1
|
Gupta MK, Rajeswari J, Reddy PR, Kumar KS, Chamundeswaramma KV, Vadde R. Genetic Marker Identification for the Detection of Early-Onset Gastric Cancer Through Genome-Wide Association Studies. RECENT ADVANCEMENTS IN BIOMARKERS AND EARLY DETECTION OF GASTROINTESTINAL CANCERS 2020:191-211. [DOI: https:/doi.org/10.1007/978-981-15-4431-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
2
|
Gupta MK, Rajeswari J, Reddy PR, Kumar KS, Chamundeswaramma KV, Vadde R. Genetic Marker Identification for the Detection of Early-Onset Gastric Cancer Through Genome-Wide Association Studies. RECENT ADVANCEMENTS IN BIOMARKERS AND EARLY DETECTION OF GASTROINTESTINAL CANCERS 2020:191-211. [DOI: 10.1007/978-981-15-4431-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
3
|
TFF1 Promotes EMT-Like Changes through an Auto-Induction Mechanism. Int J Mol Sci 2018; 19:ijms19072018. [PMID: 29997345 PMCID: PMC6073196 DOI: 10.3390/ijms19072018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 02/07/2023] Open
Abstract
Trefoil factor 1 (TFF1) is a small secreted protein expressed in the gastrointestinal tract where, together with the other two members of its family, it plays an essential role in mucosal protection and repair against injury. The molecular mechanisms involved in the protective function of all three TFF proteins are not fully elucidated. In this paper, we investigated the role of TFF1 in epithelial to mesenchymal transition (EMT) events. The effects of TFF1 on cellular models in normoxia and/or hypoxia were evaluated by western blot, immunofluorescence, qRT-PCR and trans-well invasion assays. Luciferase reporter assays were used to assess the existence of an auto-regulatory mechanism of TFF1. The methylation status of TFF1 promoter was measured by high-resolution melting (HRM) analysis. We demonstrate a TFF1 auto-induction mechanism with the identification of a specific responsive element located between −583 and −212 bp of its promoter. Our results suggest that TFF1 can regulate its own expression in normoxic, as well as in hypoxic, conditions acting synergistically with the hypoxia-inducible factor 1 (HIF-1α) pathway. Functionally, this auto-induction mechanism seems to promote cell invasion and EMT-like modifications in vitro. Additionally, exogenously added human recombinant TFF1 protein was sufficient to observe similar effects. Together, these findings suggest that the hypoxic conditions, which can be induced by gastric injury, promote TFF1 up-regulation, strengthened by an auto-induction mechanism, and that the trefoil peptide takes part in the epithelial-mesenchymal transition events eventually triggered to repair the damage.
Collapse
|
4
|
Blasi F, Bruckmann C, Penkov D, Dardaei L. A tale of TALE, PREP1, PBX1, and MEIS1: Interconnections and competition in cancer. Bioessays 2017; 39. [DOI: 10.1002/bies.201600245] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Francesco Blasi
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology; Milan Italy
| | - Chiara Bruckmann
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology; Milan Italy
| | - Dmitry Penkov
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology; Milan Italy
| | - Leila Dardaei
- Massachusetts General Hospital Cancer Center; Charlestown MA USA
- Department of Medicine; Harvard Medical School; Boston MA USA
| |
Collapse
|
5
|
Liu J, Wang X, Yang X, Liu Y, Shi Y, Ren J, Guleng B. miRNA423-5p regulates cell proliferation and invasion by targeting trefoil factor 1 in gastric cancer cells. Cancer Lett 2014; 347:98-104. [PMID: 24486742 DOI: 10.1016/j.canlet.2014.01.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/16/2014] [Accepted: 01/24/2014] [Indexed: 12/23/2022]
Abstract
TFF1 is a small, secreted protein in the TFF family that has a pivotal role as a motogenic factor in epithelial restitution and cell motility, and as a tumor suppressor gene in the stomach. In this study, we identified TFF1 as a novel target gene of miRNA-423-5p. miRNA-423-5p negatively regulated the expression of TFF1 by binding to its 3'UTR and participated in proliferation/invasion-related processes via a TFF1-dependent manner in gastric cancer cells. Our findings suggested that miR-423-5p may be a novel target for the future development of specific therapeutic interventions for gastric cancer.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361004, Fujian Province, PR China
| | - Xu Wang
- Faculty of Clinical Medicine, Medical College of Xiamen University, Xiamen 361005, Fujian Province, PR China
| | - Xiaoning Yang
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361004, Fujian Province, PR China
| | - Yunpeng Liu
- Faculty of Clinical Medicine, Medical College of Xiamen University, Xiamen 361005, Fujian Province, PR China
| | - Ying Shi
- Faculty of Clinical Medicine, Medical College of Xiamen University, Xiamen 361005, Fujian Province, PR China
| | - Jianlin Ren
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361004, Fujian Province, PR China; Faculty of Clinical Medicine, Medical College of Xiamen University, Xiamen 361005, Fujian Province, PR China.
| | - Bayasi Guleng
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361004, Fujian Province, PR China; Faculty of Clinical Medicine, Medical College of Xiamen University, Xiamen 361005, Fujian Province, PR China.
| |
Collapse
|
6
|
Feng G, Zhang Y, Yuan H, Bai R, Zheng J, Zhang J, Song M. DNA methylation of trefoil factor 1 (TFF1) is associated with the tumorigenesis of gastric carcinoma. Mol Med Rep 2013; 9:109-17. [PMID: 24190027 DOI: 10.3892/mmr.2013.1772] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/05/2013] [Indexed: 01/28/2023] Open
Abstract
Trefoil factor 1 (TFF1) is a tumor suppressor gene that encodes a peptide belonging to the trefoil factor family of protease‑resistant peptides. Although TFF1 expression is frequently lost in gastric carcinomas (GCs), the tumorigenic pathways that are affected have yet to be determined. The aim of the current study was to identify the mechanism(s) by which the TFF1 gene is regulated in gastric carcinogenesis. In this study, TFF1 was shown to be silenced or downregulated in gastric tumor tissue compared with matched non‑cancerous tissue. In addition, human gastric cells weakly expressed TFF1. The hypermethylation status in the promoter CpG islands appeared to be correlated with TFF1 expression levels in gastric cell lines or specimen tissue. Further molecular analysis indicated that the CpG islands play a role in the promoter activity of the TFF1 gene. The expression of TFF1 and DNA methylation of its promoter affected cell proliferation and apoptosis. The expression of TFF1 in gastric cell lines was restored with a demethylating agent, 5‑azacytidine. Low expression of TFF1 in gastric cell lines and cancer tissue is associated with TP 53. In conclusion, the current study demonstrates that DNA methylation is a key mechanism of silencing TFF1 expression in human gastric cells and TFF1 gene hypermethylation of the CpG islands is a potential biomarker for GC.
Collapse
Affiliation(s)
- Guoxun Feng
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | | | | | | | | | | | | |
Collapse
|
7
|
Tanaka T, Nakamura J, Kitajima Y, Kai K, Miyake S, Hiraki M, Ide T, Koga Y, Noshiro H. Loss of trefoil factor 1 is regulated by DNA methylation and is an independent predictive factor for poor survival in advanced gastric cancer. Int J Oncol 2013; 42:894-902. [PMID: 23291975 DOI: 10.3892/ijo.2013.1759] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/30/2012] [Indexed: 02/05/2023] Open
Abstract
Trefoil factor 1 (TFF1) is considered to be a tumor suppressor gene in gastric cancer. However, the role of TFF1 expression and its regulation in gastric cancer patients remain unclear. The aims of this study were to clarify the clinical significance of TFF1 and to determine its regulatory mechanisms. We assessed the immunohistochemical expression of TFF1 in 182 gastric cancer patients and examined whether or not TFF1 is associated with the clinicopathological factors and patient survival. In vitro study using TFF1 knockdown gastric cancer cells evaluated the role of TFF1 in cancer invasion. Bisulfite sequencing was performed to assess DNA methylation of TFF1 in cells and resected tissues. Patients with low expression of TFF1 showed a significantly deeper invasion of the tumor than those with high expression (p=0.037). Low expression of TFF1 was also associated with a poor survival (p=0.029) in 108 patients who were treated by surgery alone. Both TFF1 expression and lymph node metastasis are independent predictive factors for disease-specific survival in a multivariate analysis. In an in vitro study, invasive power of the cells was significantly increased in the TFF1‑deficient cells compared with the control cells. Bisulfate sequencing showed that TFF1 expression is strongly dependent on DNA methylation in both gastric cancer cells and tissues. Interestingly, methylation status of two specific CpG sites, which are located close to a TATA box and hypoxia response element (HRE), determined the TFF1 expression in the resected tissues. TFF1 expression is silenced by DNA methylation and is associated with tumor invasion and a poor survival in gastric cancer patients. The expression and̸or methylation status of TFF1 may, therefore, serve as a useful biomarker for predicting survival in patients with advanced gastric cancer.
Collapse
Affiliation(s)
- Tomokazu Tanaka
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Homeodomain transcription factor and tumor suppressor Prep1 is required to maintain genomic stability. Proc Natl Acad Sci U S A 2011; 108:E314-22. [PMID: 21715654 DOI: 10.1073/pnas.1105216108] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Prep1 is a homeodomain transcription factor that is essential in embryonic development and functions in the adult as a tumor suppressor. We show here that Prep1 is involved in maintaining genomic stability and preventing neoplastic transformation. Hypomorphic homozygous Prep1(i/i) fetal liver cells and mouse embryonic fibroblasts (MEFs) exhibit increased basal DNA damage and normal DNA damage response after γ-irradiation compared with WT. Cytogenetic analysis shows the presence of numerous chromosomal aberrations and aneuploidy in very early-passage Prep1(i/i) MEFs. In human fibroblasts, acute Prep1 down-regulation by siRNA induces DNA damage response, like in Prep1(i/i) MEFs, together with an increase in heterochromatin-associated modifications: rapid increase of histone methylation and decreased transcription of satellite DNA. Ectopic expression of Prep1 rescues DNA damage and heterochromatin methylation. Inhibition of Suv39 activity blocks the chromatin but not the DNA damage phenotype. Finally, Prep1 deficiency facilitates cell immortalization, escape from oncogene-induced senescence, and H-Ras(V12)-dependent transformation. Importantly, the latter can be partially rescued by restoration of Prep1 level. The results show that the tumor suppressor role of Prep1 is associated with the maintenance of genomic stability.
Collapse
|
9
|
Soutto M, Belkhiri A, Piazuelo MB, Schneider BG, Peng D, Jiang A, Washington MK, Kokoye Y, Crowe SE, Zaika A, Correa P, Peek RM, El-Rifai W. Loss of TFF1 is associated with activation of NF-κB-mediated inflammation and gastric neoplasia in mice and humans. J Clin Invest 2011; 121:1753-67. [PMID: 21490402 DOI: 10.1172/jci43922] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 01/26/2011] [Indexed: 12/21/2022] Open
Abstract
Trefoil factor 1 (TFF1) is a tumor suppressor gene that encodes a peptide belonging to the trefoil factor family of protease-resistant peptides. Although TFF1 expression is frequently lost in gastric carcinomas, the tumorigenic pathways this affects have not been determined. Here we show that Tff1-knockout mice exhibit age-dependent carcinogenic histological changes in the pyloric antrum of the gastric mucosa, progressing from gastritis to hyperplasia, low-grade dysplasia, high-grade dysplasia, and ultimately malignant adenocarcinoma. The histology and molecular signatures of gastric lesions in the Tff1-knockout mice were consistent with an inflammatory phenotype. In vivo, ex-vivo, and in vitro studies showed that TFF1 expression suppressed TNF-α-mediated NF-κB activation through the TNF receptor 1 (TNFR1)/IκB kinase (IKK) pathway. Consistent with these mouse data, human gastric tissue samples displayed a progressive decrease in TFF1 expression and an increase in NF-κB activation along the multi-step carcinogenesis cascade. Collectively, these results provide evidence that loss of TFF1 leads to activation of IKK complex-regulated NF-κB transcription factors and is an important event in shaping the NF-κB-mediated inflammatory response during the progression to gastric tumorigenesis.
Collapse
Affiliation(s)
- Mohammed Soutto
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Longobardi E, Iotti G, Di Rosa P, Mejetta S, Bianchi F, Fernandez-Diaz LC, Micali N, Nuciforo P, Lenti E, Ponzoni M, Doglioni C, Caniatti M, Di Fiore PP, Blasi F. Prep1 (pKnox1)-deficiency leads to spontaneous tumor development in mice and accelerates EmuMyc lymphomagenesis: a tumor suppressor role for Prep1. Mol Oncol 2010; 4:126-34. [PMID: 20106730 DOI: 10.1016/j.molonc.2010.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 12/28/2009] [Accepted: 01/04/2010] [Indexed: 02/02/2023] Open
Abstract
The Prep1 homeodomain transcription factor is essential for embryonic development. 25% of hypomorphic Prep1(i/i) embryos, expressing the gene at 2% of the normal levels, survive pregnancy and live a normal-length life. Later in life, however, these mice develop spontaneous pre-tumoral lesions or solid tumors (lymphomas and carcinomas). In addition, transplantation of E14.5 fetal liver (FL) Prep1(i/i) cells into lethally irradiated mice induces lymphomas. In agreement with the above data, haploinsufficiency of a different Prep1-deficient (null) allele accelerates EmuMyc lymphoma growth. Therefore Prep1 has a tumor suppressor function in mice. Immunohistochemistry on tissue micrroarrays (TMA) generated from three distinct human cohorts comprising a total of some 1000 human tumors revealed that 70% of the tumors express no or extremely low levels of Prep1, unlike normal tissues. Our data in mice are thus potentially relevant to human cancer.
Collapse
Affiliation(s)
- E Longobardi
- Università Vita Salute San Raffaele, via Olgettina 60, Milano 20132, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- Won Sang Park
- Department of Pathology, The Catholic University of Korea, School of Medicine,
| |
Collapse
|
12
|
Lai MY, Liao XX, Lin YG, Liang ZH, Chen H, Li SY, Jiang DK, Liu Y. Expression of trefoil factor 1 in gastric cancer and its correlation with neovascularization. Shijie Huaren Xiaohua Zazhi 2009; 17:931-934. [DOI: 10.11569/wcjd.v17.i9.931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate the expression of trefoil factor 1 (TFF1) and vascular endothelial growth factor (VEGF) in normal gastric mucosa, adjacent carcinoma and gastric carcinoma and to explore its role in neovas-cularization.
METHODS: The expressions of TFF1, VEGF and MVD (CD34 monoclonal antibody labeling) were determined by immunohistochemical method in 174 gastric specimens including 42 normal gastric mucosa, 66 adjacent carcinoma and 66 gastric carcinomas.
RESULTS: In normal control group, adjacent carcinoma and gastric carcinoma group, the expression of TFF1 had a decreasing tendency (209.40 ± 16.00, 199.12 ± 16.68, 189.17 ± 16.20, P < 0.01), but the expression of VEGF and the MVD had a increasing tendency (69.7%, 40.9%, 35.7%; 38.90 ± 6.74, 28.68 ± 5.08, 25.13 ± 4.46). MVD was positively correlated with grey levels of TFF1 (r = 0.811, P < 0.01), in other words, there was a negative correlation between the MVD values and the expression of TFF1.
CONCLUSION: TFF1, a specific anti-oncogene for gastric carcinoma, doesn't have a close correlation with tumor vessel neogenesis.
Collapse
|
13
|
The trefoil factor interacting protein TFIZ1 binds the trefoil protein TFF1 preferentially in normal gastric mucosal cells but the co-expression of these proteins is deregulated in gastric cancer. Int J Biochem Cell Biol 2008; 41:632-40. [PMID: 18722547 PMCID: PMC2632736 DOI: 10.1016/j.biocel.2008.07.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 07/17/2008] [Accepted: 07/18/2008] [Indexed: 01/15/2023]
Abstract
The gastric tumour suppressor trefoil protein TFF1 is present as a covalently bound heterodimer with a previously uncharacterised protein, TFIZ1, in normal human gastric mucosa. The purpose of this research was firstly to examine the molecular forms of TFIZ1 present, secondly to determine if TFIZ1 binds other proteins apart form TFF1 in vivo, thirdly to investigate if TFIZ1 and TFF1 are co-regulated in normal gastric mucosa and fourthly to determine if their co-regulation is maintained or disrupted in gastric cancer. We demonstrate that almost all human TFIZ1 is present as a heterodimer with TFF1 and that TFIZ1 is not bound to either of the other two trefoil proteins, TFF2 and TFF3. TFIZ1 and TFF1 are co-expressed by the surface mucus secretory cells throughout the stomach and the molecular forms of each protein are affected by the relative abundance of the other. TFIZ1 expression is lost consistently, early and permanently in gastric tumour cells. In contrast, TFF1 is sometimes expressed in the absence of TFIZ1 in gastric cancer cells and this expression is associated with metastasis (lymph node involvement: p = 0.007). In conclusion, formation of the heterodimer between TFIZ1 and TFF1 is a specific interaction that occurs uniquely in the mucus secretory cells of the stomach, co-expression of the two proteins is disrupted in gastric cancer and expression of TFF1 in the absence of TFIZ1 is associated with a more invasive and metastatic phenotype. This indicates that TFF1 expression in the absence of TFIZ1 expression has potentially deleterious consequences in gastric cancer.
Collapse
|
14
|
Hu Y, Shen A, Jiang T, Ai Y, Hu J. Classification of normal and malignant human gastric mucosa tissue with confocal Raman microspectroscopy and wavelet analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2008; 69:378-82. [PMID: 17567528 DOI: 10.1016/j.saa.2007.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 03/22/2007] [Accepted: 04/17/2007] [Indexed: 05/15/2023]
Abstract
Thirty-two samples from the human gastric mucosa tissue, including 13 normal and 19 malignant tissue samples were measured by confocal Raman microspectroscopy. The low signal-to-background ratio spectra from human gastric mucosa tissues were obtained by this technique without any sample preparation. Raman spectral interferences include a broad featureless sloping background due to fluorescence and noise. They mask most Raman spectral feature and lead to problems with precision and quantitation of the original spectral information. A preprocessed algorithm based on wavelet analysis was used to reduce noise and eliminate background/baseline of Raman spectra. Comparing preprocessed spectra of malignant gastric mucosa tissues with those of counterpart normal ones, there were obvious spectral changes, including intensity increase at approximately 1156cm(-1) and intensity decrease at approximately 1587cm(-1). The quantitative criterion based upon the intensity ratio of the approximately 1156 and approximately 1587cm(-1) was extracted for classification of the normal and malignant gastric mucosa tissue samples. This could result in a new diagnostic method, which would assist the early diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Yaogai Hu
- College of Electronic Information, Wuhan University, Wuhan 430079, China
| | | | | | | | | |
Collapse
|
15
|
Cho YG, Choi BJ, Kim CJ, Song JH, Zhang C, Nam SW, Lee JY, Park WS. Genetic analysis of the DBC2 gene in gastric cancer. Acta Oncol 2007; 47:366-371. [PMID: 17906984 DOI: 10.1080/02841860701644094] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The DBC2 (Deleted in breast cancer, RhoBTB2) has been identified as a tumor suppressor gene that has growth inhibitory function. To investigate whether genetic alterations of the DBC2 gene are involved in the development of gastric cancer, we analyzed mutations and allelic loss in the DBC2 gene in 95 primary gastric cancers by PCR-SSCP, sequencing and LOH analysis. In the mutational analysis, we found one missense somatic mutation (CGG-->TGG, R275W) in the BTB/POZ domain of the gene in a patient with advanced gastric cancer and lymph node metastasis. In addition, we found one known polymorphism and three novel polymorphisms in the coding region of DBC2, which showed an amino acid change, and was detected in both the cancer cells and corresponding normal cells. On LOH analysis, 62 cases were heterozygous for at least one marker and 18 cases (29.0%) showed allelic loss at these markers. In conclusion, the mutations and allelic loss in the DBC2 gene are uncommon in gastric cancers in Korean patients. Further studies to identify the target gene at 8q21 responsible for the development of gastric cancer should be explored.
Collapse
Affiliation(s)
- Yong Gu Cho
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Tørring N, Borre M, Sørensen KD, Andersen CL, Wiuf C, Ørntoft TF. Genome-wide analysis of allelic imbalance in prostate cancer using the Affymetrix 50K SNP mapping array. Br J Cancer 2007; 96:499-506. [PMID: 17245344 PMCID: PMC2360016 DOI: 10.1038/sj.bjc.6603476] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed non-cutaneous cancer in male subjects in Western countries. The widespread use of prostate-specific antigen (PSA) has increased the detection of this cancer form in earlier stages. Moreover, it has increased the need for new diagnostic procedures to be developed for patient stratification based on risk of progression. We analysed laser-microdissected prostate tumour tissue from 43 patients with histologically verified PCa, using the new high-resolution Affymetrix Mapping 50K single-nucleotide polymorphism array. The results showed six major loss of heterozygosity regions at chromosomes 6q14-16, 8p23-11, 10q23, 13q13-21 and 16q21-24 and a novel region at chromosome 21q22.2, all of which reveal concomitant copy number loss. Tumour development was further characterised by numerous novel genomic regions almost exclusively showing copy number loss. However, tumour progression towards a metastatic stage, as well as poor differentiation, was identified by specific patterns of copy number gains of genomic regions located at chromosomes 8q, 1q, 3q and 7q. Androgen ablation therapy was further characterised by copy gain at chromosomes 2p and 10q. In conclusion, patterns of allelic imbalance were discovered in PCa, consisting allelic loss as an early event in tumour development, and distinct patterns of allelic amplification related to tumour progression and poor differentiation.
Collapse
Affiliation(s)
- N Tørring
- Molecular Diagnostic Laboratory, Department of Clinical Biochemistry, Skejby Sygehus, Aarhus University Hospital, Brendstrupgaardsvej 100, DK-8200 Aarhus, Denmark.
| | | | | | | | | | | |
Collapse
|
17
|
Satgé D, Sasco AJ, Vekemans MJJ, Portal ML, Fléjou JF. Aspects of digestive tract tumors in Down syndrome: a literature review. Dig Dis Sci 2006; 51:2053-61. [PMID: 17009117 DOI: 10.1007/s10620-006-9131-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Accepted: 11/08/2005] [Indexed: 12/09/2022]
Abstract
The purpose of this study was to describe the digestive neoplasms found in persons with Down syndrome. Due to intellectual disability, persons with Down syndrome do not convey their symptoms and pain, leading to delayed diagnosis and potentially worse outcome. It is thus important to know which organs are at risk for tumors and possible tumor risk factors. In a review of the literature, we found 13 benign tumors and 127 cancers in 1 fetus, 8 children, and 131 adults with Down syndrome. The review suggests a decreased incidence of digestive cancer, however, with a possible increased incidence of neoplasms of the pancreas and gallbladder. The distribution of cancers is distinct from that in the general population and that in persons with other intellectual disabilities who share the same life conditions, suggesting that constitutional protective factors exist. This review may allow a more specific, adapted medical follow-up for persons with Down syndrome and could help to elucidate the oncogenesis of digestive neoplasms.
Collapse
Affiliation(s)
- Daniel Satgé
- Laboratoire d'Anatomie Pathologique, Centre Hospitalier, 19 000, Tulle, France.
| | | | | | | | | |
Collapse
|
18
|
Muenphon K, Limpaiboon T, Jearanaikoon P, Pairojkul C, Sripa B, Bhudhisawasdi V. Amplification of chromosome 21q22.3 harboring trefoil factor family genes in liver fluke related cholangiocarcinoma is associated with poor prognosis. World J Gastroenterol 2006; 12:4143-8. [PMID: 16830362 PMCID: PMC4087361 DOI: 10.3748/wjg.v12.i26.4143] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine allelic imbalance on chromosomal region 21q22-qter including trefoil factor family genes (TFF) in cholangiocarcinoma (CCA) patients and analyze the correlation between allelic imbalances and clinicopathological parameters.
METHODS: Quantitative PCR amplification was performed on four microsatellite markers and trefoil factor family genes (TFF1, TFF2, and TFF3) using a standard curve and SYBR Green I dye method. The relative copy number was determined by DNA copy number of tested locus to reference locus. The relative copy number was interpreted as deletion or amplification by comparison with normal reference range. Associations between allelic imbalance and clinicopathological parameters of CCA patients were evaluated by χ2-tests. Kaplan-Meier method was used to analyze survival.
RESULTS: The frequencies of amplification at D21S1890, D21S1893, and TFF3 were 32.5%, 30.0%, and 28.7%, respectively. Patients who had amplification at regions covering D21S1893, D21S1890, and TFF showed poor prognosis, whereas patients who had deletion showed favorable prognosis (mean: 51.7 wk vs 124.82 wk, P = 0.012). Multivariate Cox regression analysis revealed that amplification of D21S1893, D21S1890 and TFF, blood vessel invasion, and staging were associated with poor prognosis.
CONCLUSION: D21S1893-D21S1890 region may harbor candidate genes especially TFF and serine protease family, which might be involved in tumor invasion and metastasis contributing to poor survival. The amplification in this region may be used as a prognostic marker in the treatment of CCA patients.
Collapse
Affiliation(s)
- Kanuengnuch Muenphon
- Department of Clinical Chemistry, Center for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | | | | | | | | |
Collapse
|
19
|
Yio X, Diamond M, Zhang JY, Weinstein H, Wang LH, Werther L, Itzkowitz S. Trefoil factor family-1 mutations enhance gastric cancer cell invasion through distinct signaling pathways. Gastroenterology 2006; 130:1696-706. [PMID: 16697734 DOI: 10.1053/j.gastro.2006.01.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 01/11/2006] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS Trefoil factor family-1 (TFF1) is a key gastric tumor-suppressor gene. TFF1 knockout mice develop multiple gastric adenomas and carcinomas, and human gastric cancers typically lack TFF1 expression. Recently, TFF1 mutations have been found in human gastric cancer. The purpose of this study was to determine the functionality of these mutants. METHODS Recombinant wild-type TFF1 and the gastric cancer-associated TFF1 mutants (A10D and E13K) were produced and tested for their effect on gastric cancer cell proliferation, apoptosis, and invasion. Molecular modeling was used to guide the choice of mutants and to evaluate structure-function relationships. RESULTS Molecular modeling suggested that A10D and E13K altered the surface charge of the loop 1 region of TFF1 without disturbing protein stability. Recombinant wild-type TFF1 significantly inhibited cell growth; A10D and E13K lost this tumor-suppressive property along with the ability to block etoposide-induced apoptosis. Although wild-type TFF1 promoted cell invasion, A10D and E13K were even more pro-invasive. Invasion induced by both mutants was blocked by inhibiting PI3-kinase or phospholipase-C, but inhibiting Rho-associated kinase (ROCK) blocked only E13K-induced invasion. CONCLUSIONS The loss of tumor-suppressor activity and gain of invasiveness from single point mutations constitute evidence for a functional role of TFF1 mutations in gastric cancer. These site-directed mutagenesis experiments provide the tools for continued probing of signal transduction mechanisms and structural elements responsible for TFF1 functions.
Collapse
Affiliation(s)
- Xianyang Yio
- Division of Gastroenterology, Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Fox CA, Sapinoso LM, Zhang H, Zhang W, McLeod HL, Petroni GR, Mullick T, Moskaluk CA, Frierson HF, Hampton GM, Powell SM. Altered expression of TFF-1 and CES-2 in Barrett's Esophagus and associated adenocarcinomas. Neoplasia 2005; 7:407-16. [PMID: 15967118 PMCID: PMC1501154 DOI: 10.1593/neo.04715] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 11/05/2004] [Accepted: 11/08/2004] [Indexed: 11/18/2022] Open
Abstract
Identification of biomarkers to recognize individuals with Barrett's esophagus (BE) predisposed to develop malignancy is currently a pressing issue. We utilized gene expression profiling to compare molecular signatures of normal esophagus and stomach, BE, and adenocarcinoma (AC) to identify such potential biomarkers. Over 22,000 genes were analyzed by oligonucleotide microarrays on 38 unique RNA Unsupervised and supervised clusterings were performed on a subset of 2849 genes that varied most significantly across the specimens. Immunohistochemistry (IHC) for two of the significantly differentially expressed gene products was performed on tissue microarrays. Unsupervised clustering identified two discernable molecular BE profiles, one of which was similar to normal gastric tissue ("BE1"), and another that was shared by several of the AC specimens ("BE2"). The BE1 profile included expression of several genes that have been described as tumor-suppressor genes, most notably trefoil factor 1 (TFF-1). The BE2 profile included expression of genes previously found overexpressed in cancers, such as carboxylesterase-2 (CES-2). IHC demonstrated the loss of TFF-1 late in the progression of BE to AC. It also revealed CES-2 as being upregulated in AC documented to have arisen in the presence of BE. These potential biomarkers, as well as the relative expression of genes from BE1 versus those from BE2, may be validated in the future to aid in risk stratification and guide treatment protocols in patients with BE and associated AC.
Collapse
Affiliation(s)
- Charles A Fox
- Digestive Health Center of Excellence, Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sankpal NV, Mayo MW, Powell SM. Transcriptional repression of TFF1 in gastric epithelial cells by CCAAT/enhancer binding protein-beta. ACTA ACUST UNITED AC 2005; 1728:1-10. [PMID: 15777639 DOI: 10.1016/j.bbaexp.2004.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 12/13/2004] [Accepted: 12/16/2004] [Indexed: 01/08/2023]
Abstract
TFF1 is a member of a unique family of gastrointestinal peptides. Loss of TFF1 expression has been observed in the majority of human gastric cancers and the biological significance of this loss has been demonstrated in a Tff1 knockout mouse model. However, few TFF1 gene mutations or allelic loss have also been documented. To understand the molecular mechanism repressing the TFF1 gene expression, the 5'-flanking region of the human TFF1 gene was characterized. We found a repressor region (-241 to -84), which is active in MKN45 and IMGE5 cells expressing endogenous TFF1 gene. A consensus binding site for C/EBPbeta was identified and EMSA analysis demonstrated specific binding of CEBPbeta. Mutation of this C/EBPbeta element potentiated the transactivation of TFF1 by 50% and 145% for MKN45 and IMGE5 cells respectively. Furthermore, co-transfection of C/EBPbeta isoforms specifically decreased TFF1 promoter activity. These findings suggest that C/EBPbeta is involved in the down-regulating of TFF1 gene expression and this mode of repression may account at least in part for the loss of TFF1 gene expression in transformed human and mice gastric epithelial cells.
Collapse
Affiliation(s)
- Narendra V Sankpal
- Division of Gastroenterology and Hepatology, University of Virginia Health System, Charlottesville, VA 22908-0708, USA
| | | | | |
Collapse
|
22
|
Yio X, Zhang JY, Babyatsky M, Chen A, Lin J, Fan QX, Werther JL, Itzkowitz S. Trefoil factor family-3 is associated with aggressive behavior of colon cancer cells. Clin Exp Metastasis 2005; 22:157-165. [PMID: 16086236 DOI: 10.1007/s10585-005-6615-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 04/27/2005] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIM Trefoil factor family 3 (TFF3) is expressed by intestinal epithelial cells and it mainly functions to protect the mucosa from injury. Expression of TFF3 has been correlated with a poor prognosis in patients with cancer, but little is known about whether TFF3 directly contributes to the malignant behavior of cancer cells. The present study was conducted to determine whether TFF3 expression contributes to the malignant behavior of cancer cells in vitro and in vivo. METHODS Two subclones of a metastatic rat colorectal cancer cell line, demonstrated previously to manifest aggressive (LN cells) and non-aggressive (LP cells) growth in vivo, were analyzed for expression of TFF3 and tested in assays of cancer cell migration, invasion, and apoptosis in vitro, and mortality in vivo. RESULTS The aggressive LN cell line endogenously expressed TFF3 and supported the transcription of a TFF3 promoter-driven reporter construct, whereas the non-aggressive LP cell line did not express TFF3. LN cells demonstrated enhanced migration, invasion, and less apoptosis compared to LP cells. Transfecting TFF3 into LP cells enhanced their ability to migrate, invade, block apoptosis, and behave more aggressively in vivo, thereby resembling the phenotype of LN cells. CONCLUSIONS In rat colon cancer cells, both endogenous and constitutive expression of TFF3 correlates with an aggressive phenotype. These data provide direct evidence that TFF3 contributes to the malignant behavior of cancer cells.
Collapse
Affiliation(s)
- Xianyang Yio
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Emami S, Rodrigues S, Rodrigue CM, Le Floch N, Rivat C, Attoub S, Bruyneel E, Gespach C. Trefoil factor family (TFF) peptides and cancer progression. Peptides 2004; 25:885-98. [PMID: 15177885 DOI: 10.1016/j.peptides.2003.10.019] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Accepted: 10/27/2003] [Indexed: 12/15/2022]
Abstract
TFF peptides are involved in mucosal maintenance and repair through motogenic and antiapoptotic activities. These peptides are overexpressed during inflammatory processes and cancer progression. They also function as scatter factors, proinvasive and angiogenic agents. Such a divergence is related to the pathophysiological state of tissues submitted to persistent aggressive situations during digestive processes in the normal gastrointestinal tract, inflammatory and neoplastic diseases. In agreement with this model, TFF peptides are connected with multiple oncogenic pathways. As a consequence, the TFF signaling pathways may serve as potential targets in the control of chronic inflammation and progression of human solid tumors.
Collapse
Affiliation(s)
- Shahin Emami
- INSERM U482, Signal Transduction and Cellular Functions in Diabetes and Digestive Cancers, Hôpital Saint-Antoine, 75571 Paris Cedex 12, France.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Chenard MP, Tomasetto C, Bellocq JP, Rio MC. Urinary pS2/TFF1 levels in the management of hormonodependent breast carcinomas. Peptides 2004; 25:737-43. [PMID: 15177867 DOI: 10.1016/j.peptides.2003.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Accepted: 11/28/2003] [Indexed: 11/25/2022]
Abstract
pS2/TFF1 overexpression in breast carcinomas correlates with response to hormonotherapy. We evaluated the clinical relevance of urinary pS2/TFF1 in breast cancer patients. In healthy controls (100 cases), it represents an individual and relatively stable parameter. Although 24 out 83 pre-operative breast cancer patients showed elevated levels, both the sensitivity and specificity of the test were too low for breast cancer screening. However, neoadjuvant hormonotherapy decreased pS2/TFF1 levels in nine out of 20 patients. Furthermore, among 22 patients receiving long-term adjuvant hormonotherapy, four exhibited elevated levels, two of them at the time of relapse. Thus, urinary pS2/TFF1 quantification might be suitable as an in vivo diagnosis for tumor hormonodependency, and disease follow-up during hormonotherapy.
Collapse
Affiliation(s)
- Marie-Pierre Chenard
- Service d'Anatomie Pathologique Générale, Centre Hospitalier Universitaire de Hautepierre, 67098 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
25
|
Beckler AD, Roche JK, Harper JC, Petroni G, Frierson HF, Moskaluk CA, El-Rifai W, Powell SM. Decreased abundance of trefoil factor 1 transcript in the majority of gastric carcinomas. Cancer 2003; 98:2184-91. [PMID: 14601088 DOI: 10.1002/cncr.11789] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Gastric carcinoma is one of the leading causes of cancer-related death worldwide, but the mechanisms underlying its development and progression still remain largely uncharacterized. As loss of trefoil factor 1 (TFF1) expression leads to neoplastic growth in the antropyloric mucosa of mice, the authors sought to comprehensively study the human TFF1 gene in primary gastric carcinomas. METHODS The authors studied the human TFF1 gene in primary gastric carcinomas and normal gastric mucosa at the DNA, RNA, and protein levels through DNA sequencing, quantitative real-time reverse transcriptase-polymerase chain reaction, and immunohistochemistry. RESULTS Strikingly, TFF1 mRNA expression was significantly decreased in all 37 gastric carcinomas studied compared with normal gastric mucosa. Furthermore, six tumor/normal pairs with available histologic samples demonstrated a marked decrease in protein expression in tumor samples. Screening of the entire TFF1 coding region in a panel of 42 human gastric tumors did not reveal any somatic mutations, although a few rare germline sequence variants were identified. CONCLUSIONS These findings demonstrated a significant decrease in the TFF1 transcript in the majority of human gastric carcinomas along with a corresponding reduction in protein expression, both of which occurred in the absence of gene mutation. Dysregulation of TFF1 expression at the transcript level was a critical event in the development of most gastric carcinomas.
Collapse
Affiliation(s)
- Andrew D Beckler
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Li JM, Luo HS, Yao HC. Expression of estrogen inducing gene PS2/TFF1 in gastric cancer and precancerous lesions. Shijie Huaren Xiaohua Zazhi 2003; 11:1302-1305. [DOI: 10.11569/wcjd.v11.i9.1302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the significance of PS2/TFF1 protein expression in chronic superficial gastritis (CSG), gastric ulcer (GU),gastric mucosal intestinal metaplasia (IM), gastric mucosal dysplasia and gastric cancer(GC).
METHODS Pathologic specimens of 121 patients with gastric mucosal diseases and 20 healthy volunteers were immunostained for PS2/TFF1.
RESULTS Positive PS2/TFF1 staining was seen throughout all epithelia with normal gastric mucosas, CSG, GU and in complete type of intestinal metaplasia (20/21). On the contrary, 11 of 20 incomplete type of intestinal metaplasia had positive staining (P <0.01). The expressions of PS2/TFF1 protein in CSG and GU were significantly higher than that in control group (P <0.01), while the expressions of PS2/TFF1 protein in IM,gastric mucosal dysplasia and GC were obviously lower than that in control group (P <0.01).
CONCLUSION Our results indicate that PS2/TFF1 may play an important role in gastric mucosal protection,and loss of PS2/TFF1 expression may occur as an early event in the malignant transformation process of intestinal-type tumors.
Collapse
Affiliation(s)
- Jun-Mei Li
- Department of Gastroenterology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei Province, China
| | - He-Sheng Luo
- Department of Gastroenterology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei Province, China
| | - Hong-Chang Yao
- Department of Gastroenterology, First Central Hospital of Tianjin City, Tianjin 300192, China
| |
Collapse
|
27
|
Khan ZE, Wang TC, Cui G, Chi AL, Dimaline R. Transcriptional regulation of the human trefoil factor, TFF1, by gastrin. Gastroenterology 2003; 125:510-21. [PMID: 12891554 DOI: 10.1016/s0016-5085(03)00908-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND & AIMS This study aimed to identify gastrin-sensitive genes that may mediate the effects of this hormone on gastric epithelial architecture. METHODS Gastrin-sensitive genes were identified by messenger RNA (mRNA) differential display of the gastric fundus from gastrin-deficient (GAS-KO) or wild-type mice. Gastrin-stimulated expression of the trefoil peptide TFF1 in mouse fundus and in the gastric cancer cell line AGS-G(R) was determined by Northern blot and real-time polymerase chain reaction. Transcriptional regulation of TFF1 in AGS-G(R) cells was studied using promoter-reporter assays and electrophoretic mobility shift assay. Expression of TFF1 and the cholecystokinin(B) receptor in response to gastric mucosal injury was determined by immunohistochemistry. RESULTS mRNA differential display identified TFF1 as a gastrin-regulated gene. TFF1 mRNA was reversibly reduced in GAS-KO mice and increased in a hypergastrinemic transgenic strain versus respective background strains. TFF1 mRNA expression was rapidly and potently induced by gastrin in a gastric cancer cell line that expresses the gastrin/cholecystokinin(B) receptor. Gastrin responsiveness of the human TFF1 promoter mapped to a G-C rich region 300 base pairs upstream of the transcriptional start site. This region bound the transcription factors SP3 and MAZ. Gastrin activated transcription through a Raf-, Mek- and Erk-dependent but Ras-independent pathway. TFF1 expression was induced both directly and by transactivation between neighboring cells. Neither direct nor indirect gastrin-induced TFF1 expression required activation of the epidermal growth factor receptor. CONCLUSIONS Gastrin exerts tonic control of TFF1 expression but also has the potential for rapid up-regulation of this trefoil factor. TFF1 is a potential candidate to counterbalance the proliferative effects of gastrin.
Collapse
Affiliation(s)
- Zara E Khan
- Physiological Laboratory, University of Liverpool, Liverpool, England UK
| | | | | | | | | |
Collapse
|
28
|
Du JJ, Dou KF, Peng SY, Xiao HS, Wang WZ, Guan WX, Wang ZH, Gao ZQ, Liu YB. cDNA suppression subtraction library for screening down-regulated genes in gastric carcinoma. World J Gastroenterol 2003; 9:1439-1443. [PMID: 12854137 PMCID: PMC4615479 DOI: 10.3748/wjg.v9.i7.1439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2003] [Revised: 02/04/2003] [Accepted: 02/16/2003] [Indexed: 02/06/2023] Open
Abstract
AIM To establish cDNA suppression subtraction library with a high subtraction efficiency by counterpart normal gastric mucosa mixture mRNA subtracting gastric cancer cells mixture mRNA for screening down-regulated genes in gastric carcinoma. METHODS RNA of gastric cancer tissues and counterpart normal gastric mucosa were respectively isolated in five patients with gastric cancer, and their mRNA was purified. cDNA suppression subtraction library was established by counterpart normal gastric mucosa mixture mRNA (tester) subtracting gastric cancer tissues mixture mRNA (driver) of five patients with gastric carcinoma. The library plasmids were transformed into competent bacteria DH5a after ligation of the library cDNA fragments with T vectors. Library plasmids were extracted after picking colonies and shaking bacteria overnight. Its subtraction efficiency was confirmed by PCR and reverse hybridization of a nylon filter onto which the colonies of bacteria were transferred with probes of reverse transcription products cDNA of gastric cancer tissues mRNA and counterpart normal gastric mucosa mRNA labeled with alpha- (32)P dCTP. RESULTS mRNA purified from total RNA of gastric cancer tissues and counterpart normal gastric mucosa in five patients with gastric carcinoma revealed a good quality. cDNA suppression subtraction library constructed for screening down-regulated genes in gastric carcinoma represented a high subtraction efficiency. 86 % of differential expression in down-regulated genes between counterpart normal gastric mucosa and gastric carcinoma was confirmed. CONCLUSION cDNA suppression subtraction library with a high subtraction efficiency for screening down-regulated genes in gastric carcinoma is successfully established.
Collapse
Affiliation(s)
- Jian-Jun Du
- Department of General Surgery, Xijing Hospital, The Fourth Military Medical University, Xian 710032, Shaanxi Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hoffmann W, Jagla W. Cell type specific expression of secretory TFF peptides: colocalization with mucins and synthesis in the brain. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 213:147-81. [PMID: 11837892 DOI: 10.1016/s0074-7696(02)13014-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The "TFF domain" is an ancient cysteine-rich shuffled module forming the basic unit for the family of secretory TFF peptides (formerly P-domain peptides and trefoil factors). It is also an integral component of mosaic proteins associated with mucous surfaces. Three mammalian TFF peptides are known (i.e., TFF1-TFF3); however, in Xenopus laevis the pattern is more complex (xP1, xP4.1, xP4.2, and xP2). TFF peptides are typical secretory products of a variety of mucin-producing epithelial cells (e.g., the conjunctiva, the salivary glands, the gastrointestinal tract, the respiratory tract, and the uterus). Each TFF peptide shows an unique expression pattern and different mucin-producing cells are characterized by their specific TFF peptide/secretory mucin combinations. TFF peptides have a pivotal role in maintaining the surface integrity of mucous epithelia in vivo. They are typical constituents of mucus gels, they modulate rapid mucosal repair ("restitution") by their motogenic and their cell scattering activity, they have antiapoptotic effects, and they probably modulate inflammatory processes. Pathological expression of TFF peptides occurs as a result of chronic inflammatory diseases or certain tumors. TFF peptides are also found in the central nervous system, at least in mammals. In particular, TFF3 is synthesized from oxytocinergic neurons of the hypothalamus and is released from the posterior pituitary into the bloodstream.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institut für Molekularbiologie und Medizinische Chemie, Otto-von-Guericke-Universität, Magdeburg, Germany
| | | |
Collapse
|
30
|
Bossenmeyer-Pourié C, Kannan R, Ribieras S, Wendling C, Stoll I, Thim L, Tomasetto C, Rio MC. The trefoil factor 1 participates in gastrointestinal cell differentiation by delaying G1-S phase transition and reducing apoptosis. J Cell Biol 2002; 157:761-70. [PMID: 12034770 PMCID: PMC2173421 DOI: 10.1083/jcb200108056] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Trefoil factor (TFF)1 is synthesized and secreted by the normal stomach mucosa and by the gastrointestinal cells of injured tissues. The link between mouse TFF1 inactivation and the fully penetrant antropyloric tumor phenotype prompted the classification of TFF1 as a gastric tumor suppressor gene. Accordingly, altered expression, deletion, and/or mutations of the TFF1 gene are frequently observed in human gastric carcinomas. The present study was undertaken to address the nature of the cellular and molecular mechanisms targeted by TFF1 signalling. TFF1 effects were investigated in IEC18, HCT116, and AGS gastrointestinal cells treated with recombinant human TFF1, and in stably transfected HCT116 cells synthesizing constitutive or doxycycline-induced human TFF1. We observed that TFF1 triggers two types of cellular responses. On one hand, TFF1 lowers cell proliferation by delaying G1-S cell phase transition. This results from a TFF1-mediated increase in the levels of cyclin-dependent kinase inhibitors of both the INK4 and CIP subfamilies, leading to lower E2F transcriptional activity. On the other hand, TFF1 protects cells from chemical-, anchorage-free-, or Bad-induced apoptosis. In this process, TFF1 signalling targets the active form of caspase-9. Together, these results provide the first evidence of a dual antiproliferative and antiapoptotic role for TFF1. Similar paradoxical functions have been reported for tumor suppressor genes involved in cell differentiation, a function consistent with TFF1.
Collapse
Affiliation(s)
- Carine Bossenmeyer-Pourié
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Louis Pasteur, 67404 Illkirch Cedex, C.U. de Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
el-Rifai W, Powell SM. Molecular and biologic basis of upper gastrointestinal malignancy. Gastric carcinoma. Surg Oncol Clin N Am 2002; 11:273-91, viii. [PMID: 12424850 DOI: 10.1016/s1055-3207(02)00004-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gastric cancer is one of the world's most common cancers and is a leading cause of cancer death worldwide. Neoplasia of the stomach is mainly composed of adenocarcinomas, which for more than 95% of cases. Although mesenchymal tumors (i.e., stromal tumors, leiomyomas and leiomyosarcomas, and schwannomas), primary lymphomas, and carcinoid tumors can also arise in the stomach, malignant tumors of these types occur much less often.
Collapse
Affiliation(s)
- Wa'el el-Rifai
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Virginia, Box 800798, Charlottesville, VA 22908-0708, USA
| | | |
Collapse
|