1
|
Wei D, Su Y, Leung PCK, Li Y, Chen ZJ. Roles of bone morphogenetic proteins in endometrial remodeling during the human menstrual cycle and pregnancy. Hum Reprod Update 2024; 30:215-237. [PMID: 38037193 DOI: 10.1093/humupd/dmad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND During the human menstrual cycle and pregnancy, the endometrium undergoes a series of dynamic remodeling processes to adapt to physiological changes. Insufficient endometrial remodeling, characterized by inadequate endometrial proliferation, decidualization and spiral artery remodeling, is associated with infertility, endometriosis, dysfunctional uterine bleeding, and pregnancy-related complications such as preeclampsia and miscarriage. Bone morphogenetic proteins (BMPs), a subset of the transforming growth factor-β (TGF-β) superfamily, are multifunctional cytokines that regulate diverse cellular activities, such as differentiation, proliferation, apoptosis, and extracellular matrix synthesis, are now understood as integral to multiple reproductive processes in women. Investigations using human biological samples have shown that BMPs are essential for regulating human endometrial remodeling processes, including endometrial proliferation and decidualization. OBJECTIVE AND RATIONALE This review summarizes our current knowledge on the known pathophysiological roles of BMPs and their underlying molecular mechanisms in regulating human endometrial proliferation and decidualization, with the goal of promoting the development of innovative strategies for diagnosing, treating and preventing infertility and adverse pregnancy complications associated with dysregulated human endometrial remodeling. SEARCH METHODS A literature search for original articles published up to June 2023 was conducted in the PubMed, MEDLINE, and Google Scholar databases, identifying studies on the roles of BMPs in endometrial remodeling during the human menstrual cycle and pregnancy. Articles identified were restricted to English language full-text papers. OUTCOMES BMP ligands and receptors and their transduction molecules are expressed in the endometrium and at the maternal-fetal interface. Along with emerging technologies such as tissue microarrays, 3D organoid cultures and advanced single-cell transcriptomics, and given the clinical availability of recombinant human proteins and ongoing pharmaceutical development, it is now clear that BMPs exert multiple roles in regulating human endometrial remodeling and that these biomolecules (and their receptors) can be targeted for diagnostic and therapeutic purposes. Moreover, dysregulation of these ligands, their receptors, or signaling determinants can impact endometrial remodeling, contributing to infertility or pregnancy-related complications (e.g. preeclampsia and miscarriage). WIDER IMPLICATIONS Although further clinical trials are needed, recent advancements in the development of recombinant BMP ligands, synthetic BMP inhibitors, receptor antagonists, BMP ligand sequestration tools, and gene therapies have underscored the BMPs as candidate diagnostic biomarkers and positioned the BMP signaling pathway as a promising therapeutic target for addressing infertility and pregnancy complications related to dysregulated human endometrial remodeling.
Collapse
Affiliation(s)
- Daimin Wei
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
| | - Yaxin Su
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yan Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China
| |
Collapse
|
2
|
Zakrzewski PK. Canonical TGFβ Signaling and Its Contribution to Endometrial Cancer Development and Progression-Underestimated Target of Anticancer Strategies. J Clin Med 2021; 10:3900. [PMID: 34501347 PMCID: PMC8432036 DOI: 10.3390/jcm10173900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023] Open
Abstract
Endometrial cancer is one of the leading gynecological cancers diagnosed among women in their menopausal and postmenopausal age. Despite the progress in molecular biology and medicine, no efficient and powerful diagnostic and prognostic marker is dedicated to endometrial carcinogenesis. The canonical TGFβ pathway is a pleiotropic signaling cascade orchestrating a variety of cellular and molecular processes, whose alterations are responsible for carcinogenesis that originates from different tissue types. This review covers the current knowledge concerning the canonical TGFβ pathway (Smad-dependent) induced by prototypical TGFβ isoforms and the involvement of pathway alterations in the development and progression of endometrial neoplastic lesions. Since Smad-dependent signalization governs opposed cellular processes, such as growth arrest, apoptosis, tumor cells growth and differentiation, as well as angiogenesis and metastasis, TGFβ cascade may act both as a tumor suppressor or tumor promoter. However, the final effect of TGFβ signaling on endometrial cancer cells depends on the cancer disease stage. The multifunctional role of the TGFβ pathway indicates the possible utilization of alterations in the TGFβ cascade as a potential target of novel anticancer strategies.
Collapse
Affiliation(s)
- Piotr K Zakrzewski
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
3
|
Li Z, Li J, Li M, Cai A, Liu H, Miao H, Shan T, Ma J. Effects of Different Concentrations of Transforming Growth Factor β_1 (TGF- β_1) on the Number and Transdifferentiation of Endometrial Epithelial Cells in Endometrial Tissue. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To study the influence of different concentrations of TGF-β_1 on the number and transdifferentiation of epithelial cells in endometrial tissue. 40 cases of normal endometrial tissue obtained by surgery in our hospital were collected, and epithelial cells were separated.
According to the random number table method, cells were assigned into normal control groups (only with culture solution) and experimental groups (TGF-β1 was added on the basis of the above), the experimental group is further assigned into three groups, that is, low-dose (3 ng/ml),
medium-dose (6 ng/ml) and high-dose (9 ng/ml) TGF-β_1 group followed by analysis of cell numbers, FN, α-SMA and Col-I level. FN secretion in normal control group was (0.469±0.010) ng/L, and ColI secretion was (0.532±0.033) ng/L. There was a difference
between FN values and Col-I values in each experimental group (P < 0.01); α-SMA and other data in the experimental group had opposite effects compared with control group with significant differences for different concentrations of TGF-β_1. As concentration
gradually increased, E-cadherin level in cytoplasm will gradually decrease. On the contrary, α-SMA level in cytoplasm will gradually increase (P < 0.05) (F = 145.125, 179.511, P < 0.01). TGF-β_1 stimulates the increase in of number of epithelial
cells in endometrial tissue and induces them to transform into myofibroblasts dose dependently
Collapse
Affiliation(s)
- Zhiying Li
- Department of Cardiology, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, 056002, China
| | - Junjiao Li
- Department of Emergency, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, 056002, China
| | - Minqiang Li
- Department of Cardiology, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, 056002, China
| | - Ansheng Cai
- Department of Cardiology, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, 056002, China
| | - Hong Liu
- Department of Cardiology, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, 056002, China
| | - Huoying Miao
- Department of Dermatology, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, 056002, China
| | - Tieying Shan
- Department of Histology and Embryology, Hebei University of Engineering, Handan, Hebei, 056002, China
| | - Jinghong Ma
- Department of Emergency, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, 056002, China
| |
Collapse
|
4
|
Functional similarity between TGF-beta type 2 and type 1 receptors in the female reproductive tract. Sci Rep 2021; 11:9294. [PMID: 33927274 PMCID: PMC8084965 DOI: 10.1038/s41598-021-88673-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/15/2021] [Indexed: 01/17/2023] Open
Abstract
Transforming growth factor β (TGFβ) signaling plays critical roles in reproductive development and function. TGFβ ligands signal through the TGFβ receptor type 2 (TGFBR2)/TGFBR1 complex. As TGFBR2 and TGFBR1 form a signaling complex upon ligand stimulation, they are expected to be equally important for propagating TGFβ signaling that elicits cellular responses. However, several genetic studies challenge this concept and indicate that disruption of TGFBR2 or TGFBR1 may lead to contrasting phenotypic outcomes. We have shown that conditional deletion of Tgfbr1 using anti-Mullerian hormone receptor type 2 (Amhr2)-Cre causes oviductal and myometrial defects. To determine the functional requirement of TGFBR2 in the female reproductive tract and the potential phenotypic divergence/similarity resulting from conditional ablation of either receptor, we generated mice harboring Tgfbr2 deletion using the same Cre driver that was previously employed to target Tgfbr1. Herein, we found that conditional deletion of Tgfbr2 led to a similar phenotype to that of Tgfbr1 deletion in the female reproductive tract. Furthermore, genetic removal of Tgfbr1 in the Tgfbr2-deleted uterus had minimal impact on the phenotype of Tgfbr2 conditional knockout mice. In summary, our results reveal the functional similarity between TGFBR2 and TGFBR1 in maintaining the structural integrity of the female reproductive tract.
Collapse
|
5
|
Zakrzewski PK, Forma E, Cygankiewicz AI, Bryś M, Wójcik-Krowiranda K, Bieńkiewicz A, Semczuk A, Krajewska WM. Betaglycan Gene ( TGFBR3) Polymorphism Is Associated with Increased Risk of Endometrial Cancer. J Clin Med 2020; 9:E3082. [PMID: 32987826 PMCID: PMC7650668 DOI: 10.3390/jcm9103082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 01/22/2023] Open
Abstract
We investigated single nucleotide polymorphism (SNP) of the betaglycan gene (TGFBR3) encoding the TGFβ co-receptor in endometrial cancer (EC) and its association with betaglycan expression. The study group included 153 women diagnosed with EC and 248 cancer-free controls. SNP genotyping and gene expression were analyzed using TaqMan probes. Three out of the eight SNPs tested, i.e., rs12566180 (CT; OR = 2.22; 95% CI = 1.15-4.30; p = 0.0177), rs6680463 (GC; OR = 2.34; 95% CI = 1.20-4.53; p = 0.0120) and rs2296621 (TT; OR = 6.40; 95% CI = 1.18-34.84; p = 0.0317) were found to be significantly associated with increased risk of EC (adjusted to age, body mass index, menarche and parity). Among the analyzed SNPs, only rs2296621 demonstrated the impact on the increased cancer aggressiveness evaluated by the WHO grading system (G3 vs. G1/2, GT-OR = 4.04; 95% CI = 1.56-10.51; p = 0.0026; T-OR = 2.38; 95% CI = 1.16-4.85; p = 0.0151). Linkage disequilibrium (LD) analysis revealed high LD (r2 ≥ 0.8) in two haploblocks, constructed by rs2770186/rs12141128 and rs12566180/rs6680463, respectively. In the case of C/C haplotype (OR = 4.82; 95% CI = 1.54-15.07; p = 0.0116-Bonferroni corrected) and T/G haplotype (OR = 3.25; 95% CI = 1.29-8.15; p = 0.0328-Bonferroni corrected) in haploblock rs12566180/rs6680463, significantly higher frequency was observed in patients with EC as compared to the control group. The genotype-phenotype studies showed that SNPs of the TGFBR3 gene associated with an increased risk of EC, i.e., rs12566180 and rs2296621 may affect betaglycan expression at the transcriptomic level (rs12566180-CC vs. TT, p < 0.01; rs2296621-GG vs. TT, p < 0.001, GT vs. TT, p < 0.05). Functional consequences of evaluated TGFBR3 gene SNPs were supported by RegulomeDB search. In conclusion, polymorphism of the TGFBR3 gene may be associated with an increased EC occurrence, as well as may be the molecular mechanism responsible for observed betaglycan down-regulation in EC patients.
Collapse
Affiliation(s)
- Piotr K. Zakrzewski
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.F.); (A.I.C.); (M.B.); (W.M.K.)
| | - Ewa Forma
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.F.); (A.I.C.); (M.B.); (W.M.K.)
| | - Adam I. Cygankiewicz
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.F.); (A.I.C.); (M.B.); (W.M.K.)
| | - Magdalena Bryś
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.F.); (A.I.C.); (M.B.); (W.M.K.)
| | - Katarzyna Wójcik-Krowiranda
- Department of Gynecological Oncology, Medical University of Lodz, Pabianicka 62, 93-513 Lodz, Poland; (K.W.-K.); (A.B.)
| | - Andrzej Bieńkiewicz
- Department of Gynecological Oncology, Medical University of Lodz, Pabianicka 62, 93-513 Lodz, Poland; (K.W.-K.); (A.B.)
| | - Andrzej Semczuk
- IInd Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Wanda M. Krajewska
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.F.); (A.I.C.); (M.B.); (W.M.K.)
| |
Collapse
|
6
|
Latifi Z, Nejabati HR, Abroon S, Mihanfar A, Farzadi L, Hakimi P, Hajipour H, Nouri M, Fattahi A. Dual role of TGF-β in early pregnancy: clues from tumor progression. Biol Reprod 2020; 100:1417-1430. [PMID: 30772900 DOI: 10.1093/biolre/ioz024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/25/2018] [Accepted: 02/14/2019] [Indexed: 01/10/2023] Open
Abstract
TGF-β signaling in the endometrium is active during the implantation period and has a pivotal role in regulating endometrial receptivity and embryo implantation. During embryo implantation, both apoptosis and proliferation of endometrial cells happen at the same time and it seems TGF-β is the factor that controls both of these processes. As shown in cancer cells, in special conditions this cytokine can have a dual effect and switch the action from apoptosis to proliferation. Owing to the similarity between embryo implantation and cancer development and also unusual pattern of proliferation and remodeling in the uterus, in this review we suggest the existence of such a switching in endometrium during the early pregnancy. Moreover, we address some potential mechanisms that could regulate the switching. A better understanding of the molecular mechanisms regulating TGF-β action and signaling during the implantation period could pave the way for introducing novel therapeutic strategies in order to solve implantation-associated issues such as repeated implantation failure.
Collapse
Affiliation(s)
- Zeinab Latifi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Abroon
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aynaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Laya Farzadi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Hakimi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hajipour
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Houshdaran S, Oke AB, Fung JC, Vo KC, Nezhat C, Giudice LC. Steroid hormones regulate genome-wide epigenetic programming and gene transcription in human endometrial cells with marked aberrancies in endometriosis. PLoS Genet 2020; 16:e1008601. [PMID: 32555663 PMCID: PMC7299312 DOI: 10.1371/journal.pgen.1008601] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 01/09/2020] [Indexed: 01/03/2023] Open
Abstract
Programmed cellular responses to cycling ovarian-derived steroid hormones are central to normal endometrial function. Abnormalities therein, as in the estrogen-dependent, progesterone-"resistant" disorder, endometriosis, predispose to infertility and poor pregnancy outcomes. The endometrial stromal fibroblast (eSF) is a master regulator of pregnancy success. However, the complex hormone-epigenome-transcriptome interplay in eSF by each individual steroid hormone, estradiol (E2) and/or progesterone (P4), under physiologic and pathophysiologic conditions, is poorly understood and was investigated herein. Genome-wide analysis in normal, early and late stage eutopic eSF revealed: i) In contrast to P4, E2 extensively affected the eSF DNA methylome and transcriptome. Importantly, E2 resulted in a more open versus closed chromatin, confirmed by histone modification analysis. Combined E2 with P4 affected a totally different landscape than E2 or P4 alone. ii) P4 responses were aberrant in early and late stage endometriosis, and mapping differentially methylated CpG sites with progesterone receptor targets from the literature revealed different but not decreased P4-targets, leading to question the P4-"resistant" phenotype in endometriosis. Interestingly, an aberrant E2-response was noted in eSF from endometriosis women; iii) Steroid hormones affected specific genomic contexts and locations, significantly enriching enhancers and intergenic regions and minimally involving proximal promoters and CpG islands, regardless of hormone type and eSF disease state. iv) In eSF from women with endometriosis, aberrant hormone-induced methylation signatures were mainly due to existing DNA methylation marks prior to hormone treatments and involved known endometriosis genes and pathways. v) Distinct DNA methylation and transcriptomic signatures revealed early and late stage endometriosis comprise unique disease subtypes. Taken together, the data herein, for the first time, provide significant insight into the hormone-epigenome-transcriptome interplay of each steroid hormone in normal eSF, and aberrant E2 response, distinct disease subtypes, and pre-existing epigenetic aberrancies in the setting of endometriosis, provide mechanistic insights into how endometriosis affects endometrial function/dysfunction.
Collapse
Affiliation(s)
- Sahar Houshdaran
- University of California San Francisco, Dept. of Obstetrics, Gynecology and Reproductive Sciences, San Francisco, California, United States of America
| | - Ashwini B. Oke
- University of California San Francisco, Dept. of Obstetrics, Gynecology and Reproductive Sciences, San Francisco, California, United States of America
| | - Jennifer C. Fung
- University of California San Francisco, Dept. of Obstetrics, Gynecology and Reproductive Sciences, San Francisco, California, United States of America
| | - Kim Chi Vo
- University of California San Francisco, Dept. of Obstetrics, Gynecology and Reproductive Sciences, San Francisco, California, United States of America
| | - Camran Nezhat
- Camran Nezhat Institute, Palo Alto, California, United States of America
| | - Linda C. Giudice
- University of California San Francisco, Dept. of Obstetrics, Gynecology and Reproductive Sciences, San Francisco, California, United States of America
| |
Collapse
|
8
|
Kriseman M, Monsivais D, Agno J, Masand RP, Creighton CJ, Matzuk MM. Uterine double-conditional inactivation of Smad2 and Smad3 in mice causes endometrial dysregulation, infertility, and uterine cancer. Proc Natl Acad Sci U S A 2019; 116:3873-3882. [PMID: 30651315 PMCID: PMC6397514 DOI: 10.1073/pnas.1806862116] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
SMAD2 and SMAD3 are downstream proteins in the transforming growth factor-β (TGF β) signaling pathway that translocate signals from the cell membrane to the nucleus, bind DNA, and control the expression of target genes. While SMAD2/3 have important roles in the ovary, we do not fully understand the roles of SMAD2/3 in the uterus and their implications in the reproductive system. To avoid deleterious effects of global deletion, and given previous data showing redundant function of Smad2 and Smad3, a double-conditional knockout was generated using progesterone receptor-cre (Smad2/3 cKO) mice. Smad2/3 cKO mice were infertile due to endometrial hyperproliferation observed as early as 6 weeks of postnatal life. Endometrial hyperplasia worsened with age, and all Smad2/3 cKO mice ultimately developed bulky endometrioid-type uterine cancers with 100% mortality by 8 months of age. The phenotype was hormone-dependent and could be prevented with removal of the ovaries at 6 weeks of age but not at 12 weeks. Uterine tumor epithelium was associated with decreased expression of steroid biosynthesis genes, increased expression of inflammatory response genes, and abnormal expression of cell cycle checkpoint genes. Our results indicate the crucial role of SMAD2/3 in maintaining normal endometrial function and confirm the hormone-dependent nature of SMAD2/3 in the uterus. The hyperproliferation of the endometrium affected both implantation and maintenance of pregnancy. Our findings generate a mouse model to study the roles of SMAD2/3 in the uterus and serve to provide insight into the mechanism by which the endometrium can escape the plethora of growth regulatory proteins.
Collapse
Affiliation(s)
- Maya Kriseman
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
- Reproductive Endocrinology and Infertility, Baylor College of Medicine/Texas Children's Hospital Women's Pavilion, Houston, TX 77030
| | - Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030
| | - Julio Agno
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
| | - Ramya P Masand
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
| | - Chad J Creighton
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Martin M Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030;
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
9
|
Activin-like kinase 5 (ALK5) inactivation in the mouse uterus results in metastatic endometrial carcinoma. Proc Natl Acad Sci U S A 2019; 116:3883-3892. [PMID: 30655341 PMCID: PMC6397539 DOI: 10.1073/pnas.1806838116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The rising incidence of endometrial cancer in the United States and worldwide can be partially attributed to elevated rates of obesity in the population. Although hysterectomy is an effective treatment for early endometrial cancer, medical interventions are required in advanced cases with metastatic disease or for women wishing to preserve fertility. Here, we present a mouse model with conditional inactivation of the transforming growth factor β (TGFβ) receptor, activin-like kinase 5 (Alk5), that develops estrogen-dependent endometrial adenocarcinoma with distant lung metastases. We anticipate that this mouse will be a useful preclinical model for testing novel therapies for endometrial cancer and for understanding the mechanisms that control endometrial regeneration in the postpartum uterus. The endometrial lining of the uterine cavity is a highly dynamic tissue that is under the continuous control of the ovarian steroid hormones, estrogen and progesterone. Endometrial adenocarcinoma arises from the uncontrolled growth of the endometrial glands, which is typically associated with unopposed estrogen action and frequently occurs in older postmenopausal women. The incidence of endometrial cancer among younger women has been rising due to increasing rates of obesity, a major risk factor for the disease. The transforming growth factor β (TGFβ) family is a highly conserved group of proteins with roles in cellular differentiation, proliferation, and cancer. Inactivating mutations in the genes encoding the TGFβ cell surface receptors (TGFBR1/ALK5 and TGFBR2) have been detected in various human cancers, indicating that a functional TGFβ signaling pathway is required for evading tumorigenesis. In this study, we present a mouse model with conditional inactivation of activin receptor-like kinase 5 (ALK5) in the mouse uterus using progesterone receptor cre (“Alk5 cKO”) that develops endometrial adenocarcinoma with metastasis to the lungs. The cancer and metastatic lung nodules are estrogen dependent and retain estrogen receptor α (ERα) reactivity, but have decreased levels of progesterone receptor (PR) protein. The endometrial tumors develop only in Alk5 cKO mice that are mated to fertile males, indicating that TGFβ-mediated postpartum endometrial repair is critical for endometrial function. Overall, these studies indicate that TGFβ signaling through TGFBR1/ALK5 in the endometrium is required for endometrial homeostasis, tumor suppression, and postpartum endometrial regeneration.
Collapse
|
10
|
Yu W, Chen G, Sun Y, Gao S, Li W, Cui J, Sun J. Gastric carcinoma subsequent to myelodysplastic syndrome with t (1; 19) chromosome translocation: A rare case report and its potential mechanisms. Medicine (Baltimore) 2018; 97:e11535. [PMID: 30045276 PMCID: PMC6078750 DOI: 10.1097/md.0000000000011535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/21/2018] [Indexed: 11/28/2022] Open
Abstract
RATIONALE Myelodysplastic syndrome (MDS) is a heterogeneous malignant hematologic disease with median overall survival ranging from six months to more than ten years. Solid tumor rarely occurs in combination with MDS and the underlying pathogenesis and prognostic significance still remain controversial. PATIENT CONCERNS Here we report a relative low risk myelodysplastic syndrome-refractory cytopenia with multilineage dysplasia (MDS-RCMD) patient, with a rare t(1; 19)chromosome translocation. This patient also suffered from gastric carcinoma. DIAGNOSES Gastric carcinoma, Myelodysplastic syndrome with t (1; 19) chromosome translocation. INTERVENTIONS This patient received radical operation for gastric carcinoma and erythropoietin infusion. OUTCOMES The patient took follow up visits every 2 to 3 months in past years and now he is in stable disease without further treatment. LESSONS We reviewed the mechanism of MDS complicated by solid tumor and concluded the potential mechanisms of this patient. The interactions between potential factors may play a role in oncogenesis which, however, need an in-depth study of its operating mechanism.
Collapse
Affiliation(s)
- Wenqing Yu
- Cancer Center, the First Hospital of Jilin Unversity, Jilin
- Department of Hematology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai
| | - Gaoyang Chen
- Research Center ,the Second Hospital of Jilin UniversityJilin
| | - Yunpeng Sun
- Cardiovascular Surgery Department, the First Hospital of Jilin Unversity, Jilin, People's Republic of China
| | - Sujun Gao
- Cancer Center, the First Hospital of Jilin Unversity, Jilin
| | - Wei Li
- Cancer Center, the First Hospital of Jilin Unversity, Jilin
| | - Jiuwei Cui
- Cancer Center, the First Hospital of Jilin Unversity, Jilin
| | - Jingnan Sun
- Cancer Center, the First Hospital of Jilin Unversity, Jilin
| |
Collapse
|
11
|
Eritja N, Yeramian A, Chen BJ, Llobet-Navas D, Ortega E, Colas E, Abal M, Dolcet X, Reventos J, Matias-Guiu X. Endometrial Carcinoma: Specific Targeted Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 943:149-207. [PMID: 27910068 DOI: 10.1007/978-3-319-43139-0_6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endometrial cancer (EC) is the most common gynecologic malignancy in the western world with more than 280,000 cases per year worldwide. Prognosis for EC at early stages, when primary surgical resection is the most common initial treatment, is excellent. Five-year survival rate is around 70 %.Several molecular alterations have been described in the different types of EC. They occur in genes involved in important signaling pathways. In this chapter, we will review the most relevant altered pathways in EC, including PI3K/AKT/mTOR, RAS-RAF-MEK-ERK, Tyrosine kinase, WNT/β-Catenin, cell cycle, and TGF-β signaling pathways. At the end of the chapter, the most significant clinical trials will be briefly discussed.This information is important to identify specific targets for therapy.
Collapse
Affiliation(s)
- Nuria Eritja
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Andree Yeramian
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Bo-Juen Chen
- New York Genome Center, New York, NY, 10013, USA
| | - David Llobet-Navas
- Institute of Genetic Medicine, Newcastle University, Newcastle-Upon-Tyne, NE1 3BZ, UK
| | - Eugenia Ortega
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Eva Colas
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Research Unit in Biomedicine and Translational and Pediatric Oncology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Miguel Abal
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Translational Medical Oncology, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Xavier Dolcet
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Jaume Reventos
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Research Unit in Biomedicine and Translational and Pediatric Oncology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain.
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain.
| |
Collapse
|
12
|
Gao Y, Lin P, Lydon JP, Li Q. Conditional abrogation of transforming growth factor-β receptor 1 in PTEN-inactivated endometrium promotes endometrial cancer progression in mice. J Pathol 2017; 243:89-99. [PMID: 28657664 DOI: 10.1002/path.4930] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/10/2017] [Accepted: 05/28/2017] [Indexed: 12/16/2022]
Abstract
Although a putative role for transforming growth factor-β (TGFB) signalling in the pathogenesis of human endometrial cancer has long been proposed, the precise function of TGFB signalling in the development and progression of endometrial cancer remains elusive. Depletion of phosphatase and tensin homologue (PTEN) in the mouse uterus causes endometrial cancer. To identify the potential role of TGFB signalling in endometrial cancer, we simultaneously deleted TGFB receptor 1 (Tgfbr1) and Pten in the mouse uterus by using Cre-recombinase driven by the progesterone receptor (termed Ptend/d ;Tgfbr1d/d ). We found that Ptend/d ;Tgfbr1d/d mice developed severe endometrial lesions that progressed more rapidly than those resulting from conditional deletion of Pten alone, suggesting that TGFB signalling synergizes with PTEN to suppress endometrial cancer progression. Remarkably, Ptend/d ;Tgfbr1d/d mice developed distant pulmonary metastases, leading to a significantly reduced lifespan. The development of metastasis and accelerated tumour progression in Ptend/d ;Tgfbr1d/d mice are associated with increased production of proinflammatory chemokines, enhanced cancer cell motility, as shown by myometrial invasion and disruption, and an altered tumour microenvironment characterized by recruitment of tumour-associated macrophages. Thus, conditional deletion of Tgfbr1 in PTEN-inactivated endometrium leads to a disease that recapitulates invasive and lethal human endometrial cancer. This mouse model may be valuable for preclinical testing of new cancer therapies, particularly those targeting metastasis, one of the hallmarks of cancer and a major cause of death in endometrial cancer patients. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yang Gao
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Pengfei Lin
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Qinglei Li
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| |
Collapse
|
13
|
Xiong S, Klausen C, Cheng JC, Leung PCK. TGFβ1 induces endometrial cancer cell adhesion and migration by up-regulating integrin αvβ3 via SMAD-independent MEK-ERK1/2 signaling. Cell Signal 2017; 34:92-101. [PMID: 28336232 DOI: 10.1016/j.cellsig.2017.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 11/26/2022]
Abstract
Endometrial cancer is the most common, and second most lethal, gynecological malignancy, and its rates of incidence and death are growing. This is likely attributable to increased numbers of high-risk type II endometrial cancers which account for ~30% of cases but ~75% of deaths due to their aggressive and metastatic behaviour. Histopathological and in vitro functional studies suggest that aberrant TGFβ1 signaling may contribute to endometrial cancer development and the acquisition of invasive/metastatic characteristics. However, little is known about the cellular and molecular mechanisms of TGFβ1 in high-risk endometrial cancers. In the present study, we examined the roles and mechanisms of TGFβ1 on cell adhesion and motility in type II endometrial cancer cell lines, KLE and HEC-1B. We show that treatment with TGFβ1 increases cell adhesion to vitronectin and transwell cell migration. We also demonstrate that TGFβ1 treatment increases integrin β3 and αv mRNA and protein levels via SMAD-independent MEK-ERK1/2 signaling. Importantly, siRNA depletion or antibody-mediated blocking of integrin αvβ3 reversed the effects of TGFβ1 on cell adhesion and migration. Our results suggest that TGFβ1-MEK-ERK1/2-integrin αvβ3 signaling could contribute to the invasive behaviour of high-risk endometrial cancer by promoting cell adhesion and migration.
Collapse
Affiliation(s)
- Siyuan Xiong
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada.
| |
Collapse
|
14
|
Yu L, Hu R, Sullivan C, Swanson RJ, Oehninger S, Sun YP, Bocca S. MFGE8 regulates TGF-β-induced epithelial mesenchymal transition in endometrial epithelial cells in vitro. Reproduction 2016; 152:225-33. [PMID: 27340235 DOI: 10.1530/rep-15-0585] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 06/17/2016] [Indexed: 12/28/2022]
Abstract
This study investigated the role of milk fat globule-epidermal growth factor-factor 8 (MFGE8) in TGF-β-induced epithelial-mesenchymal transition (EMT) of endometrial epithelial cells. These were in vitro studies using human endometrial epithelial cells and mouse blastocysts. We investigated the ability of TGF-β to induce EMT in endometrial epithelial cells (HEC-1A) by assessment of cytological phenotype (by light and atomic force microscopy), changes in expression of the markers of cell adhesion/differentiation E- and N-cadherin, and of the transcription factor Snail (by immunofluorescence and immunoblotting), and competence to support embryo attachment in a mouse blastocyst outgrowth assay. We also studied the effects of E-cadherin expression in cells transfected by retroviral shRNA vectors specifically silencing MFGE8. Results demonstrated that TGF-β induced EMT as demonstrated by phenotypic cell changes, by a switch of cadherin expression as well as by upregulation of the expression of the mesenchymal markers Snail and Vimentin. Upon MFGE8 knockdown, these processes were interfered with, suggesting that MFGE8 and TGF-β together may participate in regulation of EMT. This study demonstrated for the first time that endometrial MFGE8 modulates TGF-β-induced EMT in human endometrium cells.
Collapse
Affiliation(s)
- Liang Yu
- The Jones Institute for Reproductive MedicineDepartment of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, USA Reproductive Medical CenterThe First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rong Hu
- Reproductive Medicine CenterKey Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Claretta Sullivan
- Department of SurgeryEastern Virginia Medical School, Norfolk, Virginia, USA
| | - R James Swanson
- Department of Biological SciencesOld Dominion University, Norfolk, Virginia, USA
| | - Sergio Oehninger
- The Jones Institute for Reproductive MedicineDepartment of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Ying-Pu Sun
- Reproductive Medical CenterThe First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Silvina Bocca
- The Jones Institute for Reproductive MedicineDepartment of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| |
Collapse
|
15
|
Wijayarathna R, de Kretser DM. Activins in reproductive biology and beyond. Hum Reprod Update 2016; 22:342-57. [PMID: 26884470 DOI: 10.1093/humupd/dmv058] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/20/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Activins are members of the pleiotrophic family of the transforming growth factor-beta (TGF-β) superfamily of cytokines, initially isolated for their capacity to induce the release of FSH from pituitary extracts. Subsequent research has demonstrated that activins are involved in multiple biological functions including the control of inflammation, fibrosis, developmental biology and tumourigenesis. This review summarizes the current knowledge on the roles of activin in reproductive and developmental biology. It also discusses interesting advances in the field of modulating the bioactivity of activins as a therapeutic target, which would undoubtedly be beneficial for patients with reproductive pathology. METHODS A comprehensive literature search was carried out using PUBMED and Google Scholar databases to identify studies in the English language which have contributed to the advancement of the field of activin biology, since its initial isolation in 1987 until July 2015. 'Activin', 'testis', 'ovary', 'embryonic development' and 'therapeutic targets' were used as the keywords in combination with other search phrases relevant to the topic of activin biology. RESULTS Activins, which are dimers of inhibin β subunits, act via a classical TGF-β signalling pathway. The bioactivity of activin is regulated by two endogenous inhibitors, inhibin and follistatin. Activin is a major regulator of testicular and ovarian development. In the ovary, activin A promotes oocyte maturation and regulates granulosa cell steroidogenesis. It is also essential in endometrial repair following menstruation, decidualization and maintaining pregnancy. Dysregulation of the activin-follistatin-inhibin system leads to disorders of female reproduction and pregnancy, including polycystic ovary syndrome, ectopic pregnancy, miscarriage, fetal growth restriction, gestational diabetes, pre-eclampsia and pre-term birth. Moreover, a rise in serum activin A, accompanied by elevated FSH, is characteristic of female reproductive aging. In the male, activin A is an autocrine and paracrine modulator of germ cell development and Sertoli cell proliferation. Disruption of normal activin signalling is characteristic of many tumours affecting reproductive organs, including endometrial carcinoma, cervical cancer, testicular and ovarian cancer as well as prostate cancer. While activin A and B aid the progression of many tumours of the reproductive organs, activin C acts as a tumour suppressor. Activins are important in embryonic induction, morphogenesis of branched glandular organs, development of limbs and nervous system, craniofacial and dental development and morphogenesis of the Wolffian duct. CONCLUSIONS The field of activin biology has advanced considerably since its initial discovery as an FSH stimulating agent. Now, activin is well known as a growth factor and cytokine that regulates many aspects of reproductive biology, developmental biology and also inflammation and immunological mechanisms. Current research provides evidence for novel roles of activins in maintaining the structure and function of reproductive and other organ systems. The fact that activin A is elevated both locally as well as systemically in major disorders of the reproductive system makes it an important biomarker. Given the established role of activin A as a pro-inflammatory and pro-fibrotic agent, studies of its involvement in disorders of reproduction resulting from these processes should be examined. Follistatin, as a key regulator of the biological actions of activin, should be evaluated as a therapeutic agent in conditions where activin A overexpression is established as a contributing factor.
Collapse
Affiliation(s)
- R Wijayarathna
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia Centre for Reproductive Health, Hudson Institute of Medical Research, 27-31, Wright Street, Clayton, VIC 3168, Australia
| | - D M de Kretser
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia Centre for Reproductive Health, Hudson Institute of Medical Research, 27-31, Wright Street, Clayton, VIC 3168, Australia
| |
Collapse
|
16
|
Thouas GA, Dominguez F, Green MP, Vilella F, Simon C, Gardner DK. Soluble ligands and their receptors in human embryo development and implantation. Endocr Rev 2015; 36:92-130. [PMID: 25548832 DOI: 10.1210/er.2014-1046] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extensive evidence suggests that soluble ligands and their receptors mediate human preimplantation embryo development and implantation. Progress in this complex area has been ongoing since the 1980s, with an ever-increasing list of candidates. This article specifically reviews evidence of soluble ligands and their receptors in the human preimplantation stage embryo and female reproductive tract. The focus will be on candidates produced by the human preimplantation embryo and those eliciting developmental responses in vitro, as well as endometrial factors related to implantation and receptivity. Pathways to clinical translation, including innovative diagnostics and other technologies, are also highlighted, drawing from this collective evidence toward facilitating joint improvements in embryo quality and endometrial receptivity. This strategy could not only benefit clinical outcomes in reproductive medicine but also provide broader insights into the peri-implantation period of human development to improve fetal and neonatal health.
Collapse
Affiliation(s)
- George A Thouas
- Reproductive Biology and Assisted Conception Laboratory (G.A.T., M.P.G., D.K.G.), School of Biosciences, The University of Melbourne, Melbourne, Victoria, Australia 3010; Fundación Instituto Valenciano de Infertilidad (F.D., F.V., C.S.), Department of Obstetrics and Gynecology, University of Valencia, 46010, Valencia, Spain; La Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana Health Research Institute (F.D., F.V., C.S.), 46010 Valencia, Spain; and Department of Obstetrics and Gynecology (C.S.), Stanford University, Stanford, California 90095
| | | | | | | | | | | |
Collapse
|
17
|
Lazarenko LM, Nikitina OE, Nikitin EV, Demchenko OM, Kovtonyuk GV, Ganova LO, Bubnov RV, Shevchuk VO, Nastradina NM, Bila VV, Spivak MY. Development of biomarker panel to predict, prevent and create treatments tailored to the persons with human papillomavirus-induced cervical precancerous lesions. EPMA J 2014; 5:1. [PMID: 24386936 PMCID: PMC3901026 DOI: 10.1186/1878-5085-5-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/10/2013] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Human papillomavirus (HPV) induce many cancer conditions and cause cervical cancer, second in frequency of malignant disease in women.The aim was to develop biomarker panel for HPV-induced cervical precancerous diseases in patients infected with herpes simplex virus (HSV). MATERIAL AND METHODS The study involved 71 women with cervical precancerous diseases (mean age 26 ± 5 years) revealed by colposcopic, cytomorphological, and ultrasound signs which were assessed according to the following: first group, 44 patients infected with HPV; second group, 27 HPV-negative patients; and third group, 30 healthy patients (controls). In cervical specimen, we identified HPV DNA of different oncogenic risk types by polymerase chain reaction (PCR). Enzyme-linked immunosorbent assay (ELISA) kits (JSC SPC 'DiaprofMed') were used for detecting antibodies to HSV1 and/or HSV2 and for determining the avidity index. The production of pro-inflammatory cytokines, interferon-γ (IFN-γ), IFN-α, TNF-α, and interleukin-1β (IL-1β), and anti-inflammatory cytokines, IL-4, IL-10, and transforming growth factor-β1 (TGF-β1), were studied by ELISA. RESULTS In HPV-induced cervix precancerous diseases, we identified low-avidity IgG antibodies to HSV serum of 20 patients; in the serum of 17 patients, we identified average-avidity antibodies, and high-avidity antibodies were found in 2 patients only. In 14 HPV-negative patients, we found low-avidity IgG antibodies to HSV; in 10 patients, medium avidity. Patients with low-avidity IgG antibodies to herpes virus showed high and medium oncogenic risk HPV types and a decrease of IFN-γ compared to patients with medium-avidity IgG antibodies. Production of IFN-γ was suppressed also in HPV-negative patients with cervical precancers, but we found low- and medium-avidity IgG antibodies to herpes virus. In patients with low-avidity antibodies, we observed increased level of IL-10. Level of IFN-α, IL-1β, IL-2, and IL-4 did not change in patients of all groups, but TGF-β1 increased. CONCLUSIONS In HPV-positive patients, those with low-avidity IgG antibodies to HSV had immunosuppression, confirmed by increased TGF-β1 and violation of IFN-γ production. Therefore, in pro- and anti-inflammatory cytokines and IgG antibodies to HSV, their avidity is an important diagnostic biomarker of HPV-induced precancerous cervical diseases. Low-avidity IgG antibodies may be an indication for treatment with immunomodulators and antiviral drugs.
Collapse
Affiliation(s)
- Liudmyla M Lazarenko
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny str. 154, Kyiv 03680, Ukraine
| | - Olena E Nikitina
- Odessa National Medical University, Ministry of Health of Ukraine, Odessa 270039, Ukraine
| | - Evgen V Nikitin
- Odessa National Medical University, Ministry of Health of Ukraine, Odessa 270039, Ukraine
| | - Olga M Demchenko
- JSC SPC ‘DiaprofMed’, Svitlycky str. 35, Kyiv 04123, Ukraine
- Perinatal Center, Kyiv, Ukraine, Kotelnikova str. 95, Kyiv 03179, Ukraine
| | - Galyna V Kovtonyuk
- Perinatal Center, Kyiv, Ukraine, Kotelnikova str. 95, Kyiv 03179, Ukraine
| | - Larysa O Ganova
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny str. 154, Kyiv 03680, Ukraine
| | - Rostyslav V Bubnov
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny str. 154, Kyiv 03680, Ukraine
- Clinical Hospital ‘Pheophania’ of State Affairs Department, Zabolotny str., 21, Kyiv 03680, Ukraine
| | - Veronika O Shevchuk
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny str. 154, Kyiv 03680, Ukraine
| | - Natalia M Nastradina
- Odessa National Medical University, Ministry of Health of Ukraine, Odessa 270039, Ukraine
| | - Viktoria V Bila
- JSC SPC ‘DiaprofMed’, Svitlycky str. 35, Kyiv 04123, Ukraine
| | - Mykola Ya Spivak
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny str. 154, Kyiv 03680, Ukraine
- Perinatal Center, Kyiv, Ukraine, Kotelnikova str. 95, Kyiv 03179, Ukraine
| |
Collapse
|
18
|
Semczuk A, Zakrzewski PK, Forma E, Cygankiewicz AI, Semczuk-Sikora A, Bryś M, Rechberger T, Krajewska WM. TGFβ-pathway is down-regulated in a uterine carcinosarcoma: a case study. Pathol Res Pract 2013; 209:740-4. [PMID: 23932095 DOI: 10.1016/j.prp.2013.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/01/2013] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
Abstract
Data assessing the role of various genetic alterations in uterine carcinosarcoma (CS), particularly the transforming growth factors-β (TGFβ) that play a crucial role in many cellular processes, including proliferation, differentiation, adhesion and migration, are scarce. TGFβ exert their effects through specific receptors and associated auxiliary receptors. In the current study, we investigated the expression of TGFβ isoforms and their receptors, as well as selected genes in a case of CS. We applied the real-time fluorescence detection PCR method with FAM dye-labeled TaqMan specific probes. In a comparison to the normal counterpart, TGFB1, TGFB2, TGFBRII, TGFBR3, ENG and CD109 were all down-regulated in uterine CS samples at different extents. BIRC5 and hTERT, markers of tumor survival, were up-regulated in CS as compared with normal counterparts. A concomitant increase of the hypoxia marker HIF1A expression pattern was noted, whereas the expression of GPR120, responsible for free fatty acids sensing, was not different in both counterparts evaluated. In conclusion, deregulation of various cellular mechanisms in uterine CS is associated with alterations at many levels - cell growth and proliferation, apoptosis, and impaired response to stimuli from extracellular environment.
Collapse
Affiliation(s)
- Andrzej Semczuk
- IInd Department of Gynecology, Lublin Medical University, Lublin, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Sharkey DJ, Macpherson AM, Tremellen KP, Mottershead DG, Gilchrist RB, Robertson SA. TGF-β Mediates Proinflammatory Seminal Fluid Signaling in Human Cervical Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:1024-35. [DOI: 10.4049/jimmunol.1200005] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Zakrzewski PK, Cygankiewicz AI, Mokrosiński J, Nowacka-Zawisza M, Semczuk A, Rechberger T, Krajewska WM. Expression of endoglin in primary endometrial cancer. Oncology 2011; 81:243-50. [PMID: 22116456 DOI: 10.1159/000334240] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/04/2011] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Alterations in the transforming growth factor-β (TGF-β) signaling cascade are engaged in the development of human neoplasms through the deregulation of proliferation, differentiation and migration. However, in endometrial cancer, the role of endoglin, which acts as an accessory receptor in the TGF-β pathway, is still unknown. The aim of our study was the evaluation of endoglin mRNA and protein expression levels in endometrial cancer as compared to normal endometrium. TGF-β(1) and TGF-β type II receptor were involved in the investigation since they directly cooperate with endoglin during signal propagation. Obtained results were correlated with clinicopathological parameters of studied material to determine endoglin contribution to tumor development and progression. METHODS mRNA level assessment was performed using real-time technique, whereas protein expression was determined by ELISA assay. RESULTS The endoglin mRNA level was not significantly altered in cancerous samples as compared to normal tissue, whereas its protein level demonstrated significant upregulation (p < 0.001) associated with increased tumor malignancy, assessed by histological grade and myometrium infiltration. CONCLUSIONS An increase in endoglin protein expression level may interfere with the oncogenic potential of TGF-β(1) and TGF-β type II receptor in endometrial cancer. Correlation of the endoglin level with pronounced cancer malignancy suggests that it may be regarded as a potential prognostic marker of primary endometrial cancer.
Collapse
|
21
|
Lash GE, Innes BA, Drury JA, Robson SC, Quenby S, Bulmer JN. Localization of angiogenic growth factors and their receptors in the human endometrium throughout the menstrual cycle and in recurrent miscarriage. Hum Reprod 2011; 27:183-95. [PMID: 22081249 DOI: 10.1093/humrep/der376] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Angiogenesis is a key feature of endometrial development. Inappropriate endometrial vascular development has been associated with recurrent miscarriage (RM) with increased amounts of perivascular smooth muscle cells surrounding them. METHODS In the current study, we have used immunohistochemistry to study temporal and spatial expression of a series of angiogenic growth factors (AGFs) and their receptors; vascular endothelial growth factor (VEGF)-A, VEGF-C, VEGF-D, VEGF-R1, VEGF-R2, VEGF-R3, platelet-derived growth factor (PDGF)-BB, PDGF-Rα, PDGF-Rβ, transforming growth factor (TGF)-β1, TGF-βRI, TGF-βRII, angiopoietin (Ang)-1, Ang-2 and Tie-2, in the proliferative, early secretory and mid-late secretory phase endometrium from control women as well as in the mid-late secretory phase of women with a history of RM. The AGFs and their receptors studied were immunostained and assessed separately in stromal, vascular smooth muscle, endothelial and glandular epithelial cells. Laser capture microdissection and real-time RT-PCR were used to confirm expression patterns observed by immunohistochemistry. RESULTS Most AGFs investigated showed both temporal and spatial expression patterns in normal cycling endometrium. In addition, immunostaining intensity for several AGFs was altered in women with a history of RM, particularly in vascular smooth muscle cells (VSMCs). VSMC expression of TGF-β1, VEGF-R1 and VEGF-R2 was increased while expression of PDGF-BB, TGF-βRI, TGF-βRII, Ang-2, VEGF-A and VEGF-C was reduced. CONCLUSIONS This study confirms that the cycling endometrium is a highly angiogenic tissue and that this process is likely to be altered in women with a history of RM and may contribute to the aetiology of this condition.
Collapse
Affiliation(s)
- Gendie E Lash
- Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, 3rd Floor, William Leech Building, Newcastle upon Tyne NE2 4HH, UK.
| | | | | | | | | | | |
Collapse
|
22
|
Zakrzewski PK, Mokrosinski J, Cygankiewicz AI, Semczuk A, Rechberger T, Skomra D, Krajewska WM. Dysregulation of Betaglycan Expression in Primary Human Endometrial Carcinomas. Cancer Invest 2011; 29:137-44. [DOI: 10.3109/07357907.2010.543213] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Florio P, Gabbanini M, Borges LE, Bonaccorsi L, Pinzauti S, Reis FM, Boy Torres P, Rago G, Litta P, Petraglia F. Activins and related proteins in the establishment of pregnancy. Reprod Sci 2010; 17:320-30. [PMID: 20228378 DOI: 10.1177/1933719109353205] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Activin A and related proteins (inhibins, follistatin [FS], follistatin-related gene [FLRG], endometrial bleeding associated factors [ebaf]) are involved in the complex mechanisms allowing the establishment and the maintenance of pregnancy. As a consequence of ovarian progesterone stimuli, activin A is expressed and secreted by the stromal endometrial cells, which locally induces the decidualization process, a prerequisite for implantation. Moreover, activin A does influence the implantation phase, also enhancing cytotrophoblast differentiation, indirectly, by increasing the expression of other molecules involved in embryo implantation, such as matrix metalloproteinases (MMPs) and leukemia inhibitory factor (LIF). The local derangement of activin A pathway in some pregnancy disorders (incomplete and complete miscarriages, recurrent abortion, and ectopic pregnancy [EP]) further sustains the hypothesis that activin A and its related proteins play a relevant role in the establishment of pregnancy.
Collapse
Affiliation(s)
- Pasquale Florio
- Department of Pediatrics, Obstetrics and Reproductive Medicine, Section of Obstetrics and Gynecology, University of Siena, Policlinico Le Scotte, Siena, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang J, Dicken C, Lustbader JW, Tortoriello DV. Evidence for a Müllerian-inhibiting substance autocrine/paracrine system in adult human endometrium. Fertil Steril 2009; 91:1195-203. [DOI: 10.1016/j.fertnstert.2008.01.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 01/07/2008] [Accepted: 01/07/2008] [Indexed: 11/15/2022]
|
25
|
Abal M, Llauradó M, Doll A, Monge M, Colas E, González M, Rigau M, Alazzouzi H, Demajo S, Castellví J, García A, Ramón y Cajal S, Xercavins J, Vázquez-Levin MH, Alameda F, Gil-Moreno A, Reventos J. Molecular determinants of invasion in endometrial cancer. Clin Transl Oncol 2007; 9:272-7. [PMID: 17525037 DOI: 10.1007/s12094-007-0054-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Endometrial carcinoma is the most common gynaecological malignancy in the western world and the most frequent among infiltrating tumours of the female genital tract. Despite the characterisation of molecular events associated with the development of endometrial carcinoma, those associated with the early steps of infiltration and invasion in endometrial cancer are less known. Deep myometrial invasion correlates with more undifferentiated tumours, lymph-vascular invasion, node affectation and decreased global survival. In this review we present an overview of the molecular pathology of myometrial infiltration that defines the initial steps of invasion in endometrial cancer. Down-regulation of E-cadherin as a main player of epithelial to mesenchymal transition, as well as modifications on other molecules involved in cell-cell contacts, render cells with a migratory phenotype. In addition, altered signalling pathways and transcription factors associate with myometrial invasion, histologic grade and metastasis.
Collapse
Affiliation(s)
- M Abal
- Biomedical Research Unit, Research Institute Vall d'Hebron University Hospital, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kim MR, Park DW, Lee JH, Choi DS, Hwang KJ, Ryu HS, Min CK. Progesterone-dependent release of transforming growth factor-beta1 from epithelial cells enhances the endometrial decidualization by turning on the Smad signalling in stromal cells. Mol Hum Reprod 2006; 11:801-8. [PMID: 16403803 DOI: 10.1093/molehr/gah240] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Endometrial decidualization results from the differentiation of stromal cells in an ovarian steroid-sensitive manner. Human endometrial tissues obtained from fertile women at various stages of the menstrual cycle were subjected to immunohistochemistry to localize the components of the transforming growth factor-beta (TGF-beta) system. TGF-beta receptor-I and -II expression was higher in stromal cells than in epithelial cells during the secretory phase while no such variation was observed during the proliferative phase. The expression of phosphorylated Smad3 (pSmad2/3), an activated form of a component of the TGF-beta signalling pathway, and translocation of pSmad2/3 from the cytoplasm to the nucleus were more pronounced in secretory endometrium. In coculture of human endometrial epithelial with stromal cells, each isolated from the proliferative endometrium, administration of progesterone stimulated decidualization as well as TGF-beta signalling activation in stromal cells. Progesterone also significantly elevated the concentration of TGF-beta1 in the coculture medium. Careful manipulation of the coculture, i.e. selective addition and omission of the cellular components, showed that this progesterone-induced increase in secretion of TGF-beta1 come mainly from epithelial cells. Moreover, administration of TGF-beta1 (10 ng/ml) directly to cultured stromal cells enhanced the expression of prolactin as well as pSamd2/3 even without progesterone. Taken together, our present data support the notion that progesterone induces stromal decidualization indirectly, i.e. by enhancing the expression and secretion of TGF-beta1 from epithelial cells. The secreted, epithelial-derived TGF-beta1 then acts on adjacent stromal cells, at least in part, to turn on Smad signalling that could lead to stromal decidualization.
Collapse
Affiliation(s)
- M R Kim
- Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
Rasila KK, Burger RA, Smith H, Lee FC, Verschraegen C. Angiogenesis in gynecological oncology-mechanism of tumor progression and therapeutic targets. Int J Gynecol Cancer 2006; 15:710-26. [PMID: 16174217 DOI: 10.1111/j.1525-1438.2005.00132.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The purpose of this article is to review the current literature pertaining to various angiogenic stimulators and angiogenesis inhibitors in gynecological malignancies and the relevance of these markers in the prognosis of these diseases. We also summarize the antiangiogenic drugs currently in development and in clinical use in gynecological oncology. The information was obtained from a computer search of MEDLINE for studies published in the English language regarding angiogenesis and angiogenesis inhibitors in gynecological malignancies between 1970 and December 2003; additional sources were identified through cross-referencing. In ovarian cancer, various different angiogenic activators have been found to correlate with microvessed density (MVD), stage, lymph node and peritoneal metastasis, and survival. In cervical cancer, correlation has been seen between increased angiogenic markers and stage, grade, tumor size, and survival. Studies in endometriat cancer show correlation of angiogenic markers with stage, grade, MVD, and survival. Whereas, in gestational trophoblastic neoplasm (GTD) only few markers have been studied, and some correlated with progression. Information on anti angiogenic drugs currently in ongoing and upcoming trials in gynecological malignancies is also presented. Angiogenesis factors may have a prognostic role to play in patients with gynecological cancers and should continue to be investigated as clinically useful tumor markers. Antiangiogenic-targeted therapies offer an attractive strategy for clinical investigation in gynecologic oncology.
Collapse
Affiliation(s)
- K K Rasila
- University of New Mexico Cancer Research and Treatment Center, Albuquerque, New Mexico 87131, USA
| | | | | | | | | |
Collapse
|
28
|
Sakaguchi J, Kyo S, Kanaya T, Maida Y, Hashimoto M, Nakamura M, Yamada K, Inoue M. Aberrant expression and mutations of TGF-beta receptor type II gene in endometrial cancer. Gynecol Oncol 2005; 98:427-33. [PMID: 15993480 DOI: 10.1016/j.ygyno.2005.04.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 04/15/2005] [Accepted: 04/27/2005] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Transforming growth factor beta (TGF-beta) is a multifunctional cytokine that strongly inhibits epithelial cell growth. Disabling of TGF-beta signaling is thought to be involved in development of a variety of tumors in which abnormal expression or function of TGF-beta receptor plays critical roles. In the present study, we examined aberrant expression and mutation of the gene TGF-beta receptor type II (TbetaRII) in endometrial cancers of endometrioid subtype. METHODS AND RESULTS Real-time PCR analysis using surgical tissue specimens of 27 endometrial cancers and 24 normal endometria revealed that endometrial cancers had significantly decreased levels of TbetaRII mRNA expression (mean level 2.44 +/- 2.65), compared to normal endometria (mean level 7.23 +/- 6.07) (P < 0.001). Methylation status of TbetaRII promoter containing 30 CpGs was examined by bisulfite sequencing analysis, and 98% (51/52) of the patients were found to have unmethylated TbetaRII promoter, indicating that promoter hypermethylation is not the major cause of decreased expression of TbetaRII in endometrial cancers. Mutational analysis revealed that 15.1% (8/53) of endometrial cancers had frameshift mutations at polyadenine repeats in exon 3 of the TbetaRII gene. Notably, these mutations were preferentially accumulated in patients with MSI-H phenotype (7/19:37%) (P < 0.001) or with those with methylated MLH1 promoters (6/16:38%) (P < 0.01). Thus, it appears that the TbetaRII gene is a target of mismatch repair deficiency. CONCLUSION Taken together, we found that the decreased expression of TbetaRII as well as frameshift mutation of TbetaRII via mismatch repair deficiency frequently occurs in this tumor type, possibly causing loss of receptor function and unresponsiveness of TGF-beta signaling that may lead to endometrial carcinogenesis.
Collapse
Affiliation(s)
- Junko Sakaguchi
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8641, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Perrier d'Hauterive S, Charlet-Renard C, Dubois M, Berndt S, Goffin F, Foidart JM, Geenen V. Human endometrial leukemia inhibitory factor and interleukin-6: control of secretion by transforming growth factor-beta-related members. Neuroimmunomodulation 2005; 12:157-63. [PMID: 15905624 DOI: 10.1159/000084848] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2003] [Accepted: 08/11/2004] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE(S) The implantation process is closely linked to the fundamental question of the tolerance of the maternal immune system. The main objective of this study was to investigate whether different members of the transforming growth factor-beta (TGF-beta) superfamily could intervene in the first steps of embryo implantation by modulating the secretion of proimplantatory leukemia inhibitory factor (LIF) and in the tolerance of the fetal graft by regulating proinflammatory interleukin (IL)-6 secretion by human endometrial epithelium (EEC) in vitro. METHODS EEC were isolated from biopsies collected from 16 informed and consenting fertile women and were cultured for 72 h. Cytokine measurements (LIF and IL-6) were realized by ELISA. RESULTS TGF-beta(1) (from 10(-12) to 10(-8)M), -beta(2), -beta(3) and activin A (10(-10) and 10(-8)M) increased LIF secretion by EEC cultures. Inhibin B (10(-10) and 10(-8)M) did not stimulate LIF production by human EEC. Contrastingly, TGF-beta(1) (from 10(-12) to 10(-8)M), -beta(2), -beta(3) and activin A (10(-10) and 10(-8)M) reduced IL-6 release by the same cells. Activin A at 10(-8) M also significantly reduced the stimulating effect of IL-1beta (10(-9)M) which is known to stimulate LIF production by EEC. Only the highest concentration of inhibin B (10(-8)M) reduced IL-6 secretion by EEC, but did not modulate IL-1beta-induced stimulation of IL-6 secretion. CONCLUSION(S) Besides their role in the control of the process of implantation and in the induction of embryonic mesoderm, different members of the TGF-beta superfamily may also contribute in the reproductive process by enhancing endometrial proimplantatory LIF secretion and reducing proinflammatory IL-6 release by EEC.
Collapse
Affiliation(s)
- Sophie Perrier d'Hauterive
- University of Liège, Department of Medicine, Center of Immunology, Institute of Pathology CHU-B23, Liège-Sart Tilman, Belgium.
| | | | | | | | | | | | | |
Collapse
|
30
|
Piestrzeniewicz-Ulanska D, Brys M, Semczuk A, Rechberger T, Jakowicki JA, Krajewska WM. TGF-β signaling is disrupted in endometrioid-type endometrial carcinomas. Gynecol Oncol 2004; 95:173-80. [PMID: 15385128 DOI: 10.1016/j.ygyno.2004.06.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Previous studies have demonstrated deregulation of the expression and changes in the intracellular distribution of TGF-beta pathway components in human endometrial cancer (EC). The aim of this study was to assess the relationship between the expression of TGF-beta cascade components, including TGF-beta receptor type I (TGF beta RI) and type II (TGF beta RII), SMAD2, SMAD3, SMAD4, and clinicopathological features--tumor grade, FIGO classification, and depth of myometrial invasion--of type I (endometrioid-type) ECs to give some insight into the role of TGF-beta cascade components in endometrial tumorigenesis. METHODS The expression of TGF beta RI, TGF beta RII, SMAD2, SMAD3, and SMAD4 was evaluated both at the mRNA and protein level using reverse transcription polymerase chain reaction (RT-PCR) and ELISA, respectively. RESULTS Infiltrating endometrial carcinomas (less and more than half of the myometrial wall thickness) express significantly higher TGF beta RII protein level compared with non-infiltrating tumors (P = 0.04 and P = 0.01, respectively). Decreased level of SMAD2 and SMAD4 mRNAs was observed in the uterine tumors infiltrating less and more than half of the myometrial wall (P = 0.03 and P = 0.02, respectively) compared with noninfiltrating ECs. Significantly higher SMAD4 protein level in the cytoplasmic fraction of ECs was found when tumor grade and depth of myometrial invasion were considered (P < 0.05). Generally, tumor progression was associated with a decreased number of cases characterized by the presence of SMADs in the nuclear fraction only. CONCLUSION Our data suggest that disturbances of the TGF beta RII and SMAD4 expression as well as localization of SMADs may be important to the infiltration of the myometrial wall by the type I endometrial carcinomas.
Collapse
MESH Headings
- Activin Receptors, Type I/biosynthesis
- Activin Receptors, Type I/genetics
- Carcinoma, Endometrioid/genetics
- Carcinoma, Endometrioid/metabolism
- Carcinoma, Endometrioid/pathology
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Endometrial Neoplasms/genetics
- Endometrial Neoplasms/metabolism
- Endometrial Neoplasms/pathology
- Enzyme-Linked Immunosorbent Assay
- Female
- Humans
- Intracellular Space/metabolism
- Protein Serine-Threonine Kinases
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptor, Transforming Growth Factor-beta Type I
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/biosynthesis
- Receptors, Transforming Growth Factor beta/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/physiology
- Smad2 Protein
- Smad3 Protein
- Smad4 Protein
- Trans-Activators/biosynthesis
- Trans-Activators/genetics
- Transforming Growth Factor beta/physiology
Collapse
|