1
|
Motor neuron degeneration, severe myopathy and TDP-43 increase in a transgenic pig model of SOD1-linked familiar ALS. Neurobiol Dis 2018; 124:263-275. [PMID: 30471417 DOI: 10.1016/j.nbd.2018.11.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 10/26/2018] [Accepted: 11/19/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neural disorder gradually leading to paralysis of the whole body. Alterations in superoxide dismutase SOD1 gene have been linked with several variants of familial ALS. Here, we investigated a transgenic (Tg) cloned swine model expressing the human pathological hSOD1G93A allele. As in patients, these Tg pigs transmitted the disease to the progeny with an autosomal dominant trait and showed ALS onset from about 27 months of age. Post mortem analysis revealed motor neuron (MN) degeneration, gliosis and hSOD1 protein aggregates in brainstem and spinal cord. Severe skeletal muscle pathology including necrosis and inflammation was observed at the end stage, as well. Remarkably, as in human patients, these Tg pigs showed a quite long presymptomatic phase in which gradually increasing amounts of TDP-43 were detected in peripheral blood mononuclear cells. Thus, this transgenic swine model opens the unique opportunity to investigate ALS biomarkers even before disease onset other than testing novel drugs and possible medical devices.
Collapse
|
2
|
Attenuation of Mitochondrial Unfolded Protein Response is Associated With Hepatic Dysfunction in Septic Rats. Shock 2012; 38:642-8. [DOI: 10.1097/shk.0b013e3182734ff9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
3
|
Liu CH, Zhang F, Krisrian T, Polster B, Fiskum GM, Hu B. Protein Aggregation and Multiple Organelle Damage After Brain Ischemia. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
4
|
Alonso A, Reinz E, Fatar M, Jenne J, Hennerici MG, Meairs S. Neurons but not glial cells overexpress ubiquitin in the rat brain following focused ultrasound-induced opening of the blood-brain barrier. Neuroscience 2010; 169:116-24. [PMID: 20416361 DOI: 10.1016/j.neuroscience.2010.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 03/25/2010] [Accepted: 04/01/2010] [Indexed: 10/19/2022]
Abstract
Focused ultrasound-induced opening of the blood-brain barrier (BBB) in the presence of ultrasound contrast agents is a promising strategy for a targeted drug delivery to the brain. The aim of our study was to identify whether brain molecular stress pathways are targeted by ultrasound treatment. Using an upper level of acoustic pressures in combination with microbubbles, which have been previously reported as reliable for BBB opening without causing tissue damage, we found that ultrasound leads to an increased ubiquitinylation of proteins in neuronal (11+/-3 ubiquitin-overexpressing cells per optical field) but not glial cells 6 h post-insonation, increasing to 16 (+/-4) labelled cells after 24 h. No changes in the expression of Hsp70 and Hsc70 were detected over 24 h. Ultrasound treatment was followed by limited apoptosis after 24 h (32+/-6 cleaved-caspase 3-positive cells per optical field) in the insonated areas. Only neurons were identified in the apoptotic population. Although these observations may not be applicable for all acoustic parameters useful for BBB opening, they demonstrate that insonation of the rat brain with the parameters used in our experiments is a useful tool for BBB opening and induces specific cellular stress response restricted to neuronal cells.
Collapse
Affiliation(s)
- A Alonso
- Department of Neurology, Universitätsmedizin Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | | | | | | | | | | |
Collapse
|
5
|
|
6
|
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone required for the stability and function of a number of conditionally activated and/or expressed signalling proteins, as well as multiple mutated, chimeric, and/or over-expressed signalling proteins, that promote cancer cell growth and/or survival. Hsp90 inhibitors are unique in that, although they are directed towards a specific molecular target, they simultaneously inhibit multiple cellular signalling pathways. By inhibiting nodal points in multiple overlapping survival pathways utilized by cancer cells, combination of an Hsp90 inhibitor with standard chemotherapeutic agents may dramatically increase the in vivo efficacy of the standard agent. Hsp90 inhibitors may circumvent the characteristic genetic plasticity that has allowed cancer cells to eventually evade the toxic effects of most molecularly targeted agents. The mechanism-based use of Hsp90 inhibitors, both alone and in combination with other drugs, should be effective toward multiple forms of cancer. Further, because Hsp90 inhibitors also induce Hsf-1-dependent expression of Hsp70, and because certain mutated Hsp90 client proteins are neurotoxic, these drugs display ameliorative properties in several neurodegenerative disease models, suggesting a novel role for Hsp90 inhibitors in treating multiple pathologies involving neurodegeneration.
Collapse
Affiliation(s)
- Len Neckers
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Abstract
Irreversible translation arrest occurs in reperfused neurons that will die by delayed neuronal death. It is now recognized that suppression of protein synthesis is a general response of eukaryotic cells to exogenous stressors. Indeed, stress-induced translation arrest can be viewed as a component of cell stress responses, and consists of initiation, maintenance, and termination phases that work in concert with stress-induced transcriptional mechanisms. Within this framework, we review translation arrest in reperfused neurons. This framework provides a basis to recognize that phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is the initiator of translation arrest, and a key marker indicating activation of neuronal stress responses. However, eIF2 alpha phosphorylation is reversible. Other phases of stress-induced translation arrest appear to contribute to irreversible translation arrest specifically in ischemic vulnerable neuron populations. We detail two lines of evidence supporting this view. First, ischemia, as a stress stimulus, induces irreversible co-translational protein misfolding and aggregation after 4 to 6 h of reperfusion, trapping protein synthesis machinery into functionally inactive protein aggregates. Second, ischemia and reperfusion leads to modifications of stress granules (SGs) that sequester functionally inactive 48S preinitiation complexes to maintain translation arrest. At later reperfusion durations, these mechanisms may converge such that SGs become sequestered in protein aggregates. These mechanisms result in elimination of functionally active ribosomes and preclude recovery of protein synthesis in selectively vulnerable neurons. Thus, recognizing translation arrest as a component of endogenous cellular stress response pathways will aid in making sense of the complexities of postischemic translation arrest.
Collapse
Affiliation(s)
- Donald J DeGracia
- Department of Physiology and the Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA.
| | | |
Collapse
|
8
|
White MG, Luca LE, Nonner D, Saleh O, Hu B, Barrett EF, Barrett JN. Cellular mechanisms of neuronal damage from hyperthermia. PROGRESS IN BRAIN RESEARCH 2007; 162:347-71. [PMID: 17645927 DOI: 10.1016/s0079-6123(06)62017-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hyperthermia can cause brain damage and also exacerbate the brain damage produced by stroke and amphetamines. The developing brain is especially sensitive to hyperthermia. The severity of, and mechanisms underlying, hyperthermia-induced neuronal death depend on both temperature and duration of exposure. Severe hyperthermia can produce necrotic neuronal death. For a window of less severe heat stresses, cultured neurons exhibit a delayed death with apoptotic characteristics including cytochrome c release and caspase activation. Little is known about mechanisms of hyperthermia-induced damage upstream of these late apoptotic effects. This chapter considers several possible upstream mechanisms, drawing on both in vivo and in vitro studies of the nervous system and other tissues. Hyperthermia-induced damage in some non-neuronal cells includes endoplasmic reticular stress due to denaturing of nascent polypeptide chains, as well as nuclear and cytoskeletal damage. Evidence is presented that hyperthermia produces mitochondrial damage, including depolarization, in cultured mammalian neurons.
Collapse
Affiliation(s)
- Michael G White
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Basso M, Massignan T, Samengo G, Cheroni C, De Biasi S, Salmona M, Bendotti C, Bonetto V. Insoluble mutant SOD1 is partly oligoubiquitinated in amyotrophic lateral sclerosis mice. J Biol Chem 2006; 281:33325-35. [PMID: 16943203 DOI: 10.1074/jbc.m603489200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the Cu,Zn-superoxide dismutase (SOD1) gene cause a familial form of amyotrophic lateral sclerosis (ALS) through an unknown gain-of-function mechanism. Mutant SOD1 aggregation may be the toxic property. In fact, proteinaceous inclusions rich in mutant SOD1 have been found in tissues from the familial form of ALS patients and in mutant SOD1 animals, before disease onset. However, very little is known of the constituents and mechanism of formation of aggregates in ALS. We and others have shown that there is a progressive accumulation of detergent-insoluble mutant SOD1 in the spinal cord of G93A SOD1 mice. To investigate the mechanism of SOD1 aggregation, we characterized by proteome technologies SOD1 isoforms in a Triton X-100-insoluble fraction of spinal cord from G93A SOD1 mice at different stages of the disease. This showed that at symptomatic stages of the disease, part of the insoluble SOD1 is unambiguously mono- and oligoubiquitinated, in spinal cord and not in hippocampus, and that ubiquitin branches at Lys(48), the major signal for proteasome degradation. At presymptomatic stages of the disease, only insoluble unmodified SOD1 is recovered. Partial ubiquitination of SOD1-rich inclusions was also confirmed by immunohistochemical and electron microscopy analysis of lumbar spinal cord sections from symptomatic G93A SOD1 mice. On the basis of these results, we propose that ubiquitination occurs only after SOD1 aggregation and that oligoubiquitination may underline alternative mechanisms in disease pathogenesis.
Collapse
|
10
|
Kirchner A, Velísková J, Velísek L. Differential effects of low glucose concentrations on seizures and epileptiform activityin vivoandin vitro. Eur J Neurosci 2006; 23:1512-22. [PMID: 16553614 DOI: 10.1111/j.1460-9568.2006.04665.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In vivo, severe hypoglycemia is frequently associated with seizures. The hippocampus is a structure prone to develop seizures and seizure-induced damage. Patients with repeated hypoglycemic episodes have frequent memory problems, suggesting impaired hippocampal function. Here we studied the effects of moderate hypoglycemia on primarily generalized flurothyl-induced seizures in vivo and, using EEG recordings, we determined involvement of the hippocampus in hypoglycemic seizures. Moderate systemic hypoglycemia had proconvulsant effects on flurothyl-induced clonic (forebrain) seizures. During hypoglycemic seizures, seizure discharges were recorded in the hippocampus. Thus, we continued the studies in combined entorhinal cortex-hippocampus slices in vitro. However, in vitro, decreases in extracellular glucose from baseline 10 mM to 2 or 1 mM did not induce any epileptiform discharges. In fact, low glucose (2 and 1 mM) attenuated preexisting low-Mg2+-induced epileptiform activity in the entorhinal cortex and hippocampal CA1 region. Osmolarity compensation in low-glucose solution using mannitol impaired slice recovery. Additionally, using paired-pulse stimuli we determined that there was no impairment of GABAA inhibition in the dentate gyrus during glucopenia. The data strongly indicate that, although forebrain susceptibility to seizures is increased during moderate in vivo hypoglycemia and the hippocampus is involved during hypoglycemic seizures, glucose depletion in vitro contributes to an arrest of epileptiform activity in the system of the entorhinal cortex-hippocampus network and there is no impairment of net GABAA inhibition during glucopenia.
Collapse
Affiliation(s)
- Anne Kirchner
- Johannes Müller Institut für Physiologie, Universitätsklinikum Charité, Humboldt Universität, Berlin, Germany
| | | | | |
Collapse
|
11
|
Casoni F, Basso M, Massignan T, Gianazza E, Cheroni C, Salmona M, Bendotti C, Bonetto V. Protein Nitration in a Mouse Model of Familial Amyotrophic Lateral Sclerosis. J Biol Chem 2005; 280:16295-304. [PMID: 15699043 DOI: 10.1074/jbc.m413111200] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple mechanisms have been proposed to contribute to amyotrophic lateral sclerosis (ALS) pathogenesis, including oxidative stress. Early evidence of a role for oxidative damage was based on the finding, in patients and murine models, of high levels of markers, such as free nitrotyrosine (NT). However, no comprehensive study on the protein targets of nitration in ALS has been reported. We found an increased level of NT immunoreactivity in spinal cord protein extracts of a transgenic mouse model of familial ALS (FALS) at a presymptomatic stage of the disease compared with age-matched controls. NT immunoreactivity is increased in the soluble fraction of spinal cord homogenates and is found as a punctate staining in motor neuron perikarya of presymptomatic FALS mice. Using a proteome-based strategy, we identified proteins nitrated in vivo, under physiological or pathological conditions, and compared their level of specific nitration. alpha- and gamma-enolase, ATP synthase beta chain, and heat shock cognate 71-kDa protein and actin were overnitrated in presymptomatic FALS mice. We identified by matrix-assisted laser desorption/ionization mass spectrometry 16 sites of nitration in proteins oxidized in vivo. In particular, alpha-enolase nitration at Tyr(43), target also of phosphorylation, brings additional evidence on the possible interference of nitration with phosphorylation. In conclusion, we propose that protein nitration may have a role in ALS pathogenesis, acting directly by inhibiting the function of specific proteins and indirectly interfering with protein degradation pathways and phosphorylation cascades.
Collapse
|
12
|
Ouyang YB, Xu L, Giffard RG. Geldanamycin treatment reduces delayed CA1 damage in mouse hippocampal organotypic cultures subjected to oxygen glucose deprivation. Neurosci Lett 2005; 380:229-33. [PMID: 15862891 DOI: 10.1016/j.neulet.2005.01.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 01/13/2005] [Accepted: 01/14/2005] [Indexed: 11/29/2022]
Abstract
Our prior work demonstrated that geldanamycin (GA) reduced injury due to oxygen-glucose deprivation (OGD) in primary astrocyte cultures. Using medium with an ionic composition similar to that observed during in vivo global ischemia, the selectivity and temporal profile of CA1 neuronal damage seen in vivo was mimicked with OGD in mouse hippocampal organotypic slice cultures. The present study tested the ability of GA to reduce delayed neuronal death in such cultures. Treating organotypic cultures with 100 nM GA for 24 h prior to OGD induced Hsp70 and significantly reduced CA1 neuronal damage. Staining with ubiquitin to identify protein aggregates revealed reduced redistribution of ubiquitin, consistent with reduced protein aggregation likely due at least in part to induction of Hsp70 by GA.
Collapse
Affiliation(s)
- Yi-Bing Ouyang
- Department of Anesthesia, Grant Building S272, Stanford University School of Medicine, Stanford, CA 94305 5117, USA
| | | | | |
Collapse
|
13
|
Giffard RG, Xu L, Zhao H, Carrico W, Ouyang Y, Qiao Y, Sapolsky R, Steinberg G, Hu B, Yenari MA. Chaperones, protein aggregation, and brain protection from hypoxic/ischemic injury. ACTA ACUST UNITED AC 2004; 207:3213-20. [PMID: 15299042 DOI: 10.1242/jeb.01034] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Chaperones, especially the stress inducible Hsp70, have been studied for their potential to protect the brain from ischemic injury. While they protect from both global and focal ischemia in vivo and cell culture models of ischemia/reperfusion injury in vitro, the mechanism of protection is not well understood. Protein aggregation is part of the etiology of chronic neurodegenerative diseases such as Huntington's and Alzheimer's, and recent data demonstrate protein aggregates in animal models of stroke. We now demonstrate that overexpression of Hsp70 in hippocampal CA1 neurons reduces evidence of protein aggregation under conditions where neuronal survival is increased. We have also demonstrated protection by the cochaperone Hdj-2 in vitro and demonstrated that this is associated with reduced protein aggregation identified by ubiquitin immunostaining. Hdj-2 can prevent protein aggregate formation by itself, but can only facilitate protein folding in conjunction with Hsp70. Pharmacological induction of Hsp70 was found to reduce both apoptotic and necrotic astrocyte death induced by glucose deprivation or oxygen glucose deprivation. Protection from ischemia and ischemia-like injury by chaperones thus involves at least anti-apoptotic, anti-necrotic and anti-protein aggregation mechanisms.
Collapse
Affiliation(s)
- Rona G Giffard
- Department of Anesthesia, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hu B, Liu C, Bramlett H, Sick TJ, Alonso OF, Chen S, Dietrich WD. Changes in trkB-ERK1/2-CREB/Elk-1 pathways in hippocampal mossy fiber organization after traumatic brain injury. J Cereb Blood Flow Metab 2004; 24:934-43. [PMID: 15362724 DOI: 10.1097/01.wcb.0000125888.56462.a1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Traumatic brain injury (TBI) leads to mossy fiber reorganization, which is considered to be a causative factor in the development of temporal lobe epilepsy. However, the underlying mechanism is not fully understood. Emerging evidence suggests that TrkB-ERK1/2-CREB/Elk-1 pathways are highly related to synaptic plasticity. This study used the rat fluid-percussion injury model to investigate activation of TrkB-ERK1/2-CREB/Elk-1 signaling pathways after TBI. Rats were subjected to 2.0-atm parasagittal TBI followed by 30 minutes, 4 hours, 24 hours, and 72 hours of recovery. After TBI, striking activation of TrkB-ERK1/2-CREB/Elk-1 signaling pathways in mossy fiber organization were observed with confocal microscopy and Western blot analysis. ERK1/2 was highly phosphorylated predominantly in hippocampal mossy fibers, whereas TrkB was phosphorylated both in the mossy fibers and the dentate gyrus region at 30 minutes and 4 hours of recovery after TBI. CREB was also activated at 30 minutes, peaked at 24 hours of recovery, and returned to the control level at 72 hours of recovery in dentate gyrus granule cells. Elk-1 phosphorylation was seen in CA3 neurons at 4 hours after TBI. The results suggest that the signaling pathways of TrkB-ERK1/2-CREB/Elk-1 are highly activated in mossy fiber organization, which may contribute to mossy fiber reorganization seen after TBI.
Collapse
Affiliation(s)
- Bingren Hu
- Department of Neurology, University of Miami School of Medicine, Miami, Florida 33136, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Qiao Y, Ouyang YB, Giffard RG. Overexpression of HDJ-2 protects astrocytes from ischemia-like injury and reduces redistribution of ubiquitin staining in vitro. J Cereb Blood Flow Metab 2003; 23:1113-6. [PMID: 14526221 DOI: 10.1097/01.wcb.0000088765.02615.fe] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HDJ-2, a member of the HSP40 family, functions as a cochaperone to promote protein folding both by binding to unfolded polypeptides and by regulating the activity of HSP70. This study tested whether HDJ-2 overexpression alone could provide significant protection from ischemia-like injury. Primary mouse astrocyte cultures were infected with an HDJ-2 encoding retroviral vector or control retrovirus lacking HDJ-2. Expression of HDJ-2 was confirmed by immunohistochemical staining and immunoblotting. Injury paradigms to mimic ischemia were glucose deprivation (GD) for 24 hours and oxygen-glucose deprivation (OGD) for 8 hours. Cell death was determined by trypan blue exclusion and cell counting. Overexpression of HDJ-2 alone significantly reduced astrocyte injury after both GD and OGD, independent of an elevation in HSP70. To further search for the mechanism of HDJ-2 protection, cultured astrocytes allowed to recover 16 hours after 8 hours GD were labeled with a monoclonal antiubiquitin antibody that recognizes both free ubiquitin and ubiquitinated proteins. The immunolabeling pattern changed from a relatively even distribution in both nuclei and cytoplasm in control cells to heterogeneous aggregates and marked reduction of nuclear staining in most of the cells after GD. When HDJ-2 was overexpressed, the number of cells with evidence of protein aggregation was significantly reduced. Thus, blocking protein aggregation may be an important mechanism by which HDJ-2 protects cells from damage.
Collapse
Affiliation(s)
- Yanli Qiao
- Department of Anesthesia, Stanford University School of Medicine, California 94305, USA
| | | | | |
Collapse
|