing tumor and the target tissue may play a role in antigen selection and ongoing damage. This construct has important implications for diagnosis, monitoring, and treatment of autoimmunity and, potentially, cancer immunotherapy.
Collapse
Affiliation(s)
- Wei D Duan-Porter
- Division of Rheumatology, Johns Hopkins University, Mason F. Lord Building, Central Tower, Suite 4100, Room 411, Baltimore, MD, USA
| | | | | |
Collapse
|
18
|
Lawson K, Larentowicz L, Laury-Kleintop L, Gilmour SK. B23 is a downstream target of polyamine-modulated CK2. Mol Cell Biochem 2006; 274:103-14. [PMID: 16342411 DOI: 10.1007/s11010-005-3066-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Our previous studies have shown that the overexpression of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis, increases the enzymatic activity of the polyamine-responsive enzyme casein kinase 2 (CK2). Because CK2 is known to preferentially associate with the nuclear matrix in response to other trophic stimuli, we investigated the effects of ODC overexpression on CK2 localisation and on the CK2-mediated phosphorylation of a known CK2 substrate, the nucleolar phosphoprotein B23. Immunofluorescence analysis of CK2 and B23 in primary keratinocytes revealed that ODC overexpression resulted in the colocalisation of CK2 with B23 at the nucleolar borders. ODC overexpression also increased CK2 kinase activity 2-fold at the nuclear matrix, a response which could be abrogated by treatment of K6/ODC transgenic keratinocytes with the ODC inhibitor alpha-difluoromethylornithine (DFMO). Levels of B23 protein were also elevated in ODC-overexpressing cells compared to normal cells or transgenic cells treated with DFMO. This increase in protein level was neither due to an increase in steady-state mRNA levels, nor was it due to increased stability of B23 protein. Phosphorylation of B23 was also increased in ODC-overexpressing cells, and this increased phosphorylation could be blocked by treatment of the cells with the CK2 kinase inhibitors apigenin or 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB). These data suggest that B23 may be a downstream effector of polyamines via phosphorylation by the protein kinase CK2.
Collapse
Affiliation(s)
- Kathryn Lawson
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA 19096, USA
| | | | | | | |
Collapse
|
19
|
Lawson K, Larentowicz L, Artim S, Hayes CS, Gilmour SK. A Novel Protein Kinase CK2 Substrate Indicates CK2 Is Not Directly Stimulated by Polyamines in Vivo. Biochemistry 2006; 45:1499-510. [PMID: 16445292 DOI: 10.1021/bi052480i] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The activity of the protein kinase (CK2) is enhanced in vitro by the binding of polyamines to the CK2beta regulatory subunit. The overexpression of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis, also elevates CK2 kinase activity in primary keratinocytes and tissues of K6/ODC transgenic mice. In an effort to better characterize the mechanisms by which polyamines may affect CK2 in vivo, we constructed a transfectable CK2 substrate cDNA consisting of the enhanced green fluorescence protein appended with a canonical CK2 phosphorylation sequence (EGFP-S). In contrast to unmodified EGFP, the EGFP-S protein was extensively phosphorylated by CK2, and this phosphorylation was stimulated by the polyamine spermine in a dose-dependent manner. The in vivo phosphorylation of EGFP-S was examined in cell lines which inducibly express either wild-type CK2 holoenzyme or a CK2 holoenzyme which contains activating mutations in the polyamine-binding region of its CK2beta regulatory subunit. Neither the overexpression of ODC in either cell line nor the mutation of the CK2beta subunit conferred an increase in CK2 kinase activity as measured by the in vivo phosphorylation of EGFP-S. Rather, our data indicate that polyamines increase total CK2 kinase activity through increases in steady-state levels of both CK2alpha and CK2beta subunits. The overexpression of ODC resulted in a 3-fold increase in steady-state levels of both exogenous and endogenous CK2 transcripts but did not increase the half-life of wild-type or mutated CK2 protein. These data suggest that the regulation of intracellular CK2 by the polyamines may occur through mechanisms distinct from the direct stimulation of CK2 by polyamines in vitro as previously described.
Collapse
Affiliation(s)
- Kathryn Lawson
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, Pennsylvania 19096, USA
| | | | | | | | | |
Collapse
|
20
|
Tarapore P, Shinmura K, Suzuki H, Tokuyama Y, Kim SH, Mayeda A, Fukasawa K. Thr199phosphorylation targets nucleophosmin to nuclear speckles and represses pre-mRNA processing. FEBS Lett 2005; 580:399-409. [PMID: 16376875 DOI: 10.1016/j.febslet.2005.12.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 12/05/2005] [Accepted: 12/07/2005] [Indexed: 11/29/2022]
Abstract
Nucleophosmin (NPM) is a multifunctional phosphoprotein, being involved in ribosome assembly, pre-ribosomal RNA processing, DNA duplication, nucleocytoplasmic protein trafficking, and centrosome duplication. NPM is phosphorylated by several kinases, including nuclear kinase II, casein kinase 2, Polo-like kinase 1 and cyclin-dependent kinases (CDK1 and 2), and these phosphorylations modulate the activity and function of NPM. We have previously identified Thr(199) as the major phosphorylation site of NPM mediated by CDK2/cyclin E (and A), and this phosphorylation is involved in the regulation of centrosome duplication. In this study, we further examined the effect of CDK2-mediated phosphorylation of NPM by using the antibody that specifically recognizes NPM phosphorylated on Thr(199). We found that the phospho-Thr(199) NPM localized to dynamic sub-nuclear structures known as nuclear speckles, which are believed to be the sites of storage and/or assembly of pre-mRNA splicing factors. Phosphorylation on Thr(199) by CDK2/cyclin E (and A) targets NPM to nuclear speckles, and enhances the RNA-binding activity of NPM. Moreover, phospho-Thr(199) NPM, but not unphosphorylated NPM, effectively represses pre-mRNA splicing. These findings indicate the involvement of NPM in the regulation of pre-mRNA processing, and its activity is controlled by CDK2-mediated phosphorylation on Thr(199).
Collapse
Affiliation(s)
- Pheruza Tarapore
- Department of Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Shinmura K, Tarapore P, Tokuyama Y, George KR, Fukasawa K. Characterization of centrosomal association of nucleophosmin/B23 linked to Crm1 activity. FEBS Lett 2005; 579:6621-34. [PMID: 16297385 DOI: 10.1016/j.febslet.2005.10.057] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 10/20/2005] [Accepted: 10/28/2005] [Indexed: 11/24/2022]
Abstract
Nucleophosmin (NPM)/B23 is a multifunctional protein, involving in a wide variety of basic cellular processes, including ribosome assembly, DNA duplication, nucleocytoplasmic trafficking, and centrosome duplication. It has previously been shown that NPM/B23 localizes to centrosomes, and dissociate from centrosomes upon phosphorylation by Cdk2/cyclin E. However, detail characterization of centrosomal association of NPM/B23 has been hampered by the lack of appropriate antibodies that efficiently detects centrosomally localized NPM/B23, as well as by apparent loss of natural behavior of NPM/B23 when tagged with fluorescent proteins. Here, by the use of newly generated anti-NPM/B23 antibody, we conducted a careful analysis of centrosomal localization of NPM/B23. We found that NPM/B23 localizes between the paired centrioles of unduplicated centrosomes, suggesting the role of NPM/B23 in the centriole pairing. Upon initiation of centrosome duplication, some NPM/B23 proteins remain at mother centrioles of the parental centriole pairs. We further found that inhibition of Crm1 nuclear export receptor results in both accumulation of cyclin E at centrosomes and efficient dissociation of NPM/B23 from centrosomes.
Collapse
Affiliation(s)
- Kazuya Shinmura
- Department of Cell Biology, University of Cincinnati College of Medicine, P.O. Box 670521 (3125 Eden Avenue), Cincinnati, OH 45267-0521, United States
| | | | | | | | | |
Collapse
|
22
|
Hayne C, Xiang X, Luo Z. MEK inhibition and phosphorylation of serine 4 on B23 are two coincident events in mitosis. Biochem Biophys Res Commun 2004; 321:675-80. [PMID: 15358159 DOI: 10.1016/j.bbrc.2004.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Indexed: 11/29/2022]
Abstract
Previous studies have shown that activation of the Raf/MEK/ERK pathway is necessary for G2/M transition. However, as for the activation state of MEK in mitosis the conclusion is not consistent. Here we show that MEK is inhibited in mitosis. In addition, we identify a multifunctional protein named B23 that strongly cross-reacts with a phospho-MEK antibody in mitotic cells. Sequence homology between the N-terminus surrounding Ser 4 of B23 and the Raf phosphorylation site on MEK suggests a mechanism for cross-reaction of the antibody. Thus, mutation of Ser 4 to alanine abolishes cross-reactivity between B23 and the phospho-MEK antibody. Our findings may explain the discrepancy of results obtained with the use of phospho-MEK antibody regarding the activation state of MEK in mitosis.
Collapse
Affiliation(s)
- Cynthia Hayne
- Diabetes Research Unit, Section of Endocrinology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
23
|
Cha H, Hancock C, Dangi S, Maiguel D, Carrier F, Shapiro P. Phosphorylation regulates nucleophosmin targeting to the centrosome during mitosis as detected by cross-reactive phosphorylation-specific MKK1/MKK2 antibodies. Biochem J 2004; 378:857-65. [PMID: 14670079 PMCID: PMC1224030 DOI: 10.1042/bj20031173] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Revised: 12/02/2003] [Accepted: 12/12/2003] [Indexed: 11/17/2022]
Abstract
Phosphorylation-specific antibodies provide a powerful tool for analysing the regulation and activity of proteins in the MAP (mitogen-activated protein) kinase and other signalling pathways. Using synchronized cells, it was observed that phosphorylation-specific antibodies developed against the active form of MKK1/MKK2 (MAP kinase kinase-1 and -2) reacted with a protein that was approx. 35 kDa during G2/M-phase of the cell cycle. Failure of the 35 kDa protein to react with phosphorylation-independent MKK1/MKK2 antibodies suggested that this protein was not related to MKK1 or MKK2. Thus the 35 kDa protein was isolated by immunoprecipitation with the phospho-MKK1/MKK2 antibody and identified by MS. Peptide sequence analysis revealed matches with NPM (nucleophosmin/B23), a phosphoprotein involved in nucleolar assembly, centrosome duplication and ribosome assembly and transport. Biochemical and immunocytochemistry analyses verified that the phospho-MKK1/MKK2 antibodies cross-reacted with NPM that was phosphorylated at Thr234 and Thr237 during G2/M-phase, which are the same sites that are targeted by Cdc2 (cell division cycle protein-2) during mitosis. Using phosphorylation site mutants, we show that phosphorylation of Thr234 and Thr237 is required for NPM immunoreactivity with the phospho-MKK1/MKK2 antibody. Moreover, phosphorylation of Thr234 and Thr237 was demonstrated to regulate NPM localization to the centrosome after nuclear envelope breakdown in mitotic cells. These findings reveal a new insight into the role of phosphorylation in regulating NPM targeting during mitosis. However, caution should be used when using commercially available phospho-MKK1/MKK2 antibodies to examine the regulation of MKK1/MKK2 during mitotic transitions, owing to their cross-reactivity with phosphorylated NPM at this time of the cell cycle.
Collapse
Affiliation(s)
- Hyukjin Cha
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
24
|
Ou Y, Rattner JB. The Centrosome in Higher Organisms: Structure, Composition, and Duplication. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 238:119-82. [PMID: 15364198 DOI: 10.1016/s0074-7696(04)38003-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The centrosome found in higher organisms is an organelle with a complex and dynamic architecture and composition. This organelle not only functions as a microtubule-organizing center, but also is integrated with or impacts a number of cellular processes. Defects associated with this organelle have been linked to a variety of human diseases including several forms of cancer. Here we review the emerging picture of how the structure, composition, duplication, and function of the centrosome found in higher organisms are interrelated.
Collapse
Affiliation(s)
- Young Ou
- Department of Cell Biology and Anatomy, University of Calgary 3330 Hospital Drive NW, Calgary, Alberta, Canada
| | | |
Collapse
|
25
|
Yun JP, Chew EC, Liew CT, Chan JYH, Jin ML, Ding MX, Fai YH, Li HKR, Liang XM, Wu QL. Nucleophosmin/B23 is a proliferate shuttle protein associated with nuclear matrix. J Cell Biochem 2003; 90:1140-8. [PMID: 14635188 DOI: 10.1002/jcb.10706] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It has become obvious that a better understanding and potential elucidation of the nucleolar phosphoprotein B23 involving in functional interrelationship between nuclear organization and gene expression. In present study, protein B23 expression were investigated in the regenerative hepatocytes at different periods (at days 0, 1, 2, 3, 4, 7) during liver regeneration after partial hepatectomy on the rats with immunohistochemistry and Western blot analysis. Another experiment was done with immunolabeling methods and two-dimensional (2-D) gel electrophoresis for identification of B23 in the regenerating hepatocytes and HepG2 cells (hepatoblastoma cell line) after sequential extraction with detergents, nuclease, and salt. The results showed that its expression in the hepatocytes had a locative move and quantitative change during the process of liver regeneration post-operation. Its immunochemical localization in the hepatocytes during the process showed that it moved from nucleoli of the hepatocytes in the stationary stage to nucleoplasm, cytoplasm, mitotic spindles, and mitotic chromosomes of the hepatocytes in the regenerating livers. It was quantitatively increased progressively to peak level at day 3 post-operation and declined gradually to normal level at day 7. It was detected in nuclear matrix protein (NMP) composition extracted from the regenerating hepatocytes and HepG2 cells and identified with isoelectric point (pI) value of 5.1 and molecular weight of 40 kDa. These results indicated that B23 was a proliferate shuttle protein involving in cell cycle and cell proliferation associated with nuclear matrix.
Collapse
Affiliation(s)
- Jing-Ping Yun
- Department of Pathology, Cancer Center of Sun Yat-sen University, Guangzhou 510060, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Vanrobays E, Gelugne JP, Gleizes PE, Caizergues-Ferrer M. Late cytoplasmic maturation of the small ribosomal subunit requires RIO proteins in Saccharomyces cerevisiae. Mol Cell Biol 2003; 23:2083-95. [PMID: 12612080 PMCID: PMC149469 DOI: 10.1128/mcb.23.6.2083-2095.2003] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2002] [Revised: 09/13/2002] [Accepted: 12/19/2002] [Indexed: 11/20/2022] Open
Abstract
Numerous nonribosomal trans-acting factors involved in pre-rRNA processing have been characterized, but few of them are specifically required for the last cytoplasmic steps of 18S rRNA maturation. We have recently demonstrated that Rrp10p/Rio1p is such a factor. By BLAST analysis, we identified the product of a previously uncharacterized essential gene, YNL207W/RIO2, called Rio2p, that shares 43% sequence similarity with Rrp10p/Rio1p. Rio2p homologues were identified throughout the Archaea and metazoan species. We show that Rio2p is a cytoplasmic-nuclear protein and that its depletion blocks 18S rRNA production, leading to 20S pre-rRNA accumulation. In situ hybridization reveals that in Rio2p-depleted cells, 20S pre-rRNA localizes in the cytoplasm, demonstrating that its accumulation is not due to an export defect. We also show that both Rio1p and Rio2p accumulate in the nucleus of crm1-1 cells at the nonpermissive temperature. Nuclear as well as cytoplasmic Rio2p and Rio1p cosediment with pre-40S particles. These results strongly suggest that Rio2p and Rrp10p/Rio1p are shuttling proteins which associate with pre-40S particles in the nucleus and they are not necessary for export of the pre-40S complexes but are absolutely required for the cytoplasmic maturation of 20S pre-rRNA at site D, leading to mature 40S ribosomal subunits.
Collapse
Affiliation(s)
- Emmanuel Vanrobays
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, 118 route de Narbonne, 31062 Toulouse Cedex, France
| | | | | | | |
Collapse
|
27
|
Faust M, Kartarius S, Schwindling SL, Montenarh M. Cyclin H is a new binding partner for protein kinase CK2. Biochem Biophys Res Commun 2002; 296:13-9. [PMID: 12147220 DOI: 10.1016/s0006-291x(02)00825-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The protein kinase CK2 holoenzyme is composed of two regulatory beta- and two catalytic alpha- or alpha(')-subunits. There is ample evidence for the binding of individual subunits of CK2 to various cellular proteins and, moreover, for functions of the individual subunits, which are different from their roles in the holoenzyme. Here, we report that the regulatory cyclin H subunit of the cyclin H/cdk7/Mat1 complex was associated with a protein kinase activity, which shows some similarity with protein kinase CK2. Coimmunoprecipitation experiments supported the existence of complexes of cyclin H and CK2 in mammalian cells. Far Western blot experiments revealed that cyclin H bound to the alpha-subunit but not the alpha(')- and beta-subunits of CK2. Immunofluorescence analysis showed that cyclin H and CK2alpha were colocated in the nucleus. Although cyclin H functions as the regulatory subunit for the cyclin H/cdk7/Mat1 complex, it could not substitute the regulatory beta-subunit of CK2 in its regulatory function of the CK2 activity.
Collapse
Affiliation(s)
- Michael Faust
- Medical Biochemistry and Molecular Biology, University of the Saarland, Building 44, D-66424, Homburg/Saar, Germany
| | | | | | | |
Collapse
|
28
|
Abstract
Ribosome biogenesis is both necessary for cellular adaptation, growth, and proliferation as well as a major energetic and biosynthetic demand upon cells. For these reasons, ribosome biogenesis requires precise regulation to balance supply and demand. The complexity of ribosome biogenesis gives rise to many steps and opportunities where regulation could take place. For trans-acting factors involved in ribosome biogenesis in the nucleolus, there may be a dynamic coordination, both spatially and temporally, that regulates their functions from the transcription of rDNA to the assembly and export of preribosomal particles. Here we summarize most of the described regulations on ribosome biogenesis in the nucleolus. However, these may represent only a small fraction of a larger picture. Further studies are required to determine the initial signals, signal transduction pathways utilized, and the specific targets of these regulatory modifications and how these are used to control ribosome biogenesis as a whole.
Collapse
Affiliation(s)
- D J Leary
- Department of Cell and Molecular Biology, Northwestern University Medical School, 300 E. Chicago Ave, Chicago, IL 60611, USA
| | | |
Collapse
|
29
|
Tokuyama Y, Horn HF, Kawamura K, Tarapore P, Fukasawa K. Specific phosphorylation of nucleophosmin on Thr(199) by cyclin-dependent kinase 2-cyclin E and its role in centrosome duplication. J Biol Chem 2001; 276:21529-37. [PMID: 11278991 DOI: 10.1074/jbc.m100014200] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The kinase activity of cyclin-dependent kinase 2 (CDK2)-cyclin E is required for centrosomes to initiate duplication. We have recently found that nucleophosmin (NPM/B23), a phosphoprotein primarily found in nucleolus, associates with unduplicated centrosomes and is a direct substrate of CDK2-cyclin E in centrosome duplication. Upon phosphorylation by CDK2-cyclin E, NPM/B23 dissociates from centrosomes, which is a prerequisite step for centrosomes to initiate duplication. Here, we identified that threonine 199 (Thr(199)) of NPM/B23 is the major phosphorylation target site of CDK2-cyclin E in vitro, and the same site is phosphorylated in vivo. NPM/T199A, a nonphosphorylatable NPM/B23 substitution mutant (Thr(199) --> Ala) acts as dominant negative when expressed in cells, resulting in specific inhibition of centrosome duplication. As expected, NPM/T199A remains associated with the centrosomes. These observations provide direct evidence that the CDK2-cyclin E-mediated phosphorylation on Thr(199) determines association and dissociation of NPM/B23 to the centrosomes, which is a critical control for the centrosome to initiate duplication.
Collapse
Affiliation(s)
- Y Tokuyama
- Department of Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0521, USA
| | | | | | | | | |
Collapse
|