1
|
Bhole RP, Chikhale RV, Rathi KM. Current biomarkers and treatment strategies in Alzheimer disease: An overview and future perspectives. IBRO Neurosci Rep 2024; 16:8-42. [PMID: 38169888 PMCID: PMC10758887 DOI: 10.1016/j.ibneur.2023.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Alzheimer's disease (AD), a progressive degenerative disorder first identified by Alois Alzheimer in 1907, poses a significant public health challenge. Despite its prevalence and impact, there is currently no definitive ante mortem diagnosis for AD pathogenesis. By 2050, the United States may face a staggering 13.8 million AD patients. This review provides a concise summary of current AD biomarkers, available treatments, and potential future therapeutic approaches. The review begins by outlining existing drug targets and mechanisms in AD, along with a discussion of current treatment options. We explore various approaches targeting Amyloid β (Aβ), Tau Protein aggregation, Tau Kinases, Glycogen Synthase kinase-3β, CDK-5 inhibitors, Heat Shock Proteins (HSP), oxidative stress, inflammation, metals, Apolipoprotein E (ApoE) modulators, and Notch signaling. Additionally, we examine the historical use of Estradiol (E2) as an AD therapy, as well as the outcomes of Randomized Controlled Trials (RCTs) that evaluated antioxidants (e.g., vitamin E) and omega-3 polyunsaturated fatty acids as alternative treatment options. Notably, positive effects of docosahexaenoic acid nutriment in older adults with cognitive impairment or AD are highlighted. Furthermore, this review offers insights into ongoing clinical trials and potential therapies, shedding light on the dynamic research landscape in AD treatment.
Collapse
Affiliation(s)
- Ritesh P. Bhole
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil institute of Pharmaceutical Sciences & Research, Pimpri, Pune, India
- Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | | | - Karishma M. Rathi
- Department of Pharmacy Practice, Dr. D. Y. Patil institute of Pharmaceutical Sciences & Research, Pimpri, Pune, India
| |
Collapse
|
2
|
Sorrells SF, Paredes MF, Zhang Z, Kang G, Pastor-Alonso O, Biagiotti S, Page CE, Sandoval K, Knox A, Connolly A, Huang EJ, Garcia-Verdugo JM, Oldham MC, Yang Z, Alvarez-Buylla A. Positive Controls in Adults and Children Support That Very Few, If Any, New Neurons Are Born in the Adult Human Hippocampus. J Neurosci 2021; 41:2554-2565. [PMID: 33762407 PMCID: PMC8018729 DOI: 10.1523/jneurosci.0676-20.2020] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 01/19/2023] Open
Abstract
Adult hippocampal neurogenesis was originally discovered in rodents. Subsequent studies identified the adult neural stem cells and found important links between adult neurogenesis and plasticity, behavior, and disease. However, whether new neurons are produced in the human dentate gyrus (DG) during healthy aging is still debated. We and others readily observe proliferating neural progenitors in the infant hippocampus near immature cells expressing doublecortin (DCX), but the number of such cells decreases in children and few, if any, are present in adults. Recent investigations using dual antigen retrieval find many cells stained by DCX antibodies in adult human DG. This has been interpreted as evidence for high rates of adult neurogenesis, even at older ages. However, most of these DCX-labeled cells have mature morphology. Furthermore, studies in the adult human DG have not found a germinal region containing dividing progenitor cells. In this Dual Perspectives article, we show that dual antigen retrieval is not required for the detection of DCX in multiple human brain regions of infants or adults. We review prior studies and present new data showing that DCX is not uniquely expressed by newly born neurons: DCX is present in adult amygdala, entorhinal and parahippocampal cortex neurons despite being absent in the neighboring DG. Analysis of available RNA-sequencing datasets supports the view that DG neurogenesis is rare or absent in the adult human brain. To resolve the conflicting interpretations in humans, it is necessary to identify and visualize dividing neuronal precursors or develop new methods to evaluate the age of a neuron at the single-cell level.
Collapse
Affiliation(s)
- Shawn F Sorrells
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Mercedes F Paredes
- Department of Neurology, University of California San Francisco, San Francisco, California 94143
| | - Zhuangzhi Zhang
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, P.R. 200032 China
| | - Gugene Kang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Oier Pastor-Alonso
- Department of Neurology, University of California San Francisco, San Francisco, California 94143
| | - Sean Biagiotti
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Chloe E Page
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Kadellyn Sandoval
- Department of Neurology, University of California San Francisco, San Francisco, California 94143
| | - Anthony Knox
- Department of Pathology, University of California San Francisco, San Francisco, California 94143
| | - Andrew Connolly
- Department of Pathology, University of California San Francisco, San Francisco, California 94143
| | - Eric J Huang
- Department of Pathology, University of California San Francisco, San Francisco, California 94143
| | - Jose Manuel Garcia-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Valencia 46980, Spain
| | - Michael C Oldham
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, P.R. 200032 China
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California 94143
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| |
Collapse
|
3
|
|
4
|
Chong ZZ, Shang YC, Wang S, Maiese K. Shedding new light on neurodegenerative diseases through the mammalian target of rapamycin. Prog Neurobiol 2012; 99:128-48. [PMID: 22980037 PMCID: PMC3479314 DOI: 10.1016/j.pneurobio.2012.08.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/01/2012] [Accepted: 08/07/2012] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders affect a significant portion of the world's population leading to either disability or death for almost 30 million individuals worldwide. One novel therapeutic target that may offer promise for multiple disease entities that involve Alzheimer's disease, Parkinson's disease, epilepsy, trauma, stroke, and tumors of the nervous system is the mammalian target of rapamycin (mTOR). mTOR signaling is dependent upon the mTORC1 and mTORC2 complexes that are composed of mTOR and several regulatory proteins including the tuberous sclerosis complex (TSC1, hamartin/TSC2, tuberin). Through a number of integrated cell signaling pathways that involve those of mTORC1 and mTORC2 as well as more novel signaling tied to cytokines, Wnt, and forkhead, mTOR can foster stem cellular proliferation, tissue repair and longevity, and synaptic growth by modulating mechanisms that foster both apoptosis and autophagy. Yet, mTOR through its proliferative capacity may sometimes be detrimental to central nervous system recovery and even promote tumorigenesis. Further knowledge of mTOR and the critical pathways governed by this serine/threonine protein kinase can bring new light for neurodegeneration and other related diseases that currently require new and robust treatments.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Laboratory of Cellular and Molecular Signaling, New Jersey 07101
- New Jersey Health Sciences University Newark, New Jersey 07101
| | - Yan Chen Shang
- Laboratory of Cellular and Molecular Signaling, New Jersey 07101
- New Jersey Health Sciences University Newark, New Jersey 07101
| | - Shaohui Wang
- Laboratory of Cellular and Molecular Signaling, New Jersey 07101
- New Jersey Health Sciences University Newark, New Jersey 07101
| | - Kenneth Maiese
- Laboratory of Cellular and Molecular Signaling, New Jersey 07101
- Cancer Institute of New Jersey, New Jersey 07101
- New Jersey Health Sciences University Newark, New Jersey 07101
| |
Collapse
|
5
|
Maiese K, Chong ZZ, Shang YC, Hou J. Novel avenues of drug discovery and biomarkers for diabetes mellitus. J Clin Pharmacol 2011; 51:128-52. [PMID: 20220043 PMCID: PMC3033756 DOI: 10.1177/0091270010362904] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Globally, developed nations spend a significant amount of their resources on health care initiatives that poorly translate into increased population life expectancy. As an example, the United States devotes 16% of its gross domestic product to health care, the highest level in the world, but falls behind other nations that enjoy greater individual life expectancy. These observations point to the need for pioneering avenues of drug discovery to increase life span with controlled costs. In particular, innovative drug development for metabolic disorders such as diabetes mellitus becomes increasingly critical given that the number of diabetic people will increase exponentially over the next 20 years. This article discusses the elucidation and targeting of novel cellular pathways that are intimately tied to oxidative stress in diabetes mellitus for new treatment strategies. Pathways that involve wingless, β-nicotinamide adenine dinucleotide (NAD(+)) precursors, and cytokines govern complex biological pathways that determine both cell survival and longevity during diabetes mellitus and its complications. Furthermore, the role of these entities as biomarkers for disease can further enhance their utility irrespective of their treatment potential. Greater understanding of the intricacies of these unique cellular mechanisms will shape future drug discovery for diabetes mellitus to provide focused clinical care with limited or absent long-term complications.
Collapse
Affiliation(s)
- Kenneth Maiese
- Department of Neurology, 8C-1 UHC, Wayne State University School of Medicine, 4201 St. Antoine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
6
|
Maiese K, Shang YC, Chong ZZ, Hou J. Diabetes mellitus: channeling care through cellular discovery. Curr Neurovasc Res 2010; 7:59-64. [PMID: 20158461 DOI: 10.2174/156720210790820217] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 12/29/2009] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus (DM) impacts a significant portion of the world's population and care for this disorder places an economic burden on the gross domestic product for any particular country. Furthermore, both Type 1 and Type 2 DM are becoming increasingly prevalent and there is increased incidence of impaired glucose tolerance in the young. The complications of DM are protean and can involve multiple systems throughout the body that are susceptible to the detrimental effects of oxidative stress and apoptotic cell injury. For these reasons, innovative strategies are necessary for the implementation of new treatments for DM that are generated through the further understanding of cellular pathways that govern the pathological consequences of DM. In particular, both the precursor for the coenzyme beta-nicotinamide adenine dinucleotide (NAD(+)), nicotinamide, and the growth factor erythropoietin offer novel platforms for drug discovery that involve cellular metabolic homeostasis and inflammatory cell control. Interestingly, these agents and their tightly associated pathways that consist of cell cycle regulation, protein kinase B, forkhead transcription factors, and Wnt signaling also function in a broader sense as biomarkers for disease onset and progression.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
7
|
Oxidative stress: Biomarkers and novel therapeutic pathways. Exp Gerontol 2010; 45:217-34. [PMID: 20064603 DOI: 10.1016/j.exger.2010.01.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 12/28/2009] [Accepted: 01/07/2010] [Indexed: 01/12/2023]
Abstract
Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO) and members of the mammalian forkhead transcription factors of the O class (FoxOs) may offer the greatest promise for new treatment regimens since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. However, biological outcome with EPO and FoxOs may sometimes be both unexpected and undesirable that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as complicated role EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation.
Collapse
|
8
|
Maiese K, Chong ZZ, Hou J, Shang YC. New strategies for Alzheimer's disease and cognitive impairment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2009; 2:279-89. [PMID: 20716915 PMCID: PMC2835916 DOI: 10.4161/oxim.2.5.9990] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/24/2009] [Accepted: 09/02/2009] [Indexed: 02/06/2023]
Abstract
Approximately five million people suffer with Alzheimer's disease (AD) and more than twenty-four million people are diagnosed with AD, pre-senile dementia, and other disorders of cognitive loss worldwide. Furthermore, the annual cost per patient with AD can approach $200,000 with an annual population aggregate cost of $100 billion. Yet, complete therapeutic prevention or reversal of neurovascular injury during AD and cognitive loss is not achievable despite the current understanding of the cellular pathways that modulate nervous system injury during these disorders. As a result, identification of novel therapeutic targets for the treatment of neurovascular injury would be extremely beneficial to reduce or eliminate disability from diseases that lead to cognitive loss or impairment. Here we describe the capacity of intrinsic cellular mechanisms for the novel pathways of erythropoietin and forkhead transcription factors that may offer not only new strategies for disorders such as AD and cognitive loss, but also function as biomarkers for disease onset and progression.
Collapse
Affiliation(s)
- Kenneth Maiese
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA.
| | | | | | | |
Collapse
|
9
|
Maiese K, Chong ZZ, Hou J, Shang YC. The vitamin nicotinamide: translating nutrition into clinical care. Molecules 2009; 14:3446-85. [PMID: 19783937 PMCID: PMC2756609 DOI: 10.3390/molecules14093446] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/08/2009] [Accepted: 09/08/2009] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide, the amide form of vitamin B(3) (niacin), is changed to its mononucleotide compound with the enzyme nicotinic acide/nicotinamide adenylyltransferase, and participates in the cellular energy metabolism that directly impacts normal physiology. However, nicotinamide also influences oxidative stress and modulates multiple pathways tied to both cellular survival and death. During disorders that include immune system dysfunction, diabetes, and aging-related diseases, nicotinamide is a robust cytoprotectant that blocks cellular inflammatory cell activation, early apoptotic phosphatidylserine exposure, and late nuclear DNA degradation. Nicotinamide relies upon unique cellular pathways that involve forkhead transcription factors, sirtuins, protein kinase B (Akt), Bad, caspases, and poly (ADP-ribose) polymerase that may offer a fine line with determining cellular longevity, cell survival, and unwanted cancer progression. If one is cognizant of the these considerations, it becomes evident that nicotinamide holds great potential for multiple disease entities, but the development of new therapeutic strategies rests heavily upon the elucidation of the novel cellular pathways that nicotinamide closely governs.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
10
|
Shang YC, Chong ZZ, Hou J, Maiese K. The forkhead transcription factor FOXO3a controls microglial inflammatory activation and eventual apoptotic injury through caspase 3. Curr Neurovasc Res 2009; 6:20-31. [PMID: 19355923 DOI: 10.2174/156720209787466064] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Memory loss and cognitive failure are increasingly being identified as potential risks with the recognized increase in life expectancy of the general population. As a result, the development of novel therapeutic strategies for disorders such as Alzheimer's disease have garnered increased attention. The etiologies that can lead to Alzheimer's disease are extremely varied, but a number of therapeutic options are directed against amyloid-beta peptide and inflammatory cell regulation to prevent or halt progressive cognitive loss. In particular, inflammatory microglial cells may have disparate functions that in some scenarios lead to disability through the removal of functional neurovascular cells and in other circumstances foster tissue repair. Given the significance microglial cells hold for neurodegenerative disorders, we therefore examined the function that amyloid (Abeta(1-42)) has upon the microglial cell line EOC 2 and identified a novel role for the forkhead transcription factor FoxO3a and caspase 3. Here we show that Abeta(1-42) leads to progressive injury and apoptotic cell loss in microglial cells that involves both early phosphatidylserine (PS) externalization and late genomic DNA fragmentation over a 24 hour course. Prior to these injury programs, Abeta(1-42) results in the activation and proliferation of microglia as demonstrated by increased proliferating cell nuclear antigen (PCNA) expression and bromodeoxyuridine (BrdU) uptake. Both apoptotic injury as well as the prior activation and proliferation of microglial cells relies upon the presence of FoxO3a, since specific gene silencing of FoxO3a promotes microglial cell protection and prevents the early activation and proliferation of these cells. Furthermore, Abeta(1-42) exposure maintained FoxO3a in an unphosphorylated "active" state and facilitated the cellular trafficking of FoxO3a from the cytoplasm to the cell nucleus to potentially lead to "pro-apoptotic" programs by this transcription factor. One apoptotic program in particular appears to involve the activation of caspase 3, since loss of FoxO3a through gene silencing prevents the induction of caspase 3 activity by Abeta(1-42).
Collapse
Affiliation(s)
- Yan Chen Shang
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
11
|
Chong ZZ, Li F, Maiese K. Attempted cell cycle induction in post-mitotic neurons occurs in early and late apoptotic programs through Rb, E2F1, and caspase 3. Curr Neurovasc Res 2006; 3:25-39. [PMID: 16472123 PMCID: PMC1986668 DOI: 10.2174/156720206775541741] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Either the absence or dysfunction of a number of critical pathways, such as those that involve the nuclear retinoblastoma protein (Rb) and the transcription factor E2F1, may account for the aberrant induction of the cell cycle in post-mitotic neurons that can be responsible for oxidative stress-induced apoptotic cellular destruction. Yet, it is unclear whether early programs of apoptotic injury that involve membrane phosphatidylserine (PS) exposure and calreticulin expression as well as later phases of apoptotic injury with nuclear DNA injury require the critical modulation of Rb and E2F1. We demonstrate that both the post-translational of phosphorylation of Rb to prevent E2F1 transcription as well as the protein integrity of Rb are closely aligned with the modulation of cell cycle induction in post mitotic neurons during oxidative stress. More importantly, we illustrate that both the initial onset of apoptosis with either membrane PS exposure or calreticulin analysis as well as the more terminal phases of apoptosis that involve nuclear DNA degradation proceed concurrently in the same neuronal cells with cell cycle induction. Progression of attempted cell cycle induction is closely associated with the phosphorylation of Rb, its inability to bind to E2F1, and the degradation of the Rb protein. Inhibition of Rb phosphorylation using cyclin dependent kinase inhibitors maintains the integrity of the E2F1/Rb complex and is neuroprotective during free radical exposure. Furthermore, maintenance of the integrity of the Rb protein is specifically dependent upon caspase 3-like activity, since caspase 3 can cleave Rb during free radical activity and this degradation of Rb can be blocked during the inhibition of caspase 3 activity. Our studies not only highlight the critical role of attempted cell cycle induction during oxidative stress-induced neuronal apoptotic injury, but also bring to light the significant impact of the Rb and E2F1 pathways upon early apoptotic programs that can directly influence both intrinsic cell survival as well as extrinsic inflammatory cell activation.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Faqi Li
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201
- Departments of Neurology and Anatomy & Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201
- Center for Molecular and Cellular Toxicology, Wayne State University School of Medicine, Detroit, Michigan 48201
- *Address corresponding to this author at the Department of Neurology, 8C-1 UHC, Wayne State University School of Medicine, 4201 St. Antoine, Detroit, MI 48201, USA; Tel: 313-966-0833; Fax: 313-966-0486; E-mail: ,
| |
Collapse
|
12
|
Chong ZZ, Li F, Maiese K. Employing new cellular therapeutic targets for Alzheimer's disease: a change for the better? Curr Neurovasc Res 2005; 2:55-72. [PMID: 16181100 PMCID: PMC2254177 DOI: 10.2174/1567202052773508] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Alzheimer's disease is a progressive disorder that results in the loss of cognitive function and memory. Although traditionally defined by the presence of extracellular plaques of amyloid-beta peptide aggregates and intracellular neurofibrillary tangles in the brain, more recent work has begun to focus on elucidating the complexities of Alzheimer's disease that involve the generation of reactive oxygen species and oxidative stress. Apoptotic processes that are incurred as a function of oxidative stress affect neuronal, vascular, and monocyte derived cell populations. In particular, it is the early apoptotic induction of cellular membrane asymmetry loss that drives inflammatory microglial activation and subsequent neuronal and vascular injury. In this article, we discuss the role of novel cellular pathways that are invoked during oxidative stress and may potentially mediate apoptotic injury in Alzheimer's disease. Ultimately, targeting new avenues for the development of therapeutic strategies linked to mechanisms that involve inflammatory microglial activation, cellular metabolism, cell-cycle regulation, G-protein regulated receptors, and cytokine modulation may provide fruitful gains for both the prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Faqi Li
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
- Departments of Neurology and Anatomy & Cell Biology, Center for Molecular Medicine and Genetics and Institute of Environmental Health Sciences, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
- Address correspondence to this author at the Department of Neurology, 8C-1 UHC, Wayne State University School of Medicine, 4201 St. Antoine, Detroit, MI 48201, USA; Tel: 313−966−0833; Fax: 313−966−0486; E-mail:
| |
Collapse
|
13
|
Chong ZZ, Li F, Maiese K. Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol 2005; 75:207-46. [PMID: 15882775 DOI: 10.1016/j.pneurobio.2005.02.004] [Citation(s) in RCA: 409] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 02/16/2005] [Accepted: 02/16/2005] [Indexed: 01/28/2023]
Abstract
Despite our present knowledge of some of the cellular pathways that modulate central nervous system injury, complete therapeutic prevention or reversal of acute or chronic neuronal injury has not been achieved. The cellular mechanisms that precipitate these diseases are more involved than initially believed. As a result, identification of novel therapeutic targets for the treatment of cellular injury would be extremely beneficial to reduce or eliminate disability from nervous system disorders. Current studies have begun to focus on pathways of oxidative stress that involve a variety of cellular pathways. Here we discuss novel pathways that involve the generation of reactive oxygen species and oxidative stress, apoptotic injury that leads to nuclear degradation in both neuronal and vascular populations, and the early loss of cellular membrane asymmetry that mitigates inflammation and vascular occlusion. Current work has identified exciting pathways, such as the Wnt pathway and the serine-threonine kinase Akt, as central modulators that oversee cellular apoptosis and their downstream substrates that include Forkhead transcription factors, glycogen synthase kinase-3beta, mitochondrial dysfunction, Bad, and Bcl-x(L). Other closely integrated pathways control microglial activation, release of inflammatory cytokines, and caspase and calpain activation. New therapeutic avenues that are just open to exploration, such as with brain temperature regulation, nicotinamide adenine dinucleotide modulation, metabotropic glutamate system modulation, and erythropoietin targeted expression, may provide both attractive and viable alternatives to treat a variety of disorders that include stroke, Alzheimer's disease, and traumatic brain injury.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
14
|
Stoothoff WH, Johnson GVW. Tau phosphorylation: physiological and pathological consequences. Biochim Biophys Acta Mol Basis Dis 2005; 1739:280-97. [PMID: 15615646 DOI: 10.1016/j.bbadis.2004.06.017] [Citation(s) in RCA: 320] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 06/02/2004] [Indexed: 11/24/2022]
Abstract
The microtubule-associated protein tau, abundant in neurons, has gained notoriety due to the fact that it is deposited in cells as fibrillar lesions in numerous neurodegenerative diseases, and most notably Alzheimer's disease. Regulation of microtubule dynamics is the most well-recognized function of tau, but it is becoming increasingly evident that tau plays additional roles in the cell. The functions of tau are regulated by site-specific phosphorylation events, which if dysregulated, as they are in the disease state, result in tau dysfunction and mislocalization, which is potentially followed by tau polymerization, neuronal dysfunction and death. Given the increasing evidence that a disruption in the normal phosphorylation state of tau plays a key role in the pathogenic events that occur in Alzheimer's disease and other neurodegenerative conditions, it is of crucial importance that the protein kinases and phosphatases that regulate tau phosphorylation in vivo as well as the signaling cascades that regulate them be identified. This review focuses on recent literature pertaining to the regulation of tau phosphorylation and function in cell culture and animal model systems, and the role that a dysregulation of tau phosphorylation may play in the neuronal dysfunction and death that occur in neurodegenerative diseases that have tau pathology.
Collapse
Affiliation(s)
- William H Stoothoff
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, 1061 Sparks Center, 1720 7th Avenue South, Birmingham, AL 35294-0017, USA
| | | |
Collapse
|
15
|
Chong ZZ, Li F, Maiese K. Stress in the brain: novel cellular mechanisms of injury linked to Alzheimer's disease. ACTA ACUST UNITED AC 2005; 49:1-21. [PMID: 15960984 PMCID: PMC2276700 DOI: 10.1016/j.brainresrev.2004.11.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 09/28/2004] [Accepted: 11/12/2004] [Indexed: 01/24/2023]
Abstract
More than a century has elapsed since the description of Alois Alzheimer's patient Auguste D. Yet, the well-documented generation of beta-amyloid aggregates and neurofibrillary tangles that define Alzheimer's disease is believed to represent only a portion of the cellular processes that can determine the course of Alzheimer's disease. Understanding of the complex nature of this disorder has evolved with an increased appreciation for pathways that involve the generation of reactive oxygen species and oxidative stress, apoptotic injury that leads to nuclear degradation in both neuronal and vascular populations, and the early loss of cellular membrane asymmetry that mitigates inflammation and vascular occlusion. Recent work has identified novel pathways, such as the Wnt pathway and the serine-threonine kinase Akt, as central modulators that oversee cellular apoptosis and the formation of neurofibrillary tangles through their downstream substrates that include glycogen synthase kinase-3beta, Bad, and Bcl-xL. Other closely integrated pathways control microglial activation, release of inflammatory cytokines, and caspase and calpain activation for the processing of amyloid precursor protein, tau protein cleavage, and presenilin disposal. New therapeutic avenues that are just open to exploration, such as with nicotinamide adenine dinucleotide modulation, cell cycle modulation, metabotropic glutamate system modulation, and erythropoietin targeted expression, may provide both attractive and viable alternatives to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Faqi Li
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Departments of Neurology and Anatomy and Cell Biology, Center for Molecular Medicine and Genetics, Institute of Environmental Health Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Corresponding author. Department of Neurology, 8C-1 UHC, Wayne State University School of Medicine, 4201 St. Antoine, Detroit, MI 48201. Fax: +1 313 966 0486. E-mail address: (K. Maiese)
| |
Collapse
|
16
|
Chong ZZ, Kang JQ, Maiese K. Essential cellular regulatory elements of oxidative stress in early and late phases of apoptosis in the central nervous system. Antioxid Redox Signal 2004; 6:277-87. [PMID: 15025929 DOI: 10.1089/152308604322899341] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The generation of reactive oxygen species and subsequent oxidative stress in the central nervous system is now considered to be one of the primary etiologies of a host of neurodegenerative disorders, such as Alzheimer disease, Parkinson disease, and cerebral ischemia. On a cellular level, oxidative stress leads to an apoptotic early phase that involves cellular membrane phosphatidylserine (PS) exposure and a late phase that pertains to the degradation of genomic DNA. The translocation of membrane PS from the inner cellular membrane to the surface is a critical component for both microglial activation and cellular disposal of injured cells. During oxidative stress, this early phase of apoptosis is intimately controlled by neuronal PS exposure and microglial PS receptor expression. The late phase of apoptosis that involves a loss of genomic DNA integrity can result as a function of an ill-fated attempt to enter the cell cycle in postmitotic neurons. By using a cascade of pathways that involve cysteine proteases to modulate programmed cell death, protein kinase B (Akt) surfaces as a key regulatory element of both extrinsic pathways of inflammation and intrinsic pathways of cellular integrity. Further understanding of the cellular mechanisms modulating neuronal cellular integrity and phagocytic cell disposal during oxidative stress may form the basis for the future development of cytoprotective strategies in the nervous system.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Division of Cellular and Molecular Cerebral Ischemia, Center for Molecular Medicine and Genetics, and Institute of Environmental Health Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
17
|
Wen Y, Yang S, Liu R, Brun-Zinkernagel AM, Koulen P, Simpkins JW. Transient cerebral ischemia induces aberrant neuronal cell cycle re-entry and Alzheimer's disease-like tauopathy in female rats. J Biol Chem 2004; 279:22684-92. [PMID: 14982935 DOI: 10.1074/jbc.m311768200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Aberrant mitosis occurs in many tauopathy-related neurodegenerative diseases and is believed to precede the formation of neurofibrillary tangles. In this study, we report for the first time that transient cerebral ischemia induces aberrant mitotic proteins and hyperphosphorylation of tau protein with neurofibrillary tangle-like conformational epitopes in adult female rat cortex. Following transient cerebral ischemia in rats, initiation of apoptosis precedes and is potentially integrated with subsequent aberrant mitosis and tau hyperphosphorylation. Furthermore, inhibition of mitosis-related cyclin-dependent kinases (Cdks) by roscovitine significantly reduced the hyperphosphorylation of tau. Administration of the female sex steroid and potent neuroprotective agent, 17beta-estradiol, reduced ischemia-reperfusion-induced cerebral damage and the subsequent aberrant mitosis and tauopathies. These results provide a neuropathological basis for the higher prevalence of dementia in stroke patients and support the hypothesis that apoptosis and aberrant mitosis are integrated pathological events in neurons that may play a critical role in the development of Alzheimer's disease and other tauopathy-related neuropathology.
Collapse
Affiliation(s)
- Yi Wen
- Department of Pharmacology, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | | | | | | | | | | |
Collapse
|
18
|
Becker EBE, Bonni A. Cell cycle regulation of neuronal apoptosis in development and disease. Prog Neurobiol 2004; 72:1-25. [PMID: 15019174 DOI: 10.1016/j.pneurobio.2003.12.005] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Accepted: 12/16/2003] [Indexed: 10/26/2022]
Abstract
Apoptosis of neurons is indispensable to the normal development of the nervous system and contributes to neuronal loss in neurologic injury and disease. Life and death decisions are imposed upon neurons by extracellular and intracellular stimuli including the lack of trophic support, exposure to neurotoxins, oxidative stress, and DNA damage. These stimuli induce signaling pathways that are integrated at the mitochondrial apoptotic machinery culminating in cell survival or death. Growing evidence suggests that cell cycle proteins are expressed in dying neurons in the developing and adult brain. However, the role and mechanisms by which re-activation of cell cycle pathways in postmitotic neurons propagates an apoptotic signal to the cell death machinery are just beginning to be characterized. Here, we will review the molecular mechanisms of neuronal cell death and survival with a focus on recent findings on cell cycle regulation of neuronal apoptosis in primary cultures of neurons, mouse models of neuronal diseases, and human neurodegenerative diseases.
Collapse
Affiliation(s)
- Esther B E Becker
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|