1
|
Morillo M, Toledo D, Pérez JJ, Ramon E, Garriga P. Mercury-induced dark-state instability and photobleaching alterations of the visual g-protein coupled receptor rhodopsin. Chem Res Toxicol 2014; 27:1219-26. [PMID: 24911398 DOI: 10.1021/tx500114s] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mercuric compounds were previously shown to affect the visual phototransduction cascade, and this could result in vision impairment. We have analyzed the effect of mercuric chloride on the structure and stability of the dim light vision photoreceptor rhodopsin. For this purpose, we have used both native rhodopsin immunopurified from bovine retinas and a recombinant mutant rhodopsin carrying several Cys to Ser substitutions in order to investigate the potential binding site of mercury on the receptor. Our results show that mercuric chloride dramatically reduces the stability of dark-state rhodopsin and alters the molecular features of the photoactived conformation obtained upon illumination by eliciting the formation of an altered photointermediate. The thermal bleaching kinetics of native and mutant rhodopsin is markedly accelerated by mercury in a concentration-dependent manner, and its chromophore regeneration ability is severely reduced without significantly affecting its G-protein activation capacity. Furthermore, fluorescence spectroscopic measurements on the retinal release process, ensuing illumination, suggest that mercury impairs complete retinal release from the receptor binding pocket. Our results provide further support for the capacity of mercury as a hazardous metal ion with reported deleterious effect on vision and provide a molecular explanation for such an effect at the rhodopsin photoreceptor level. We suggest that mercury could alter vision by acting in a specific manner on the molecular components of the retinoid cycle, particularly by modifying the ability of the visual photoreceptor protein rhodopsin to be regenerated and to be normally photoactivated by light.
Collapse
Affiliation(s)
- Margarita Morillo
- Chemical Engineering Department, Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Universitat Politècnica de Catalunya , Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia Spain
| | | | | | | | | |
Collapse
|
2
|
The mechanisms of Zn2+ effects on Ca2+-permeable AMPA receptors on carp retinal horizontal cells. Brain Res 2010; 1345:103-9. [DOI: 10.1016/j.brainres.2010.05.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 05/11/2010] [Accepted: 05/11/2010] [Indexed: 11/18/2022]
|
3
|
Sun Y, Jiang XD, Liu X, Gong HQ, Liang PJ. Synaptic contribution of Ca2+-permeable and Ca2+-impermeable AMPA receptors on isolated carp retinal horizontal cells and their modulation by Zn2+. Brain Res 2010; 1317:60-8. [PMID: 20045401 DOI: 10.1016/j.brainres.2009.12.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 12/02/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
Abstract
Ca(2+)-permeable and Ca(2+)-impermeable AMPA receptors are co-expressed on carp retinal horizontal cells. In the present study, we examined the synaptic contribution and Zn(2+) modulatory effect of these two AMPA receptor subtypes using whole-cell patch clamp technique. Specific Ca(2+)-permeable AMPA receptor antagonist (1-naphthyl acetyl spermine, NAS) and selective Ca(2+)-impermeable AMPA receptor blocker (pentobarbital, PB) were used to separate the glutamate-response in isolated H1 horizontal cell mediated by these two subtypes of AMPA receptors respectively. Application of 100 microM NAS substantially suppressed the current elicited by 3 mM glutamate and the remaining NAS-insensitive component was completely blocked by application of 100 microM PB. In addition, Zn(2+) had dual effects on Ca(2+)-permeable AMPA receptor-mediated current: at low concentration (10 microM), Zn(2+) potentiated the current, but at higher concentrations (100 and 1000 microM), Zn(2+) reduced the current in a dose-dependent manner. However, Zn(2+) (10, 100 and 1000 microM) failed to modulate the NAS-insensitive current mediated by Ca(2+)-impermeable AMPA receptors. Overall, our results suggest that Ca(2+)-permeable AMPA receptors contribute more to the cell's glutamate-response than Ca(2+)-impermeable AMPA receptors. Furthermore, Zn(2+) has dual effects on the Ca(2+)-permeable AMPA receptor activity without affecting Ca(2+)-impermeable AMPA receptors.
Collapse
Affiliation(s)
- Yan Sun
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | | | | | | | | |
Collapse
|
4
|
Pharmacological characterization, localization, and regulation of ionotropic glutamate receptors in skate horizontal cells. Vis Neurosci 2009; 26:375-87. [PMID: 19678977 DOI: 10.1017/s0952523809990149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Glutamate is believed to be the primary excitatory neurotransmitter in the vertebrate retina, and its fast postsynaptic effects are elicited by activating NMDA-, kainate-, or AMPA-type glutamate receptors. We have characterized the ionotropic glutamate receptors present on retinal horizontal cells of the skate, which possess a unique all-rod retina simplifying synaptic circuitry within the outer plexiform layer (OPL). Isolated external horizontal cells were examined using whole-cell voltage-clamp techniques. Glutamate and its analogues kainate and AMPA, but not NMDA, elicited dose-dependent currents. The AMPA receptor antagonist GYKI 52466 at 100 microm abolished glutamate-elicited currents. Desensitization of glutamate currents was removed upon coapplication of cyclothiazide, known to potentiate AMPA receptor responses, but not by concanavalin A, which potentiates kainate receptor responses. The dose-response curve to glutamate was significantly broader in the presence of the desensitization inhibitor cyclothiazide. Polyclonal antibodies directed against AMPA receptor subunits revealed prominent labeling of isolated external horizontal cells with the GluR2/3 and GluR4 antibodies. 1-Naphthylacetyl spermine, known to block calcium-permeable AMPA receptors, significantly reduced glutamate-gated currents of horizontal cells. Downregulation of glutamate responses was induced by increasing extracellular ion concentrations of Zn2+ and H+. The present study suggests that Ca2+-permeable AMPA receptors likely play an important role in shaping the synaptic responses of skate horizontal cells and that alterations in extracellular concentrations of calcium, zinc, and hydrogen ions have the potential to regulate the strength of postsynaptic signals mediated by AMPA receptors within the OPL.
Collapse
|
5
|
Kaneda M, Ishii K, Akagi T, Tatsukawa T, Hashikawa T. Endogenous zinc can be a modulator of glycinergic signaling pathway in the rat retina. J Mol Histol 2005; 36:179-85. [PMID: 15900408 DOI: 10.1007/s10735-005-1693-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Accepted: 02/02/2005] [Indexed: 11/30/2022]
Abstract
Zinc is a modulator of glutamatergic inputs in the hippocampus. In the retina, however, we previously reported that endogenous zinc is present in the non-glutamatergic neural processes and earlier electrophysiological studies suggest that zinc is a modulator of inhibitory signaling pathways, which are mediated by glycine and GABA. AII amacrine cells, a subpopulation of glycinergic amacrine cells, are identified by selective immunoreactivity for parvalbumin in the rat retina. In the present study, therefore, we focused on whether zinc is present in AII amacrine cells using silver amplification combined with immunohistochemistry in the rat retina. We also examined whether zinc modulate glycine response in the rat retina by the patch clamp technique. Association of silver precipitates with the parvalbumin-immunoreactive neural processes was observed at the ultrastructural level. We also found that zinc existed in the neural processes which were not parvalbumin-immunoreactive. Glycine-induced responses were augmented when the concentration of Zn(2+) was below 10 microM, but inhibited at Zn(2+) concentrations of 50 microM or more. Our results suggest the notion that zinc in neural processes of retinal neurons modulates the inhibitory signaling pathway, particularly that mediated by glycine receptors in AII amacrine cells.
Collapse
Affiliation(s)
- Makoto Kaneda
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | | | | | | | | |
Collapse
|
6
|
Fahrenfort I, Sjoerdsma T, Ripps H, Kamermans M. Cobalt ions inhibit negative feedback in the outer retina by blocking hemichannels on horizontal cells. Vis Neurosci 2005; 21:501-11. [PMID: 15579217 DOI: 10.1017/s095252380421402x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2003] [Indexed: 11/06/2022]
Abstract
In goldfish, negative feedback from horizontal cells to cones shifts the activation function of the Ca2+ current of the cones to more negative potentials. This shift increases the amount of Ca2+ flowing into the cones, resulting in an increase in glutamate release. The increased glutamate release forms the basis of the feedback-mediated responses in second-order neurons, such as the surround-induced responses of bipolar cells and the spectral coding of horizontal cells. Low concentrations of Co2+ block these feedback-mediated responses in turtle retina. The mechanism by which this is accomplished is unknown. We studied the effects of Co2+ on the cone/horizontal network of goldfish retina and found that Co2+ greatly reduced the feedback-mediated responses in both cones and horizontal cells in a GABA-independent way. The reduction of the feedback-mediated responses is accompanied by a small shift of the Ca2+ current of the cones to positive potentials. We have previously shown that hemichannels on the tips of the horizontal cell dendrites are involved in the modulation of the Ca2+ current in cones. Both the absence of this Co2+-induced shift of the Ca2+ current in the absence of a hemichannel conductance and the sensitivity of Cx26 hemichannels to low concentrations of Co2+ are consistent with a role for hemichannels in negative feedback from horizontal cells to cones.
Collapse
Affiliation(s)
- I Fahrenfort
- Research Unit Retinal Signal Processing, The Netherlands Ophthalmic Research Institute, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
7
|
Rosenstein FJ, Chappell RL. Endogenous zinc as a retinal neuromodulator: evidence from the skate (Raja erinacea). Neurosci Lett 2003; 345:81-4. [PMID: 12821176 DOI: 10.1016/s0304-3940(03)00472-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of zinc on skate (Raja erinacea) bipolar cell responses to glutamatergic agonists were examined using whole-cell voltage-clamp recording. Isolated ON bipolar cell currents mediated by the metabotropic agonist trans-(+/-)-1-amino-1,3-cyclopentanedicarboxylic acid (30 microM), L-2-amino-4-phosphonobutyrate (3-10 microM) and glutamate (0.3-10 microM) were blocked when zinc (1 microM) was added to the test solution. Similarly, isolated OFF bipolar cell responses to the ionotropic agonist kainate (300 microM) were blocked by zinc (1 microM). The effects of zinc were further studied using electroretinogram (ERG) recording. Skate eyecup preparations were superfused with picrotoxin (200 microM) to block GABAergic input. When histidine (100 microM), a zinc chelator, was added to the superfusate, ERG ON responses increased. This suggests that endogenous zinc plays a neuromodulatory role in the retina and is consistent with zinc's suppressive effect on isolated bipolar cells.
Collapse
Affiliation(s)
- Frederick J Rosenstein
- Ph.D. Program in Biology, The Graduate Center, CUNY, 365 Fifth Avenue, New York, NY 10016, USA
| | | |
Collapse
|
8
|
Sheng S, Perry CJ, Kleyman TR. External nickel inhibits epithelial sodium channel by binding to histidine residues within the extracellular domains of alpha and gamma subunits and reducing channel open probability. J Biol Chem 2002; 277:50098-111. [PMID: 12397059 DOI: 10.1074/jbc.m209975200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epithelial sodium channels (ENaC) are regulated by various intracellular and extracellular factors including divalent cations. We studied the inhibitory effect and mechanism of external Ni(2+) on cloned mouse alpha-beta-gamma ENaC expressed in Xenopus oocytes. Ni(2+) reduced amiloride-sensitive Na(+) currents of the wild type mouse ENaC in a dose-dependent manner. The Ni(2+) block was fast and partially reversible at low concentrations and irreversible at high concentrations. ENaC inhibition by Ni(2+) was accompanied by moderate inward rectification at concentrations higher than 0.1 mm. ENaC currents were also blocked by the histidine-reactive reagent diethyl pyrocarbonate. Pretreatment of the oocytes with the reagent reduced Ni(2+) inhibition of the remaining current. Mutations at alphaHis(282) and gammaHis(239) located within the extracellular loops significantly decreased Ni(2+) inhibition of ENaC currents. The mutation alphaH282D or double mutations alphaH282R/gammaH239R eliminated Ni(2+) block. All mutations at gammaHis(239) eliminated Ni(2+)-induced inward current rectification. Ni(2+) block was significantly enhanced by introduction of a histidine at alphaArg(280). Lowering extracellular pH to 5.5 and 4.4 decreased or eliminated Ni(2+) block. Although alphaH282C-beta-gamma channels were partially inhibited by the sulfhydryl-reactive reagent [2-(trimethylammonium)ethyl] methanethiosulfonate bromide (MTSET), alpha-beta-gamma H239C channels were insensitive to MTSET. From patch clamp studies, Ni(2+) did not affect unitary current but decreased open probability when perfused into the recording pipette. Our results suggest that external Ni(2+) reduces ENaC open probability by binding to a site consisting of alphaHis(282) and gammaHis(239) and that these histidine residues may participate in ENaC gating.
Collapse
MESH Headings
- Amiloride/pharmacology
- Amino Acid Sequence
- Animals
- Binding Sites
- Cloning, Molecular
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Epithelial Sodium Channels
- Histidine/chemistry
- Kinetics
- Magnesium/pharmacology
- Mice
- Models, Biological
- Models, Chemical
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Nickel/pharmacology
- Oocytes/metabolism
- Patch-Clamp Techniques
- Point Mutation
- Protein Binding
- Protein Structure, Tertiary
- RNA, Complementary/metabolism
- Sequence Homology, Amino Acid
- Sodium/metabolism
- Sodium/pharmacology
- Sodium Channels/chemistry
- Sodium Channels/metabolism
- Time Factors
- Xenopus
Collapse
Affiliation(s)
- Shaohu Sheng
- Renal-Electrolyte Division, the Department of Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| | | | | |
Collapse
|
9
|
Zhang DQ, Ribelayga C, Mangel SC, McMahon DG. Suppression by zinc of AMPA receptor-mediated synaptic transmission in the retina. J Neurophysiol 2002; 88:1245-51. [PMID: 12205145 DOI: 10.1152/jn.2002.88.3.1245] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Zinc is strikingly co-localized with glutamate-containing vesicles in the synaptic terminals of retinal photoreceptors, and it is thought to be co-released with glutamate onto postsynaptic neurons such as horizontal cells and bipolar cells. Here we examined exogenous zinc modulation of glutamate receptors on cultured retinal horizontal cells using patch-clamp recording and endogenous zinc effect on intact horizontal cells using intracellular recording techniques. Application of 3, 30, and 300 microM zinc reduced the whole cell peak current of response to 200 microM glutamate by 2, 30, and 56%, respectively. Zinc suppression of glutamate response persisted in the presence of 10 microM cyclothiazide (CTZ). Glutamate responses of outside-out patches were completely abolished by 30 microM 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine (GYKI 52466), and the receptor desensitization was blocked by 30 microM CTZ, indicating that receptor target for the zinc action on horizontal cells is alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproponic acid (AMPA) receptors. Zinc decreased the amplitude of outside-out patch peak current without an effect on either its 10-90% rise time or the rate of receptor desensitization. Dose-response curves for glutamate show that zinc reduced the maximal current evoked by glutamate and increased EC(50) from 50 +/- 3 to 70 +/- 6 microM without changing the Hill coefficient. Chelation of endogenous zinc with 1 mM Ca-EDTA depolarized horizontal cells in the intact retina by 3 mV, consistent with relief of the partial glutamate receptor inhibition by zinc. Overall, the results describe a unimodal form of zinc modulation of AMPA-type glutamate receptor responses not previously described in native neuronal preparations and a novel role for endogenous zinc in modulating neurotransmission.
Collapse
Affiliation(s)
- Dao-Qi Zhang
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536-0084, USA
| | | | | | | |
Collapse
|
10
|
Chappell RL, Redenti S. Endogenous zinc as a neuromodulator in vertebrate retina: evidence from the retinal slice. THE BIOLOGICAL BULLETIN 2001; 201:265-267. [PMID: 11687414 DOI: 10.2307/1543357] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- R L Chappell
- Hunter College, CUNY, 695 Park Ave., New York, New York 10021, USA
| | | |
Collapse
|
11
|
McMahon DG, Zhang DQ, Ponomareva L, Wagner T. Synaptic mechanisms of network adaptation in horizontal cells. PROGRESS IN BRAIN RESEARCH 2001; 131:419-36. [PMID: 11420960 DOI: 10.1016/s0079-6123(01)31034-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- D G McMahon
- Department of Physiology, University of Kentucky, Lexington, KY 40536-0084, USA.
| | | | | | | |
Collapse
|
12
|
Abstract
The purpose of the present study is to investigate the retina in magnesium (Mg) deficiency and elucidate the local functions of trace elements. After delivery, mother Wistar Kyoto rats were fed a low Mg diet containing 0.1 mg Mg per 100 g diet with all other nutrients and distilled and deionized water. Infant rats were suckled by their mother rats for 21 days and then fed the same Mg-deficient diet. Control mother rats were fed commercial rat pellets containing 24 mg Mg per 100 g diet and all other nutrients. The retinas were examined by electron microscopy and secondary ion mass spectrometry (SIMS) microscopy at 6 weeks of age. In the Mg-deficient rats serum Mg levels were significantly lower and calcium (Ca) levels higher than in the control rats. The retinas of Mg-deficient rats showed multifocal necrosis in the pigment epithelial cells; photoreceptor cell outer segments were deformed near the necrotic cells, and some pigment epithelial cells contained many lamellar bodies. Many photoreceptor cell nuclei showed pyknotic (apoptosis-like) changes. SIMS images showed lower Mg concentration throughout the retina of the Mg-deficient rats, and the ratio of Ca to Mg concentration was significantly higher than in the control rats. Mg deficiency induces multifocal necrosis in the retinal pigment epithelial cells and pyknotic (apoptosis-like) changes in the photoreceptor cell nuclei. The changes in Mg-deficient retinas may be due to an imbalance in the distribution of Mg and Ca trace elements.
Collapse
Affiliation(s)
- H Gong
- Department of Ophthalmology, Nagasaki University School of Medicine, Nagasaki 852-8501, Japan.
| | | | | |
Collapse
|