1
|
Iggena D, Maier PM, Häußler SM, Menk M, Olze H, Larkum ME, Finke C, Ploner CJ. Post-encoding modulation of spatial memory consolidation by propofol. Cortex 2022; 156:1-12. [DOI: 10.1016/j.cortex.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/09/2022] [Accepted: 08/10/2022] [Indexed: 11/03/2022]
|
2
|
The general anaesthetic propofol prevents cerebrocortical potentiation in neocortical mouse brain slices. Brain Res 2022; 1792:148018. [PMID: 35850186 DOI: 10.1016/j.brainres.2022.148018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/05/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022]
Abstract
Propofol is well known to cause amnesia independent of its sedative effect. Memory consolidation processes in the hippocampus have been proposed as a target - however the neural substrates for propofol's amnesic actions remain understudied and poorly described. In particular, the potential role of the cerebral cortex has not been investigated. As an in vitro experimental model of cortical memory consolidation, potentiated cerebral cortex evoked responses were generated in mouse neocortical slices using high frequency (20 Hz) stimulation to layer IV cortical grey matter or subcortical white matter. In separate experiments, slices were pretreated with propofol at two concentrations, 2 µg/mL and 4 µg/mL, to determine the effect of clinically relevant propofol levels on the potentiation response. Only grey matter stimulation induced a significant and lasting increase in cortical evoked potential amplitude in the drug-free condition. Propofol at 2 µg/mL completely inhibited cortical evoked response potentiation, while the 4 µg/mL concentration caused a small but significant depressant effect consequent to the high frequency stimulation. These findings support the hypothesis that propofol disrupts memory consolidation and actively facilitates memory decay in the cerebral cortex. The results further highlight the importance of the cerebral cortex in the early phase of long term memory consolidation.
Collapse
|
3
|
Qing X, Xu YL, Liu H, Liu XS. The influence of anesthesia and surgery on fear extinction. Neurosci Lett 2022; 766:136347. [PMID: 34808271 DOI: 10.1016/j.neulet.2021.136347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/29/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Accumulating evidence has demonstrated significant clinical post-traumatic stress disorder (PTSD) symptoms after anesthesia or surgery. Fear extinction dysfunction is a notable feature of PTSD. Although anesthetics and surgery profoundly affect memory processes, their designated effects on fear extinction have not been dissertated. Previous studies have suggested that innate immune system activation disrupts fear extinction, and surgery has been shown to increase the inflammatory response. Thus, in the current study, we examined the effects of propofol, sevoflurane, dexmedetomidine and surgery on fear extinction in adolescent mice, and further tested whether dexmedetomidine could reverse the injury effect of surgery on fear extinction through its anti-inflammatory effects. Our results showed that propofol (200 mg/kg) impaired the acquisition and recall of cued fear extinction, and surgery disrupted cued fear extinction acquisition/recall and consolidation. In contrast to cued fear extinction, contextual fear extinction was not affected by propofol or surgery. Moreover, dexmedetomidine prevented surgery-induced impairment of cued extinction acquisition and recall but not consolidation. Finally, TNF-α and IL-6 levels in the ventromedial prefrontal cortex were not necessary for the dexmedetomidine treatment effect of surgery-induced fear extinction dysfunction. The study results showed that propofol and surgery selective impaired the cued fear extinction stage in adolescent mice, and dexmedetomidine may unleash a protective effect in preventing postoperative PTSD.
Collapse
Affiliation(s)
- Xin Qing
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China
| | - Yuan-Ling Xu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China
| | - Hu Liu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China.
| | - Xue-Sheng Liu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China.
| |
Collapse
|
4
|
Platholi J, Hemmings HC. Effects of general anesthetics on synaptic transmission and plasticity. Curr Neuropharmacol 2021; 20:27-54. [PMID: 34344292 PMCID: PMC9199550 DOI: 10.2174/1570159x19666210803105232] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022] Open
Abstract
General anesthetics depress excitatory and/or enhance inhibitory synaptic transmission principally by modulating the function of glutamatergic or GABAergic synapses, respectively, with relative anesthetic agent-specific mechanisms. Synaptic signaling proteins, including ligand- and voltage-gated ion channels, are targeted by general anesthetics to modulate various synaptic mechanisms, including presynaptic neurotransmitter release, postsynaptic receptor signaling, and dendritic spine dynamics to produce their characteristic acute neurophysiological effects. As synaptic structure and plasticity mediate higher-order functions such as learning and memory, long-term synaptic dysfunction following anesthesia may lead to undesirable neurocognitive consequences depending on the specific anesthetic agent and the vulnerability of the population. Here we review the cellular and molecular mechanisms of transient and persistent general anesthetic alterations of synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Jimcy Platholi
- Cornell University Joan and Sanford I Weill Medical College Ringgold standard institution - Anesthesiology New York, New York. United States
| | - Hugh C Hemmings
- Cornell University Joan and Sanford I Weill Medical College Ringgold standard institution - Anesthesiology New York, New York. United States
| |
Collapse
|
5
|
Propofol Modulates Early Memory Consolidation in Humans. eNeuro 2020; 7:ENEURO.0537-19.2020. [PMID: 32295771 PMCID: PMC7307630 DOI: 10.1523/eneuro.0537-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
Maintenance of memory across time is crucial for adaptive behavior. Current theories posit that the underlying consolidation process depends on stabilization of synapses and reorganization of interactions between hippocampus and neocortex. However, the temporal properties of hippocampal-neocortical network reconfiguration during consolidation are still a matter of debate. Translational research on this issue is challenged by the paucity of techniques to transiently interfere with memory in the healthy human brain. Here, we report a neuro-pharmacological approach with the GABAAergic anesthetic propofol and a memory task sensitive to hippocampal dysfunction. Patients undergoing minor surgery learned word lists before injection of an anesthetic dose of propofol. Results show that administration of the drug shortly after learning (∼13 min) impairs recall after awakening but spares recognition. By contrast, later administration (∼105 min) has no effect. These findings suggest significant changes in memory networks very early after learning that are decisive for later recall. Propofol general anesthesia provides an experimental tool to modulate the first steps of hippocampus-mediated memory consolidation in humans.
Collapse
|
6
|
Sun M, Yuan R, Liu H, Zhang J, Tu S. The effects of repeated propofol anesthesia on spatial memory and long-term potentiation in infant rats under hypoxic conditions. Genes Dis 2020; 7:245-252. [PMID: 32215294 PMCID: PMC7083743 DOI: 10.1016/j.gendis.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/02/2019] [Indexed: 11/26/2022] Open
Abstract
Propofol is widely used as an intravenous drug for induction and maintenance in general anesthesia. Hypoxemia is a common complication during perianesthesia. We want to know the effect of propofol on spatial memory and LTP (Long-term potentiation) under hypoxic conditions. In this study, 84 seven-day-old Sprague–Dawley rats were randomly assigned into six groups (n = 14)-four control groups: lipid emulsion solvent + 50% oxygen (CO), lipid emulsion solvent + room air (CA), lipid emulsion solvent + 18% oxygen (CH), and propofol + 50% oxygen (propofol–oxygen, PO); and two experiment groups: propofol + room air (propofol–air, PA), and propofol + 18% oxygen (propofol–hypoxia, PH). After receiving propofol (50 mg/kg) or the same volume of intralipid intraperitoneal (5.0 ml/kg), injected once per day for seven consecutive days, the rats were exposed to 18% oxygen, 50% oxygen and air, until recovery of the righting reflex. We found that the apoptotic index and activated caspase-3 increased in the PH group (P < 0.05) compared with the PA group, fEPSP (field excitatory postsynaptic) potential and success induction rate of LTP reduced in all propofol groups (P < 0.05). Compared with the PO group, the fEPSP and success induction rate of LTP reduced significantly in the PA and PH groups (P < 0.05). Moreover, compared with CH group, the average time of escape latency was longer, and the number of platform location crossings was significantly reduced in the PH group (P < 0.05). Thus, we believe that adequate oxygen is very important during propofol anesthesia.
Collapse
Affiliation(s)
- Mang Sun
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
| | - Ruixue Yuan
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, No. Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Hui Liu
- Chongqing Key Laboratory of Pediatrics, China
| | - Jing Zhang
- Chongqing Key Laboratory of Pediatrics, China
| | - Shengfen Tu
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| |
Collapse
|
7
|
Hao X, Ou M, Zhang D, Zhao W, Yang Y, Liu J, Yang H, Zhu T, Li Y, Zhou C. The Effects of General Anesthetics on Synaptic Transmission. Curr Neuropharmacol 2020; 18:936-965. [PMID: 32106800 PMCID: PMC7709148 DOI: 10.2174/1570159x18666200227125854] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/20/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023] Open
Abstract
General anesthetics are a class of drugs that target the central nervous system and are widely used for various medical procedures. General anesthetics produce many behavioral changes required for clinical intervention, including amnesia, hypnosis, analgesia, and immobility; while they may also induce side effects like respiration and cardiovascular depressions. Understanding the mechanism of general anesthesia is essential for the development of selective general anesthetics which can preserve wanted pharmacological actions and exclude the side effects and underlying neural toxicities. However, the exact mechanism of how general anesthetics work is still elusive. Various molecular targets have been identified as specific targets for general anesthetics. Among these molecular targets, ion channels are the most principal category, including ligand-gated ionotropic receptors like γ-aminobutyric acid, glutamate and acetylcholine receptors, voltage-gated ion channels like voltage-gated sodium channel, calcium channel and potassium channels, and some second massager coupled channels. For neural functions of the central nervous system, synaptic transmission is the main procedure for which information is transmitted between neurons through brain regions, and intact synaptic function is fundamentally important for almost all the nervous functions, including consciousness, memory, and cognition. Therefore, it is important to understand the effects of general anesthetics on synaptic transmission via modulations of specific ion channels and relevant molecular targets, which can lead to the development of safer general anesthetics with selective actions. The present review will summarize the effects of various general anesthetics on synaptic transmissions and plasticity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yu Li
- Address correspondence to these authors at the Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; E-mail: and Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China; E-mail:
| | - Cheng Zhou
- Address correspondence to these authors at the Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; E-mail: and Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China; E-mail:
| |
Collapse
|
8
|
Joksimovic SM, Izumi Y, Joksimovic SL, Tesic V, Krishnan K, Asnake B, Jevtovic-Todorovic V, Covey DF, Zorumski CF, Todorovic SM. Novel neurosteroid hypnotic blocks T-type calcium channel-dependent rebound burst firing and suppresses long-term potentiation in the rat subiculum. Br J Anaesth 2019; 122:643-651. [PMID: 30916017 DOI: 10.1016/j.bja.2019.01.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Hypnotics and general anaesthetics impair memory by altering hippocampal synaptic plasticity. We recently reported on a neurosteroid analogue with potent hypnotic activity [(3β,5β,17β)-3-hydroxyandrostane-17-carbonitrile; 3β-OH], which does not cause developmental neurotoxicity in rat pups. Here, we investigated the effects of 3β-OH on neuronal excitability in the subiculum, the major output structure of the hippocampal formation, and synaptic plasticity at two key hippocampal synapses in juvenile rats. METHODS Biophysical properties of isolated T-type calcium currents (T-currents) in the rat subiculum were investigated using acute slice preparations. Subicular T-type calcium channel (T-channel) subtype mRNA expression was compared using qRT-PCR. Using electrophysiological recordings, we examined the effects of 3β-OH and an endogenous neuroactive steroid, allopregnanolone (Allo), on T-currents and burst firing properties of subicular neurones, and on the long-term potentiation (LTP) in CA3-CA1 and CA1-subiculum pathways. RESULTS Biophysical and molecular studies confirmed that CaV3.1 channels represent the dominant T-channel isoform in the subiculum of juvenile rats. 3β-OH and Allo inhibited rebound burst firing by decreasing the amplitude of T-currents in a voltage-dependent manner with similar potency, with 30-80% inhibition. Both neurosteroids suppressed LTP at the CA1-subiculum, but not at the CA3-CA1 Schaffer collateral synapse. CONCLUSIONS Neurosteroid effects on T-channels modulate hippocampal output and provide possible molecular mechanisms for the amnestic action of the novel hypnotic 3β-OH. Effects on T-channels in the subiculum provide a novel target for amnestic effects of hypnotics.
Collapse
Affiliation(s)
- Srdjan M Joksimovic
- Department of Anesthesiology, University of Colorado, School of Medicine, Aurora, CO, USA.
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Sonja Lj Joksimovic
- Department of Anesthesiology, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Vesna Tesic
- Department of Anesthesiology, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Betelehem Asnake
- Department of Anesthesiology and Pain Medicine, University of California, Davis, CA, USA
| | | | - Douglas F Covey
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado, School of Medicine, Aurora, CO, USA
| |
Collapse
|
9
|
Propofol inhibited the excitability of pyramidal neurons in the orbitofrontal cortex by influencing the delayed rectifier K+ channels and γ-aminobutyric acid type A receptors. Neuroreport 2019; 30:102-107. [DOI: 10.1097/wnr.0000000000001167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Cho S, Jung YJ, Suh EC, Baik HJ, Han JI, Lee GY, Lee KE. The recovery from transient cognitive dysfunction induced by propofol was associated with enhanced autophagic flux in normal healthy adult mice. Brain Res 2018; 1700:99-108. [PMID: 30006294 DOI: 10.1016/j.brainres.2018.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 01/05/2023]
Abstract
Propofol is the most widely accepted intravenous anesthetic available for clinical use. However, neurotoxicity of propofol in the developing brain has been reported. This study investigated the effects of propofol on cognitive function in normal healthy adult mice. Thirty-three GFP-LC3 adult mice were included. Propofol was injected for anesthesia (n = 22). The sham control (n = 11) received intralipid injections. The mice completed a Y-maze test on 3 and 7 days after being anesthetized. Western blotting, immunofluorescence staining, and transmission electron microscopic (TEM) analyses were performed with their hippocampi. In addition, we conducted a separate ex vivo experiment using organotypic hippocampal slice cultures (OHSCs) to investigate the effects of propofol on induced autophagy. There was a significantly lower percentage of alternation in the Y-maze test on day 3 after propofol anesthesia than the control, but no difference was observed on day 7. Western blot analyses and immunofluorescence assays showed that the levels of cognitive function-related proteins significantly decreased in the propofol group compared to the control on day 3 but had recovered by day 7. In terms of autophagy-related proteins, western blot analyses and immunofluorescence assays showed that propofol increased autophagic induction, flux, and degradation of autophagosomes. Ex vivo experiments showed that propofol enhanced autophagic flux of the induced autophagy. In conclusion, although transient cognitive dysfunction occurred, adult mice recovered their cognitive function after the administration of propofol anesthesia. And this finding may be associated with enhanced autophagic flux.
Collapse
Affiliation(s)
- Sooyoung Cho
- Department of Anesthesiology and Pain Medicine, School of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Republic of Korea
| | - Yeon Joo Jung
- Department of Pharmacology, School of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Republic of Korea
| | - Eun Cheng Suh
- Department of Pharmacology, School of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Republic of Korea
| | - Hee Jung Baik
- Department of Anesthesiology and Pain Medicine, School of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Republic of Korea
| | - Jong In Han
- Department of Anesthesiology and Pain Medicine, School of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Republic of Korea
| | - Guie Yong Lee
- Department of Anesthesiology and Pain Medicine, School of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Republic of Korea.
| | - Kyung Eun Lee
- Department of Pharmacology, School of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Republic of Korea.
| |
Collapse
|
11
|
Zhou J, Wang F, Zhang J, Li J, Ma L, Dong T, Zhuang Z. The interplay of BDNF-TrkB with NMDA receptor in propofol-induced cognition dysfunction : Mechanism for the effects of propofol on cognitive function. BMC Anesthesiol 2018; 18:35. [PMID: 29621970 PMCID: PMC5887174 DOI: 10.1186/s12871-018-0491-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 02/13/2018] [Indexed: 01/15/2023] Open
Abstract
Background The aim of the present study was to verify whether propofol impaired learning and memory through the interplay of N-methyl-D-aspartate (NMDA) receptor with brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) signaling pathway. Methods 120 Sprague-Dawley (SD) rats were randomly assigned into eight groups. Experimental drugs including saline, intralipid, propofol, N-methyl-D-aspartate (NMDA), 7,8-dihydroxyflavone (7,8-DHF), K252a and MK-801. Spatial learning and memory of rats were tested by the Morris water maze (MWM) test. The mRNA and protein expression were determined by immunohistochemistry, RT-PCR and western blot. Finally, hippocampus cells proliferation and apoptosis were examined by PCNA immunohistochemistry and TUNEL respectively. Results The memory and learning was diminished in the propofol exposure group, however, the impaired memory and learning of rats were improved with the addition of NMDA and 7,8-DHF, while the improvement of memory and learning of rats were reversed with the addition of K252a and MK-801. In addition, the mRNA and protein expression levels and hippocampus cells proliferation were the same trend with the results of the MWM test, while apoptosis in hippocampus was reversed. Conclusion The propofol can impair memory and learning of rats and induce cognition dysfunction through the interplay of NMDA receptor and BDNF-TrkB-CREB signaling pathway.
Collapse
Affiliation(s)
- Junfei Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Fang Wang
- Department of Pain, The Second Affiliated Hospital of Zhengzhou University, College of Medicine, No. 2 Jingba Road, Zhengzhou, 450003, China
| | - Jun Zhang
- Department of Pain, The Second Affiliated Hospital of Zhengzhou University, College of Medicine, No. 2 Jingba Road, Zhengzhou, 450003, China
| | - Jianfeng Li
- Department of Pain, The Second Affiliated Hospital of Zhengzhou University, College of Medicine, No. 2 Jingba Road, Zhengzhou, 450003, China
| | - Li Ma
- Department of Pain, The Second Affiliated Hospital of Zhengzhou University, College of Medicine, No. 2 Jingba Road, Zhengzhou, 450003, China
| | - Tieli Dong
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, College of Medicine, No. 2 Jingba Road, Zhengzhou, 450003, China.
| | - Zhigang Zhuang
- Department of Pain, The Second Affiliated Hospital of Zhengzhou University, College of Medicine, No. 2 Jingba Road, Zhengzhou, 450003, China.
| |
Collapse
|
12
|
Liu H, Wang T, Dai W, Jiang Z, Li YH, Liu XS. Subhypnotic doses of propofol impair spatial memory retrieval in rats. Neural Regen Res 2017; 11:1956-1961. [PMID: 28197192 PMCID: PMC5270434 DOI: 10.4103/1673-5374.197137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Abundant evidence indicates that propofol profoundly affects memory processes, although its specific effects on memory retrieval have not been clarified. A recent study has indicated that hippocampal glycogen synthase kinase-3β (GSK-3β) activity affects memory. Constitutively active GSK-3β is required for memory retrieval, and propofol has been shown to inhibit GSK-3β. Thus, the present study examined whether propofol affects memory retrieval, and, if so, whether that effect is mediated through altered GSK-3β activity. Adult Sprague-Dawley rats were trained on a Morris water maze task (eight acquisition trials in one session) and subjected under the influence of a subhypnotic dose of propofol to a 24-hour probe trial memory retrieval test. The results showed that rats receiving pretest propofol (25 mg/kg) spent significantly less time in the target quadrant but showed no change in locomotor activity compared with those in the control group. Memory retrieval was accompanied by reduced phosphorylation of the serine-9 residue of GSK-3β in the hippocampus, whereas phosphorylation of the tyrosine-216 residue was unaffected. However, propofol blocked this retrieval-associated serine-9 phosphorylation. These findings suggest that subhypnotic propofol administration impairs memory retrieval and that the amnestic effects of propofol may be mediated by attenuated GSK-3β signaling in the hippocampus.
Collapse
Affiliation(s)
- Hu Liu
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Ting Wang
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wei Dai
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Zheng Jiang
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yuan-Hai Li
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xue-Sheng Liu
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
13
|
Zhong L, Luo F, Zhao W, Feng Y, Wu L, Lin J, Liu T, Wang S, You X, Zhang W. Propofol exposure during late stages of pregnancy impairs learning and memory in rat offspring via the BDNF-TrkB signalling pathway. J Cell Mol Med 2016; 20:1920-31. [PMID: 27297627 PMCID: PMC5020635 DOI: 10.1111/jcmm.12884] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/09/2016] [Indexed: 12/20/2022] Open
Abstract
The brain‐derived neurotrophic factor (BDNF)‐tyrosine kinase B (TrkB) (BDNF‐TrkB) signalling pathway plays a crucial role in regulating learning and memory. Synaptophysin provides the structural basis for synaptic plasticity and depends on BDNF processing and subsequent TrkB signalling. Our previous studies demonstrated that maternal exposure to propofol during late stages of pregnancy impaired learning and memory in rat offspring. The purpose of this study is to investigate whether the BDNF‐TrkB signalling pathway is involved in propofol‐induced learning and memory impairments. Propofol was intravenously infused into pregnant rats for 4 hrs on gestational day 18 (E18). Thirty days after birth, learning and memory of offspring was assessed by the Morris water maze (MWM) test. After the MWM test, BDNF and TrkB transcript and protein levels were measured in rat offspring hippocampus tissues using real‐time PCR (RT‐PCR) and immunohistochemistry (IHC), respectively. The levels of phosphorylated‐TrkB (phospho‐TrkB) and synaptophysin were measured by western blot. It was discovered that maternal exposure to propofol on day E18 impaired spatial learning and memory of rat offspring, decreased mRNA and protein levels of BDNF and TrkB, and decreased the levels of both phospho‐TrkB and synaptophysin in the hippocampus. Furthermore, the TrkB agonist 7,8‐dihydroxyflavone (7,8‐DHF) reversed all of the observed changes. Treatment with 7,8‐DHF had no significant effects on the offspring that were not exposed to propofol. The results herein indicate that maternal exposure to propofol during the late stages of pregnancy impairs spatial learning and memory of offspring by disturbing the BDNF‐TrkB signalling pathway. The TrkB agonist 7,8‐DHF might be a potential therapy for learning and memory impairments induced by maternal propofol exposure.
Collapse
Affiliation(s)
- Liang Zhong
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China
| | - Foquan Luo
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China.
| | - Weilu Zhao
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China
| | - Yunlin Feng
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China
| | - Liuqin Wu
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China
| | - Jiamei Lin
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China
| | - Tianyin Liu
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China
| | - Shengqiang Wang
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China
| | - Xuexue You
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China
| |
Collapse
|
14
|
Liu Y, Wang XJ, Wang N, Cui CL, Wu LZ. Electroacupuncture Ameliorates Propofol-Induced Cognitive Impairment via an Opioid Receptor-Independent Mechanism. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:705-19. [DOI: 10.1142/s0192415x16500385] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
While general anesthesia is known to induce cognitive deficits in elderly and pediatric patients, its influence on adults is less well-characterized. The present study was designed to evaluate the influence of propofol on the learning and memory of young adult rats, as well as the potential neuroprotective role of electroacupuncture (EA) in propofol-induced cognitive impairment. Intravenous anesthesia with propofol was administered to young adult male Sprague–Dawley (SD) rats for 6 h, and EA was administered three times before and after anesthesia. The Morris Water Maze (MWM) test was conducted to determine the rat’s cognitive performance following the anesthesia treatment. Our results showed that propofol induced obvious cognitive impairment in young adult rats, which could be ameliorated by multiple EA treatments. Moreover, the decreased level of phosphorylated glycogen synthase kinase 3 β (pGSK-3β) in the CA1 region of the hippocampus accompanying the cognitive impairment was also reversed by EA treatment. Further experiments demonstrated that neither 2 nor 10 mg/kg (I.P.) naloxone blocked the effect of EA, indicating that the neuroprotective effect of EA on propofol-induced cognitive impairment was not mediated via the opioid receptors. The present study suggests that EA could ameliorate the cognitive impairment induced by prolonged anesthesia with propofol in young adult rats, which is likely associated with pGSK-3β levels in the CA1 independently of opioid receptors. These findings imply that EA may be used as a potential neuroprotective therapy for post-operative cognitive dysfunction (POCD).
Collapse
Affiliation(s)
- Yan Liu
- Neuroscience Research Institute, Peking University, Department of Neurobiology School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience of the Ministry of Education and the Ministry of Public Health, Beijing 100191, China
| | - Xin-Juan Wang
- Neuroscience Research Institute, Peking University, Department of Neurobiology School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience of the Ministry of Education and the Ministry of Public Health, Beijing 100191, China
| | - Na Wang
- Neuroscience Research Institute, Peking University, Department of Neurobiology School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience of the Ministry of Education and the Ministry of Public Health, Beijing 100191, China
| | - Cai-Lian Cui
- Neuroscience Research Institute, Peking University, Department of Neurobiology School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience of the Ministry of Education and the Ministry of Public Health, Beijing 100191, China
| | - Liu-Zhen Wu
- Neuroscience Research Institute, Peking University, Department of Neurobiology School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience of the Ministry of Education and the Ministry of Public Health, Beijing 100191, China
| |
Collapse
|
15
|
Propofol postsynaptically suppresses stellate neuron excitability in the entorhinal cortex by influencing the HCN and TREK-2 channels. Neurosci Lett 2016; 619:54-9. [DOI: 10.1016/j.neulet.2016.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/05/2016] [Accepted: 03/07/2016] [Indexed: 11/22/2022]
|
16
|
Wang YL, Chen X, Wang ZP. Detrimental effects of postnatal exposure to propofol on memory and hippocampal LTP in mice. Brain Res 2015; 1622:321-7. [PMID: 26168896 DOI: 10.1016/j.brainres.2015.06.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
Abstract
Acute effects of propofol on memory and hippocampal long-term potentiation (LTP) in adult animals were reported. However, long-term effect of early postnatal application of propofol on memory was not totally disclosed. In this study, experiments were designed to verify the mechanisms underlying the long-term detrimental effects of propofol on memory and hippocampal synaptic plasticity. A consecutive propofol protocol from postnatal day 7 was applied to model anesthesia, long term memory and hippocampal synaptic plasticity were detected 2 months later. Our results showed that repeated propofol exposure in early phase affect the memory in the adult phase. Through recording the field excitatory postsynaptic potentials (fEPSPs) at Schaffer colletaral-CA1 synapses, both of basal synaptic transmission and hippocampal LTP were decreased after propofol application. While LTD induced by low frequency stimulation and 3,5-dihydroxyphenylglycine (3,5-DHPG) were not affected. Through analyzing the ultrastructure of dendrite in CA1 region, we found that propofol application decreased the spine density, which was consistent with the decrease of PSD-95 expression. In addition, p-AKT level was reduced after first propofol application. Intracerebroventricular injection of Akt inhibitor could mimic the propofol effects on basal synaptic transmission, hippocampal LTP and memory. Taken together, these results suggested that propofol possibly decreased AKT signaling pathway to restrict the spine development, finally leading to hippocampal LTP impairment and memory deficit.
Collapse
Affiliation(s)
- Yuan-Lin Wang
- Department of Anesthesiology, Huai׳an First People׳s Hospital, Nanjing Medical University, Huai׳an, Jiangsu 223300, China
| | - Xin Chen
- Department of Anesthesiology, Huai׳an First People׳s Hospital, Nanjing Medical University, Huai׳an, Jiangsu 223300, China
| | - Zhi-Ping Wang
- Department of Anesthesiology, Wuxi People׳s Hospital, Affiliated Hospital of Nanjing Medical University, Wuxi 214023, China.
| |
Collapse
|
17
|
Shu AH, Wang Q, Chen XB. Effect of different depths of anesthesia on postoperative cognitive function in laparoscopic patients: a randomized clinical trial. Curr Med Res Opin 2015. [PMID: 26202165 DOI: 10.1185/03007995.2015.1075968] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Postoperative cognitive dysfunction (POCD) is caused by many factors. This work was conducted to investigate the effect of different depths of anesthesia during combined intravenous-inhalational anesthesia on postoperative cognitive function in young and middle-aged laparoscopic patients. METHODS A total of 192 patients scheduled for gynecologic laparoscopic operations were randomly divided into three groups. Anesthesia was maintained with inhalation of sevoflurane and infusion of remifentanil, which was adjusted to maintain bispectral index (BIS) at 30 < BIS ≤ 40 in Group I, 40 < BIS ≤ 50 in Group II and 50 < BIS ≤ 60 in Group III. The Mini-Mental State Examination (MMSE) and Trail-Making Test (TMT) were used to assess cognitive function on the day before anesthesia and the day after surgery. RESULTS There were no significant differences in age, body mass index, educational level and surgery time. On the day before anesthesia, the average MMSE scores and TMT completion times in the three groups were not significantly different. On the day after surgery, Group II had a significantly higher average MMSE score (29.00 ± 0.89) than Group I (28.36 ± 1.42, p = 0.010) and Group III (28.45 ± 1.27, p = 0.035) and lower TMT completion time (33.68 ± 10.34) than Group I (39.45 ± 13.99, p = 0.027) and Group III (39.50 ± 12.50, p = 0.026). CONCLUSION These results indicated that the depth of anesthesia, 40 < BIS ≤ 50, under combined intravenous-inhalational anesthesia yielded milder influence on postoperative cognitive function in young and middle-aged laparoscopic patients.
Collapse
Affiliation(s)
- Ai-Hua Shu
- a Department of Anesthesiology , Three Gorges University People's Hospital, the First People's Hospital of Yichang , Yichang , Hubei , China
| | - Qiang Wang
- a Department of Anesthesiology , Three Gorges University People's Hospital, the First People's Hospital of Yichang , Yichang , Hubei , China
| | - Xiao-Bo Chen
- a Department of Anesthesiology , Three Gorges University People's Hospital, the First People's Hospital of Yichang , Yichang , Hubei , China
| |
Collapse
|
18
|
Costa FLPD, Monteiro LDS, Binda NS, Gomez MV, Gomez RS. Effect of Propofol on the Release of [3H] Acetylcholine from Rat Hippocampal Synaptosomes. INT J PHARMACOL 2014. [DOI: 10.3923/ijp.2014.494.500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Li M, Zhang X, Wu A, Wang Z, Li J, Yue Y. Propofol-induced age-different hypocampal long-term potentiation is associated with F-actin polymerization in rats. Cell Biochem Biophys 2014; 71:1059-66. [PMID: 25344646 DOI: 10.1007/s12013-014-0309-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Elderly patients may experience a decline in cognition after a surgery performed under anesthesia. Propofol (2,6-diisopropylphenol), a common intravenous anesthetic agent, has been reported to mediate the long-term potentiation (LTP), a major form of synaptic plasticity. The present study was conducted to investigate the underlying mechanisms in young (3-month-old) and elderly (20-month-old) male rats. A decline of theta-burst stimulation (TBS)-induced LTP in the hippocampal CA1 area was found in the young rats at 72 h post-anesthesia, and this alteration almost disappeared after 2-week-recovery as compared with their age-matched control rats. On the other hand, the propofol-induced CA1 LTP reduction was persistent in the aged rats during the whole experimental process. Moreover, TBS-induced increases in CA 1 filamentous-actin (F-actin) polymerization and phospho-cofilin expression were enhanced at 72 h post-anesthesia in young rats, and this change was significantly attenuated after 2 weeks. However, in anesthetic elderly rats, the alterations in F-actin and phospho-cofilin of the CA1 region were still presented at the end of the experiments. Taken together, our results indicate that the discrepant responses between young and aged rats to propofol anesthesia may be associated with the differential polymerization of F-actin.
Collapse
Affiliation(s)
- Mingying Li
- Department of Anaesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | | | | | | | | | | |
Collapse
|
20
|
Platholi J, Herold KF, Hemmings HC, Halpain S. Isoflurane reversibly destabilizes hippocampal dendritic spines by an actin-dependent mechanism. PLoS One 2014; 9:e102978. [PMID: 25068870 PMCID: PMC4113311 DOI: 10.1371/journal.pone.0102978] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/24/2014] [Indexed: 12/20/2022] Open
Abstract
General anesthetics produce a reversible coma-like state through modulation of excitatory and inhibitory synaptic transmission. Recent evidence suggests that anesthetic exposure can also lead to sustained cognitive dysfunction. However, the subcellular effects of anesthetics on the structure of established synapses are not known. We investigated effects of the widely used volatile anesthetic isoflurane on the structural stability of hippocampal dendritic spines, a postsynaptic structure critical to excitatory synaptic transmission in learning and memory. Exposure to clinical concentrations of isoflurane induced rapid and non-uniform shrinkage and loss of dendritic spines in mature cultured rat hippocampal neurons. Spine shrinkage was associated with a reduction in spine F-actin concentration. Spine loss was prevented by either jasplakinolide or cytochalasin D, drugs that prevent F-actin disassembly. Isoflurane-induced spine shrinkage and loss were reversible upon isoflurane elimination. Thus, isoflurane destabilizes spine F-actin, resulting in changes to dendritic spine morphology and number. These findings support an actin-based mechanism for isoflurane-induced alterations of synaptic structure in the hippocampus. These reversible alterations in dendritic spine structure have important implications for acute anesthetic effects on excitatory synaptic transmission and synaptic stability in the hippocampus, a locus for anesthetic-induced amnesia, and have important implications for anesthetic effects on synaptic plasticity.
Collapse
Affiliation(s)
- Jimcy Platholi
- Division of Biological Sciences, University of California San Diego and Sanford Consortium for Regenerative Medicine, San Diego, California, United States of America
- Departments of Anesthesiology and Pharmacology, Weill Cornell Medical College, New York, New York, United States of America
| | - Karl F. Herold
- Departments of Anesthesiology and Pharmacology, Weill Cornell Medical College, New York, New York, United States of America
| | - Hugh C. Hemmings
- Departments of Anesthesiology and Pharmacology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail: (SH); (HCH)
| | - Shelley Halpain
- Division of Biological Sciences, University of California San Diego and Sanford Consortium for Regenerative Medicine, San Diego, California, United States of America
- * E-mail: (SH); (HCH)
| |
Collapse
|
21
|
Li WW, Cheng LZ, Zou Z, Tian ML, Zhang H, Raya AD, Wang Y, Shi XY. (R)-alpha-methylhistamine suppresses inhibitory neurotransmission in hippocampal CA1 pyramidal neurons counteracting propofol-induced amnesia in rats. CNS Neurosci Ther 2014; 20:851-9. [PMID: 24948006 DOI: 10.1111/cns.12294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/03/2014] [Accepted: 05/11/2014] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Propofol is a short-acting, intravenous general anesthetic that is widely used in clinical practice for short procedures; however, it causes depressed cognitive function for several hours thereafter. (R)-alpha-methylhistamine (RAMH), a selective histamine H3 receptor agonist, can enhance memory retention and attenuates memory impairment in rats. In this study, we investigated whether RAMH could rescue propofol-induced memory deficits and the underlying mechanisms partaking in this process. METHODS In the modified Morris water maze (MWM) test, rats were randomized into the following groups: control, propofol (25 mg/kg, i.p., 30 min before training), RAMH (10 mg/kg, i.p., 60 min before training), and propofol plus RAMH. All randomized rats were subjected to 2 days of training, and a probe test was conducted on day 3. Field excitatory postsynaptic potentials were recorded from CA1 neurons in rat hippocampal slices, and long-term potentiation (LTP) was induced by either theta-burst stimulation (TBS) or high-frequency tetanic stimulation (HFS). Spontaneous and miniature inhibitory (sIPSCs, mIPSCs) or excitatory (sEPSCs, mEPSCs) postsynaptic currents were recorded from CA1 pyramidal neurons by whole-cell patch clamp. RESULTS In the MWM task, propofol injection significantly impaired spatial memory retention. Pretreatment with RAMH reversed propofol-induced memory retention. In hippocampal CA1 slices, propofol perfusion markedly inhibited TBS- but not HFS-induced LTP. Co-perfusion of RAMH reversed the inhibitory effect of propofol on TBS-induced LTP reduction. Furthermore, in hippocampal CA1 pyramidal neurons, RAMH significantly suppressed the frequency but not the amplitude of sIPSCs and mIPSCs and had little effects on both the frequency and amplitude of sEPSCs and mEPSCs. CONCLUSIONS Our results suggest that RAMH, by inhibiting presynaptic GABAergic neurotransmission, suppresses inhibitory neurotransmission in hippocampal CA1 pyramidal neurons, which in turn reverses inhibition of CA1 LTP and the spatial memory deficits induced by propofol in rats.
Collapse
Affiliation(s)
- Wei-Wei Li
- Department of Anesthesiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Repeated exposure to propofol impairs spatial learning, inhibits LTP and reduces CaMKIIα in young rats. Neurosci Lett 2014; 560:62-6. [DOI: 10.1016/j.neulet.2013.11.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 11/05/2013] [Accepted: 11/29/2013] [Indexed: 11/17/2022]
|
23
|
Nashawi H, Bartl T, Bartl P, Novotny L, Oriowo M, Kombian S. TH-9 (a theophylline derivative) induces long-lasting enhancement in excitatory synaptic transmission in the rat hippocampus that is occluded by frequency-dependent plasticity in vitro. Neuroscience 2012; 220:70-84. [DOI: 10.1016/j.neuroscience.2012.06.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 06/10/2012] [Accepted: 06/11/2012] [Indexed: 11/24/2022]
|
24
|
Effects of propofol and pentobarbital on calcium concentration in presynaptic boutons on a rat hippocampal neuron. J Anesth 2011; 25:727-33. [DOI: 10.1007/s00540-011-1186-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
|
25
|
Pryor KO, Reinsel RA, Mehta M, Li Y, Wixted JT, Veselis RA. Visual P2-N2 complex and arousal at the time of encoding predict the time domain characteristics of amnesia for multiple intravenous anesthetic drugs in humans. Anesthesiology 2010; 113:313-26. [PMID: 20613477 PMCID: PMC2910207 DOI: 10.1097/aln.0b013e3181dfd401] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Intravenous anesthetics have marked effects on memory function, even at subclinical concentrations. Fundamental questions remain in characterizing anesthetic amnesia and identifying affected system-level processes. The authors applied a mathematical model to evaluate time-domain components of anesthetic amnesia in human subjects. METHODS Sixty-one volunteers were randomized to receive propofol (n = 12), thiopental (n = 13), midazolam (n = 12), dexmedetomidine (n = 12), or placebo (n = 12). With drug present, subjects encoded pictures into memory using a 375-item continuous recognition task, with subsequent recognition later probed with drug absent. Memory function was sampled at up to 163 time points and modeled over the time domain using a two-parameter, first-order negative power function. The parietal event-related P2-N2 complex was derived from electroencephalography, and arousal was repeatedly sampled. Each drug was evaluated at two concentrations. RESULTS The negative power function consistently described the course of amnesia (mean R = 0.854), but there were marked differences between drugs in the modulation of individual components (P < 0.0001). Initial memory strength was a function of arousal (P = 0.005), whereas subsequent decay was related to the reaction time (P < 0.0001) and the P2-N2 complex (P = 0.007/0.002 for discrete components). CONCLUSIONS In humans, the amnesia caused by multiple intravenous anesthetic drugs is characterized by arousal-related effects on initial trace strength, and a subsequent decay predicted by attenuation of the P2-N2 complex at encoding. The authors propose that the failure of normal memory consolidation follows drug-induced disruption of interregional synchrony critical for neuronal plasticity and discuss their findings in the framework of memory systems theory.
Collapse
Affiliation(s)
- Kane O Pryor
- Department of Anesthesiology, Weill Cornell Medical College, New York, New York, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Kidambi S, Yarmush J, Berdichevsky Y, Kamath S, Fong W, Schianodicola J. Propofol induces MAPK/ERK cascade dependant expression of cFos and Egr-1 in rat hippocampal slices. BMC Res Notes 2010; 3:201. [PMID: 20637119 PMCID: PMC2916009 DOI: 10.1186/1756-0500-3-201] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 07/17/2010] [Indexed: 11/10/2022] Open
Abstract
Background Propofol is a commonly used intravenous anesthetic agent, which produce rapid induction of and recovery from general anesthesia. Numerous clinical studies reported that propofol can potentially cause amnesia and memory loss in human subjects. The underlying mechanism for this memory loss is unclear but may potentially be related to the induction of memory-associated genes such as c-Fos and Egr-1 by propofol. This study explored the effects of propofol on c-Fos and Egr-1 expression in rat hippocampal slices. Findings Hippocampal brain slices were exposed to varying concentrations of propofol at multiple time intervals. The transcription of the immediate early genes, c-Fos and Egr-1, was quantified using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). MAPK/ERK inhibitors were used to investigate the mechanism of action. We demonstrate that propofol induced the expression of c-Fos and Egr-1 within 30 and 60 min of exposure time. At 16.8 μM concentration, propofol induced a 110% increase in c-Fos transcription and 90% decrease in the transcription of Egr-1. However, at concentrations above 100 μM, propofol failed to induce expression of c-Fos but did completely inhibit the transcription of Egr-1. Propofol-induced c-Fos and Egr-1 transcription was abolished by inhibitors of RAS, RAF, MEK, ERK and p38-MAPK in the MAPK/ERK cascade. Conclusions Our study shows that clinically relevant concentrations of propofol induce c-Fos and down regulated Egr-1 expression via an MAPK/ERK mediated pathway. We demonstrated that propofol induces a time and dose dependant transcription of IEGs c-Fos and Egr-1 in rat hippocampal slices. We further demonstrate for the first time that propofol induced IEG expression was mediated via a MAPK/ERK dependant pathway. These novel findings provide a new avenue to investigate transcription-dependant mechanisms and suggest a parallel pathway of action with an unclear role in the activity of general anesthetics.
Collapse
Affiliation(s)
- Srivatsan Kidambi
- Department of Anesthesiology, New York Methodist Hospital, Brooklyn, NY, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Carev M, Valic M, Pecotic R, Karanovic N, Valic Z, Pavlinac I, Dogas Z. Propofol abolished the phrenic long-term facilitation in rats. Respir Physiol Neurobiol 2009; 170:83-90. [PMID: 20038457 DOI: 10.1016/j.resp.2009.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 12/08/2009] [Accepted: 12/22/2009] [Indexed: 10/20/2022]
Abstract
The aim was to investigate the effect of propofol anesthesia on the phrenic long-term facilitation (pLTF) in rats. We hypothesized that pLTF would be abolished during propofol-compared with urethane anesthesia. Fourteen adult, male, anesthetized, vagotomized, paralyzed, and mechanically ventilated Sprague-Dawley rats (seven per group), were exposed to the acute intermittent hypoxia (AIH) protocol. Peak phrenic nerve activity (PNA), burst frequency (f), and breathing rhythm parameters (Ti, Te, Ttot) were analyzed during the first hypoxia (TH1), as well as at 15 (T15), 30 (T30), and 60min (T60) after the final hypoxic episode, and compared to the baseline values. In propofol-anesthetized rats no significant changes of PNA were recorded after the last hypoxic episode, i.e. no pLTF was induced. There was a significant increase of PNA (59.4+/-6.6%, P<0.001) in urethane-anesthetized group at T60. AIH did not elicit significant changes in f, Ti, Te, Ttot in either group at T15, T30, and T60. The pLTF, elicited by AIH, was induced in the urethane-anesthetized rats. On the contrary, pLTF was abolished in the propofol-anesthetized rats.
Collapse
Affiliation(s)
- M Carev
- Department of Anesthesiology and Intensive Care, University Hospital Split, Split, Croatia
| | | | | | | | | | | | | |
Collapse
|
28
|
Effect of propofol on the levels of neurotransmitters in normal human brain: A magnetic resonance spectroscopy study. Neurosci Lett 2009; 467:247-51. [DOI: 10.1016/j.neulet.2009.10.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 09/15/2009] [Accepted: 10/16/2009] [Indexed: 11/20/2022]
|
29
|
Chaillan FA, Truchet B, Roman FS. Extracellular recordings of rodents in vivo: their contribution to integrative neuroscience. J Integr Neurosci 2008; 7:287-313. [PMID: 18763725 DOI: 10.1142/s0219635208001794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 04/02/2008] [Indexed: 11/18/2022] Open
Abstract
The prevalent theory in learning and memory processes is that they are underlain by short and long-term changes in synaptic weight, which continuously modulates neural networks during acquisition and recall. This synaptic plasticity has been revealed by recording extracellular field potentials. The enhancement of synaptic transmission was primarily noted in the hippocampus and was named long-term potentiation (LTP). The opposite mechanism, long-term depression (LTD), a reduction of synaptic transmission, was first discovered in the cerebellum. Since then, the LTP-model has been studied mainly using in vitro and acute anesthetized in vivo preparations. This approach has led to remarkable progress in the comprehension of intracellular molecular processes during LTP and LTD. In this review, we focus mainly on what we can learn about molecular events using extracellular field potential recordings with a more ecological model, i.e., studies using the freely behaving animal, with animals that are genetically modified or not, in several behavioral paradigms aimed at gaining insight into some of the conflicting results obtained with in vitro and in vivo preparations.
Collapse
Affiliation(s)
- F A Chaillan
- Université Aix-Marseille, Laboratoire de Neurobiologie des Processus Mnésiques, 13331 Marseille cedex 03, France.
| | | | | |
Collapse
|
30
|
Dong Z, Han H, Cao J, Zhang X, Xu L. Coincident activity of converging pathways enables simultaneous long-term potentiation and long-term depression in hippocampal CA1 network in vivo. PLoS One 2008; 3:e2848. [PMID: 18682723 PMCID: PMC2475662 DOI: 10.1371/journal.pone.0002848] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 07/03/2008] [Indexed: 12/31/2022] Open
Abstract
Memory is believed to depend on activity-dependent changes in the strength of synapses, e.g. long-term potentiation (LTP) and long-term depression (LTD), which can be determined by the sequence of coincident pre- and postsynaptic activity, respectively. It remains unclear, however, whether and how coincident activity of converging efferent pathways can enable LTP and LTD in the pathways simultaneously. Here, we report that, in pentobarbital-anesthetized rats, stimulation (600 pulses, 5 Hz) to Schaffer preceding to commissural pathway within a 40-ms timing window induced similar magnitudes of LTP in both pathways onto synapses of CA1 neurons, with varied LTP magnitudes after reversal of the stimulation sequence. In contrast, in urethane-anesthetized or freely-moving rats, the stimulation to Schaffer preceding to commissural pathway induced Schaffer LTP and commissural LTD simultaneously within a 40-ms timing window, without affecting synaptic efficacy in the reversed stimulation sequence. Coincident activity of Schaffer pathways confirmed the above findings under pentobarbital and urethane anesthesia. Thus, coincident activity of converging afferent pathways tends to switch the pathways to be LTP only or LTP/LTD depending on the activity states of the hippocampus. This network rule strengthens the view that activity-dependent synaptic plasticity may well contribute to memory process of the hippocampal network with flexibility or stability from one state to another.
Collapse
Affiliation(s)
- ZhiFang Dong
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People's Republic of China
| | - HuiLi Han
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People's Republic of China
| | - Jun Cao
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People's Republic of China
| | - Xia Zhang
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada
- * E-mail: (XZ); (LX)
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People's Republic of China
- Mental Health Institute, Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
- * E-mail: (XZ); (LX)
| |
Collapse
|
31
|
Facilitatory effects of subanesthetic sevoflurane on excitatory synaptic transmission and synaptic plasticity in the mouse hippocampal CA1 area. Brain Res 2008; 1197:32-9. [DOI: 10.1016/j.brainres.2007.12.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 12/11/2007] [Accepted: 12/15/2007] [Indexed: 11/20/2022]
|
32
|
Koranda JL, Masino SA, Blaise JH. Bidirectional synaptic plasticity in the dentate gyrus of the awake freely behaving mouse. J Neurosci Methods 2008; 167:160-6. [PMID: 17875326 PMCID: PMC2254336 DOI: 10.1016/j.jneumeth.2007.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 08/02/2007] [Accepted: 08/02/2007] [Indexed: 11/15/2022]
Abstract
There is significant interest in in vivo synaptic plasticity in mice due to the many relevant genetic mutants now available. Nevertheless, use of in vivo models remains limited. To date long-term potentiation (LTP) has been studied infrequently, and long-term depression (LTD) has not been characterized in the mouse in vivo. Herein we describe protocols and improved methodologies we developed to record hippocampal synaptic plasticity reliably from the dentate gyrus of the awake freely behaving mouse. Seven days prior to recording, we implanted microelectrodes encapsulated within a lightweight, low profile head stage assembly. On the day of recording, we induced either LTP or LTD in the awake freely behaving animal, and monitored subsequent changes in population spike amplitude for at least 24h. Using this protocol we attained 80% success in inducing and maintaining either LTP or LTD. Recording from a chronic implant using this improved methodology is best suited to reveal naturally occurring brain activity and avoids both acute effects of local electrode insertion and drifts in neuronal excitability associated with anesthesia. Ultimately a reliable freely behaving mouse model of bi-directional synaptic plasticity is invaluable for full characterization of genetic models of disease states and manipulations of the mechanisms implicated in learning and memory.
Collapse
Affiliation(s)
- Jessica L. Koranda
- Department of Engineering, Trinity College, Hartford, CT 06106
- Neuroscience Program, Trinity College, Hartford, CT 06106
| | - Susan A. Masino
- Neuroscience Program, Trinity College, Hartford, CT 06106
- Department of Psychology, Trinity College, Hartford, CT 06106
| | - J. Harry Blaise
- Department of Engineering, Trinity College, Hartford, CT 06106
- Neuroscience Program, Trinity College, Hartford, CT 06106
| |
Collapse
|
33
|
Fibuch EE, Wang JQ. Inhibition of the MAPK/ERK cascade: a potential transcription-dependent mechanism for the amnesic effect of anesthetic propofol. Neurosci Bull 2007; 23:119-24. [PMID: 17592535 PMCID: PMC5550596 DOI: 10.1007/s12264-007-0017-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Intravenous anesthetics are known to cause amnesia, but the underlying molecular mechanisms remain elusive. To identify a possible molecular mechanism, we recently turned our attention to a key intracellular signaling pathway organized by a family of mitogen-activated protein kinases (MAPKs). As a prominent synapse-to-nucleus superhighway, MAPKs couple surface glutamate receptors to nuclear transcriptional events essential for the development and/or maintenance of different forms of synaptic plasticity (long-term potentiation and long-term depression) and memory formation. To define the role of MAPK-dependent transcription in the amnesic property of anesthetics, we conducted a series of studies to examine the effect of a prototype intravenous anesthetic propofol on the MAPK response to N-methyl-D-aspartate receptor (NMDAR) stimulation in hippocampal neurons. Our results suggest that propofol possesses the ability to inhibit NMDAR-mediated activation of a classic subclass of MAPKs, extracellular signal-regulated protein kinase 1/2 (ERK1/2). Concurrent inhibition of transcriptional activity also occurs as a result of inhibited responses of ERK1/2 to NMDA. These findings provide first evidence for an inhibitory modulation of the NMDAR-MAPK pathway by an intravenous anesthetic and introduce a new avenue to elucidate a transcription-dependent mechanism processing the amnesic effect of anesthetics.
Collapse
Affiliation(s)
- Eugene E. Fibuch
- Department of Anesthesiology, University of Missouri-Kansas City School of Medicine, Saint Luke’s Hospital, Kansas City, Missouri 64108 USA
| | - John Q. Wang
- Department of Anesthesiology, University of Missouri-Kansas City School of Medicine, Saint Luke’s Hospital, Kansas City, Missouri 64108 USA
| |
Collapse
|
34
|
Archer DP, Nguyen KQ, Samanani N, Roth SH. Pentobarbital Enhances γ-Aminobutyric Acid-Mediated Excitation Without Altering Synaptic Plasticity in Rat Hippocampus. Anesth Analg 2007; 104:840-6. [PMID: 17377091 DOI: 10.1213/01.ane.0000256874.33810.3a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Synaptic plasticity is thought to provide a molecular mechanism for learning and memory. N-methyl-d-aspartate receptor-mediated plasticity requires that N-methyl-d-aspartate receptor activation coincides with postsynaptic depolarizing potentials (DPSP(A)'s). Pentobarbital, in high concentrations, enhances DPSP(A)'s, but high concentrations suppress synaptic plasticity, probably by impairing glutamatergic transmission. Here we tested the hypothesis that low concentrations of pentobarbital can enhance DPSP(A)'s and modify the induction of synaptic plasticity. METHODS Studies were performed in vitro on rat hippocampal slices. With glutamate transmission blocked, intracellular recording from CA1 neurons was used to investigate the influence of 5 microM pentobarbital on DPSP(A)'s and neuron excitability evoked by high frequency (100 Hz) stimulation. With glutamate transmission intact, extracellular recording was used to examine the effect of 5 microM pentobarbital on the induction of long-term depression and long-term potentiation of synaptic transmission by conditioning stimuli applied to the Schaffer collateral pathway. RESULTS High frequency stimulation generated typical DPSP(A)'s that were mediated by gamma-aminobutyric acid(A) receptors and dependent upon HCO3-. Pentobarbital (5 microM) increased the amplitude, but not the width, at half-maximal amplitude of DPSPA's (P < 0.01). Pentobarbital increased the probability of action potential generation during the DPSP(A)'s. Pentobarbital did not alter the induction of long-term depression or long-term potentiation. CONCLUSIONS Despite increasing the amplitude of DPSP(A)'s, 5 microM pentobarbital did not alter the induction of synaptic plasticity by a range of conventional conditioning stimuli. These results do not support the hypothesis that excitatory effects of pentobarbital may alter synaptic plasticity.
Collapse
Affiliation(s)
- David P Archer
- Department of Anesthesiology, Faculty of Medicine, University of Calgary, Calgary, Canada.
| | | | | | | |
Collapse
|
35
|
Dong Z, Cao J, Xu L. Opiate withdrawal modifies synaptic plasticity in subicular-nucleus accumbens pathway in vivo. Neuroscience 2006; 144:845-54. [PMID: 17141960 DOI: 10.1016/j.neuroscience.2006.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2006] [Revised: 10/10/2006] [Accepted: 10/11/2006] [Indexed: 12/23/2022]
Abstract
Subiculum receives output of hippocampal CA1 neurons and projects glutamatergic synapses onto nucleus accumbens (NAc), the subicular-NAc pathway linking memory and reward system. It is unknown whether morphine withdrawal influences synaptic plasticity in the subicular-NAc pathway. Here, we recorded the field excitatory postsynaptic potential (EPSP) within the shell of NAc by stimulating ventral subiculum in anesthetized adult rats. We found that high frequency stimulation (HFS, 200 Hz) induced long-term potentiation (LTP) but low frequency stimulation (LFS, 1 Hz) failed to induce long-term depression (LTD) in control animals. However, behavioral stress enabled LFS to induce a reliable LTD (sLTD) that was dependent on the glucocorticoid receptors. Both LTP and sLTD were prevented by the N-methyl-d-aspartate receptor antagonist AP-5. After repeated morphine treatment for 12 days, acute withdrawal (12 h) impaired LTP but had no effect on sLTD; prolonged withdrawal (4 days) restored the LTP but impaired the sLTD. Remarkably, basal synaptic efficacy reflected by baseline EPSP amplitude was potentiated in acute withdrawal but was depressed in prolonged withdrawal. Thus, acute and prolonged opiate withdrawal may cause endogenous LTP and LTD in the subicular-NAc pathway that occludes the subsequent induction of synaptic plasticity, demonstrating adaptive changes of the NAc functions during opiate withdrawal.
Collapse
Affiliation(s)
- Z Dong
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, the Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming 650223, Yunnan, PR China
| | | | | |
Collapse
|
36
|
Wang W, Wang H, Gong N, Xu TL. Changes of K+ -Cl- cotransporter 2 (KCC2) and circuit activity in propofol-induced impairment of long-term potentiation in rat hippocampal slices. Brain Res Bull 2006; 70:444-9. [PMID: 17027780 DOI: 10.1016/j.brainresbull.2006.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 05/02/2006] [Accepted: 07/03/2006] [Indexed: 11/16/2022]
Abstract
Enhancing inhibition via gamma-aminobutyric acid type A (GABA(A)) receptors contributes to anesthetic-induced impairment of long-term potentiation (LTP) of excitatory synaptic transmission, which may account for general anesthesia-associated memory impairment (amnesia). The neuron-specific K+ -Cl- cotransporter 2 (KCC2) is necessary for fast synaptic inhibition via maintaining the low intracellular chloride concentration required for the hyperpolarizing actions of GABA via GABA(A) receptors. To explore a possible role of KCC2-dependent inhibition in anesthetic-induced impairment of LTP, we used field excitatory postsynaptic potentials (fEPSP) recording and immunoblotting to study the effect of propofol on LTP maintenance and KCC2 expression in CA1 region of rat hippocampal slices. We found that propofol (30 microM) not only impaired LTP expression but also prevented LTP-accompanied downregulation of KCC2 without affecting the basal transmission of glutamatergic synapses. Moreover, the recurrent inhibition in hippocampal slices was enhanced by propofol. These propofol-induced effects were completely abolished by picrotoxin, a specific GABA(A) receptor-chloride channel blocker. Thus, enhancement of GABAergic inhibition and suppression of neuronal excitability may account for the sustained expression of KCC2 and the impairment of LTP by propofol. Together, this study supports a novel role for KCC2 in LTP expression and gives hints to a molecular mechanism, by which anesthetics might cause impairment of LTP.
Collapse
Affiliation(s)
- Wei Wang
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | | | | | | |
Collapse
|
37
|
Birzniece V, Bäckström T, Johansson IM, Lindblad C, Lundgren P, Löfgren M, Olsson T, Ragagnin G, Taube M, Turkmen S, Wahlström G, Wang MD, Wihlbäck AC, Zhu D. Neuroactive steroid effects on cognitive functions with a focus on the serotonin and GABA systems. BRAIN RESEARCH REVIEWS 2006; 51:212-239. [PMID: 16368148 DOI: 10.1016/j.brainresrev.2005.11.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 11/10/2005] [Accepted: 11/11/2005] [Indexed: 01/20/2023]
Abstract
This article will review neuroactive steroid effects on serotonin and GABA systems, along with the subsequent effects on cognitive functions. Neurosteroids (such as estrogen, progesterone, and allopregnanolone) are synthesized in the central and peripheral nervous system, in addition to other tissues. They are involved in the regulation of mood and memory, in premenstrual syndrome, and mood changes related to hormone replacement therapy, as well as postnatal and major depression, anxiety disorders, and Alzheimer's disease. Estrogen and progesterone have their respective hormone receptors, whereas allopregnanolone acts via the GABA(A) receptor. The action of estrogen and progesterone can be direct genomic, indirect genomic, or non-genomic, also influencing several neurotransmitter systems, such as the serotonin and GABA systems. Estrogen alone, or in combination with antidepressant drugs affecting the serotonin system, has been related to improved mood and well being. In contrast, progesterone can have negative effects on mood and memory. Estrogen alone, or in combination with progesterone, affects the brain serotonin system differently in different parts of the brain, which can at least partly explain the opposite effects on mood of those hormones. Many of the progesterone effects in the brain are mediated by its metabolite allopregnanolone. Allopregnanolone, by changing GABA(A) receptor expression or sensitivity, is involved in premenstrual mood changes; and it also induces cognitive deficits, such as spatial-learning impairment. We have shown that the 3beta-hydroxypregnane steroid UC1011 can inhibit allopregnanolone-induced learning impairment and chloride uptake potentiation in vitro and in vivo. It would be important to find a substance that antagonizes allopregnanolone-induced adverse effects.
Collapse
Affiliation(s)
- Vita Birzniece
- Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University Hospital, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Takamatsu I, Sekiguchi M, Wada K, Sato T, Ozaki M. Propofol-mediated impairment of CA1 long-term potentiation in mouse hippocampal slices. Neurosci Lett 2005; 389:129-32. [PMID: 16112456 DOI: 10.1016/j.neulet.2005.07.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 07/15/2005] [Accepted: 07/18/2005] [Indexed: 10/25/2022]
Abstract
Propofol (2,6-diisopropylphenol) is a short-acting intravenous anesthetic. Propofol is known to impair maintenance of long-term potentiation (LTP) in synaptic responses from Schaffer collateral-commissural (SC) pathway to CA1 pyramidal cells in the hippocampus, but the threshold concentration of propofol needed to elicit this action is unknown. The actions of propofol in vivo (e.g., amnesia, sedation, hypnosis and immobility) depend on its concentration, and thus it is necessary to determine the concentration required to impair CA1 LTP in order to assess the impact of impairment in vivo. In the present study, we investigated the effects of various concentrations of propofol on synaptic plasticity, primarily by measuring LTP at SC pathway to CA1 pyramidal cell synapses in mouse hippocampal slices. Continuous application of 50 microM propofol from 20 min before tetanus stimulation suppressed potentiation of the synaptic responses by tetanus stimulation. The suppression was pronounced from 10 min post-tetanus and about 55% suppression of the potentiation was observed at 60 min after tetanus. Propofol at 5 or 20 microM did not have this effect. The presence of gamma-aminobutyric acid type A (GABA(A)) receptors antagonist, picrotoxin, abrogated the suppression of LTP by 50 microM propofol. Propofol 50 microM did not affect long-term depression (LTD). These results suggest that the suppression of hippocampal CA1 LTP via GABA(A) receptors requires a much higher propofol concentration compared with that needed to induce amnesia.
Collapse
Affiliation(s)
- Isao Takamatsu
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | |
Collapse
|
39
|
Li Z, Zhou Q, Li L, Mao R, Wang M, Peng W, Dong Z, Xu L, Cao J. Effects of unconditioned and conditioned aversive stimuli in an intense fear conditioning paradigm on synaptic plasticity in the hippocampal CA1 area in vivo. Hippocampus 2005; 15:815-24. [PMID: 16015621 DOI: 10.1002/hipo.20104] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Repeated vivid recalls or flashbacks of traumatic memories and memory deficits are the cardinal features of post-traumatic stress disorder (PTSD). The underlying mechanisms are not fully understood yet. Here, we examined the effects of very strong fear conditioning (20 pairings of a light with a 1.5-mA, 0.5-s foot shock) and subsequent reexposure to the conditioning context (chamber A), a similar context (chamber B), and/or to the fear conditioned stimulus (CS) (a light) on synaptic plasticity in the hippocampal CA1 area in anesthetized Sprague-Dawley rats. The conditioning procedure resulted in very strong conditioned fear, as reflected by high levels of persistent freezing, to both the contexts and to the CS, 24 h after fear conditioning. The induction of long-term potentiation (LTP) was blocked immediately after fear conditioning. It was still markedly impaired 24 h after fear conditioning; reexposure to the conditioning chamber A (CA) or to a similar chamber B (CB) did not affect the impairment. However, presentation of the CS in the CA exacerbated the impairment of LTP, whereas the CS presentation in a CB ameliorated the impairment so that LTP induction did not differ from that of control groups. The induction of long-term depression (LTD) was facilitated immediately, but not 24 h, after fear conditioning. Only reexposure to the CS in the CA, but not reexposure to either chamber A or B alone, or the CS in chamber B, 24 h after conditioning, reinstated the facilitation of LTD induction. These data demonstrate that unconditioned and conditioned aversive stimuli in an intense fear conditioning paradigm can have profound effects on hippocampal synaptic plasticity, which may aid to understand the mechanisms underlying impairments of hippocampus-dependent memory by stress or in PTSD.
Collapse
Affiliation(s)
- Zexuan Li
- Mental Health Institute of the 2nd Xiangya Hospital, Central South University, Changsha 410011, Hunan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sun X, Zhang J, Li H, Zhang Z, Yang J, Cui M, Zeng B, Xu T, Cao J, Xu L. Propofol effects on excitatory synaptic efficacy in the CA1 region of the developing hippocampus. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 157:1-7. [PMID: 15939079 DOI: 10.1016/j.devbrainres.2005.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2004] [Revised: 02/15/2005] [Accepted: 02/21/2005] [Indexed: 10/25/2022]
Abstract
The anesthetic, propofol, effectively suppresses excitatory synaptic transmission and facilitates long-term depression (LTD) in the CA1 region of the hippocampus. Here, we have examined whether these effects are different in the developing hippocampus. We found that propofol in suppressing whole-cell excitatory postsynaptic currents (EPSC) was more effective in 21 day old rats than either in 7 day old rats or under the condition of high intracellular chloride concentration in 21 day old rats. Furthermore, the propofol concentration to facilitate the NMDA receptor-dependent LTD was lower at postnatal day 21 than at postnatal day 7. Interestingly, the decay time of EPSC was decreased during the development from postnatal day 7 to 21, but it was increased by the recording condition of high intracellular chloride concentration or by propofol administration. All these effects of propofol were dependent on the chloride channel opening. These observations suggest that propofol may induce differential anesthetic effects in the developing hippocampus, at least partially, depending on the intracellular chloride concentration.
Collapse
Affiliation(s)
- Xuehua Sun
- Anaesthesiological Section, Union Hospital affiliated to TongJi Medical College, Huazhong University of Technology, Wuhan 430074, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ying SW, Goldstein PA. Propofol-block of SK channels in reticular thalamic neurons enhances GABAergic inhibition in relay neurons. J Neurophysiol 2004; 93:1935-48. [PMID: 15563549 DOI: 10.1152/jn.01058.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The GABAergic reticular thalamic nucleus (RTN) is a major source of inhibition for thalamocortical neurons in the ventrobasal complex (VB). Thalamic circuits are thought to be an important anatomic target for general anesthetics. We investigated presynaptic actions of the intravenous anesthetic propofol in RTN neurons, using RTN-retained and RTN-removed brain slices. In RTN-retained slices, focal and bath application of propofol increased intrinsic excitability, temporal summation, and spike firing rate in RTN neurons. Propofol-induced activation was associated with suppression of medium afterhyperpolarization potentials. This activation was mimicked and completely occluded by the small conductance calcium-activated potassium (SK) channel blocker apamin, indicating that propofol could enhance RTN excitability by blocking SK channels. Propofol increased GABAergic transmission at RTN-VB synapses, consistent with excitation of presynaptic RTN neurons. Stimulation of RTN resulted in synaptic inhibition in postsynaptic neurons in VB, and this inhibition was potentiated by propofol in a concentration-dependent manner. Removal of RTN resulted in a dramatic reduction of both spontaneous postsynaptic inhibitory current frequency and propofol-mediated inhibition of VB neurons. Thus the existence and activation of RTN input were essential for propofol to elicit thalamocortical suppression; such suppression resulted from shunting through the postsynaptic GABA(A) receptor-mediated chloride conductance. The results indicate that propofol enhancement of RTN-mediated inhibitory input via blockade of SK channels may play a critical role in "gating" spike firing in thalamocortical relay neurons.
Collapse
Affiliation(s)
- Shui-Wang Ying
- C.V. Starr Laboratory for Molecular Neuropharmacology, Deptartment of Anesthesiology A-1050, Weill Medical College, Cornell University, 1300 York Ave., New York, NY 10021, USA
| | | |
Collapse
|
42
|
Xiong W, Wei H, Xiang X, Cao J, Dong Z, Wang Y, Xu T, Xu L. The effect of acute stress on LTP and LTD induction in the hippocampal CA1 region of anesthetized rats at three different ages. Brain Res 2004; 1005:187-92. [PMID: 15044077 DOI: 10.1016/j.brainres.2004.01.051] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2004] [Indexed: 10/26/2022]
Abstract
Not all experiences are memorized equally well. Especially, some types of stress are unavoidable in daily life and the stress experience can be memorized for life. Previous evidence has showed that synaptic plasticity, such as long-term potentiation (LTP) that may be the major cellular model of the mechanism underlying learning and memory, is influenced by behavioral stress. However, the effect of behavioral stress on age-related synaptic plasticity in vivo was primarily known. Here we found that the LTP induction in the hippocampal CA1 region of anesthetized rats obviously showed inverted-U shape related to ages (4, 10 and 74 weeks old rats), but low-frequency stimulation was unable to induce reliable long-term depression (LTD) in these animals. Furthermore, acute elevated platform (EP) stress enabled reliable LTD significantly and completely blocked LTP induction at these ages. Importantly, LTD after exposure to acute EP stress showed similar magnitude over these ages. The present results that stress enables LTD but impairs LTP induction at these three ages strengthen a view that stress experience-dependent LTD (SLTD) may underlie stress form of aberrant memories.
Collapse
Affiliation(s)
- Wenyong Xiong
- Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650223, PR China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Cao J, Chen N, Xu T, Xu L. Stress-facilitated LTD induces output plasticity through synchronized-spikes and spontaneous unitary discharges in the CA1 region of the hippocampus. Neurosci Res 2004; 49:229-39. [PMID: 15140565 DOI: 10.1016/j.neures.2004.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 03/01/2004] [Indexed: 10/26/2022]
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) of the excitatory synaptic inputs plasticity in the hippocampus is believed to underlie certain types of learning and memory. Especially, stressful experiences, well known to produce long-lasting strong memories of the event themselves, enable LTD by low frequency stimulation (LFS, 3 Hz) but block LTP induction by high frequency stimulation (HFS, 200 Hz). However, it is unknown whether stress-affected synaptic plasticity has an impact on the output plasticity. Thus, we have simultaneously studied the effects of stress on synaptic plasticity and neuronal output in the hippocampal CA1 region of anesthetized Wistar rats. Our results revealed that stress increased basal power spectrum of the evoked synchronized-spikes and enabled LTD induction by LFS. The induction of stress-facilitated LTD but not LFS induced persistent decreases of the power spectrum of the synchronized-spikes and the frequency of the spontaneous unitary discharges; However, HFS induced LTP in non-stressed animals and increased the power spectrum of the synchronized-spikes, without affecting the frequency of the spontaneous unitary discharges, but HFS failed to induce LTP in stressed animals without affecting the power spectrum of the synchronized-spikes and the frequency of the spontaneous unitary discharges. These observations that stress-facilitated LTD induces the output plasticity through the synchronized-spikes and spontaneous unitary discharges suggest that these types of stress-related plasticity may play significant roles in distribution, amplification and integration of encoded information to other brain structures under stressful conditions.
Collapse
Affiliation(s)
- Jun Cao
- Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Yunnan, PR China
| | | | | | | |
Collapse
|
44
|
Dieguez D, Barea-Rodriguez EJ. Aging impairs the late phase of long-term potentiation at the medial perforant path-CA3 synapse in awake rats. Synapse 2004; 52:53-61. [PMID: 14755632 PMCID: PMC1913478 DOI: 10.1002/syn.20004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The effects of aging on long-term potentiation (LTP) in the dentate gyrus (DG) and CA1 are well documented, but LTP at the medial perforant path (MPP)-CA3 synapse of aged animals has remained unexplored. Because the MPP-DG and Schaffer-collateral-CA1 synapses account for only about 20% of total hippocampal synapses, global understanding of how aging affects hippocampal plasticity has remained limited. Much is known about LTP induction in the hippocampal formation, whereas the mechanisms that regulate LTP maintenance are less understood, especially during aging. We investigated the effects of aging on MPP-CA3 LTP induction and maintenance in awake rats. As is the case in the DG and CA1, high-frequency stimulation-induced LTP at the MPP-CA3 synapse is normal in aged rats. These data indicate that N-methyl-D-aspartate (NMDA) receptor-mediated processes are intact at the MPP-CA3 synapse in aged rats. In contrast, aging impaired the magnitude and duration of MPP-CA3 LTP over a period of days. Also, these data are consistent with reports that area CA3 is especially susceptible to age-related changes. Our data suggest that aging impairs mechanisms that regulate the late phase of MPP-CA3 LTP and contribute to a more global understanding of how aging affects hippocampal plasticity.
Collapse
Affiliation(s)
- Dario Dieguez
- Neurobiology of Aging Laboratory, Department of Biology, The University of Texas, San Antonio, Texas 78249-0662
| | | |
Collapse
|
45
|
Yang Y, Zheng X, Wang Y, Cao J, Dong Z, Cai J, Sui N, Xu L. Stress enables synaptic depression in CA1 synapses by acute and chronic morphine: possible mechanisms for corticosterone on opiate addiction. J Neurosci 2004; 24:2412-20. [PMID: 15014116 PMCID: PMC6729497 DOI: 10.1523/jneurosci.5544-03.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 01/20/2004] [Accepted: 01/20/2004] [Indexed: 11/21/2022] Open
Abstract
The hippocampus, being sensitive to stress and glucocorticoids, plays significant roles in certain types of learning and memory. Therefore, the hippocampus is probably involved in the increasing drug use, drug seeking, and relapse caused by stress. We have studied the effect of stress with morphine on synaptic plasticity in the CA1 region of the hippocampus in vivo and on a delayed-escape paradigm of the Morris water maze. Our results reveal that acute stress enables long-term depression (LTD) induction by low-frequency stimulation (LFS) but acute morphine causes synaptic potentiation. Remarkably, exposure to an acute stressor reverses the effect of morphine from synaptic potentiation (approximately 20%) to synaptic depression (approximately 40%), precluding further LTD induction by LFS. The synaptic depression caused by stress with morphine is blocked either by the glucocorticoid receptor antagonist RU38486 or by the NMDA-receptor antagonist D-APV. Chronic morphine attenuates the ability of acute morphine to cause synaptic potentiation, and stress to enable LTD induction, but not the ability of stress in tandem with morphine to cause synaptic depression. Furthermore, corticosterone with morphine during the initial phase of drug use promotes later delayed-escape behavior, as indicated by the morphine-reinforced longer latencies to escape, leading to persistent morphine-seeking after withdrawal. These results suggest that hippocampal synaptic plasticity may play a significant role in the effects of stress or glucocorticoids on opiate addiction.
Collapse
Affiliation(s)
- Ya Yang
- Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650223, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Xiong W, Yang Y, Cao J, Wei H, Liang C, Yang S, Xu L. The stress experience dependent long-term depression disassociated with stress effect on spatial memory task. Neurosci Res 2003; 46:415-21. [PMID: 12871763 DOI: 10.1016/s0168-0102(03)00120-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Behavioral stress can either block or facilitate memory and affect the induction of long-term potentiation (LTP) and long-term depression (LTD). However, the relevance of the stress experience-dependent long-term depression (SLTD) to spatial memory task is unknown. Here we have investigated the effects of acute and sub-acute elevated platform (EP) and foot shock (FS) stress on LTD induction in CA1 region of the hippocampus of anesthetized rats and spatial memory in Morris water maze. We found that LTD was facilitated by acute EP stress, but not by sub-acute EP stress that may be due to the fast adaptation of the animals to this naturalistic mild stress. However, FS stress, an inadaptable strong stress, facilitated LTD induction both in acute and sub-acute treatment. In addition, with the same stress protocols, acute EP stress impaired spatial memory but the sub-acute EP stressed animals performed the spatial memory task as well as the controls, may due to the same reason of adaptation. However, acute FS stress slightly impaired learning but sub-acute FS even enhanced memory retrieval. Our results showed that SLTD was disassociated with the effect of stress on memory task but might be related to stress experience-dependent form of aberrant memory.
Collapse
Affiliation(s)
- Wenyong Xiong
- Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | | | | | | | | | | | | |
Collapse
|