1
|
Asadi Kalameh Z, Abbasi M, Taghavi SA, Bazarganipour F. Improved psychosexual wellbeing with administration of combined Sildenafil plus Melatonin compared than either drug alone in management of women with polycystic ovarian syndrome: a 3-month randomized clinical study. J Sex Med 2025:qdaf028. [PMID: 40105433 DOI: 10.1093/jsxmed/qdaf028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/31/2024] [Accepted: 02/04/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Given the significant impact of depression, sexual function, and health-related quality of life (HRQOL) in women with Polycystic Ovarian Syndrome (PCOS), it is crucial to identify scientifically supported interventions that enhance these outcomes and thereby promote HRQOL. AIM The present study aimed to assess the effect of adjutant administration of Sildenafil plus Melatonin on psycho-sexual status in PCOS women undergoing Metformin in an Iranian population. METHODS This study was a randomized clinical trial. 216 Eligible women were assigned to four groups including Sildenafil plus Metformin, Melatonin plus Metformin, Melatonin plus Sildenafil and Metformin, and Metformin alone. The duration of intervention was 3 months. OUTCOMES The Female Sexual Function Index, Hospital Anxiety and Depression Scale and modified PCOS health-related QOL questionnaire were used to evaluate sexual function, severity of depression and HRQOL, respectively. RESULTS Based on the results of the present study, statistically significant improvement was found in menstrual cyclicity, sexual function (desire and arousal), HRQOL concerning menstrual and emotional aspects and severity of depression between the groups before and after the intervention in Sildenafil plus Melatonin compared to other groups after 3 months (P < 0.05). CLINICAL IMPLICATIONS The present research determined administration of Sildenafil plus Melatonin enhances menstrual cyclicity status, mental well-being, sexual function, and HRQOL in women with PCOS who undergoing Metformin treatment. STRENGTHS & LIMITATIONS The current research possesses several strengths, notably its adherence to the rigorous standards of a randomized controlled trial with well-defined initial inclusion criteria. In addition, this questionnaire is based on the previously ratified tools used. A robust sample size was maintained, enhancing the statistical power of the analysis. However, all the sample participants were sourced from a university referral clinic. Additionally, due to cultural norms, every participant in this study was married. Lastly, the absence of a post-intervention follow-up period is a notable gap; such a period could help determine the duration of the clinical effects or assess if ongoing treatment with Sildenafil plus Melatonin is necessary to sustain these effects. CONCLUSIONS Findings from this initial randomized controlled trial indicate that a 12-week administration of Sildenafil plus Melatonin could enhance menstrual cyclicity status, reduce depression severity, and sexual function as well as HRQOL in women with PCOS who undergoing Metformin.
Collapse
Affiliation(s)
- Zahra Asadi Kalameh
- Department of Gynecology and obstetrics, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Maryam Abbasi
- Department of Gynecology and obstetrics, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Fatemeh Bazarganipour
- Department of Midwifery, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
2
|
Song Y, Kim J, Park Y, Yoon M. Association between the plasma concentration of melatonin and behavioral temperament in horses. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:1094-1104. [PMID: 37969346 PMCID: PMC10640934 DOI: 10.5187/jast.2023.e12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 11/17/2023]
Abstract
Aggression in horses may cause serious accidents during riding and non-riding activities. Hence, predicting the temperament of horses is essential for selecting suitable horses and ensuring safety during the activity. In certain animals, such as hamsters, plasma melatonin concentrations have been correlated with aggressive behavior. However, whether this relationship applies to horses remains unclear. To address this research gap, this study aimed to evaluate differences in the plasma melatonin concentrations among horses of different breeds, ages, and sexes and examine the correlation between plasma melatonin concentrations and the temperament of the horses, including docility, affinity, dominance, and trainability. Blood samples from 32 horses were collected from the Horse Industry Complex Center of Jeonju Kijeon College. The docility, affinity, dominance, and trainability of the horses were assessed by three professional trainers who were well-acquainted with the horses. Plasma melatonin concentrations were measured using an enzyme-linked immunosorbent assay. The consequent values were compared between the horses of different breeds, ages, and sexes using a three-way analysis of variance and least significant difference post hoc test. Linear regression analysis was employed to identify the relationship between plasma melatonin concentrations and docility, affinity, dominance, and trainability. The results showed that the plasma melatonin concentrations significantly differed with breeds in Thoroughbred and cold-blooded horses. However, there were no differences in the plasma melatonin concentrations between the horse ages and sexes. Furthermore, plasma melatonin concentrations did not exhibit a significant correlation with the ranking of docility, affinity, dominance, and trainability.
Collapse
Affiliation(s)
- Yubin Song
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea
| | - Junyoung Kim
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea
| | - Youngjae Park
- Department of Equine Industry and Sports
with Therapeutic Riding, Jeonju Kijeon College, Jeonju 54989,
Korea
| | - Minjung Yoon
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea
- Department of Horse, Companion and Wild
Animal Science, Kyungpook National University, Sangju 37224,
Korea
- Research Center for Horse Industry,
Kyungpook National University, Sangju 37224, Korea
| |
Collapse
|
3
|
Etedali A, Hosseni AK, Derakhshandeh A, Mehrzad V, Sharifi M, Moghaddas A. Melatonin in the Management of Mood and Sleep Problems Induced by Androgen Deprivation Therapy in Prostate Cancer Patients: A Randomized Double-blinded, Placebo-controlled Clinical Trial. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e128817. [PMID: 36942060 PMCID: PMC10024317 DOI: 10.5812/ijpr-128817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/09/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022]
Abstract
Background Androgen deprivation therapy (ADT) has been considered as a mainstay of treatment for advanced prostate cancer. Considering ADT for cancer patients is accompanied with many side effects, such as behavioral and neurologic side effects that adversely affect the quality of life. Objectives This study aimed to evaluate the effects of melatonin administration on sleep problems and mood changes induced by ADT in prostate cancer patients. Methods The randomized, double-blind, placebo-controlled trial was designed in the oncology-hematology outpatient clinic of Omid Hospital, Isfahan, Iran. After screening by the hospital anxiety and depression scale (HADS), patients were divided into either an intervention group receiving 6 mg melatonin daily for four weeks or an identical placebo. After that, patients were evaluated by the Pittsburgh sleep quality index (PSQI), the Hamilton Anxiety Rating Scale (HAM-A), and Beck Depression Inventory (BDI) questionnaires at baseline and after 4-week follow-ups. Results Forty-three patients, including 21 and 22 patients in melatonin and placebo groups, respectively completed follow-ups period. Melatonin administration significantly improved PSQI scores in four domains of sleep quality, sleep latency, sleep efficacy, and daytime dysfunction. After 4-week melatonin supplementation, the severity of depression and anxiety assessed by BDI and HAM-A questionnaires, respectively, decreased non-statistically significant in both melatonin and placebo groups. Conclusions In our study, melatonin supplementation ameliorated ADT-induced sleep problems in patients with prostate cancers; however, for more conclusive results, further future large and well-designed clinical studies is warranted.
Collapse
Affiliation(s)
- Alireza Etedali
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Khayam Hosseni
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Derakhshandeh
- Department of Internal Medicine, Oncology and Hematology Section, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Valiollah Mehrzad
- Department of Internal Medicine, Oncology and Hematology Section, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, Oncology and Hematology Section, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azadeh Moghaddas
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Corresponding Author: Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Schmidt E, Raposo P, Vavrek R, Fouad K. Inducing inflammation following subacute spinal cord injury in female rats: A double-edged sword to promote motor recovery. Brain Behav Immun 2021; 93:55-65. [PMID: 33358981 DOI: 10.1016/j.bbi.2020.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/20/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022] Open
Abstract
The inflammatory response following spinal cord injury is associated with increased tissue damage and impaired functional recovery. However, inflammation can also promote plasticity and the secretion of growth-promoting substances. Previously we have shown that inducing inflammation with a systemic injection of lipopolysaccharide in the chronic (8 weeks) stage of spinal cord injury enhances neuronal sprouting and the efficacy of rehabilitative training in rats. Here, we tested whether administration of lipopolysaccharide in female rats in the subacute (10 days) stage of spinal cord injury would have a similar effect. Since the lesioned environment is already in a pro-inflammatory state at this earlier time after injury, we hypothesized that triggering a second immune response may not be beneficial for recovery. Contrary to our hypothesis, we found that eliciting an inflammatory response 10 days after spinal cord injury enhanced the recovery of the ipsilesional forelimb in rehabilitative training. Compared to rats that received rehabilitative training without treatment, rats that received systemic lipopolysaccharide showed restored motor function without the use of compensatory strategies that translated beyond the trained task. Furthermore, lipopolysaccharide treatment paradoxically promoted the resolution of chronic neuroinflammation around the lesion site. Unfortunately, re-triggering a systemic immune response after spinal cord injury also resulted in a long-term increase in anxiety-like behaviour.
Collapse
Affiliation(s)
- Emma Schmidt
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Pamela Raposo
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Romana Vavrek
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada.
| |
Collapse
|
5
|
Lawson K. Is there a role for melatonin in fibromyalgia? AIMS MOLECULAR SCIENCE 2019. [DOI: 10.3934/molsci.2019.4.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
Abnormal Hippocampal Melatoninergic System: A Potential Link between Absence Epilepsy and Depression-Like Behavior in WAG/Rij Rats? Int J Mol Sci 2018; 19:ijms19071973. [PMID: 29986414 PMCID: PMC6073874 DOI: 10.3390/ijms19071973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022] Open
Abstract
Absence epilepsy and depression are comorbid disorders, but the molecular link between the two disorders is unknown. Here, we examined the role of the melatoninergic system in the pathophysiology of spike and wave discharges (SWDs) and depression-like behaviour in the Wistar Albino Glaxo from Rijswijk (WAG/Rij) rat model of absence epilepsy. In WAG/Rij rats, SWD incidence was higher during the dark period of the light-dark cycle, in agreement with previous findings. However, neither pinealectomy nor melatonin administration had any effect on SWD incidence, suggesting that the melatoninergic system was not involved in the pathophysiology of absence-like seizures. Endogenous melatonin levels were lower in the hippocampus of WAG/Rij rats as compared to non-epileptic control rats, and this was associated with higher levels of melatonin receptors in the hippocampus, but not in the thalamus. In line with the reduced melatonin levels, cell density was lower in the hippocampus of WAG/Rij rats and was further reduced by pinealectomy. As expected, WAG/Rij rats showed an increased depression-like behaviour in the sucrose preference and forced swim tests, as compared to non-epileptic controls. Pinealectomy abolished the difference between the two strains of rats by enhancing depression-like behaviour in non-epileptic controls. Melatonin replacement displayed a significant antidepressant-like effect in both WAG/Rij and control rats. These findings suggest that a defect of hippocampal melatoninergic system may be one of the mechanisms underlying the depression-like phenotype in WAG/Rij rats and that activation of melatonin receptors might represent a valuable strategy in the treatment of depression associated with absence epilepsy.
Collapse
|
7
|
Porseryd T, Volkova K, Reyhanian Caspillo N, Källman T, Dinnetz P, Porsh Hällström I. Persistent Effects of Developmental Exposure to 17α-Ethinylestradiol on the Zebrafish ( Danio rerio) Brain Transcriptome and Behavior. Front Behav Neurosci 2017; 11:69. [PMID: 28473760 PMCID: PMC5397488 DOI: 10.3389/fnbeh.2017.00069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/03/2017] [Indexed: 11/18/2022] Open
Abstract
The synthetic estrogen 17α-ethinylestradiol (EE2) is an endocrine disrupting compound of concern due to its persistence and widespread presence in the aquatic environment. Effects of developmental exposure to low concentrations of EE2 in fish on reproduction and behavior not only persisted to adulthood, but have also been observed to be transmitted to several generations of unexposed progeny. To investigate the possible biological mechanisms of the persistent anxiogenic phenotype, we exposed zebrafish embryos for 80 days post fertilization to 0, 3, and 10 ng/L EE2 (measured concentrations 2.14 and 7.34 ng/L). After discontinued exposure, the animals were allowed to recover for 120 days in clean water. Adult males and females were later tested for changes in stress response and shoal cohesion, and whole-brain gene expression was analyzed with RNA sequencing. The results show increased anxiety in the novel tank and scototaxis tests, and increased shoal cohesion in fish exposed during development to EE2. RNA sequencing revealed 34 coding genes differentially expressed in male brains and 62 in female brains as a result of EE2 exposure. Several differences were observed between males and females in differential gene expression, with only one gene, sv2b, coding for a synaptic vesicle protein, that was affected by EE2 in both sexes. Functional analyses showed that in female brains, EE2 had significant effects on pathways connected to the circadian rhythm, cytoskeleton and motor proteins and synaptic proteins. A large number of non-coding sequences including 19 novel miRNAs were also differentially expressed in the female brain. The largest treatment effect in male brains was observed in pathways related to cholesterol biosynthesis and synaptic proteins. Circadian rhythm and cholesterol biosynthesis, previously implicated in anxiety behavior, might represent possible candidate pathways connecting the transcriptome changes to the alterations to behavior. Further the observed alteration in expression of genes involved in synaptogenesis and synaptic function may be important for the developmental modulations resulting in an anxiety phenotype. This study represents an initial survey of the fish brain transcriptome by RNA sequencing after long-term recovery from developmental exposure to an estrogenic compound.
Collapse
Affiliation(s)
- Tove Porseryd
- School of Natural Sciences, Technology and Environmental Studies, Södertörn UniversityHuddinge, Sweden
| | - Kristina Volkova
- School of Natural Sciences, Technology and Environmental Studies, Södertörn UniversityHuddinge, Sweden.,Örebro Life Science Center, School of Science and Technology, Örebro UniversityÖrebro, Sweden
| | - Nasim Reyhanian Caspillo
- School of Natural Sciences, Technology and Environmental Studies, Södertörn UniversityHuddinge, Sweden.,Örebro Life Science Center, School of Science and Technology, Örebro UniversityÖrebro, Sweden
| | - Thomas Källman
- National Bioinformatics Infrastructure Sweden, Uppsala UniversityUppsala, Sweden.,Science for Life Laboratory and Department of Medical Biochemistry and Microbiology, Uppsala UniversityUppsala, Sweden
| | - Patrik Dinnetz
- School of Natural Sciences, Technology and Environmental Studies, Södertörn UniversityHuddinge, Sweden
| | - Inger Porsh Hällström
- School of Natural Sciences, Technology and Environmental Studies, Södertörn UniversityHuddinge, Sweden
| |
Collapse
|
8
|
Effects of LPS-induced immune activation prior to trauma exposure on PTSD-like symptoms in mice. Behav Brain Res 2017; 323:117-123. [DOI: 10.1016/j.bbr.2017.01.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/19/2017] [Accepted: 01/30/2017] [Indexed: 02/02/2023]
|
9
|
Tiwari V, Singh M, Rawat JK, Devi U, Yadav RK, Roy S, Gautam S, Saraf SA, Kumar V, Ansari N, Saeedan AS, Kaithwas G. Redefining the role of peripheral LPS as a neuroinflammatory agent and evaluating the role of hydrogen sulphide through metformin intervention. Inflammopharmacology 2016; 24:253-264. [DOI: 10.1007/s10787-016-0274-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/25/2016] [Indexed: 01/26/2023]
|
10
|
Noseda ACD, Targa AD, Rodrigues LS, Aurich MF, Lima MM. REM sleep deprivation promotes a dopaminergic influence in the striatal MT2 anxiolytic-like effects. ACTA ACUST UNITED AC 2015; 9:47-54. [PMID: 27226821 PMCID: PMC4867936 DOI: 10.1016/j.slsci.2015.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 12/21/2022]
Abstract
The aim of this study was to investigate the possible anxiolytic-like effects of striatal MT2 activation, and its counteraction induced by the selective blockade of this receptor. Furthermore, we analyzed this condition under the paradigm of rapid eye movement (REM) sleep deprivation (REMSD) and the animal model of Parkinson’s disease (PD) induced by rotenone. Male Wistar rats were infused with intranigral rotenone (12 μg/μL), and 7 days later were subjected to 24 h of REMSD. Afterwards the rats underwent striatal micro-infusions of selective melatonin MT2 receptor agonist, 8-M-PDOT (10 μg/μL) or selective melatonin MT2 receptor antagonist, 4-P-PDOT (5 μg/μL) or vehicle. Subsequently, the animals were tested in the open-field (OP) and elevated plus maze (EPM) tests. Results indicated that the activation of MT2 receptors produced anxiolytic-like effects. In opposite, the MT2 blockade did not show an anxiogenic-like effect. Besides, REMSD induced anxiolytic-like effects similar to 8-M-PDOT. MT2 activation generated a prevalent locomotor increase compared to MT2 blockade in the context of REMSD. Together, these results suggest a striatal MT2 modulation associated to the REMSD-induced dopaminergic supersensitivity causing a possible dopaminergic influence in the MT2 anxiolytic-like effects in the intranigral rotenone model of PD.
Collapse
Affiliation(s)
| | | | | | | | - Marcelo M.S. Lima
- Correspondence to: Universidade Federal do Paraná, Setor de Ciências Biológicas, Departamento de Fisiologia, Av. Francisco H. dos Santos s/n, ZIP: 81.531–990, Caixa Postal: 19031, Curitiba, PR, Brazil. Tel.: +55 41 3361 1722.Universidade Federal do Paraná, Setor de Ciências Biológicas, Departamento de FisiologiaAv. Francisco H. dos Santos s/n, ZIP: 81.531–990, Caixa Postal: 19031CuritibaPRBrazil
| |
Collapse
|
11
|
Tchekalarova J, Moyanova S, Fusco AD, Ngomba RT. The role of the melatoninergic system in epilepsy and comorbid psychiatric disorders. Brain Res Bull 2015; 119:80-92. [DOI: 10.1016/j.brainresbull.2015.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/04/2015] [Accepted: 08/24/2015] [Indexed: 01/01/2023]
|
12
|
Ibrahim OMA, Dogru M, Matsumoto Y, Igarashi A, Kojima T, Wakamatsu TH, Inaba T, Shimizu T, Shimazaki J, Tsubota K. Oxidative stress induced age dependent meibomian gland dysfunction in Cu, Zn-superoxide dismutase-1 (Sod1) knockout mice. PLoS One 2014; 9:e99328. [PMID: 25036096 PMCID: PMC4103776 DOI: 10.1371/journal.pone.0099328] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 05/13/2014] [Indexed: 11/18/2022] Open
Abstract
Purpose The purpose of our study was to investigate alterations in the meibomian gland (MG) in Cu, Zn-Superoxide Dismutase-1 knockout (Sod1−/−) mouse. Methods Tear function tests [Break up time (BUT) and cotton thread] and ocular vital staining test were performed on Sod1−/− male mice (n = 24) aged 10 and 50 weeks, and age and sex matched wild–type (+/+) mice (n = 25). Tear and serum samples were collected at sacrifice for inflammatory cytokine assays. MG specimens underwent Hematoxylin and Eosin staining, Mallory staining for fibrosis, Oil Red O lipid staining, TUNEL staining, immunohistochemistry stainings for 4HNE, 8-OHdG and CD45. Transmission electron microscopic examination (TEM) was also performed. Results Corneal vital staining scores in the Sod1−/− mice were significantly higher compared with the wild type mice throughout the follow-up. Tear and serum IL-6 and TNF-α levels also showed significant elevations in the 10 to 50 week Sod1−/− mice. Oil Red O staining showed an accumulation of large lipid droplets in the Sod1−/− mice at 50 weeks. Immunohistochemistry revealed both increased TUNEL and oxidative stress marker stainings of the MG acinar epithelium in the Sod1−/− mice compared to the wild type mice. Immunohistochemistry staining for CD45 showed increasing inflammatory cell infiltrates from 10 to 50 weeks in the Sod1−/− mice compared to the wild type mice. TEM revealed prominent mitochondrial changes in 50 week Sod1−/− mice. Conclusions Our results suggest that reactive oxygen species might play a vital role in the pathogensis of meibomian gland dysfunction. The Sod1−/− mouse appears to be a promising model for the study of reactive oxygen species associated MG alterations.
Collapse
Affiliation(s)
- Osama M. A. Ibrahim
- Keio University School of Medicine, Department of Ophthalmology, Tokyo, Japan
| | - Murat Dogru
- Keio University School of Medicine, Department of Ophthalmology, Tokyo, Japan
- Tokyo Dental College, Department of Ophthalmology, Chiba, Japan
- * E-mail:
| | - Yukihiro Matsumoto
- Keio University School of Medicine, Department of Ophthalmology, Tokyo, Japan
| | - Ayako Igarashi
- Tokyo Dental College, Department of Ophthalmology, Chiba, Japan
| | - Takashi Kojima
- Keio University School of Medicine, Department of Ophthalmology, Tokyo, Japan
| | | | - Takaaki Inaba
- Keio University School of Medicine, Department of Ophthalmology, Tokyo, Japan
| | - Takahiko Shimizu
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine; Chiba, Japan
| | - Jun Shimazaki
- Tokyo Dental College, Department of Ophthalmology, Chiba, Japan
| | - Kazuo Tsubota
- Keio University School of Medicine, Department of Ophthalmology, Tokyo, Japan
| |
Collapse
|
13
|
Laredo SA, Orr VN, McMackin MZ, Trainor BC. The effects of exogenous melatonin and melatonin receptor blockade on aggression and estrogen-dependent gene expression in male California mice (Peromyscus californicus). Physiol Behav 2014; 128:86-91. [PMID: 24518867 DOI: 10.1016/j.physbeh.2014.01.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/07/2014] [Accepted: 01/23/2014] [Indexed: 12/27/2022]
Abstract
Photoperiodic regulation of aggression has been well established in several vertebrate species, with rodents demonstrating increased aggression in short day photoperiods as compared to long day photoperiods. Previous work suggests that estrogens regulate aggression via rapid nongenomic pathways in short days and act more slowly in long days, most likely via genomic pathways. The current study therefore examines the role of melatonin in mediating aggression and estrogen-dependent gene transcription. In Experiment 1, male California mice were housed under long day photoperiods and were treated with either 0.3 μg/g of melatonin, 40 mg/kg of the melatonin receptor antagonist luzindole, or vehicle for 10 days. We found that melatonin administration significantly increased aggression as compared to mice receiving vehicle, but this phenotype was not completely ameliorated by luzindole. In Experiment 2, male California mice were injected with either 1mg/kg of the aromatase inhibitor letrozole or vehicle, and oxytocin receptor (OTR), estrogen receptor alpha (ERα), and c-fos gene expression was examined in the bed nucleus of the stria terminalis (BNST) and medial preoptic area (MPOA). In the BNST, but not MPOA, OTR mRNA was significantly downregulated following letrozole administration, indicating that OTR is an estrogen-dependent gene in the BNST. In contrast, ERα was not estrogen dependent in either brain region. In the MPOA, OTR mRNA was inhibited by melatonin, and luzindole suppressed this effect. C-fos and ERα did not differ between treatments in any brain region examined. These results suggest that it is unlikely that melatonin facilitates aggression via broad spectrum regulation of estrogen-dependent gene expression. Instead, melatonin may act via regulation of other transcription factors such as extracellular signal regulated kinase.
Collapse
Affiliation(s)
- Sarah A Laredo
- Department of Psychology and Center for Neuroscience, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA; Animal Behavior Graduate Group, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA.
| | - Veronica N Orr
- Department of Psychology and Center for Neuroscience, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Marissa Z McMackin
- Department of Psychology and Center for Neuroscience, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA; Molecular, Cellular and Integrative Physiology Graduate Group, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Brian C Trainor
- Department of Psychology and Center for Neuroscience, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA; Animal Behavior Graduate Group, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA; Molecular, Cellular and Integrative Physiology Graduate Group, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
14
|
Comai S, Gobbi G. Unveiling the role of melatonin MT2 receptors in sleep, anxiety and other neuropsychiatric diseases: a novel target in psychopharmacology. J Psychiatry Neurosci 2014; 39:6-21. [PMID: 23971978 PMCID: PMC3868666 DOI: 10.1503/jpn.130009] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Melatonin (MLT) is a pleiotropic neurohormone controlling many physiological processes and whose dysfunction may contribute to several different diseases, such as neurodegenerative diseases, circadian and mood disorders, insomnia, type 2 diabetes and pain. Melatonin is synthesized by the pineal gland during the night and acts through 2 G-protein coupled receptors (GPCRs), MT1 (MEL1a) and MT2 (MEL1b). Although a bulk of research has examined the physiopathological effects of MLT, few studies have investigated the selective role played by MT1 and MT2 receptors. Here we have reviewed current knowledge about the implications of MT2 receptors in brain functions. METHODS We searched PubMed, Web of Science, Scopus, Google Scholar and articles' reference lists for studies on MT2 receptor ligands in sleep, anxiety, neuropsychiatric diseases and psychopharmacology, including genetic studies on the MTNR1B gene, which encodes the melatonin MT2 receptor. RESULTS These studies demonstrate that MT2 receptors are involved in the pathophysiology and pharmacology of sleep disorders, anxiety, depression, Alzheimer disease and pain and that selective MT2 receptor agonists show hypnotic and anxiolytic properties. LIMITATIONS Studies examining the role of MT2 receptors in psychopharmacology are still limited. CONCLUSION The development of novel selective MT2 receptor ligands, together with further preclinical in vivo studies, may clarify the role of this receptor in brain function and psychopharmacology. The superfamily of GPCRs has proven to be among the most successful drug targets and, consequently, MT2 receptors have great potential for pioneer drug discovery in the treatment of mental diseases for which limited therapeutic targets are currently available.
Collapse
Affiliation(s)
| | - Gabriella Gobbi
- Correspondence to: G. Gobbi, Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, 1033 Pine Ave. W, room 220, Montréal QC H3A 1A1;
| |
Collapse
|
15
|
Bilu C, Kronfeld-Schor N. Effects of circadian phase and melatonin injection on anxiety-like behavior in nocturnal and diurnal rodents. Chronobiol Int 2013; 30:828-36. [PMID: 23750894 DOI: 10.3109/07420528.2013.773439] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Animals show daily rhythms in most bodily functions, resulting from the integration of information from an endogenous circadian clock and external stimuli. These rhythms are adaptive and are expected to be related to activity patterns, i.e., to be opposite in diurnal and nocturnal species. Melatonin is secreted during the night in all mammalian species, regardless of their activity patterns. Consequently, in diurnal species the nocturnal secretion of melatonin is concurrent with the resting phase, whereas in nocturnal species it is related to an increase in activity. In this research, we examined in three diurnal and three nocturnal rodent species whether a daily rhythm in anxiety-like behavior exists; whether it differs between nocturnal and diurnal species; and how melatonin affects anxiety-like behavior in species with different activity patterns. Anxiety-like behavior levels were analyzed using the elevated plus-maze. We found a daily rhythm in anxiety-like behavior and a significant response to daytime melatonin administration in all three nocturnal species, which showed significantly lower levels of anxiety during the dark phase, and after melatonin administration. The diurnal species showed either an inverse pattern to that of the nocturnal species in anxiety-like behavior rhythm and in response to daytime melatonin injection, or no rhythm and, accordingly, no response to melatonin.
Collapse
Affiliation(s)
- Carmel Bilu
- Department of Zoology, Tel-Aviv University, Tel-Aviv, Israel.
| | | |
Collapse
|
16
|
Morris G, Anderson G, Galecki P, Berk M, Maes M. A narrative review on the similarities and dissimilarities between myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and sickness behavior. BMC Med 2013; 11:64. [PMID: 23497361 PMCID: PMC3751187 DOI: 10.1186/1741-7015-11-64] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/08/2013] [Indexed: 12/14/2022] Open
Abstract
It is of importance whether myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a variant of sickness behavior. The latter is induced by acute infections/injury being principally mediated through proinflammatory cytokines. Sickness is a beneficial behavioral response that serves to enhance recovery, conserves energy and plays a role in the resolution of inflammation. There are behavioral/symptomatic similarities (for example, fatigue, malaise, hyperalgesia) and dissimilarities (gastrointestinal symptoms, anorexia and weight loss) between sickness and ME/CFS. While sickness is an adaptive response induced by proinflammatory cytokines, ME/CFS is a chronic, disabling disorder, where the pathophysiology is related to activation of immunoinflammatory and oxidative pathways and autoimmune responses. While sickness behavior is a state of energy conservation, which plays a role in combating pathogens, ME/CFS is a chronic disease underpinned by a state of energy depletion. While sickness is an acute response to infection/injury, the trigger factors in ME/CFS are less well defined and encompass acute and chronic infections, as well as inflammatory or autoimmune diseases. It is concluded that sickness behavior and ME/CFS are two different conditions.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road Seaside 87, Llanelli, SA152LW, UK
| | - George Anderson
- CRC Clinical Research Centre/Communications, Laurel Street 57, Glasgow, G11 7QT,UK
| | - Piotr Galecki
- Department of Adult Psychiatry, Medical University of Lodz, Aleksandrowska 159, Lodz, 91229, Poland
| | - Michael Berk
- Barwon Health, School of Medicine, Deakin University, PO Box 291, Geelong, 3220, Australia
- Orygen Youth Health Research Centre, Poplar Road 35, Parkville, 3052, Australia
- Centre of Youth Mental Health, University of Melbourne, Poplar Road 35, Parkville, 3052, Australia
- The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Kenneth Myer Building, Royal Parade 30, Parkville, 3052, Australia
- Department of Psychiatry, University of Melbourne, Level 1 North, Main Block, Royal Melbourne Hospital, Parkville, 3052, Australia
| | - Michael Maes
- Barwon Health, School of Medicine, Deakin University, PO Box 291, Geelong, 3220, Australia
- Department of Psychiatry, Chulalongkorn University, Rama 4 Road 1873, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
17
|
A. Rashed RM, El-Alfy SH, Mohamed IK. Electron Microscopic Study on the Effects of Melatonin on Early Spermatids in the Rat Testis. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/javaa.2011.2140.2148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Kaya A, Karakaş A, Coşkun H. The effects of the time of the day and the pinealectomy on anxiety-like behaviour in male Wistar rats. BIOL RHYTHM RES 2011. [DOI: 10.1080/09291016.2010.525380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Anxiety-like behavior in the elevated-plus maze tests and enhanced IL-1β, IL-6, NADPH oxidase-1, and iNOS mRNAs in the hippocampus during early stage of adjuvant arthritis in rats. Neurosci Lett 2011; 487:250-4. [DOI: 10.1016/j.neulet.2010.10.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 11/23/2022]
|
20
|
Effects of melatonin in a place preference conditioning depend on the time of administration. Pharmacol Rep 2010; 62:1023-9. [DOI: 10.1016/s1734-1140(10)70364-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 09/17/2010] [Indexed: 11/18/2022]
|
21
|
Schachinger H, Blumenthal TD, Richter S, Savaskan E, Wirz-Justice A, Kräuchi K. Melatonin reduces arousal and startle responsiveness without influencing startle habituation or affective startle modulation in young women. Horm Behav 2008; 54:258-62. [PMID: 18499110 DOI: 10.1016/j.yhbeh.2008.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/25/2008] [Accepted: 03/27/2008] [Indexed: 10/22/2022]
Abstract
Melatonin has been suggested to affect human emotion, but conflicting evidence exists. Therefore, we tested the effect of a single dose of a 4 mg prolonged release formulation of melatonin on a biologically based model of emotional processing. Affective modulation of acoustic white noise startle (103 dB) by emotional slides selected from the International Affective Picture System (IAPS) was assessed in 16 healthy young women twice, in a double-blind, placebo-controlled, balanced cross-over design. Melatonin significantly reduced startle responsiveness, but did not impact affective startle modulation, nor startle habituation. Melatonin significantly reduced arousal ratings and induced a parasympathetically dominated heart rate variability pattern indicative of a non-aroused state. We conclude that melatonin reduces arousal and startle responsiveness. However, no evidence for a direct emotion-modulating effect of melatonin was found in this healthy cohort.
Collapse
Affiliation(s)
- Hartmut Schachinger
- Clinical Physiology, Graduate School of Psychobiology, University of Trier, Johanniterufer 15, D-54290 Trier, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Swiergiel AH, Dunn AJ. Effects of interleukin-1beta and lipopolysaccharide on behavior of mice in the elevated plus-maze and open field tests. Pharmacol Biochem Behav 2007; 86:651-9. [PMID: 17360031 PMCID: PMC2014736 DOI: 10.1016/j.pbb.2007.02.010] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 01/26/2007] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
Abstract
It has been postulated that infections, inflammatory processes and resulting cytokines may be causative factors in emotional disorders, including depression and anxiety. Support for this possibility has been sought in studies of animal behavior following administration of interleukin-1 (IL-1) and lipopolysaccharide (LPS). However, such treatments induce a variety of behavioral responses, collectively known as sickness behavior, some of which could affect the performance in tests used to assess anxiety and depression. Thus the effects of peripheral administration of IL-1beta and LPS on the behavior of mice were studied in the elevated plus-maze (EPM) and the open field (OF). Mouse IL-1beta (30, 100, 300, and 1000 ng) was injected intraperitoneally 30 or 60 min, and LPS (0.5, 1 and 5 microg) 120 min before the tests. IL-1beta and LPS induced dose-dependent decreases in open arm entries and the time spent on the open arms in the EPM, effects considered to reflect anxiety-like behavior. However, entries to all arms were also reduced in a dose-dependent manner, indicating a decrease in general activity. In the OF, IL-1beta and LPS decreased the number of line crossings in the center of the field, that can also be considered to reflect anxiety-like behavior. However, this effect was accompanied by a similar decrease in line crossings in the periphery, as well as in rears and climbs. Thus the doses of IL-1beta and LPS necessary to induce these effects also decreased locomotor activity in the EPM and OF. Therefore, the behavioral responses induced by IL-1beta and LPS in the EPM and the OF considered to reflect anxiety must be interpreted in the light of this reduction in overall activity. Thus the results do not provide unequivocal support for the suggestion that LPS or IL-1 mediate anxiety. Nevertheless, because infections, endotoxins, and the ensuing cytokines cause alterations in CNS norepinephrine and serotonin, they may contribute to emotionality, and perhaps to anxiety.
Collapse
Affiliation(s)
- Artur H Swiergiel
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, P.O. Box 33932, Louisiana, USA
| | | |
Collapse
|
23
|
Loiseau F, Le Bihan C, Hamon M, Thiébot MH. Effects of melatonin and agomelatine in anxiety-related procedures in rats: interaction with diazepam. Eur Neuropsychopharmacol 2006; 16:417-28. [PMID: 16376525 DOI: 10.1016/j.euroneuro.2005.11.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 10/12/2005] [Accepted: 11/09/2005] [Indexed: 12/15/2022]
Abstract
The anxiolytic potential of melatonin and agomelatine, a potent MT(1/2) receptor agonist, and their combined effects with diazepam, were investigated in rats using the punished drinking test, the safety signal withdrawal operant paradigm, the elevated-plus-maze and hypophagia-induced novelty. In the punished drinking test, evening injections of melatonin (80 mg/kg, IP, but not 20 and 40 mg/kg) and agomelatine (40 mg/kg, IP) increased the number of foot shocks received. However, neither melatonin (40-80 mg/kg) nor agomelatine (20-40 mg/kg) released response suppression during the period associated with the safety signal withdrawal and affected rats' behaviour in the elevated-plus-maze. Furthermore, agomelatine (40 mg/kg) did not enhance food consumption in unfamiliar environment. However, the co-administration of melatonin (80 mg/kg) or agomelatine (20-40 mg/kg) with diazepam, at a dose (0.25 mg/kg) inactive on its own, induced an anxiolytic-like effect in the punished drinking test and the elevated plus-maze. These results indicate that, although mostly devoid of anxiolytic-like action per se, melatonin and agomelatine can potentiate the anxiolytic effects of diazepam.
Collapse
|
24
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
25
|
Myers EA, Banihashemi L, Rinaman L. The anxiogenic drug yohimbine activates central viscerosensory circuits in rats. J Comp Neurol 2006; 492:426-41. [PMID: 16228990 DOI: 10.1002/cne.20727] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Systemic administration of the alpha(2)-adrenoceptor antagonist yohimbine (YO) activates the HPA stress axis and promotes anxiety in humans and experimental animals. We propose that visceral malaise contributes to the stressful and anxiogenic effects of systemic YO and that YO recruits brainstem noradrenergic (NA) and peptidergic neurons that relay viscerosensory signals to the hypothalamus and limbic forebrain. To begin testing these hypotheses, the present study explored dose-related effects of YO on food intake, conditioned flavor avoidance (CFA), and Fos immunolabeling in rats. Systemic YO (5.0 mg/kg BW, i.p.) inhibited food intake, supported CFA, and increased Fos immunolabeling in identified NA neurons in the ventrolateral medulla, nucleus of the solitary tract, and locus coeruleus. YO also increased Fos in the majority of corticotropin releasing hormone-positive neurons in the paraventricular nucleus of the hypothalamus. YO administered at 1.0 mg/kg BW did not inhibit food intake, did not support CFA, and did not increase Fos immunolabeling. Retrograde neural tracing demonstrated that neurons activated by YO at 5.0 mg/kg BW included medullary and pontine neurons that project to the central nucleus of the amygdala and to the lateral bed nucleus of the stria terminalis, the latter region receiving comparatively greater input by Fos-positive neurons. We conclude that YO produces anorexigenic and aversive effects that correlate with activation of brainstem viscerosensory inputs to the limbic forebrain. These findings invite continued investigation of how central viscerosensory signaling pathways interact with hypothalamic and limbic regions to influence interrelated physiological and behavioral components of anxiety, stress, and visceral malaise.
Collapse
|
26
|
Millan MJ, Brocco M, Gobert A, Dekeyne A. Anxiolytic properties of agomelatine, an antidepressant with melatoninergic and serotonergic properties: role of 5-HT2C receptor blockade. Psychopharmacology (Berl) 2005; 177:448-58. [PMID: 15289999 DOI: 10.1007/s00213-004-1962-z] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Accepted: 06/09/2004] [Indexed: 12/12/2022]
Abstract
RATIONALE The novel antidepressant agent, agomelatine, behaves as an agonist at melatonin receptors and as an antagonist at serotonin (5-HT)(2C) receptors. OBJECTIVES To determine whether, by virtue of its antagonist properties at 5-HT(2C) receptors, agomelatine elicits anxiolytic properties in rats. METHODS Employing a combined neurochemical and behavioural approach, actions of agomelatine were compared to those of melatonin, the selective 5-HT(2C) receptor antagonist, SB243,213, and the benzodiazepine, clorazepate. RESULTS In unfamiliar pairs of rats exposed to a novel environment, agomelatine enhanced the time devoted to active social interaction, an action mimicked by clorazepate and by SB243,213. In a Vogel conflict procedure, agomelatine likewise displayed dose-dependent anxiolytic activity with a maximal effect comparable to clorazepate, and SB243,213 was similarly active in this procedure. In a plus-maze procedure in which clorazepate significantly enhanced percentage entries into open arms, agomelatine revealed only modest activity and SB243,213 was inactive. Further, like SB243,213, and in contrast to clorazepate, agomelatine did not suppress ultrasonic vocalizations emitted by rats re-exposed to an environment associated with an aversive stimulus. Whereas clorazepate reduced dialysate levels of 5-HT and noradrenaline in hippocampus and frontal cortex of freely moving rats, agomelatine did not affect extracellular levels of 5-HT and elevated those of noradrenaline. SB243,213 acted similarly to agomelatine. Melatonin, which did not modify extracellular levels of 5-HT or noradrenaline, was ineffective in all models of anxiolytic activity. Furthermore, the selective melatonin antagonist, S22153, did not modify anxiolytic properties of agomelatine in either the social interaction or the Vogel Conflict tests. CONCLUSIONS In contrast to melatonin, and reflecting blockade of 5-HT(2C) receptors, agomelatine is active in several models of anxiolytic properties in rodents. The anxiolytic profile of agomelatine differs from that of benzodiazepines from which it may also be distinguished by its contrasting influence on corticolimbic monoaminergic pathways.
Collapse
Affiliation(s)
- Mark J Millan
- Department of Psychopharmacology, Centre de Recherches de Croissy, Institut de Recherches Servier, 125 Chemin de Ronde, Croissy/Seine, 78290 Paris, France.
| | | | | | | |
Collapse
|
27
|
Abstract
Fear is an adaptive component of the acute "stress" response to potentially-dangerous (external and internal) stimuli which threaten to perturb homeostasis. However, when disproportional in intensity, chronic and/or irreversible, or not associated with any genuine risk, it may be symptomatic of a debilitating anxious state: for example, social phobia, panic attacks or generalized anxiety disorder. In view of the importance of guaranteeing an appropriate emotional response to aversive events, it is not surprising that a diversity of mechanisms are involved in the induction and inhibition of anxious states. Apart from conventional neurotransmitters, such as monoamines, gamma-amino-butyric acid (GABA) and glutamate, many other modulators have been implicated, including: adenosine, cannabinoids, numerous neuropeptides, hormones, neurotrophins, cytokines and several cellular mediators. Accordingly, though benzodiazepines (which reinforce transmission at GABA(A) receptors), serotonin (5-HT)(1A) receptor agonists and 5-HT reuptake inhibitors are currently the principle drugs employed in the management of anxiety disorders, there is considerable scope for the development of alternative therapies. In addition to cellular, anatomical and neurochemical strategies, behavioral models are indispensable for the characterization of anxious states and their modulation. Amongst diverse paradigms, conflict procedures--in which subjects experience opposing impulses of desire and fear--are of especial conceptual and therapeutic pertinence. For example, in the Vogel Conflict Test (VCT), the ability of drugs to release punishment-suppressed drinking behavior is evaluated. In reviewing the neurobiology of anxious states, the present article focuses in particular upon: the multifarious and complex roles of individual modulators, often as a function of the specific receptor type and neuronal substrate involved in their actions; novel targets for the management of anxiety disorders; the influence of neurotransmitters and other agents upon performance in the VCT; data acquired from complementary pharmacological and genetic strategies and, finally, several open questions likely to orientate future experimental- and clinical-research. In view of the recent proliferation of mechanisms implicated in the pathogenesis, modulation and, potentially, treatment of anxiety disorders, this is an opportune moment to survey their functional and pathophysiological significance, and to assess their influence upon performance in the VCT and other models of potential anxiolytic properties.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Centre de Rescherches de Croissy, Institut de Recherches (IDR) Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, Paris, France.
| |
Collapse
|